二次型及其标准型

合集下载

二次型及其标准形(精)

二次型及其标准形(精)
则得二次型的标准形
f 6 y 25 y
2 1
2 2
●用配方法把二次型化成标准型
f ( x1 , x2 , x3 ) x 6 x1 x2 8 x 2 x2 x3 5 x
2 1 2 2
2 2 2 解 f ( x1, x2 , x3 ) ( x1 6x1x2 ) 8x2 2x2 x3 5x3 2 2 ( x1 3x2 )2 x2 2x2 x3 5x3

1 2 4
1 2 4 x1 A 2 4 2 , x x2 4 2 1 x 3
矩阵A的特征多项式为
2 4 2 4 2 ( 4)( 5)2 1
特 4, 征 1 值 2 3 5
●惯性定律 对于同一个二次型,其标准形中正项的个数固
定(称为正惯性指标),负项的个数也是固定的 (称为负惯性指标) ,因而非零项的个数固定(称 为惯性指标)
f xAx
x Py
P正交
f yPAPy yy
1 y 2 y
2 1 2 2
r y
2 r
f 的正惯性指标 = f 的矩阵 A 的正特征值个数 f 的负惯性指标 = f 的矩阵 A 的负特征值个数 f 的惯性指标 = f 的矩阵 A 的非零特征值个数 r
要使二次型f 经可逆变换x Cy变成标准形, 就是要使C AC成为对角矩阵。
对任意实对称矩阵A, 总有正交矩阵P, 使PAP
任给二次型f xAx, 总有正交变换x Py, 使f 化为 标准形
2 2 f 1 y1 2 y2 2 n yn
其中1 , 2 ,
定理2 任何二次型的标准型都存在。

二次型及其标准形

二次型及其标准形

例1 求一个正交变换x Py,把二次型
f x12 2x22 x32 2x1 x3 化为标准形.

1 (1)A 0
0 1 2 0
1 0 1
(2)A的特征值1 2 2,3 0.
当1 2 2时,特征向量为:
p1 (0,1,0)T , p2 (1,0,1)T .
当3 0时,特征向量为:p3 (1,0,1)T .
定理1 对于实二次型 f xT Ax, 总存在正交 变换 x Py,使 f 化为标准形
f 1 y12 2 y22 n yn2 其中 1,2,,n为A的特征值.
用正交变换化二次型为标准型的步骤: (1)写出二次型的矩阵; (2)求 A的全部特征值,特征向量并正交化、单位化; (3)求正交矩阵P; (4)写出正交变换和标准形.
(3)将p1,p2,p3单位化:q1 (0,1,0)T , q2 (1/ 2,0,1/ 2)T ,q3 (1/ 2,0,1/ 2)T .
0
令Q
1
0
1 2
0 1
2
1
2 0 1
2
,
(4)作正交变换
0
x 1
0
1 2
0 1
2
1 2
0 y,
1
2
标准形为 f 2 y12 2 y22 .
定义2 设A和B是n阶方阵,若有可逆矩阵C,使 B CT AC, 则称矩阵A与B合同. congruent
合同是方阵间又一个特殊的等价关系, 因此具 有以下性质: (1) 自反性; (2) 对称性; (3) 传递性;
(4) 合同变换不改变矩阵的秩;
(5) 合同变换不改变矩阵的对称性;
4.4.3 二次型的标准化的方法
称为二次型.

《二次型及其标准型》课件

《二次型及其标准型》课件
任意二次型都可以表示成矩阵的形式。
特征矩阵
每个对称矩阵都有唯一的特征矩阵和特征向 量。
二、二次型的分类
正定二次型
在全空间内取正值,且仅在零 点处取零值。
负定二次型
在全空间内取负值,且仅在零 点处取零值。
半正定二次型
在全空间内取非负值,且在某 点处取零。
半负定二次型
在全空间内取非正值,且在某 点处取零。
三、二次型的标准型
1
消元法
通过矩阵初等变换将二次型化为标准型。
2
完成平方项法
通过添加与减去一些平方项使得二次型化为标准型。
3
正交变换法
通过正交变换使得二次型化为标准型。
四、实对称矩阵的对角化
对角化定理
任意实对称矩阵都可以通过正交相似变换对角化。
特征矩阵
其特征矩阵是一个对角矩阵,对应的特征向量即为变换矩阵的列向量。
正交矩阵
变换矩阵是一个正交矩阵,即其转置等于其逆。
五、二次型的规范化
规范化定理
每个二次型都可以通过正交变 换达到规范形式,其中自变量 部分是平方项相加的形式,而 系数全是1或0。
奇异值分解
通过奇异值分解,可
在优化问题中,可以通过规范 化二次型来处理一些特殊情况。
六、提高拓展
1 多项式对称型
2 奇异值分解与最小二乘法
一类特殊的二次型,在某些应用领域有重 要作用。
将奇异值分解应用于最小二乘法可以得到 一种快速求解带权重线性最小二乘问题的 方法。
二次型及其标准型
这是一场讲述二次型及其标准型的课程,我们将深入探讨它们的定义、分类 和转化方法,以及实对称矩阵的对角化和二次型的规范化等知识点,希望您 能够收获满满。
一、二次型的概念

第五章二节二次型的标准形和规范形

第五章二节二次型的标准形和规范形
T 得对应的特征向量 a3 = (1,1,1)
将 a3单位化: 1 1 1 1 T g3 = a 3 = ( ,, ) a3 3 3 3
令矩阵
轾1 犏 犏2 犏 犏1 Q = (g1, g2 , g3 ) = 犏 犏 2 犏 犏 犏0 犏 臌
1 6 1 6 2 6
1 3 1 3 1 3
Q为正交矩阵,且所作正交变换为 X = QY.
2 2 2 = 2(x1 + x1x2 - x1x3 ) + 2x2 + 2x3 + 2x2 x3 1 1 2 3 2 3 2 = 2(x1 + x2 - x3 ) + x2 + x3 + 3x2 x3 2 2 2 2 1 1 2 3 = 2(x1 + x2 - x3 ) + (x2 + x3 )2 2 2 2
2 2 2 f (x1, x2 , x3 ) = y1 + y2 + y3
但是,上面线性变换的矩阵 轾 1 0 1 犏 C= 犏 1 1 0 犏 犏 0 -1 1 臌 而det C = 0,即此线性变换是退化的,上述解法也是错误的。 正确的解法应利用可逆线性变换化二次型为标准形。 解 由已知条件,二次型可用配方法标准化 2 2 2 f (x1, x2 , x3 ) = 2x1 + 2x2 + 2x3 + 2x1x2 + 2x2 x3 - 2x1x3
1 类似可得对应于特征值l 2 = l 3 = - 的线性无关的特征向量 2 a 2 = (- 1,1,0)T , a3 = (- 1,0,1)T .
利用施密特正交化方法,将 a 2 , a3 正交化:令
T a3 b2 1 1 b2 = a 2 = (- 1,1,0)T , b3 = a3 - T b2 = (- ,- ,1)T b2 b2 2 2 将a1, b2 , b3单位化,有

Ch5-5线性代数二次型及其标准型

Ch5-5线性代数二次型及其标准型

2 01
0
0 0 1
可得
f
的规范形:f
=
-z
2 1
+
z
2 2
+
z
2 3
.
用正交阵将二次型化为标准形的步骤:
正交变换法
(i) 写出 f 的矩阵 A,并求出 A所有相异特征值 1, , m;
它们的重数依次为 r1, r2 , rm ( r1 r2 rm n )
(ii) 对每个重特征值i , 求出对应的 ri 个线性无关的特征向量
二次曲线
旋转变换
ax2 bxy cy2 1

x y

x cos x sin

y sin y cos
, ,
二次齐次多项式
m x2 n y2 1
不改变长度、夹角
可逆线性变换 正交变换
对于n 元的二次齐次多项式,能否存在一个可逆的线性变换 将其变为只含平方项的二次齐次多项式
求可逆矩阵 C 使得 C TAC B , 称为将 A 合同(变换)为 B .
简单性质:
10 矩阵的合同关系是等价关系;
20 合同矩阵CT必A等C 秩 B; , 而 C 可逆,
30 与对称矩阵合同的矩阵也是对称阵.
A AT , C TAC B BT CT ATC CT AC B
从合同的角度看二次型的变换问题:
二次型 f xTAx 经可逆变换 x C y化成二次型 f yTB y
存在可逆阵 C 将矩阵 A合同为B, 即 A, B 满足CTAC =B, 且 B仍为对称阵,二次型 f 的秩不变.
能将二次型 f = xTA x 经过可逆线性变换化成标准形

二次型及其标准型

二次型及其标准型

其中
a11 a12 a21 a22 A a a n1 n 2
a1n x1 a2 n x2 , x ann xn
1)称A为二次型 f 的矩阵,显然 A=AT; 2)A=(aij), 若 aij 为复数,称 f 为复二次型; 3) A=(aij), 若 aij 为实数,称 f 为实二次型; 4)称为R(A)为二次型 f 的秩。
例 1. 把下面的二次型写成矩阵形式;
(1)
(2)
解: (1)
f ( x1 , x2 ) x 4 x1 x2 3x ;
2 1 2 2
f ( x1 , x2 , x3 ) x 4 x1 x2 3x ;
2 1 2 2
f ( x1 , x2 ) x1
1 2 x1 x2 2 3 x2
定理10. 任意 二次型
n n
f ( x1 , x2 ,, xn ) aij xi x j
(aij a ji ), 总有正交变换x Py, 使f 化为标准型
2 f 1 y12 2 y2 2 n yn
i 1 j 1
其中1, ,2, n是 f 的矩阵A的n个特征值 .
故 B 为对称矩阵.
再证 R(B)=R(A).

又因
B=C TAC, 故 R(B) ≤R(AC) ≤R(A).
A=(C T) -1BC -1,故 R(A) ≤R(BC -1) ≤R(B)
于是
R(B)=R(A).
这定理说明:经可逆变换 x=C y ,把 f 化成 yTC TACy , C TAC 仍为对称矩阵,且二次型的秩不变。要使二次型 f 经过可逆变换 x=C y化成标准形,即使 f = x TAx

线性代数§5.5二次型及其标准形

线性代数§5.5二次型及其标准形
i , j 1 n
总有正交变换 y=Px, 使 f 化为标准形: f = 1y12+2y22+· · · +nyn2,
其中1, 2, · · · ,n 是 f 的矩阵A=(aij)的特征值.
用正交变换化二次型为标准形的具体步骤: 1. 将二次型表示成矩阵形式 f = xTAx, 求出A; 2. 求出A的所有特征值1, 2, · · · , n ; 3. 求出对应特征值i 的正交单位化的特征向量组, 从而有正交规范向量组 1, 2, · · · , n ; 4. 记P=(1, 2, · · · , n ), 作正交变换x=Py, 则得 f 的 标准形: f = 1y12+2y22+· · · +nyn2 . 例2: 将二次型 f =17x12+14x22+14x32–4x1x2–4x1x3–8x2x3 通过正交变换x=Py化成标准形. 解: 1. 写出对应的二次型矩阵. 17 2 2 A 2 14 4 2 4 14
取aji = aij , 则 2aij xi xj = aij xi xj + aji xjxi , 于是 f(x1, x2, · Байду номын сангаас · , xn) =a11x12+a12x1x2 +· · · +a1nx1xn +a21x2x2 + a22x22+· · · +a2nx2xn +· · · · · · +an1xnx1+an2xnx2+ · · · +ann xn2
思考题:
求一正交变换, 将二次型 f(x, y, z)=5x2+5y2+3z2–2xy+6xz–6yz 化为标准型, 并指出f (x, y, z)=36表示何种二次曲面.

6.1二次型及其标准形

6.1二次型及其标准形
1 2 0 A 2 2 3.
0 3 3
见书上例2、例3.
只含有平方项的二次型 f k1 y12 k2 y22 kn yn2
称为二次型的标准形(或法式). 例如
f x1, x2 , x3 2x12 4x22 5x32 4x1x3 f x1, x2 , x3 x1 x2 x1 x3 x2 x3
其中1,2 ,, n是 f 的矩阵A aij 的特征值.
用正交变换化二次型为标准形的具体步骤
1. 将二次型表成矩阵形式f xT Ax,求出A;
2. 求出A的所有特征值1,2 ,,n;
3. 求出对应于特征值的特征向量1 ,2 ,,n;
4.

特征向量
1
,
2
,,

n
交化,
单位化,

1 ,2 ,,n ,记C 1 ,2 ,,n ;
xn cn1 y1 cn2 y2 cnn yn
记C (cij),则上述可逆线性变换可 记作
x Cy
将其代入 f xT Ax,有
f xT Ax CyT ACy yT CT AC y.
这样问题就演变为如何找出n阶可逆矩阵C使得CT AC 为对角矩阵。
定义:如果对于n阶方阵A和B,存在n阶可逆矩阵P,使
a1n
a2n
,
ann
x1
x
x2
,
xn
则二次型可记作 f xT Ax,其中A为对称矩阵.
对称矩阵A叫做二次型 f 的矩阵; f 叫做对称矩阵A的二次型;
例1 写出二次型 f x12 2 x22 3 x32 4 x1 x2 6 x2 x3
的矩阵.
解 a11 1, a22 2, a33 3, a12 a21 2, a13 a31 0, a23 a32 3.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

例 1. 把下面的二次型写成矩阵形式;
(1) f (x1, x2 ) x12 4x1x2 3x22;
(2) f (x1, x2 , x3 )1)
f (x1, x2 ) x1
x2
1 2
2 x1
3
x2
(2)
f (x1, x2 , x3 ) x1
ax2 bxy cy2 1 (1)
(1)的左边是一个二次齐次多项式,从代数学的观点看, 化标准型的过程就是通过变量的线性变换化简一个二次齐 次多项式,使它只有平方项。这样的问题,在许多理论问 题或是实际问题中常会遇到。
现在我们把这类问题一般化,讨论n个变量的二次齐 次多项式的化简问题。
一、二次型概念
二次型的矩阵形式
nn
f (x1, x2, , xn )
aij xi x j
i1 j1
x1(a11x1 a12 x2 L a1n xn )
x2 (a21x1 a22 x2 L a2n xn )
L L L L L L L L L L
xn (an1x1 an2 x2 L ann xn )
a11x1 a12 x2 a1n xn
(x1, x2,
, xn ) a21x1 an1x1
a22 x2
an2x2
a2n xn ann xn
x1x2
a11 a12
xn
a21
a22
xT Ax
an1 an2
a1n x1
a2n
x2
ann xn
其中
(Cy)T ACy yTC T ACy
λ1 y12 λ2 y22 L λn yn2
y1 y2 L
λ1
yn
λ2 O
yT y
y1
y2
M
λn yn
也就是要使 C TAC 成为对角阵,即, C TAC=∧,因 此,我们主要的问题就是:对于对称矩阵 A ,寻求可逆 矩阵 C ,使 C TAC=∧. 由上节定理 8 知 , 任给实对称矩 阵A,总有正交矩阵 P,使PTAP =∧. 把此结论用于二次型,
x2
1
x3 2
2 0 x1 3 0 x2
0 0 0 x3
二、二次型的标准形
定义9. 称只含有平方项的二次型
f λ1 y12 λ2 y22 L λn yn2
y1 y2 L
λ1
yn
λ2 O
yT y
为二次型的标准型(或法式)。
y1
y2
M
λn yn
所谓一般二次型的化简问题,就是寻找一个可逆的线 性变换:
又因 A=(C T) -1BC -1,故 R(A) ≤R(BC -1) ≤R(B)
于是 R(B)=R(A).
这定理说明:经可逆变换 x=C y ,把 f 化成 yTC TACy , C TAC 仍为对称矩阵,且二次型的秩不变。要使二次型 f 经过可逆变换 x=C y化成标准形,即使
f = x TAx
定义1:含有n个变量x1 , x2 ,…xn的二次齐次函数
f (x1, x2 , , xn ) a11x12 2a12 x1x2 2a1n x1xn
a22 x22 2a2n x2 xn
ann xn2
nn
aij xi x j
i1 j 1
其中
aij a ji ,
2aij xi x j aij xi x j a ji x j xi
x1 c11 y1 c12 y2 L c1n yn
x2 c21 y1 c22 y2 L LL
c2n yn
xn cn1 y1+cn2 y2+L +cnn yn
即 x cy 把f xT Ax化成标准型。于是
f xT Ax (cy)T A(cy) yT (cT Ac) y.
定理9 任给可逆矩阵 C ,令 B=C TAC,若 A 为对称 矩阵,则 B 亦为对称矩阵,且 R(B)=R(A)。
证: A为对称矩阵,即有 A T=A,于是,
B T =(C TAC) T=C TAT(C T) T=C TAC=B .
故 B 为对称矩阵.
再证 R(B)=R(A).

B=C TAC, 故 R(B) ≤R(AC) ≤R(A).
即有:
定理10. 任意 二次型
nn
f (x1, x2, , xn )
aij xi x j
i1 j1
(aij a ji ),总有正交变换x Py, 使f 化为标准型
f 1 y12 2 y22 n yn2
其中1,,2, n是 f 的矩阵A的n个特征值.
a11
A
a21 an1
a12 a22 an2
a1n
a2n ann
,
x1
x
x2 xn
1)称A为二次型 f 的矩阵,显然 A=AT;
2)A=(aij), 若 aij 为复数,称 f 为复二次型; 3) A=(aij), 若 aij 为实数,称 f 为实二次型; 4)称为R(A)为二次型 f 的秩。
相关文档
最新文档