铁电材料

合集下载

铁电材料发展历程以及目前状况

铁电材料发展历程以及目前状况

铁电材料发展历程以及目前状况铁电材料是一种具有独特物理特性的材料,在电子领域、信息存储领域等方面具有广泛的应用前景。

本文将回顾铁电材料的发展历程以及目前状况。

一、铁电材料的发现铁电材料是一种将电信号转换为机械变形或者机械变形转化为电信号的材料。

铁电材料的发现可以追溯到20世纪初。

在1910年,法国物理学家Paul Langevin和Pierre Weiss 首次发现了氢氧化钛(TiO2)具有电荷分离和极化特性,这是铁电材料发现的先声。

1921年,日本物理学家神户荣一郎发现了铌酸锂(LiNbO3)和钽酸锂(LiTaO3)这两种材料,也具有电荷分离和极化特性,这就是铁电晶体材料。

20世纪50年代,美国物理学家Curie夫妇提出了铁电材料家族的定义:有种类别的材料,它们在某个温度下具有自发的电极化。

二、铁电材料的发展历程自从铁电材料的发现以来,目前铁电材料已经存在于多个不同的市场中。

这些市场包括石英晶体谐振器、随机存储器(RAM)、可编程逻辑控制器(PLC)、传感器、磁随机存取存储器(MRAM)和智能售货机等。

1965年,日本的学者佐藤义彦和稻村光男发现了PbTiO3的常温铁电性质,这标志着铁电材料制备和研究进入了全新的阶段。

1961年,美国学者S.W. Kirchhoff和J.D. Berkowitz在Cr2O3中发现了自旋极化效应,这为铁电材料的研究开辟了一条新的道路。

20世纪80年代,铁电材料的研究由于世界各国政府的投资而得到了极大的发展,铁电材料的种类也逐渐增加。

1990年代,高温超导材料发现后,人们对铁电材料的研究暂时停滞,但是在新世纪之后,铁电材料的研究得到了再次的突破。

随着电子领域的不断发展,铁电材料的应用前景也更加广阔。

三、目前铁电材料的状况铁电材料是一种具有非常高度应用前景的材料,铁电材料的应用主要集中在电子领域和信息存储领域。

目前铁电材料已经广泛运用在随机存储器、电脑存储器、模拟存储器、磁性处理、扩散屏蔽等领域。

铁电材料的制备及其铁电性能研究

铁电材料的制备及其铁电性能研究

铁电材料的制备及其铁电性能研究铁电材料是指具有铁电性质的材料,铁电性质是指在外加电场下,材料会发生极性翻转,即正负极性相互转换。

这种性质使铁电材料广泛应用于存储器、传感器、激光器、换能器、电容器等领域。

本文将介绍铁电材料的制备方法及其铁电性能研究。

一、铁电材料的制备方法1.溶胶-凝胶法溶胶-凝胶法是一种低温热处理制备铁电材料的方法。

首先,将合适比例的金属盐溶解在水和有机物的混合液中,然后使之脱水凝固,得到凝胶。

接着,将凝胶热处理干燥,形成透明的玻璃状材料。

该方法制备的铁电材料具有良好的机械性能和化学稳定性。

2.物理气相沉积法物理气相沉积法是一种高温热处理制备铁电材料的方法。

在该方法中,通过激光或者热蒸发等方式将材料原子或分子蒸发,沉积在基底上,形成薄膜结构。

该方法具有工艺简单、生产效率高等优点,可以制备出高质量的铁电薄膜材料。

3.气相沉积法气相沉积法是一种制备铁电材料薄膜的方法,通过气体反应沉积铁电薄膜。

该方法可以制备出大面积、高质量、低成本的铁电薄膜。

在该方法中,可以通过改变反应条件来控制铁电薄膜的性能,如薄膜的微观结构和组分等。

二、铁电材料的铁电性能研究研究铁电材料的铁电性能是了解材料电性能的一种重要手段。

以下是常用的铁电性能研究方法。

1.压电测试压电测试是通过在机械应力下测量铁电材料的电感生成能力来研究铁电性质。

在该测试中,将电极夹在铁电材料两端,给材料施加机械压力后,测量材料中电极间电势差的变化,进而计算出电感。

2.电容测试电容测试是一种测量铁电材料铁电性能的方法。

在该测试中,先将材料置于电场中,并在电场强度不断增大的过程中测量材料的电容变化,进而计算出材料的介电常数与电容变化量之间的关系。

通过电容测试可以了解材料的介电常数、铁电极化强度和耐电压强度等参数。

3.极化测试极化测试是一种研究材料极化行为的方法。

该测试中,通过在外场的作用下,测量材料中电极间电势差,进而计算出铁电极化强度的大小。

铁电材料

铁电材料

铁电材料是指具有铁电效应的一类材料,它是热释电材料的一个分支。

铁电材料及其应用研究已成为凝聚态物理、固体电子学领域最热门的研究课题之一。

科学家已经了解到铁电材料的原子结构可以使其自发产生极化现象,但至今尚不清楚光电过程是如何在铁电材料中发生的。

如果能够理解这一光电机制并应用于太阳能电池,将能有效地提高太阳能电池的效率。

研究人员所采用的铁电材料是铋铁酸盐薄膜(BFO)。

这种特别制作的薄膜有着不同寻常的特性,在数百微米的距离内整齐而有规律地排列着不同的电畴。

电畴为条状,每个电畴宽为50纳米到300纳米,畴壁为2纳米,相邻电畴的极性相反。

这样研究人员就可以清楚地知道内置电场的精确位置及其电场强度,便于在微观尺度上开展研究,同时也避免了杂质原子环绕及多晶材料所造成的误差。

当研究人员用光照射铋铁酸盐薄膜时,获得了比材料本身的带隙电压高很多的电压,说明光子可释放电子,并在畴壁上形成空穴,这样即使没有半导体的P—N结构,也可形成垂直于畴壁的电流。

通过各种试验,研究人员确定畴壁在提高电压上具有十分重要的作用。

据此他们开发出一种模型,可令极性相反的电畴制造出多余的电荷,并能传递到相邻的电畴。

这种情况有点像传递水桶的过程,随着多余电荷不断注入锯齿状相邻的电畴,电压可逐级显著增加。

在畴壁的两侧,由于电性相反,就可形成电场,使载电体分离。

在畴壁的一侧,电子堆积,空穴互相排斥;而另一侧则空穴堆积,电子互相排斥。

太阳能电池之所以会损失效率,是由于电子和空穴会迅速结合,但是这种情况不会在铋铁酸盐薄膜上出现,因为相邻的电畴极性相反。

根据同性相斥,异性相吸的原理,电子和空穴会沿相反的方向运动,而由于电子的数量远超空穴的数量,所以多余的电子会溢出到相邻的电畴。

铋铁酸盐薄膜本身并不是一种很好的太阳能电池材料,因为它只对蓝色和近紫外线发生反应,而且在其产生高电压的同时,并不能产生足够高的电流。

但是研究人员确信,在任何具有锯齿状结构的铁电材料中,类似的过程也会发生。

铁电材料的特性与应用

铁电材料的特性与应用

铁电材料的特性与应用随着科技的不断进步,人们对材料的性能和应用的要求越来越高,铁电材料作为一种特殊的功能材料,因其特殊的性质内在吸引着越来越多的科学家和工程师的关注。

铁电材料具有很多的特点和应用,本文将从以下几个方面进行探讨。

一、铁电材料的概述铁电材料是一种能够在外加电场的作用下,产生永久电极化或瞬时电极化,并能在无电场的作用下保持这种电极化状态的材料。

铁电材料的特殊性质有以下特点:1、储存强电场:铁电材料能够在强电场的作用下产生强电极化,并且能够在不加电场的情况下保持这种极化状态。

2、非线性介电性:铁电材料的介电常数随电场强度的变化不是线性的,而是具有一定的非线性。

铁电材料的非线性介电性具有在光通讯、信息传输等方面的应用前景。

3、电光效应:铁电材料在外界电场的作用下,其晶体结构出现对称性破缺,从而导致光学性能出现改变,这种现象即为电光效应。

4、压电效应:铁电材料在外界力的作用下,会产生电势差,形成电场分布而产生的现象就是压电效应。

二、铁电材料的应用铁电材料由于其具有特殊的性质,在各个行业中有着广泛的应用。

下面简述一下铁电材料在各个行业中的应用。

1、电子电器领域:铁电材料可用于存储器件、传感器、高频陶瓷器等方面。

石英陶瓷是一种常用的高频陶瓷,如果在其表面形成压电陶瓷层,就能够提高其机械振动的效率,达到提高声波频率和集中能量的目的。

2、光电子领域:铁电材料由于具备优异的光电性能,使其非常适用于薄膜反射镜、光阀、空间光学器件等方面。

3、声学领域:铁电材料由于具有压电效应,使其在锂电池、面板电池、防爆弹等方面有着广泛的应用。

4、航空领域:铁电材料由于其性质稳定,可在高温、高压等恶劣环境下使用,所以在火箭发动机、超音速飞行器等方面被广泛应用。

三、未来发展前景随着科技不断发展,人们对材料的性能和应用的要求越来越高,铁电材料作为一种特殊的功能材料,在绿色环保、节能减排、信息传输、生物医药等领域发挥着越来越大的作用,有着广泛的应用前景。

铁电材料及其应用

铁电材料及其应用

铁电材料及其应用
一、铁电材料及其应用
铁电材料是一种极具应用潜力的新材料,它具有电磁、光学、显示器件等多种性能。

它是一种由铁和氧组成的,具有结构相转变行为的材料,能够转变成一种带有特殊电学性质的材料。

铁电材料的特性使它便于应用于多种领域,如电子器件、飞行控制、传感器技术、通信、电气驱动、智能材料、能量存储、可控介质和生物医疗技术等。

1.铁电显示器
铁电显示器是一种由铁电材料制成的显示器件,具有较高的视觉效果和触摸效果,用于可视化图形的显示。

目前,铁电显示器被广泛应用于汽车仪表盘、手机、智能家电、机器人、医疗设备和消费电子产品等。

铁电显示器的特点是显示屏平稳性好,结构紧凑,受雾度影响小,亮度较高,使用寿命长等。

2.铁电传感器
铁电传感器是一种能够将外界信号转换为电子信号的装置,是一种新型传感器,具有抗振动、抗湿度、精度高、重量轻、体积小等优点。

它的主要作用是提供外界信息,通过特定的电子系统进行处理,使人们更易于控制和管理复杂、动态系统中的状态。

铁电传感器常用于电力监控、飞机控制系统、可控介质分析技术、机器人控制技术和汽车自动控制系统等领域。

铁电材料

铁电材料
非易失性记忆体掉电后数据不丢失。可 是所有的非易失性记忆体均源自ROM技术。 你能想象到,只读记忆体的数据是不可能修改 的。所有以它为基础发展起来的非易失性记 忆体都很难写入,而且写入速度慢,它们包 括EPROM(现在基本已经淘汰),EEPROM 和Flash,它们存在写入数据时需要的时间长 ,擦写次数低,写数据功耗大等缺点。
Company Logo
自发极化
❖ 在没有外电场作用时,晶 体中存在着由于电偶极子 的有序排列而产生的极化 ,称为自发极化。
1、 电畴 ferroelectric domain
铁电体内自发极化相同的小区域称为电畴,~10μm;
电畴与电畴之间的交界称为畴壁
两种:90 畴壁和180 畴壁
电滞回线 hysteresis loop
铁电体的定义
❖ 铁电体的定义:指在温度范围内具有自发极 化且极化强度可以因外电场而反向的晶体。
❖ 铁电体具有很多电畴且具有电滞回线。因此, 凡具有电畴和电滞回线的介电材料就称为铁 电体。
❖ 铁电体的晶体并不含有铁,铁电体常被称为 息格毁特晶体。
铁电体的主要特征值
1. 自发极化 2. 电 畴 3. 电滞回线 4. 居里温度 5. 介电反常
❖ 居里温度Tc是铁电相与顺电相的相转变温度, 当T>Tc时,铁电现象消失,处于顺电相。当 T<Tc时,铁电体处于铁电相,当T=Tc时发生 相变。铁电相是极化有序状态,顺电相则是极 化无序状态。而Tc称为居里点。
介电反常
❖ 在弱电场作用下铁电体的介电性能 可用各向异性介电常数ε来描述。ε可 分为两个部分:其中一部分由各个畴 的介电性能提供,这部分直到远红外 频率都不依赖于外电场的强度和频率 。另一部分与外电场作用下电畴结构 的变化有关,它强烈地依赖于电场强 度、频率和晶体的温度,而且与加外 电场时电畴的原始结构有关。对于单 轴铁电单晶体例如RS和KH2PO4, 在垂直于铁电轴方向的介电常数ε随温 度的变化并不十分显著;平行于铁电 轴方向的介电常数ε则随温度变化很大 ,在居里点附近其相对值可迅速增大 至104~105数量级;这种现象称为" 介电反常"。

光电材料中的铁电材料

光电材料中的铁电材料

光电材料中的铁电材料随着科技的不断发展,光电学作为研究光和电的物理学科可以说是越来越重要了。

其中,光电材料就是光电学中研究最多的一类材料。

而在这些光电材料中,铁电材料则是具有极高研究价值的一类材料。

1. 铁电材料的基本概念铁电材料是指在外电场的作用下能够产生极化电荷的一类材料,其名称源于铁磁性。

铁电材料与铁磁材料不同,其在外磁场作用下不会出现磁畴旋转等与铁磁材料相关的物理现象。

铁电材料具有许多独特的物理特性,如可以产生高压电与电致变色;电场效应极大,可以产生大量的比基尔效应等。

铁电材料广泛应用于各个领域,如储存器件、策略性材料等。

2. 铁电材料在光电学中的应用铁电材料在光电学中的应用主要有以下几个方面:首先,铁电材料可以设计制造光电传感器。

这是因为铁电材料具有许多独特的感应器效应,在外电场作用下,可以产生大量的电势变化,使之成为一种非常理想的光电传感材料。

在光电传感器中,铁电材料可以通过光致极化电荷引起势能差而产生电场效应,从而制造出高灵敏度的传感器。

其次,铁电材料可以用来制造电光调制器。

电光调制器是一种能够将光学信号转化为电学信号或反之的器件,具有重要的通讯和光信息处理应用。

铁电材料具有极大的电场效应,因此在电光调制器制造过程中极为重要。

铁电材料可以通过外加电场调节晶体结构并改变晶体光学性能,从而实现电光调制的功能。

最后,铁电材料还可以用来制造记忆器件。

铁电材料在外电场加热下,可以出现铁磁 - 铁电的转变,从而实现记忆功能。

铁电材料的具体实现方法是将其制成非平衡结构,用一种特殊的工艺处理制建立保持偏转方向的电荷,即可实现记忆功能。

3.铁电材料在实际应用中存在的问题与发展方向尽管铁电材料在光电学中受到重视,但由于其特殊的性质与复杂的制造工艺限制了其发展。

首先,只有一小部分铁电材料被证实符合光电学材料的制造要求。

铁电材料的基本物理特性决定了其制造过程中会受到许多限制,因此只有一小部分铁电材料具有优异的光电性能,能够满足实际生产上的要求。

铁电材料和反铁电材料

铁电材料和反铁电材料

05
CATALOGUE
铁电材料与反铁电材料的前沿研究
多铁性材料的研究
多铁性材料是指同时具有铁电性和磁性的复合功能材料,其研究主要集中在探索 新型多铁性材料、提高材料的性能以及开发多铁性材料在电子器件和存储器等领 域的应用。
目前,科研人员正在研究如何通过合成和制备技术,获得具有优异性能的多铁性 材料,如高居里温度、高自发极化、低损耗等特性,以满足实际应用的需求。
性能优化与改性
铁电材料的性能优化
通过调整材料的化学组成、制备工艺和后处理方法,可以显 著提高铁电材料的各项性能指标,如自发极化、机电耦合系 数和居里温度等。这些优化措施有助于扩大铁电材料在电子 、信息、能源等领域的应用范围。
反铁电材料的性能改进
与铁电材料类似,反铁电材料的性能也可以通过优化合成工 艺和调整化学组分来提高。例如,通过引入掺杂元素或改变 晶体结构,可以增强反铁电材料的稳定性、提高其抗疲劳性 能和降低漏电流等。
铁电材料在电场作用下发生形变,形变量 与电场强度之间呈线性关系。
压电性
热电性
铁电材料在压力作用下产生电荷,电荷量 与压力之间呈线性关系。
铁电材料在温度梯度作用下产生电荷,电 荷量与温度梯度之间呈线性关系。
铁电材料的应用
传感器
利用铁电材料的压电性和热电性 等特点,制作出各种传感器,用 于测量压力、温度、加速度等物
03
CATALOGUE
铁电材料与反铁电材料的比较
结构比较
铁电材料
具有自发极化,在一定温度范围 内表现出电偶极矩的晶体。常见 的铁电材料有钛酸钡、锆钛酸铅 等。
反铁电材料
在一定温度范围内表现出相反的 电偶极矩,即反铁电态的晶体。 常见的反铁电材料有硫酸铵、硫 酸钠等。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

Company Logo
自 发 极 化
在没有外电场作用时,晶 体中存在着由于电偶极子 的有序排列而产生的极化 ,称为自发极化。
1、 电畴
ferroelectric domain
铁电体内自发极化相同的小区域称为电畴,~10μm; 铁电体内自发极化相同的小区域称为电畴,~10μm; 电畴,~10μm 电畴与电畴之间的交界称为畴壁 电畴与电畴之间的交界称为畴壁 两种: 两种:90 畴壁和180 畴壁和180 畴壁
晶 体 结 构
现在发现,具有铁电性的晶体很多, 现在发现,具有铁电性的晶体很多,但概括起来可以分 为两大类: 为两大类: a.一类以磷酸二氢钾 KH2PO4 --简称 一类以磷酸二氢钾 简称KDP--为代表 简称 为代表 具有氢键, ,具有氢键,他们从顺电相过渡到铁电像是无序到有序 的相变。 为代表的氢键型铁晶体管, 的相变。以KDP为代表的氢键型铁晶体管,中子绕射 为代表的氢键型铁晶体管 的数据显示,在居里温度以上, 的数据显示,在居里温度以上,质子沿氢键的分布是成 对称沿展的形状。在低于居里温度时,质子的分布较集 对称沿展的形状。在低于居里温度时, 中且不对称于邻近的离子,质子会较靠近氢键的一端。 中且不对称于邻近的离子,质子会较靠近氢键的一端。 b.另一类则以钛酸钡为代表,从顺电相到铁电相的过渡 另一类则以钛酸钡为代表, 另一类则以钛酸钡为代表 是由于其中两个子晶格发生相对位移。 是由于其中两个子晶格发生相对位移。对于以为代表的 钙钛矿型铁电体,绕射实验证明, 钙钛矿型铁电体,绕射实验证明,自发极化的出现是由 于正离子的子晶格与负离子的子晶格发生相对位移。 于正离子的子晶格与负离子的子晶格发生相对位移。
电滞回线 hysteresis loop
• 电滞曲线是极化强度P 滞后于电场强度E的曲 线。 • 即当施加电场E,极化 强度P随E增加沿曲线 上升,至某点后P随E 的变化呈线性。E下降 时,P不随原曲线下降。 当E为0时,极化强度 不为0。为Pr,称剩余 极化强度。只有加上 反电场Ec时P为0。Ec 为矫顽电场强度。 • Ps为饱和极化强度
(2)按极化轴多少分类 )
沿一个晶轴方向极化的铁电体:罗息盐(RS)、KDP等; 沿几个晶轴方向极化的铁电晶体:BaTiO3、Cd2Nb2O7等。
(3)按照在非铁电相时有无对称中心分类 )
非铁电相无对称中心:钽铌酸钾(KTN)和磷酸二氢钾(KDP)族的晶体。 由于无对称中心的晶体一般是压电晶体,故它们都是具有压电效应的晶体; 非铁电相时有对称中心:不具有压电效应,如BaTiO3、TGS(硫酸三甘肽) 以及与它们具有相同类型的晶体。
介 电 反 常
在弱电场作用下铁电体的介电性能 可用各向异性介电常数ε来描述 来描述。 可 可用各向异性介电常数 来描述。ε可 分为两个部分: 分为两个部分:其中一部分由各个畴 的介电性能提供, 的介电性能提供,这部分直到远红外 频率都不依赖于外电场的强度和频率 。另一部分与外电场作用下电畴结构 的变化有关, 的变化有关,它强烈地依赖于电场强 频率和晶体的温度, 度、频率和晶体的温度,而且与加外 电场时电畴的原始结构有关。 电场时电畴的原始结构有关。对于单 轴铁电单晶体例如RS和 轴铁电单晶体例如 和KH2PO4, , 在垂直于铁电轴方向的介电常数ε随温 在垂直于铁电轴方向的介电常数 随温 度的变化并不十分显著; 度的变化并不十分显著;平行于铁电 轴方向的介电常数ε则随温度变化很大 轴方向的介电常数 则随温度变化很大 ,在居里点附近其相对值可迅速增大 数量级; 至104~105数量级;这种现象称为 ~ 数量级 这种现象称为" 介电反常"。 介电反常 。
热敏电阻( 热敏电阻(PTC) )
LOGO
铁电体的定义
铁电体的定义:指在温度范围内具有自发极 化且极化强度可以因外电场而反向的晶体。 铁电体具有很多电畴且具有电滞回线。因此, 凡具有电畴和电滞回线的介电材料就称为铁 电体。 铁电体的晶体并不含有铁,铁电体常被称为 息格毁特晶体。
铁电体的主要特征值
1. 2. 3. 4. 5.
自发极化 电 畴 电滞回线 居里温度 介电反常
ABO3型钙钛矿晶胞结构
铁电材料的分类
(1)结晶化学分类 )
含有氢键的晶体:磷酸二氢钾(KDP)、三甘氨酸硫酸盐(TGS)、罗息盐 (RS)等。这类晶体通常是从水溶液中生长出来的,故常被称为水溶性铁电体, 又叫软铁电体; 双氧化物晶体:如BaTiO3(BaO-TiO2)、KNbO3(K2O-Nb2O5)、LiNbO3 (Li2O-Nb2O5)等,这类晶体是从高温熔体或熔盐中生长出来的,又称为硬铁电 体.它们可以归结为ABO3型,Ba2+,K+、Na+离子处于A位置,而Ti4+、Nb6+、 Ta6+离子则处于B位置。
FeRAM器件结构 器件结构
铁电存储器(MFSFET)
MFS(Metal Ferroelectric – Semiconductor )FET MOS中用铁电薄膜 在MOS中用铁电薄膜 (F)代替二氧化硅栅 ) 氧化物薄膜( ) 氧化物薄膜(O)构成 MFSFET场效应管 场效应管 由于极化滞后, 由于极化滞后,漏电 流展现两种状态: 流展现两种状态:开, 关 读写过程不需要大电
压电陶瓷
声马达是压电陶瓷应用中一个 引人注目的新领域,它是利用压 引人注目的新领域 它是利用压 电陶瓷的逆压电效应,直接把电 电陶瓷的逆压电效应 直接把电 能转换成机械能输出而无需电 磁线圈的新型电机, 磁线圈的新型电机,与普通电 磁马达相比, 磁马达相比,它具有结构简单 启动快、体积小、 、启动快、体积小、功耗低等 特点。另外, 特点。另外,由于它是从电能 直接转换为机械能而不通过磁 电转换,因此, 电转换,因此,不产生磁干扰 也不怕磁干扰。 也不怕磁干扰。
居 里 温 度
居里温度Tc是铁电相与顺电相的相转变温度, 居里温度 是铁电相与顺电相的相转变温度, 是铁电相与顺电相的相转变温度 当T>Tc时,铁电现象消失,处于顺电相。当 时 铁电现象消失,处于顺电相。 T<Tc时,铁电体处于铁电相,当T=Tc时发生 时 铁电体处于铁电相, 时发生 相变。铁电相是极化有序状态, 相变。铁电相是极化有序状态,顺电相则是极 化无序状态。 称为居里点。 化无序状态。而Tc称为居里点。 称为居里点
铁电材料的应用
动态随机存贮器 非挥发铁电存储器 红外探测器与红外 CCD
介电性质
铁电效应
热释电效应
压电效应
铁电材料
电光效应
声表面波器件传感器 电阻率转变 驱动器 光折变效应 光调制器
全息存储 热敏电阻
铁电存储器(FRAM) 铁电存储器
铁电存储器(FRAM)产品将ROM的非 易失性数据存储特性和RAM的无限次读写、 高速读写以及低功耗等优势结合在一起。FR AM产品包括各种接口和多种密度 像工业标准的串行和并行接口,工业标准的 封装类型,以及4Kbit、16Kbit、64Kbit、256 Kbit和1Mbit等密度。 非易失性记忆体掉电后数据不丢失。可 是所有的非易失性记忆体均源自ROM技术。 你能想象到,只读记忆体的数据是不可能修改 的。所有以它为基础发展起来的非易失性记 忆体都很难写入,而且写入速度慢,它们包 括EPROM(现在基本已经淘汰),EEPROM 和Flash,它们存在写入数据时需要的时间长 ,擦写次数低,写数据功耗大等缺点。
(4)按相转变的微观机构分类 ) 维度模型"分类法 (5)"维度模型 分类法 ) 维度模型
铁电材料的历史发展和现状
小型 化
铁电薄膜及器件
铁电软膜理论 钙钛矿时期 热力学理论 KDP时期 时期
发现铁电性 罗息盐的Hale Waihona Puke 现Company Logo
铁电材料的制备方法
1 2 3 4 5 6 7 8 固相反应法 溶胶--凝胶法 熔盐法 喷雾分解法 柠檬酸前驱法 水热法 无卤素法 低温液相法
LOGO
铁电材料
无机092 无机 高玢
铁电材料
ferroelectric materials
具有自发极化, 具有自发极化,且自发极化能够为外电场所转向的 一类材料,称为铁电材料 铁电材料。 一类材料,称为铁电材料。
铁电材料:在具有压电效应的材料中 具有自发极化 铁电材料 在具有压电效应的材料中 ,具有自发极化 , 自发极化包括二部分:一部分来源于离子直接位移; 自发极化包括二部分:一部分来源于离子直接位移; 另一部分是由于电子云的形变。 另一部分是由于电子云的形变。而且其自发极化强度 可以因外电场反向而反向 ,或者在电场作用下不可反向 或者在电场作用下不可反向 但可以重取向的晶体 。铁电体中的自发极化有两个或 多个可能的取向。所有铁电体都可以通过人工极化使 多个可能的取向。 但具有压电性的并不一定都是铁电体。 其具有压电性 ,但具有压电性的并不一定都是铁电体。 但具有压电性的并不一定都是铁电体
相关文档
最新文档