进程管理实验报告
进程管理实验报告

实验名称: 进程管理实验要求:阅读后面的C语言实例,修改程序,使其优先数在运行期间可以变化(动态优先数)。
例如,当某进程被时间片中断次数增加到一定数目时,提高其优先权。
关键问题:读懂源程序代码,了解进程管理的方式,并设计一个算法使程序能在运行过程中修改进程优先级。
设计思路:在进程控制块中定义一个记录进程中断次数的变量,在block函数中设置跟踪并记录进程中断次数,在调度函数schedule中设置算法,在进程中断3次后将该进程的优先级提升至最高。
改动后的代码:#include <stdio.h>#define TRUE 1#define FALSE 0#define MAXPRI 100#define NIL -1//进程控制块struct {int id; //进程号char status; //进程状态,'e'-执行态'r'-高就绪态't'-低就绪态'w'-等待态'c'-完成态int nextwr; //等待链指针,指示在同一信号量上等待的下一个等待进程的进程号。
int priority; //进程优先数,值越小,优先级越高。
int c;//进程中断次数}pcb[3];//共3个进程//s1、s2为三个进程共享的变量;seed为随机值;registeri模拟寄存器值,存放计算的重复次数。
int registeri,s1,s2,seed,exe=NIL;//exe为当前运行(占有cpu)的进程号//2个信号量sem[0]、sem[1],分别与共享变量s1、s2相联系。
//对应信号量sem[0]、sem[1]分别有两个阻塞队列,队列首由sem[].firstwr指定,队列链指针是pcb[].nextwrstruct{int value;//信号量值int firstwr;//等待该信号量的阻塞队列的首个进程号}sem[2];//三个进程的现场保留区,其中savearea[][0]为寄存器内容,savearea[][1]为下一条指令地址。
操作系统实验报告进程管理

操作系统实验报告进程管理操作系统实验报告:进程管理引言操作系统是计算机系统中的核心软件,负责管理计算机的硬件资源和提供用户与计算机之间的接口。
进程管理是操作系统的重要功能之一,它负责对计算机中运行的各个进程进行管理和调度,以保证系统的高效运行。
本实验报告将介绍进程管理的基本概念、原理和实验结果。
一、进程管理的基本概念1. 进程与线程进程是计算机中正在运行的程序的实例,它拥有独立的内存空间和执行环境。
线程是进程中的一个执行单元,多个线程可以共享同一个进程的资源。
进程和线程是操作系统中最基本的执行单位。
2. 进程状态进程在运行过程中会经历不同的状态,常见的进程状态包括就绪、运行和阻塞。
就绪状态表示进程已经准备好执行,但还没有得到处理器的分配;运行状态表示进程正在执行;阻塞状态表示进程由于某些原因无法继续执行,需要等待某些事件的发生。
3. 进程调度进程调度是操作系统中的一个重要任务,它决定了哪个进程应该获得处理器的使用权。
常见的调度算法包括先来先服务(FCFS)、最短作业优先(SJF)和时间片轮转等。
二、进程管理的原理1. 进程控制块(PCB)PCB是操作系统中用于管理进程的数据结构,它包含了进程的各种属性和状态信息,如进程标识符、程序计数器、寄存器值等。
通过PCB,操作系统可以对进程进行管理和控制。
2. 进程创建与撤销进程的创建是指操作系统根据用户的请求创建一个新的进程。
进程的撤销是指操作系统根据某种条件或用户的请求终止一个正在运行的进程。
进程的创建和撤销是操作系统中的基本操作之一。
3. 进程同步与通信多个进程之间可能需要进行同步和通信,以实现数据共享和协作。
常见的进程同步与通信机制包括互斥锁、信号量和管道等。
三、实验结果与分析在本次实验中,我们使用了一个简单的进程管理模拟程序,模拟了进程的创建、撤销和调度过程。
通过该程序,我们可以观察到不同调度算法对系统性能的影响。
实验结果显示,先来先服务(FCFS)调度算法在一些情况下可能导致长作业等待时间过长,影响系统的响应速度。
最新实验二-实验报告(进程管理)

最新实验二-实验报告(进程管理)实验目的:1. 理解操作系统中进程的概念及其特性。
2. 掌握进程管理的基本原理和方法。
3. 学习进程创建、撤销、阻塞和唤醒等操作。
4. 熟悉进程间的同步与通信机制。
实验环境:- 操作系统:Linux/Unix- 编程语言:C/C++- 开发工具:GCC编译器,GDB调试器实验内容:1. 创建进程:编写程序,使用系统调用fork()创建子进程,并观察父进程与子进程的行为差异。
2. 进程撤销:实现一个程序,通过系统调用exit()或abort()撤销进程,并观察其对进程组和会话的影响。
3. 进程阻塞与唤醒:设计并实现一个父进程和多个子进程的程序,其中子进程执行阻塞操作(如sleep()),父进程负责唤醒这些子进程。
4. 进程同步:利用信号量或管程等同步机制,实现两个并发进程的同步操作。
5. 进程通信:通过管道(PIPE)、消息队列、共享内存等IPC机制,实现进程间的信息交换。
实验步骤:1. 设计并编写创建进程的程序代码。
2. 在Linux环境下使用GCC编译程序,并记录编译过程。
3. 运行程序,使用GDB等工具调试程序,并观察fork()的执行效果。
4. 实现进程撤销的程序,并记录exit()和abort()的不同行为。
5. 编写进程阻塞与唤醒的程序,并通过实验观察不同进程状态的变化。
6. 完成进程同步的代码实现,并测试死锁及其解决方法。
7. 编写并测试进程通信的程序,确保信息能够正确传递。
实验结果:- 展示创建进程前后的系统状态变化,包括进程表和内存分配情况。
- 记录进程撤销后,父进程收集子进程状态的输出。
- 展示进程阻塞与唤醒的输出结果,验证进程状态转换的正确性。
- 展示进程同步的实验结果,包括死锁的产生与解决。
- 展示进程通信的测试结果,验证信息传递的准确性。
实验分析:- 分析进程创建和撤销的系统资源变化。
- 讨论进程阻塞与唤醒机制的效率和应用场景。
- 探讨进程同步与通信的复杂性及其在多线程编程中的重要性。
电大操作系统实验报告3_ 进程管理实验

电大操作系统实验报告3_ 进程管理实验电大操作系统实验报告 3 进程管理实验一、实验目的进程管理是操作系统的核心功能之一,本次实验的目的是通过实际操作和观察,深入理解进程的概念、状态转换、进程调度以及进程间的通信机制,掌握操作系统中进程管理的基本原理和方法,提高对操作系统的整体认识和实践能力。
二、实验环境本次实验使用的操作系统为 Windows 10,编程语言为 C 语言,开发工具为 Visual Studio 2019。
三、实验内容及步骤(一)进程的创建与终止1、编写一个 C 程序,使用系统调用创建一个子进程。
2、在父进程和子进程中分别输出各自的进程 ID 和父进程 ID。
3、子进程执行一段简单的计算任务,父进程等待子进程结束后输出结束信息。
以下是实现上述功能的 C 程序代码:```cinclude <stdioh>include <stdlibh>include <unistdh>int main(){pid_t pid;pid = fork();if (pid < 0) {printf("创建子进程失败\n");return 1;} else if (pid == 0) {printf("子进程:我的进程 ID 是%d,父进程 ID 是%d\n",getpid(), getppid());int result = 2 + 3;printf("子进程计算结果:2 + 3 =%d\n", result);exit(0);} else {printf("父进程:我的进程 ID 是%d,子进程 ID 是%d\n",getpid(), pid);wait(NULL);printf("子进程已结束\n");}return 0;}```编译并运行上述程序,可以观察到父进程和子进程的输出信息,验证了进程的创建和终止过程。
(二)进程的状态转换1、编写一个 C 程序,创建一个子进程,子进程进入睡眠状态一段时间,然后被唤醒并输出状态转换信息。
进程管理演示实验报告

一、实验目的1. 理解进程的概念及其在操作系统中的作用。
2. 掌握Linux系统中进程的创建、调度、同步和通信方法。
3. 熟悉进程的阻塞、挂起、恢复和终止操作。
4. 学习使用相关命令和工具进行进程管理和调试。
二、实验环境操作系统:Linux开发环境:GCC、Xshell三、实验内容1. 进程创建与调度2. 进程同步与通信3. 进程阻塞与恢复4. 进程终止与调试四、实验步骤1. 进程创建与调度(1)编写一个简单的C程序,使用fork()函数创建一个子进程。
(2)在父进程中,使用getpid()和getppid()函数获取进程ID和父进程ID。
(3)使用ps命令查看当前系统中的进程,观察父进程和子进程的状态。
(4)使用waitpid()函数等待子进程结束。
2. 进程同步与通信(1)编写一个使用管道(pipe)进行进程间通信的C程序。
(2)父进程向管道中写入数据,子进程从管道中读取数据。
(3)使用ps命令查看进程状态,观察管道通信的效果。
(4)编写一个使用信号量(semaphore)进行进程同步的C程序。
(5)使用sem_wait()和sem_post()函数实现进程同步。
3. 进程阻塞与恢复(1)编写一个使用sleep()函数使进程阻塞的C程序。
(2)在父进程中,使用waitpid()函数等待阻塞的子进程结束。
(3)使用kill()函数向阻塞的进程发送SIGCONT信号,使其恢复执行。
4. 进程终止与调试(1)编写一个使用exit()函数终止进程的C程序。
(2)在父进程中,使用waitpid()函数等待终止的子进程。
(3)使用gdb调试器分析程序运行过程中出现的问题。
五、实验结果与分析1. 进程创建与调度实验结果表明,使用fork()函数成功创建了子进程,父进程和子进程的进程ID和父进程ID被正确获取。
通过ps命令,可以观察到父进程和子进程的状态。
2. 进程同步与通信实验结果表明,管道通信可以成功实现父进程和子进程之间的数据传递。
进程管理实验报告源代码(3篇)

第1篇---进程管理实验报告一、实验目的1. 理解进程的概念和进程管理的基本原理。
2. 掌握进程的创建、调度、同步和通信等操作。
3. 通过编程实现简单的进程管理功能。
二、实验环境1. 操作系统:Windows/Linux2. 编程语言:C/C++3. 开发环境:Visual Studio/Code::Blocks三、实验内容1. 进程的创建与终止2. 进程的同步与互斥3. 进程的通信4. 进程调度算法四、实验步骤1. 进程的创建与终止```cinclude <stdio.h>include <sys/types.h>include <unistd.h>int main() {pid_t pid;// 创建子进程pid = fork();if (pid < 0) {// 创建进程失败perror("fork failed");return 1;} else if (pid == 0) {// 子进程printf("Child process, PID: %d\n", getpid()); // 执行子进程的任务...sleep(5); // 子进程暂停5秒_exit(0); // 子进程退出} else {// 父进程printf("Parent process, PID: %d\n", getpid()); wait(NULL); // 等待子进程结束printf("Child process has terminated.\n");}return 0;}```2. 进程的同步与互斥```cinclude <stdio.h>include <pthread.h>pthread_mutex_t mutex;void thread_func(void arg) {pthread_mutex_lock(&mutex); // 加锁printf("Thread %ld is running\n", (long)arg);sleep(1); // 模拟任务执行pthread_mutex_unlock(&mutex); // 解锁return NULL;}int main() {pthread_t thread1, thread2;// 初始化互斥锁pthread_mutex_init(&mutex, NULL);// 创建线程pthread_create(&thread1, NULL, thread_func, (void )1); pthread_create(&thread2, NULL, thread_func, (void )2); // 等待线程结束pthread_join(thread1, NULL);pthread_join(thread2, NULL);// 销毁互斥锁pthread_mutex_destroy(&mutex);return 0;}```3. 进程的通信```cinclude <stdio.h>include <stdlib.h>include <sys/ipc.h>include <sys/shm.h>int main() {key_t key;int shmid;int data;// 生成共享内存标识符key = ftok("shmfile", 65);// 创建共享内存段shmid = shmget(key, sizeof(int), 0666 | IPC_CREAT); if (shmid == -1) {perror("shmget failed");exit(1);}// 连接到共享内存段data = (int )shmat(shmid, (void )0, 0);if (data == (int )(-1)) {perror("shmat failed");exit(1);}// 使用共享内存data = 100;printf("Data in shared memory: %d\n", data); // 分离共享内存段if (shmdt(data) == -1) {perror("shmdt failed");exit(1);}// 删除共享内存段if (shmctl(shmid, IPC_RMID, NULL) == -1) { perror("shmctl failed");exit(1);}return 0;}```4. 进程调度算法```cinclude <stdio.h>include <stdlib.h>include <sys/time.h>typedef struct {int pid;int arrival_time;int burst_time;int waiting_time;int turnaround_time;} Process;int main() {Process processes[] = {{1, 0, 5, 0, 0},{2, 1, 3, 0, 0},{3, 4, 8, 0, 0}};int n = sizeof(processes) / sizeof(processes[0]);// 计算等待时间和周转时间int total_waiting_time = 0, total_turnaround_time = 0;for (int i = 0; i < n; i++) {if (i == 0) {processes[i].waiting_time = 0;} else {processes[i].waiting_time = processes[i - 1].turnaround_time;}processes[i].turnaround_time = processes[i].burst_time + processes[i].waiting_time;total_waiting_time += processes[i].waiting_time;total_turnaround_time += processes[i].turnaround_time;}printf("Average Waiting Time: %f\n", (float)total_waiting_time / n);printf("Average Turnaround Time: %f\n", (float)total_turnaround_time / n);return 0;}```五、实验结果与分析(此处应填写实验结果,包括运行程序输出、图表等,以及对实验结果的分析。
操作系统-进程管理实验报告

操作系统-进程管理实验报告实验一进程管理1.实验目的:(1)加深对进程概念的理解,明确进程和程序的区别;(2)进一步认识并发执行的实质;(3)分析进程争用资源的现象,研究解决进程互斥的方法;(4)了解Linux系统中进程通信的基本原理。
2.实验预备内容(1)阅读Linux的sched.h源码文件,加深对进程管理概念的理解;(2)阅读Linux的fork()源码文件,分析进程的创建过程。
3.实验内容(1)进程的创建:编写一段程序,使用系统调用fork()创建两个子进程。
当此程序运行时,在系统中有一个父进程和两个子进程活动。
让每一个进程在屏幕上显示一个字符:父进程显示字符“a”,子进程分别显示字符“b”和“c”。
试观察记录屏幕上的显示结果,并分析原因。
源代码如下:#include<XXX>#include<XXX>#include<unistd.h>#include <XXX>#include <XXX>int main(int argc,char* argv[]){pid_t pid1,pid2;pid1 = fork();if(pid1<0){fprintf(stderr,"childprocess1 failed");exit(-1);}else if(pid1 == 0){printf("b\n");}else{pid2 = fork();if(pid2<0){fprintf(stderr,"childprocess1 failed"); exit(-1);}else if(pid2 == 0){printf("c\n");}else{printf("a\n");sleep(2);exit(0);}}return 0;}结果如下:分析原因:pid=fork();操纵体系创建一个新的历程(子历程),而且在历程表中相应为它建立一个新的表项。
进程管理实验报告_共10篇 .doc

★进程管理实验报告_共10篇范文一:_进程管理实验报告进程管理实验报告一、进程与线程1.实验目的:1.通过本实验学习Linux中创建进程的方法。
2.学习系统调用fork的使用方法。
3.学习系统调用exec族调用的使用方法。
2.实验准备1.进程的创建创建一个进程的系统调用很简单,只要调用fork函数就可以了。
#includepid_tfork();当一个进程调用了fork以后,系统会创建一个子进程,这个子进程和父进程是不同的地方只有它的进程ID和父进程ID,其他的都一样,就像父进程克隆(clone)自己一样,当然创建两个一模一样的进程是没有意义的,为了区分父进程和子进程,我们必须跟踪fork调用返回值。
当fork调用失败的时候(内存不足或者是用户的最大进程数已到)fork返回—1,否则fork的返回值有重要的作用。
对于父进程fork返回子进程ID,而对于fork 子进程返回0,我们就是根据这个返回值来区分父子进程的。
2.关于fork的说明使用该函数时,该函数被调用一次,但返回两次,两次返回的区别是子进程的返回值是0,而父进程的返回值则是新子进程的进程ID。
将子进程ID返回给父进程的理由是:因为一个进程的子进程可以多于一个,所以没有一个函数可以是一个子进程获得其所有子进程的进程ID。
而fork函数使子进程得到的返回值是0的理由是:一个子进程只会有一个父进程,所以子进程总是可以调用函数getpid获得其父进程的进程ID。
3.系统调用exec族调用的说明父进程创建子进程后,子进程一般要执行不同的程序。
为了调用系统程序,我们可以使用系统调用exec族调用。
Exec族调用有以下五个函数:intexecl(constchar*path,constchar*arg,?);intexeclp(constchar*file,constchar*arg,?);intexecle(constchar*path,constchar*arg,?);intexecv(constchar*path,constchar*argv[]);intexecvp(constchar*file,constchar*argv[]);exec族调用可以执行给定程序。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
实验报告纸
(院、系)专业班组课
实验一、进程管理(3学时、必做)
一、实验目的
通过实验使学生进一步了解进程、进程状态、进程控制等基本概念。
基本能达到下列具体的目标:
1、理解进程PCB 的概念,以及PCB 如何实现、如何组织以及管理。
2、复习数据结构中如何对链的操作,包括建链、删除、插入结点等,来实现进程的管
理。
二、实验内容
1、建立一个结点,即PCB 块包括用户标识域、状态域(执行、等待、就绪)、link 域。
2、建立三个队列(执行队列、就绪队列、等待队列)。
3、根据进程状态转换实现对三个队列的具体操作。
具体的驱动可以采用时间片算法或
手动调度的形式完成三个状态之间的转换4、用switch 选择语句选择状态。
5、按照自己的设定能完成所有的状态转换的运行(包括创建和运行结束)。
三、实验步骤
1、复习进程管理三状态模型部分内容。
2、预习C++ Builder或VC++、Delphi、JBuilder线程编程。
3、运行示例程序,进一步明确实验要求。
可以采用控制台模式或窗口模式。
4、上机编程、调试程序。
5、完成实验报告。
四、实验过程
1、进程管理三状态模型部分内容
进程从因创建而产生直至撤销而消亡的整个生命周期中,有时占用处理器执行,有时虽然可以运行但分不到处理器,有时虽然处理器空闲但因等待某个事件发生而无法执行,这一切都说明进程和程序不同,进程是活动的且有状态变化,状态及状态之间的转换体现进程的动态性,为了便于系统管理,一般来说,按照进程在执行过程中的不同情况至少要定义三种进程状态。
(1)运行态:进程占用处理器运行的状态。
(2)就绪态:进程具备运行条件,等待系统分配处理器以便起运行的状态。
(3)等待态:进程不具备运行条件,正在等待某个时间完成的状态。
2、程序设计环境。