进程管理_实验报告一流程图
操作系统实验报告进程管理

操作系统实验报告进程管理操作系统实验报告:进程管理引言操作系统是计算机系统中的核心软件,负责管理计算机的硬件资源和提供用户与计算机之间的接口。
进程管理是操作系统的重要功能之一,它负责对计算机中运行的各个进程进行管理和调度,以保证系统的高效运行。
本实验报告将介绍进程管理的基本概念、原理和实验结果。
一、进程管理的基本概念1. 进程与线程进程是计算机中正在运行的程序的实例,它拥有独立的内存空间和执行环境。
线程是进程中的一个执行单元,多个线程可以共享同一个进程的资源。
进程和线程是操作系统中最基本的执行单位。
2. 进程状态进程在运行过程中会经历不同的状态,常见的进程状态包括就绪、运行和阻塞。
就绪状态表示进程已经准备好执行,但还没有得到处理器的分配;运行状态表示进程正在执行;阻塞状态表示进程由于某些原因无法继续执行,需要等待某些事件的发生。
3. 进程调度进程调度是操作系统中的一个重要任务,它决定了哪个进程应该获得处理器的使用权。
常见的调度算法包括先来先服务(FCFS)、最短作业优先(SJF)和时间片轮转等。
二、进程管理的原理1. 进程控制块(PCB)PCB是操作系统中用于管理进程的数据结构,它包含了进程的各种属性和状态信息,如进程标识符、程序计数器、寄存器值等。
通过PCB,操作系统可以对进程进行管理和控制。
2. 进程创建与撤销进程的创建是指操作系统根据用户的请求创建一个新的进程。
进程的撤销是指操作系统根据某种条件或用户的请求终止一个正在运行的进程。
进程的创建和撤销是操作系统中的基本操作之一。
3. 进程同步与通信多个进程之间可能需要进行同步和通信,以实现数据共享和协作。
常见的进程同步与通信机制包括互斥锁、信号量和管道等。
三、实验结果与分析在本次实验中,我们使用了一个简单的进程管理模拟程序,模拟了进程的创建、撤销和调度过程。
通过该程序,我们可以观察到不同调度算法对系统性能的影响。
实验结果显示,先来先服务(FCFS)调度算法在一些情况下可能导致长作业等待时间过长,影响系统的响应速度。
电大操作系统实验报告3_ 进程管理实验

电大操作系统实验报告3_ 进程管理实验电大操作系统实验报告 3 进程管理实验一、实验目的进程管理是操作系统的核心功能之一,本次实验的目的是通过实际操作和观察,深入理解进程的概念、状态转换、进程调度以及进程间的通信机制,掌握操作系统中进程管理的基本原理和方法,提高对操作系统的整体认识和实践能力。
二、实验环境本次实验使用的操作系统为 Windows 10,编程语言为 C 语言,开发工具为 Visual Studio 2019。
三、实验内容及步骤(一)进程的创建与终止1、编写一个 C 程序,使用系统调用创建一个子进程。
2、在父进程和子进程中分别输出各自的进程 ID 和父进程 ID。
3、子进程执行一段简单的计算任务,父进程等待子进程结束后输出结束信息。
以下是实现上述功能的 C 程序代码:```cinclude <stdioh>include <stdlibh>include <unistdh>int main(){pid_t pid;pid = fork();if (pid < 0) {printf("创建子进程失败\n");return 1;} else if (pid == 0) {printf("子进程:我的进程 ID 是%d,父进程 ID 是%d\n",getpid(), getppid());int result = 2 + 3;printf("子进程计算结果:2 + 3 =%d\n", result);exit(0);} else {printf("父进程:我的进程 ID 是%d,子进程 ID 是%d\n",getpid(), pid);wait(NULL);printf("子进程已结束\n");}return 0;}```编译并运行上述程序,可以观察到父进程和子进程的输出信息,验证了进程的创建和终止过程。
(二)进程的状态转换1、编写一个 C 程序,创建一个子进程,子进程进入睡眠状态一段时间,然后被唤醒并输出状态转换信息。
进程管理演示实验报告

一、实验目的1. 理解进程的概念及其在操作系统中的作用。
2. 掌握Linux系统中进程的创建、调度、同步和通信方法。
3. 熟悉进程的阻塞、挂起、恢复和终止操作。
4. 学习使用相关命令和工具进行进程管理和调试。
二、实验环境操作系统:Linux开发环境:GCC、Xshell三、实验内容1. 进程创建与调度2. 进程同步与通信3. 进程阻塞与恢复4. 进程终止与调试四、实验步骤1. 进程创建与调度(1)编写一个简单的C程序,使用fork()函数创建一个子进程。
(2)在父进程中,使用getpid()和getppid()函数获取进程ID和父进程ID。
(3)使用ps命令查看当前系统中的进程,观察父进程和子进程的状态。
(4)使用waitpid()函数等待子进程结束。
2. 进程同步与通信(1)编写一个使用管道(pipe)进行进程间通信的C程序。
(2)父进程向管道中写入数据,子进程从管道中读取数据。
(3)使用ps命令查看进程状态,观察管道通信的效果。
(4)编写一个使用信号量(semaphore)进行进程同步的C程序。
(5)使用sem_wait()和sem_post()函数实现进程同步。
3. 进程阻塞与恢复(1)编写一个使用sleep()函数使进程阻塞的C程序。
(2)在父进程中,使用waitpid()函数等待阻塞的子进程结束。
(3)使用kill()函数向阻塞的进程发送SIGCONT信号,使其恢复执行。
4. 进程终止与调试(1)编写一个使用exit()函数终止进程的C程序。
(2)在父进程中,使用waitpid()函数等待终止的子进程。
(3)使用gdb调试器分析程序运行过程中出现的问题。
五、实验结果与分析1. 进程创建与调度实验结果表明,使用fork()函数成功创建了子进程,父进程和子进程的进程ID和父进程ID被正确获取。
通过ps命令,可以观察到父进程和子进程的状态。
2. 进程同步与通信实验结果表明,管道通信可以成功实现父进程和子进程之间的数据传递。
进程的管理实验报告

一、实验目的1. 理解进程的基本概念和进程状态转换过程。
2. 掌握进程创建、进程同步和进程通信的方法。
3. 了解进程调度算法的基本原理和实现方法。
4. 通过实验加深对进程管理的理解,提高操作系统实践能力。
二、实验环境1. 操作系统:Linux2. 编程语言:C/C++3. 开发工具:GCC三、实验内容1. 进程创建与状态转换(1)使用fork()函数创建一个子进程,并观察父进程和子进程的进程ID。
(2)使用exec()函数替换子进程的映像,实现进程的创建。
(3)观察进程状态转换过程,如创建、运行、阻塞、就绪、终止等。
2. 进程同步(1)使用互斥锁(mutex)实现进程的互斥访问共享资源。
(2)使用信号量(semaphore)实现进程的同步,如生产者-消费者问题。
(3)观察进程同步的效果,确保进程安全执行。
3. 进程通信(1)使用管道(pipe)实现进程间的单向通信。
(2)使用消息队列(message queue)实现进程间的双向通信。
(3)使用共享内存(shared memory)实现进程间的快速通信。
(4)观察进程通信的效果,确保数据正确传递。
(1)实现基于优先级的进程调度算法,如先来先服务(FCFS)和最高优先级优先(HPF)。
(2)实现基于时间片的轮转调度算法(RR)。
(3)观察进程调度算法的效果,分析不同算法的优缺点。
四、实验步骤1. 编写程序实现进程创建与状态转换,使用fork()和exec()函数。
2. 编写程序实现进程同步,使用互斥锁和信号量。
3. 编写程序实现进程通信,使用管道、消息队列和共享内存。
4. 编写程序实现进程调度,使用优先级调度和时间片轮转调度。
5. 编译并运行程序,观察实验结果,分析实验现象。
五、实验结果与分析1. 进程创建与状态转换通过实验,我们成功创建了父进程和子进程,并观察到进程ID的变化。
在进程创建过程中,父进程的进程ID与子进程的进程ID不同,说明子进程是独立于父进程的实体。
操作系统-实验三-进程管理-实验报告

计算机与信息工程学院实验报告一、实验内容1.练习在shell环境下编译执行程序(注意:①在vi编辑器中编写名为sample.c的c语言源程序②用linux自带的编译器gcc编译程序,例如:gcc –o test sample.c③编译后生成名为test.out的可执行文件;④最后执行分析结果;命令为:./test)注意:linux自带的编译程序gcc的语法是:gcc –o 目标程序名源程序名,例如:gcc –o sample1 sample1.c,然后利用命令:./sample 来执行。
如果仅用“gcc 源程序名”,将会把任何名字的源程序都编译成名为a.out的目标程序,这样新编译的程序会覆盖原来的程序,所以最好给每个源程序都起个新目标程序名。
2.进程的创建仿照例子自己编写一段程序,使用系统调用fork()创建两个子进程。
当此程序运行时,在系统中有一个父进程和两个子进程活动。
让每一个进程在屏幕上显示一个字符:父进程显示“a”,子进程分别显示字符“b”和“c”。
观察记录屏幕上的显示结果,并分析原因。
3.分析程序实验内容要在给出的例子程序基础上,根据要求进行修改,对执行结果进行分析。
二、实验步骤1. 利用fork()创建一个小程序(1)编写程序#include <sys/types.h>main (){int i=5;pid_t pid;pid=fork();for(;i>0;i--){if (pid < 0)printf("error in fork!");else if (pid == 0)printf("i am the child process, my process id is %d and i=%d\n",getpid(),i);elseprintf("i am the parent process, my process id is %d and i=%d\n",getpid(),i);}for(i=5;i>0;i--){if (pid < 0)printf("error in fork!");else if (pid == 0)printf("the child process, my process id is %d and i=%d\n",getpid(),i);elseprintf("the parent process, my process id is %d andi=%d\n",getpid(),i);}}(2)运行程序(3)分析程序在这里,主程序先运行,在屏幕上输出一个a,之后两个子程序分别运行而输出c和b。
进程管理实验报告

进程管理实验报告进程管理实验报告引言:进程管理是操作系统中的重要概念,它负责调度和控制计算机系统中的各个进程,确保它们能够有序地执行。
本实验旨在通过实际操作和观察,深入了解进程管理的原理和方法,并通过实验结果分析其影响因素和优化策略。
实验一:进程创建与终止在本实验中,我们首先进行了进程的创建和终止实验。
通过编写简单的程序,我们能够观察到进程的创建和终止过程,并了解到进程控制块(PCB)在其中的作用。
实验结果显示,当一个进程被创建时,操作系统会为其分配一个唯一的进程ID,并为其分配必要的资源,如内存空间、文件描述符等。
同时,操作系统还会为该进程创建一个PCB,用于存储该进程的相关信息,如进程状态、程序计数器等。
当我们手动终止一个进程时,操作系统会释放该进程所占用的资源,并将其PCB从系统中删除。
这样,其他进程便可以继续使用这些资源,提高系统的效率和资源利用率。
实验二:进程调度算法进程调度算法是决定进程执行顺序的重要因素。
在本实验中,我们通过模拟不同的进程调度算法,比较它们在不同场景下的表现和效果。
我们选择了三种常见的进程调度算法:先来先服务(FCFS)、最短作业优先(SJF)和轮转调度(RR)。
通过设置不同的进程执行时间和优先级,我们观察到不同调度算法对系统吞吐量和响应时间的影响。
实验结果显示,FCFS算法适用于执行时间较短的进程,能够保证公平性,但在执行时间较长的进程出现时,会导致等待时间过长,影响系统的响应速度。
SJF 算法在执行时间较长的进程时表现出色,但对于执行时间较短的进程,可能会导致饥饿现象。
RR算法能够在一定程度上平衡各个进程的执行时间,但对于执行时间过长的进程,仍然会影响系统的响应速度。
实验三:进程同步与互斥在多进程环境中,进程之间的同步和互斥是必不可少的。
在本实验中,我们通过模拟进程间的竞争和互斥关系,观察进程同步与互斥的实现方式和效果。
我们选择了信号量机制和互斥锁机制作为实现进程同步和互斥的方法。
操作系统实验之进程管理实验报告

操作系统实验之进程管理实验报告一、实验目的本次操作系统实验的主要目的是深入理解进程管理的概念和原理,通过实际操作和观察,掌握进程的创建、调度、同步与互斥等关键机制。
二、实验环境本次实验使用的操作系统为 Windows 10,开发工具为 Visual Studio 2019,编程语言为 C++。
三、实验内容1、进程创建使用系统提供的 API 函数创建新的进程。
观察新进程的资源使用情况和运行状态。
2、进程调度编写程序模拟不同的进程调度算法,如先来先服务(FCFS)、短作业优先(SJF)和时间片轮转(RR)。
比较不同调度算法下的平均周转时间、平均等待时间等性能指标。
3、进程同步与互斥利用信号量、互斥锁等机制实现进程之间的同步与互斥。
设计并发程序,解决生产者消费者问题、读写者问题等经典同步问题。
四、实验步骤1、进程创建实验首先,包含所需的头文件,如`<windowsh>`。
然后,定义创建进程的函数,使用`CreateProcess` 函数创建新进程,并获取进程的相关信息,如进程标识符、线程标识符等。
最后,通过查看任务管理器或其他系统工具,观察新创建进程的资源占用情况。
2、进程调度实验设计不同的调度算法函数,如`FCFSSchedule`、`SJFSchedule` 和`RRSchedule`。
在每个调度算法函数中,模拟进程的到达时间、服务时间等参数,并按照相应的算法进行进程调度。
计算每个进程的周转时间和等待时间,并求出平均周转时间和平均等待时间。
3、进程同步与互斥实验定义信号量或互斥锁变量。
在生产者消费者问题中,生产者在生产产品时获取互斥锁,生产完成后释放互斥锁并通知消费者;消费者在消费产品时获取互斥锁,消费完成后释放互斥锁。
在读写者问题中,读者在读取数据时获取共享锁,读完后释放共享锁;写者在写入数据时获取独占锁,写入完成后释放独占锁。
五、实验结果与分析1、进程创建实验结果成功创建新的进程,并能够获取到进程的相关信息。
进程管理实验报告

进程管理实验报告
摘要:
进程管理是操作系统中的重要概念之一,它涉及到进程的创建、调度和终止等方面。
本实验通过使用C语言编写一个简单的进程管
理程序来加深对进程管理原理的理解。
实验分为进程创建、调度和
终止三个部分,通过实验结果可以验证进程管理算法的正确性和效率。
1. 引言
进程是计算机中进行资源分配和调度的基本单位,它代表了一
个正在运行的程序。
进程管理是操作系统中的一个核心功能,负责
分配资源、调度进程和管理进程的状态等。
通过对进程管理的研究
和实验,可以深入了解操作系统的工作原理,并且优化进程管理算法,提高系统性能。
2. 实验目的
本实验的主要目的是通过编写一个进程管理程序,实现进程的创建、调度和终止等功能。
通过实验,验证进程管理算法的正确性和效率,并加深对进程管理原理的理解。
3. 实验环境
本实验使用C语言进行编程,采用Linux操作系统。
4. 实验内容
4.1 进程创建
进程创建是指操作系统为程序创建一个进程,使其能够在系统中运行。
在本实验中,我们使用fork()函数创建一个子进程,并通过exec()函数加载可执行文件。
4.2 进程调度
进程调度是指根据一定的算法选择哪个进程优先执行。
常见的调度算法有先来先服务(FCFS)、最短作业优先(SJF)、优先级调度等。
在本实验中,我们选择简单的先来先服务调度算法。
4.3 进程终止。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
实验一
课程名称:操作系统
课程类型:必修
实验项目名称:进程管理
实验题目:短作业优先算法、动态可剥夺优先数算法和基本循环轮转算法。
一、实验目的
进程是操作系统最重要的概念之一,进程调度又是操作系统核心的主要内容。
本实验要求学生独立的用高级语言编写和调试一个简单的模拟进程调度的程序。
通过本实验,加深学生理解有关进程控制块、进程队列的概念,并体会和了解短作业优先、优先数和时间片轮转调度算法的具体实施办法。
二、实验要求及实验环境
(1)设计一个有n 个进程的进程调度程序(具体个数可由键盘输入)。
每一个进程用一个进程控制块PCB 来代表。
PCB 中应包含下列信息:进程名、进程优先数、进程的状态、进程需要运行的时间及利用CPU运行的时间等。
进程的个数、各进程的优先数、轮转时间片数以及进程运行需要地时间可由
键盘输入。
(2)调度程序应包含2~3 种不同的调度算法,运行时可任选一种。
(3)每个进程处于运行Run、就绪ready 和完成Finish 三种状态之一,假定初始状态都为就绪状态ready。
(也可没有Finish状态,可以在设计程序时实现处以Finish状态的进程删掉)。
(4)系统能显示各进程状态和参数的变化情况。
(5)动态可剥夺优先数算法是:在创建进程时给定一个初始的优先数,当进程获得一次cpu后其优先数就减少1,如果就绪队列中有优先级更高的将剥夺运行中的进程。
三、设计思想
(本程序中的用到的所有数据类型的定义,主程序的流程图及各程序模块之间的调用关系)
1.程序流程图
(见下图)
2.逻辑设计
使用链表表示就绪队列,每个元素包括进程名、进程优先数、进程的状态、进程需要运行的时间及利用CPU运行的时间等信息。
该结构需支持以下操作:取头节点,在表尾插入节
点,删除头节点,判断表空。
为此,至少引入3 个指针变量:头指针HEAD 和活动指针p、q。
3、物理设计
struct pcb
{ char name[10];
int priority;
int state;
int needtime;
int runtime;
struct pcb *next;
}; /*用此结构体来模拟一个进程*/
开始 选择菜单的选项choice
创建 进程 链表
输出菜单
1 短作业 优先 调度
动态 优先 级调度 循环 轮转 调度
退 出
2 3 4 0 结束
图1-1主程序的流程图
开始
就绪队列 是否为空?
取出执行时间最短的进程 修改该进程的状态为“RUN ” 输出运行进程的信息 输出若干就绪进程的信息 从链表中删除运行完的进程
否
是
结束
图1-2短作业优先算法的流程图
开始
就绪队列 是否为空?
是
否
Flag=1?
是
取出优先级最高的进程; 并修改进程的状态为“RUN ” 运行时间加1;
优先级减1。
输出运行进程的信息; 输出若干就绪进程的信息
运行结
束否?
是 从链表中删除运行完的进程
否 否
该进程优先级是
就绪进程中优先级最大的么? 是
Flag=0 否 FLAG=1; 进程运行状态为“ready ”
结束
图1-3动态可剥夺优先数算法的流程图
指针r 指向就绪队列的最后一个进程 选中就绪队列的第一个进程; 将该进程的状态改为“RUN ”; 输出该运行进程的信息。
是
输入时间片
就绪队列 是否为空?
否
时间片内,进程运行结束否
否 运行时间=运行时间+时间片;并输出
输出就绪进程的信息
运行时间=需要时间; 并输出
进程运行
结束否
是 删除该进程 否
将该进程移到表尾
是
结束
开始
图1-4循环轮转算法的流程图。