铁电性基础(1)

合集下载

铁电体的第一性原理研究进展PPT课件

铁电体的第一性原理研究进展PPT课件
总之,VASP是一个成熟、稳定和高效的第一性原理计算软件包。
国内外研究现状
Cohen首次采用第一性原理计算BaTIO3和PbTIO3的电子密度,表明Ti的3d电子 和O的2P电子波函数有显著的交叠,而且铁电情况下的交叠比顺电情况更强, 进而得出结论:对于ABO3结构的钙钦矿型铁电体,B离子的d电子与氧离子的 2p电子之间存在比较强的轨道杂化,这种轨道杂化抑制了短程排斥力从而使 铁电性得以稳定。
4.集成铁电体的研究(铁电薄膜与半导体集成):
由于铁电存储器的诸多优点,近几年来人们对铁电薄膜与半导体集成投入了大量的研究。 铁电薄膜的极化具备两个不同的稳定状态(剩余极化强度士Pr),可分别作为信息存储的“0‘’ 和,‘l”代码。早在50年代人们就开始作了这方面的研究。当时存在的问题主要为:块材要求 电压很高,不能满足应用的要求;电滞回线的矩形度差,易发生读写错误;疲劳特性很差。80年 代以来,由于铁电薄膜制备技术的改进,新的铁电材料及电极材料的出现,铁电存储器又重新 活跃起来。
2.Gaussian98程序包。Gaussian98程序包中包含许多种计算方法,包括半经验及第一性 原理计算方法等。它是一个功能全面的计算程序包。它的主要处理对象是有机大分子体系, 计算时主要对单一大分子体系的各种性质进行计算。能给出有机分子的振动模式及反应过 程的信息。它的缺点是对含有重金属原子体系的计算几乎无法进行。
研究热点
尺寸效应和表面界面效应
金属或半导体电极间的铁电薄膜 铁电聚合物和复合材料的研究
写在最后
成功的基础在于好的学习习惯
The foundation of success lies in good habits
17
谢谢聆听
·学习就是为了达到一定目的而努力去干, 是为一个目标去 战胜各种困难的过程,这个过程会充满压力、痛苦和挫折

铁电特性

铁电特性

64KB的串行存储器特性164K位的非易失性铁电随机存储器组织结构为8192*8位读写寿命为100亿次掉电数据保存10年写数据无延时2快速两线串行协议总线速度可以达到1MHZ硬件上可以直接替换EEPROM 3低功耗操作工作电压为5V工作电流为150uA待机电流10uA4工业标准工业温度-40到+80 8脚---DIP和SOIC描述FM24C64是用先进的铁电技术制造的64K位的非易失性的记忆体铁电随机存储器FRAM是一种具有非易失性并且可以象RAM一样快速读写数据在掉电可以保存10年且比EEPROM或其他非易失性存储器可靠性更高系统更简单不象EEPROM FM24C64以总线速度进行写操作无延时数据送到FM24C64直接写到具体的单元地址下一个操作可以立即执行FM24C64可以承受超过100亿次的读写或者是比EEPROM高一万倍的写操作FM24C64的写能力使得它在需要对非易失性记忆体快速读写的状况下非常理想举例说数据采集系统中对写入数据的频率要求高即速度要求非常快使用EEPROM可能丢失数据这种优势合并使得系统可以更可靠的实时采集数据FM24C64为使用串行EEPROM的用户提供了便利它在硬件上可以直接替换EEPROM引脚定义总体概述FM24C64是一种串行非易失性记忆体 它的逻辑结构为8192*8位 接口方式为工业标准的两线接口 与串行EEPROM 的功能操作相似 不同之处在于 铁电存储器比EEPROM 写的速度快的多 无延时记忆体架构FM24C64内部地址可分为8192个字单元 每个字单元为8位 数据被串行移动 它使用两线协议 包括一个从地址 区别其他存储器或器件 一个页地址和一个字地址每256个地址 被指定为一个8位的字地址 每256个地址为一页 FM24C64为32页页地址 选择页位为5位 完全地址为13位 每个字节地址都是唯一的FM24C64大多数的功能是由两线协议或根据板上电路来操作 记忆体以两线总线速度来执行读/写操作 FM24C64不像EEPROM 它不必等写周期出现就可以把自身置在一个等待状态 一个新的数据交换周期来到时 另外一个操作已经完成与EEPROM 相比较FM24C64的快速性与高擦写次数 EEPROM 是无法比拟的 举个例说 在一个高噪声环境下 EEPROM 受干扰的可能性大 因为FM24C64完成得快 而EEPROM 写 数据需要几个毫秒需要指出的是FM24C64没有类似内部电源管理电路 上电复位 因此 用户应保证电源电压 VDD 在数据表规定的范围内 防止误操作两线接口FM24C64的通讯方式是双向两线协议 脚位少 占用线路板空间小 图2描述了FM24C64在微处理器系统中的典型配置为了便利 往总线上送数据的部件叫发送者 接受数据的叫接受者 控制总线的叫主机 主机为所有操作产生时钟 在总线上被控制的叫从机 FM24C64永远都是从机 两线协议即是总线上的所有的操作都是由SDA 和SCL 两个脚位的状态来确定的 有四个状态 开始 停止 数据以及应答 图3描述了四个状态的时序图停止当主机把SDA从低电平拉高同时SCL信号为高时为停止条件所有的操作在此条件下退出为了宣布停止主机必须控制SDA开始当主机把SDA从高电平拉低SCL信号为高电平为开始条件所有的读写操作均由开始条件开始任何时候的操作都可由开始条件退出开始一个新操作在操作过程中电压降低到规定电压的最低值以下系统会发出一个开始条件数据/地址传送:所有数据传送包括地址都应在SCL 为高电平时除了以上两种情况SDA 在SCL为高时不能改变应答应答出现在第8位数据位被传输之后在传输期间SDA线被允许由接受者驱动接受者驱动SDA为低电平以确认收到一个字节数据如果接受者没有把SDA拉低即无应答操作退出接受者可能因为两个原因不做应答1如果一个字节传送失败无应答结束当前操作可以对这个部件再次寻址发生错误的上一个字节会被允许覆盖掉2接受者有意结束操作不做应答举例说在读操作中FM24C64接受者应答后就把数据送到总线上读操作完成不需要进行其他操作接受者不做应答如果接受者做出应答将导致FM24C64在当主机送新的操作命令时例如停止命令试图在下一个时钟周期驱动总线物理地址:FM24C64在开始条件后接受的第一个字节是物理地址就象图4列出的物理地址包括部件类型器件选择被访问的页面还有一位是读写控制位位7—4是部件类型FM24C64为1010B部件类型用以区分挂在两线接口上各种功能部件位3-1为页选择位0为读写控字地址:在FM24C64接受者应答装置地址后主机将把记忆体地址送到总线上进行一个写操作地址需要两个字节第一个是高位字节MSB因为记忆体只使用了13位地址高3位没有使用第2个是低八位字节LSB 保存8位地址地址被内部锁存每一次访问后FM24C64内部地址锁存计数器递增当前的地址是被锁存的值或是最写入的或是下一个要访问的地址只要电源恒定或是没有新的数据写入当前的地址不变读总是使用当前地址一个随机读操作可以由以下阐述的方式先执行一个写操作即能开始每一个字节传送后在应答之前FM24C64内部地址锁存计数器递增这样在没有另外的寻址要求就可以访问下一个顺序地址在最后一个地址1FFFH到达后地址计数器的内容又回到0000H在一个读写操作中没有字节数的限制数据传送:地址信息被传送后主机和FM24C64之间的数据交换开始进行一个读操作FM24C64将把8位数据放到总线上然后等待应答应答出现开始下一个传送应答不出现读操作退出对于写操作FM24C64接受8位数据后给出应答所有数据首先产生最高有效位记忆体操作:FM24C64被设计成和其他2线接口记忆体产品相似的操作方式最主要的不同是FRAM技术所生成的写能力读写操作如下写操作:所有写操作开始一个从机地址和一个字地址主机通过设置从地址的最低有效位为0来表示一个写操作寻址后主机送每个字节到记忆体记忆体产生应答任何数量的顺序字节可被写入如果地址到最后一个字节地址计数器从1FFFH翻转到0000H不象其他的非易失性技术FRAM 没有写延时整个记忆体周期比单纯总线时钟还短这样任何操作包括读写能跟随写操作记忆体写操作出现在第8位数据被传送以后在确认送出之前完成那样如果用户需要退出写操作又不变更记忆体内容应该在第8位数据之前用开始或停止条件FM24C64不需要页缓冲记忆体可以用WP脚作写保护把WP拉高VDD写保护地址从1800H到1FFFH FM24C64将不会应答写入被保护的地址的数据另外地址计数器也不会递增WP拉低这些特性不起作用WP脚位不应悬空图5描述的是单字节和多字节的操作读操作:有两种基本类型的读操作当前地址读和可选地址读在当前地址读FM24C64使用内部锁存器提供低八位地址在可选地址读操作用户执行一个步骤设置低位地址为指定值当前地址顺序读FM24C64使用内部锁存器时低八位地址进行读操作当前地址读使用在地址锁存器中的值作为读操作开始地址执行当前读操作主机提供从地址把LSB置为1页选择位用于指定记忆体的页面应答后FM24C64将开始从当前地址移出当前地址是从机地址位加上内部锁存器位合成的地址由当前地址开始主机能随意读写任意的字节数这样顺序连读即是当前连读数据在内部地址计数器将连续递增每次主机确认一个字节随后FM24C64就可以读下一个连续的字节有四种方式可以正确的终止读操作失败地终止读操作就相当于FM24C64试图在总线上读出另外的数据四种可行方式如下11)主机在第9个时钟周期不应答在第十个时钟周期停止22)主机在第9个时钟周期不应答在第十个时钟周期开始33)主机在第9个时钟周期停止可能导致总线竞争44)主机在第9个时钟周期开始可能导致总线竞争如果内部地址到1FFFH下一个周期翻转到0000H图7和8为当前地址读的正确操作选择随机读一个单纯的技术允许用户选择随机地址作为读数据的起点包括首先使用两个字节的写操作来设置内部地址字节执行选择性读操作主机送出从地址把LSB置0这样就指定出一定写操作根据写数据协议然后主机送字地址调进内部地址锁存器FM24C64应答字节地址后主机发出开始命令这同时退出写操作以及允许读命令被发出从地址LSB置1操作现在为当前读地址这个操作说明在图9中持久性和数据保存:数据保存参数在以下的电参数规格书中FRAM操作均有读和机械性存储所以读写次数与每一次读写都有关系FRAM 结构是基于行与列的排布行为A10—A3每次访问,对每一行都要减少一次寿命在不同的行确保平均的访问记忆体可以优化记忆体的持久性使其非易失性发挥到最大不管怎样FRAM读写次数在总线操作频率在400KHZ时无限制即使每秒访问30次100亿次的寿命到时10年已过去了应用:铁电技术的优势可适用于广泛的领域很明显除了一次编程应用的其他所有领域铁电记忆体在读写次数以及快速性均比EEPROM更具优势最为明显的是在采集领域中要求写的频率高且数据掉电不丢失11)数据采集在数据采集和存储领域中FRAM 提供了一种极具优势的方案这个方案比SRAM加后备电池更经济以及比EEPROM有更好的写特性22)配置任何非易失性记忆体能保留一些配置但是FRAM的高写入次数使得其可以无限制的保持参数不用为参数随时更改有更多的考虑电源掉电时FRAM 的高速写入解决了数据丢失的烦恼33)高噪声环境高噪声环境写数据对EEPROM来说极具挑战性在噪声和电源波动环境中EEPROM由于写入时间要几个毫秒太容易受干扰而FRAM写的速度非常快噪声和电源波动来不及干扰444)有快速要求的环境在一个复杂的系统中多个软件需要访问非易失性记忆体EEPROM的延时为这种环境中的软件研发增加了许多不适当的复杂性每个软件例行访问下一个例行程序都必须等待一个完整的程序当快速性要求很严格时FRAM就减少了这种复杂性FM24C64不需要等待55)RF/ID在无接触记忆体领域FRAM提供了完美的方案因为RF/ID 记忆是通过RF方式供电EEPROM的长时间和大功耗使得它不太适合这个领域6)保存轨迹在一个高度复杂的系统中系统状态和操作记录在系统失败时是很重要的数据FRAM的高写入次数特点使数据记录得以实现能做一个完美的系统日志另外FM24C64 的两线协议可以少占用系统资源。

铁电性(材料物理性能)

铁电性(材料物理性能)
原因 BaTiO3 陶 瓷 的 电 畴 结 构 与
BaTiO3单晶电畴结构的差异,导致两
者之间在铁电性质方面的微小差别。
2211
第二十一页,共24页。
3)电滞回线的意义
A.判定铁电体的依据
铁电材料在外加交变电场作用下都能形成电滞回线,不同材料和不同工艺条件对 电滞回线的形状都有很大的影响。
B.由于有剩余极化强度,因而铁电体可用来作信息存储、图象显示。
AO
铁电体微观结构的特点决定了它有许多特殊
E
的宏观性质,从而区别于普通电介质。
铁电电滞回线(Ps为自发极化强度,Ec为矫顽力)
1144
第十四页,共24页。
A.施加电场
➢沿电场方向的电畴扩展,变大;而
P
Ps B
C
与电场反平行方向的电畴则变小。极 化强度随外电场增加而增加,如图中
oA段曲线。
Pr Ps Pr
压峰效应
如在BaTiO3中加入Bi2/3SnO3 ,其居里点几乎完 全消失,显示出直线性的温度特性可认为其机理是 加入非铁电体后,破坏了原来的内电场,使自发极 化减弱,即铁电性减小。
压峰的目的 为了降低居里点处的介电常数的蜂值,即降低ε-T非线性,也使工
作状态相应于ε-T平缓区。
2244
第二十四页,共24页。
顺电性晶体与铁电性晶体的转变温度称为铁电居里点t时铁电相转变为顺电相电滞回线消失这时p与e一般有线性关系p二铁电体的居里外斯定律居里点附近居里外斯定律为忽略12指铁电体的微观结构性质以及因此而可能显示出来的宏观性质指铁电体的微观结构性质以及因此而可能显示出来的宏观性质电滞回线电畴结构自发极化以及相应的晶胞形变自发应变居里点居里外斯定律等
+

铁电体的三个基本特征

铁电体的三个基本特征

铁电体的三个基本特征
铁电体是一种特殊的晶体材料,具有三个基本特征:铁电性、压电性和热释电性。

铁电性是铁电体最为显著的特征之一。

铁电体在外加电场的作用下,会出现极化现象,即在晶体内部会出现正负电荷分离的现象,形成电偶极矩。

这种极化是可逆的,即当外加电场消失时,电偶极矩也会消失。

铁电体还具有压电性。

当外力作用于铁电体时,晶体会发生形变,产生电荷分离,形成电偶极矩,从而产生电势差。

这种现象被称为压电效应。

压电效应是铁电体在传感器、振动器等领域中的重要应用。

铁电体还具有热释电性。

当铁电体受到温度变化时,晶体内部的电偶极矩也会发生变化,从而产生电势差。

这种现象被称为热释电效应。

热释电效应是铁电体在红外线探测器、温度传感器等领域中的重要应用。

铁电体具有铁电性、压电性和热释电性三个基本特征。

这些特征使得铁电体在电子器件、传感器、振动器等领域中有着广泛的应用前景。

(完整PPT)第六章铁电性能和压电性能_材料物理(1)

(完整PPT)第六章铁电性能和压电性能_材料物理(1)
结晶化学分类法: 软铁电体 硬铁电体
含氢键的晶体(KDP、RS)和双氧化物晶体(BT、PT、LN) 按极化轴数目分类:
单轴铁电体(RS、KDP、LN)和多轴铁电体(BT) 按原型相有无对称中心分类:
压电性铁电体(KDP、RS)和非压电性铁电体(BT) 按铁电相变时原子运动特点分类:
有序-无序型相变的(RS)和位移型相变的(BT、PT、LN) 按居里-外斯常数C的大小分类:
二、BaTiO3自发极化的微观机理 1. BaTiO3的晶体结构
有氧八面体 骨 架 的 ABO3 晶格
BaTiO3的晶体结构
钙钛矿结构
2. BaTiO3的相变
顺电态
Tc 居里温度
铁电态
120°C
5°C
-80°C
立方晶系 四方晶系 斜方晶系
菱形结构
无自发极化 自发极化沿c轴 自发极化沿 自发极化沿
Ps-饱和极化强度 Pr-剩余极化强度(remanent
polarization) Ec-矫顽场强(corcive field)
~2KV/cm -~120KV/cm
按照Ec大小可将铁电体分为: 软铁电体-小Ec 硬铁电体-大Ec
电滞回线是铁电体的重要物理特征之一,也是判别铁电性的 一个重要判据。
3. 铁电体的分类
如: 在钙钛矿结构中,自发极 化起因于[BO6]中中心离子的 位移
[BO6]氧八面体
2. 铁电体的概念
铁电体是在一定温度范围内具有自发极化(必要条件) ,并且极化方向可随外加电场做可逆转动的晶体。
铁电体一定是极性晶体,但自发极化转动的晶体仅发生在某些特殊结 构晶体当中,在自发极化转向时,结构不发生大的畸变。

加电场E 成正比。

铁电体定义、特征和基础知识

铁电体定义、特征和基础知识
3
Note:
铁电体与铁磁体在其它许多性质上也具有相 应的平行类似性,“铁电体”之名即由此而 来,其实它的性质与“铁”毫无关系。在欧 洲(如法国、德国)常称“铁电体”为“薛 格涅特电性”(Seignett-electricity)或 “罗息尔电性”(Rochell-electricity)。 因为历史上铁电现象是首先于1920年在罗 息盐中发现的,而罗息盐是在1665年被法 国药剂师薛格涅特在罗息这个地方第一次制 备出来。
至今已经发现的铁电晶体有一千多种。 它们广泛地分布于从立方晶系到单斜晶系 的10个点群中。 它们的自发极化强度从10-4C/m2到 1C/m2;它们的居里点有的低到-261.5C (酒石酸铊锂),有的高于1500C。
35
表6-1给出了部分铁电晶体的分子式、居里 点和自发极化强度。 对于晶格结构和特性差异如此之大的各种 铁电体,要对它们做完善的统一分类是不 容易的。 到目前。
铁电体定义、特征和基础知识
1
➢什么是铁电体, ➢开关特性,Sawyer-Tower 电路 ➢铁电体主要特征 ➢典型的铁电材料的主要物理性质 ➢铁电材料的分类, ➢反铁电体
2
基本定义
➢具有自发极化强度(Ps) Spontaneous Polarization
➢自发极化强度能在外加电场下反转, Switchable Ps
36
单轴铁电体,多轴铁电体
根据铁电体的极化轴的多少分为两类。一 类是只能沿一个晶轴方向极化的铁电体, 如罗息盐以及其它酒石酸盐,磷酸二氢钾 型铁电体,硫酸铵以及氟铍酸铵等。另一 类是可以沿几个晶轴方向极化的铁电体 (在非铁电相时这些晶轴是等效的),如 钛酸钡、铌酸钾、钾铵铝矾等。这种分类 方法便于研究铁电畴。
27

铁电性(材料物理性能)

铁电性(材料物理性能)

• •

Ti4+
O-
•° • •• • • ° • • •° • • •

7
°



例2:具有极性轴或结构本身具有自发极化的结构 + + + + + 正 电 荷 层 与 负 电 荷 层 交 替 排 列
固 有 偶 极 子
+ +
+
+ -
+
+ -
+
+
纤锌矿(ZnS)结构在(010)上投影
一、铁电体
是一类特殊的电介质材料,在一定温度范围内含有能自发极化,并且 发极化方向可随外电场作可逆转动的晶体。
1、铁电体的特点
1)铁电体是非线性介质 即极化强度和外施电压的关系是非线性的。
P 0 E
备注:线性介质
没有外加电场时,介质的极化强度等于零。 有外电场时,介质的极化强度与宏观电场E 成正比。
1
2)铁电体是极性晶体
即其极化状态并非由外电场所引起,而是由晶体内部结构特点所 引起,晶体中每个晶胞内存在固有电偶极矩。
注意:铁电晶体一定是极性晶体,但并非所有的极性晶体都是铁电体
2
3)铁电体的极化是自发极化
A.按相转变的自发极化机构铁电体分两类 :
第一类是位移型,其自发极化同一类离 子的亚点阵相对于另一类亚点阵的整体 位移相联系。 位移型铁电体的结构大多同钙钛矿结构 及钛铁矿结构紧密相关。钛酸钡是典型 的钙钛矿型的铁电体。 Ba2+ Ti4+ O-
• •




°
°


O-

第六章 铁电物理与性能学

第六章 铁电物理与性能学

铁电相变
位移型相变铁电体

(不涉及化学键的破坏,新相和旧相之间存 在明显的晶体学位相关系)

以BaTiO3为例
钛酸钡不同温度下的晶胞结构变化示意图
位移型相变铁电体
以典型铁电材料——钛酸钡BaTiO3晶体为例,介绍其自发极化的微观模型
BaTiO3晶体从非 铁电性到铁电性的 过渡总是伴随着晶 体立方→四方的改 变,因此提出了一 种离子位移理论, 认为自发极化主要 是晶体中某些离子 偏离了平衡位置, 使得单位晶胞中出 现了电偶极矩造成 的
第六章 铁电物理与性能
Ferroelectrics
基本定义
具有自发极化强度,自发极化强度能 在外加电场下反转 或:具有电滞回线和具有电畴的特 点的材料为铁电体
Note:
铁电体与铁磁体在其它许多性质上也具有相 应的平行类似性,“铁电体”之名即由此而 来,其实它的性质与“铁”毫无关系。在欧 洲(如法国、德国)常称“铁电体”为“薛 格涅特电性”(Seignett-electricity)或 “罗息尔电性”(Rochell-electricity)。 因为历史上铁电现象是首先于1920年在罗息 盐中发现的,而罗息盐是在1665年被法国药 剂师薛格涅特在罗息这个地方第一次制备出 来。
(3)压电聚合物
聚二氟乙烯(PVF2 )是目前发现的压电效应较强的聚合物 薄膜,这种合成高分子薄膜就其对称性来看,不存在压电效应, 但是它们具有“平面锯齿”结构,存在抵消不了的偶极子。经延 展和拉伸后可以使分子链轴成规则排列,并在与分子轴垂直方向 上产生自发极化偶极子。当在膜厚方向加直流高压电场极化后, 就可以成为具有压电性能的高分子薄膜。这种薄膜有可挠性,并 容易制成大面积压电元件。这种元件耐冲击、不易破碎、稳定性 好、频带宽。为提高其压电性能还可以掺入压电陶瓷粉末,制成 混合复合材料(PVF2—PZT)。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档