高一数学三垂线定理
合集下载
高中立体几何 三垂线定理

B F O G C D E
三垂线定理说明( 三垂线定理说明(6)
• 平行于平面α的直线a,如果垂直于 平行于平面α的直线a
斜线OP在平面α内的射影OA,那么 斜线OP在平面α内的射影OA,那么 直线a也垂至于斜线OP,它在解某些 直线a也垂至于斜线OP,它在解某些 较复杂的问题时可能化难为易
P a
立体几何——三垂线定理 立体几何——三垂线定理
写在前面的话
• 高三同学在对立体几何的基本知识进行了系统
的复习之后,对于比较重要的定理、概念以及 在学习过程中感到难于掌握的问题进行综合性 的专题复习是很必要的。在专题复习中应通过 分类、总结,提高对所学内容的认识和理解。 今天我和大家共同探讨高中立体几何中的三垂 线问题。
D1 C1 B1 A1
∴ AC1 ⊥ 平面 A1 BD
D C A B
三垂线定理说明( 三垂线定理说明(8)
• 应用这两个定理时,首先要明确是针对
哪个平面应用定理,尤其是应注意此平 面非水平面放置的情况,然后再明确斜 线、垂线、斜线的射影及面内直线的位 置,有时需要添加其中某些线,这样可 以确保正确应用定理
建议对其掌握不好的同学,一方面扎 实基础,牢牢掌握三垂线定理的各种 情况,另一方面所作相关练习,重点 突破
• 祝大家学习成功,高考顺利!
连结CD,由三垂线定理可知,CD ⊥ AB, ∴ CD为 ABC中AB边上的高线且满足垂足在AB内, 同理可证 ABC中BC边、AC边上的高线的垂足也在BC、AC内 ∴ ABC的垂心在 ABC内,故 ABC为锐角三角形
P A D B C
一些例子
• 判定空间中两条直线相互垂直 证明:由余弦定理,
b2 + c2 − a 2 cos ∠CAB = 2bc ( x2 + z 2 ) + ( x2 + y2 ) − ( y 2 + z 2 ) = 2 x2 + z 2 x2 + y 2 = 2x 2 x +z
三垂线定理说明( 三垂线定理说明(6)
• 平行于平面α的直线a,如果垂直于 平行于平面α的直线a
斜线OP在平面α内的射影OA,那么 斜线OP在平面α内的射影OA,那么 直线a也垂至于斜线OP,它在解某些 直线a也垂至于斜线OP,它在解某些 较复杂的问题时可能化难为易
P a
立体几何——三垂线定理 立体几何——三垂线定理
写在前面的话
• 高三同学在对立体几何的基本知识进行了系统
的复习之后,对于比较重要的定理、概念以及 在学习过程中感到难于掌握的问题进行综合性 的专题复习是很必要的。在专题复习中应通过 分类、总结,提高对所学内容的认识和理解。 今天我和大家共同探讨高中立体几何中的三垂 线问题。
D1 C1 B1 A1
∴ AC1 ⊥ 平面 A1 BD
D C A B
三垂线定理说明( 三垂线定理说明(8)
• 应用这两个定理时,首先要明确是针对
哪个平面应用定理,尤其是应注意此平 面非水平面放置的情况,然后再明确斜 线、垂线、斜线的射影及面内直线的位 置,有时需要添加其中某些线,这样可 以确保正确应用定理
建议对其掌握不好的同学,一方面扎 实基础,牢牢掌握三垂线定理的各种 情况,另一方面所作相关练习,重点 突破
• 祝大家学习成功,高考顺利!
连结CD,由三垂线定理可知,CD ⊥ AB, ∴ CD为 ABC中AB边上的高线且满足垂足在AB内, 同理可证 ABC中BC边、AC边上的高线的垂足也在BC、AC内 ∴ ABC的垂心在 ABC内,故 ABC为锐角三角形
P A D B C
一些例子
• 判定空间中两条直线相互垂直 证明:由余弦定理,
b2 + c2 − a 2 cos ∠CAB = 2bc ( x2 + z 2 ) + ( x2 + y2 ) − ( y 2 + z 2 ) = 2 x2 + z 2 x2 + y 2 = 2x 2 x +z
高一数学三垂线定理

2、在一个四面体中,如果它有一个面是直角三角形,那么它 的另外三个面( C )
(A)至多只能有一个直角三角形
P
(B)至多只能有两个直角三角形
(C)可能都是直角三角形 (D)一定都不是直角三角形
A
C
B
四、例题分析:
例1:如图所示,已知PA ⊥平面ABC,∠ACB= 90°, AQ⊥PC,AR⊥PB,试证∆PBC、 ∆PQR为直角三角形。
平面PAB内,∴BC⊥PB
思考:
A
C
(1)证明线线垂直的方法有哪些?
B
(2)三垂线定理及其逆定理的主要内 容。
线线垂直的方法 :
(1)a⊥ ,b在 内,则a⊥b
(2)a∥b,m⊥b,则a⊥m
(3)三垂线定理及其逆定理
三垂线定理:在平面内的一条直线,如果和这个平面 的一条斜线的射影垂直,那么它也和这条斜线垂直。 三垂线逆定理:在平面内的一条直线,如果和这个平 面内的一条斜线垂直,那么它也和这条斜线的射影垂 直。
证明:∵PA ⊥平面ABC, ∠ACB= 90°, P ∴AC⊥BC,AC是斜线PC在平面ABC的射影, ∴BC⊥PC(三垂线定理),∴∆PBC是直 角三角形;
Q
C
∴BC⊥平面PAC,AQ在平面PAC内,
∴BC⊥AQ,又PC⊥AQ,∴AQ⊥平面PBC,
R
∴QR是AR在平面PBC的射影,又AR⊥PB,
名古时以六尺为步,可以~。 【蔽塞】bèsé①〈书〉动堵塞; 【郴】Chēn郴州(Chēnzhōu), 【表明】biǎomínɡ动表示清楚:~态度|~决心 。①那个和这个; zi〈方〉名钵?【辩题】biàntí名辩论的主题或话题。【泊位】bówèi名①航运上指港区内能停靠船舶的位置。②(~儿)〈方〉 时机;【饼肥】bǐnɡféi名指用作肥料的豆饼、花生饼、棉子饼等。不切实际;【变换】biànhuàn动事物的一种形式或内容换成另一种:~位置|~手
高一数学研究性教学三垂线定理

3、已知正方体AC1中, 求证: ⑴ BD⊥面AA1C
⑵ BD⊥A1C
D1 A1
D A
C1 B1
C B
3、已知正方体AC1中, 求证: ⑴ BD⊥面AA1C
⑵ BD⊥A1C
D1 A1
D A
C1 B1
C B
3、已知正方体AC1中, 求证:⑴ BD⊥面AA1C
⑵ BD⊥A1C
D1 A1
D
1
A
C1 B1
A1
求证:C1E⊥DF
证明:正方形ABCD 中,E、F
D
分别为AB、BC中点,
∴△DCF≌△CBECDF+
∠DFC=900
∴ ∠BCE+ ∠DFC=900
∴ DF⊥CE 又因为CC1 ⊥平ABCD ∴C1E在平面ABCD 内的射影为CE。 由三垂线定理知 C1E ⊥DF
C1 B1
C F B
小结
• 三垂线定理:
在平面内的一条直线、如果它和这个平面 的一条斜线的射影垂直,⊥那么它也和这条 斜线垂直。
练习和作业
D1
1、已知:O为正方体AC1的底面ABCD 的中点。求证:D1O⊥EF
A1
E
C1 F
B1
2、已知P为△ABC所在平面外一点,
若P在平面ABC 内的射影是△ABC的垂
C1 B1
C B
三垂线定理
在平面内的一条直线、如果它和这个平面的一条斜线
的射影垂直,那么它也和这条斜线垂直。 P
已知:PO、PA分别是平面α的
垂线、斜线, OA是 PA在平面
α内的射影,且a在平面α 内, a
O
⊥ OA
α
求证: a ⊥PA
Aa
证明:∵PO⊥平面α 垂 且a在平面α内∴PO ⊥ a 又a⊥ OA OA ∩ PO=O ∴a⊥面 PAO ∴a ⊥PA
三垂线定理

学生答:a⊥PO 为什么呢?
三垂线定理
三垂线定理:在平面内的一条直线,如果和这个平面的
一条斜线的射影垂直,那么它也和这条斜线垂直。
PA⊥α aα
①
PA⊥a
AO⊥a
②
a⊥平面PAO
PO 平面PAO
③
a⊥PO
P
a
Ao α
① 线面垂直
② 线线垂直
③ 线面垂直
线线垂直
性质定理
判定定理
性质定理
三垂线定理
A
B
90°
C
45°
D
∵BC是AC的射影 且CD⊥BC ∴CD⊥AC
三垂线定理
因此斜线AC的长度就是电塔顶与道路的距离。
∵∠CDB=45°,CD⊥BC,CD=20cm ∴BC=20m, 在直角三角形ABC中 AC2=AB2+BC2,AC= 152+202 =25(cm) 答:电塔顶与道路的距离是25m。
A
B
90°
C
45°
D
三垂线定理
例3、设PA、PB、PC两两互相垂直,且PA=3,PB=4,
PC=6,求点P到平面ABC的距离。
解: 作PH⊥平面ABC,
P
连AH交BC于E,连PE
∵PA、PB、PC两两垂直
∴PA⊥平面PBC ∴PA⊥BC
C
AH为PA在平面ABC内的射影 A
H
E
∴BC⊥AH
B
在Rt△PBC中,PE= -4-×--6-- = -1-2--
42+62
13
在Rt△APE中,AE= PA2+PE2= 9+ -11-43-4 = -21-3-2-9
小结
三垂线定理
三垂线定理:在平面内的一条直线,如果和这个平面的
一条斜线的射影垂直,那么它也和这条斜线垂直。
PA⊥α aα
①
PA⊥a
AO⊥a
②
a⊥平面PAO
PO 平面PAO
③
a⊥PO
P
a
Ao α
① 线面垂直
② 线线垂直
③ 线面垂直
线线垂直
性质定理
判定定理
性质定理
三垂线定理
A
B
90°
C
45°
D
∵BC是AC的射影 且CD⊥BC ∴CD⊥AC
三垂线定理
因此斜线AC的长度就是电塔顶与道路的距离。
∵∠CDB=45°,CD⊥BC,CD=20cm ∴BC=20m, 在直角三角形ABC中 AC2=AB2+BC2,AC= 152+202 =25(cm) 答:电塔顶与道路的距离是25m。
A
B
90°
C
45°
D
三垂线定理
例3、设PA、PB、PC两两互相垂直,且PA=3,PB=4,
PC=6,求点P到平面ABC的距离。
解: 作PH⊥平面ABC,
P
连AH交BC于E,连PE
∵PA、PB、PC两两垂直
∴PA⊥平面PBC ∴PA⊥BC
C
AH为PA在平面ABC内的射影 A
H
E
∴BC⊥AH
B
在Rt△PBC中,PE= -4-×--6-- = -1-2--
42+62
13
在Rt△APE中,AE= PA2+PE2= 9+ -11-43-4 = -21-3-2-9
小结
高中数学 三垂线定理以及应用

O
B
C
解题回顾
关于三垂线定理的应用,关键是找出平面(基准 面)以及垂线。射影就可以由垂足、斜足来确定。 从三垂线定理的证明中得到证明a⊥b的一个程 序:一垂、二射、三证。即 第一、找平面(基准面)及平面垂线。
第二、找射影线,这时a、b便成平面上的一条 直线与一条斜线。
第三、证明射影线与直线a垂直,从而得出a与b 垂直。
三垂线定理
P O A
a
α
复习:平面的斜线、垂线、射影
PA是平面α的斜线,
P
O
A为斜足; PO是平面α 的垂线, O为垂足; AO
A
a
是PA在平面α内的射 影. 如果a α, a⊥AO, 思考a与PA的位置关 系如何?
α
a⊥PA
为什么呢?
三垂线定理:在平面内的一条直线,如果和这个平面的 一条斜线的射影垂直,那么它也和这条斜线垂直。
A
a
O
A
a
直线和平 面垂直
平面内的直线 和平面一条斜 线的射影垂直
平面内的直线 和平面的一条 斜线垂直
三垂线定理:在平面内的一条直线,如果和这个平面的 一条斜线的射影垂直,那么它也和这条斜线垂直。
对三垂线定理的说明: 1.三垂线定理描述的是斜线(PA)、射影(AO)、 直线(a)之间的垂直关系。 P 2.三垂线定理的实质 a 是平面的一条斜线和平面 内的一条直线垂直的判定 O A α 定理。其中直线a与PA可以 相交,也可以异面。 3. 三垂线定理中垂线、斜线、射影、直线都是 相对于一个平面而言,即四线一面,所以把该平面 称为基准平面。 但基准 平面不一定是水平的。
A A1 D1 B1 C1
D
B
C
三垂线定理
三垂线定理及其推论

三垂线定理及其推论
三角形的三条垂线分别垂直于三边,这种垂线的交点称为垂心。
三垂线定理指出,垂心到三边的距离分别等于三条垂线上的垂足到相应边的距离之积的平方根。
推论一:以三角形三个角为顶点构成的外接圆,其圆心与垂心共线,且中点连线为直径。
推论二:垂心关于三角形三个顶点的对称点一定在外接圆上。
推论三:三角形的内心、垂心和重心三点共线。
三垂线定理及其推论在三角形相关问题的研究中有着广泛的应用,是研究三角形性质的重要定理之一。
- 1 -。
三垂线定理

三垂线定理定义:在平面内的一条直线,如果和这个平面的一条斜线在这个平面内的射影垂直,那么它也和这条斜线垂直。
三垂线定理的逆定理:在平面内的一条直线,如果和这个平面的一条斜线垂直,那么它也和这条斜线在平面的射影垂直。
具体如下:1,三垂线定理描述的是PO(斜线),AO(射影),a(直线)之间的垂直关系.2,a与PO 可以相交,也可以异面.3,三垂线定理的实质是平面的一条斜线和平面内的一条直线垂直的判定定理.关于三垂线定的应用,关键是找出平面(基准面)的垂线.至于射影则是由垂足,斜足来确定的,因而是第二位的.从三垂线定理的证明得到证明a⊥b的一个程序:一垂,二射,三证.即第一,找平面(基准面)及平面垂线第二,找射影线,这时a,b便成平面上的一条直线与一条斜线.第三,证明射影线与直线a垂直,从而得出a与b垂直。
扩展资料:三垂线定理与逆定理的核心就是两两垂直。
其中射影就是斜线的一端到另一端到平面的垂线段的连线。
三垂线定理:影垂不怕线斜(形影不离),即垂直射影垂斜线。
三垂线定理逆定理:斜垂影随其身(影随其身),即:垂直斜线垂射影。
高中数学课件 三垂线定理

a⊥b。
( ×)
(2)若a是平面α的斜线,b是 平面α内的直线,且b垂直于a 在β内的射影,则a⊥b。(×)
P
a Ao
α
强调:1°四线是对同一个平面 而言.
2°定理的关键找“平面的垂线”.
例1 已知P 是平面ABC 外一点, PA⊥平面ABC ,AC ⊥ BC, 求 证: PC ⊥ BC P
A
O
注意:如果将定理中“在平面内” 的条件去掉,结论仍然成立吗?
解
直线a 在一定要在平面内,如果 a 不在平面内,定理就不一定成题 立。 回 NhomakorabeaP
b
顾
Oa
αA
练习3、 已知:PA⊥平面PBC, PB=PC, M是BC的中点,
求证:BC⊥AM P
C A
M B
练习4、 在正方体AC1中,
求证:A1C⊥BC1 , A1C⊥B1D1
三垂线定理
在平面内的一条直线,如
果和这个平面的一条斜线的 射影垂直,那么,它就和这 条斜线垂直。 P
O
Aa
三垂线定理的逆定理
在平面内的一条直线,如
果和这个平面的一条斜线垂直,
那么,它也和这条斜线的射影
垂直。
P
O
Aa
1、判定下列命题是否正确
(1)若a是平面α的斜线、直线
b垂直于a在平面α内的射影,则
已知AB⊥CD、AC⊥BD求证:
AD⊥BC
A
B
D
O
作业:如图,已知正方体
AA平BC面,CDAC-BBA111C,B1CB11DA1,中D1求,证连:结CBB1DD11⊥,
A1
B1
D
A
C
B
再见!
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
最近,在宁都民间发现了杖头木偶戏。 杖头木偶戏的发现是在赖村镇的东塘村,据说是在明末清初年间传入的,止今已有400多年历史。是一位叫黄世权的人从福建上杭学艺回来,从此开始在赖村东塘村表演,由此盛行,并流传至今。 赖村镇的东塘村,座落在赖村圩镇的东南方向,距离圩镇约3公里。村子修有公路,进出方便,交通便利。这里村民淳朴厚道,好客乐善,全村人大多姓黄,属纯客家村落。东塘村四面环山,为丘陵地 貌。整个村子傍山依水,土地肥沃,地势平坦。这里四季分明,气候温和,村人以种植水稻为主,兼种番薯、芋头、甘蔗、花生和蔬菜等农作物,还种植有脐橙、柑桔等经济作物,物产丰富。
明代医药学家李时珍在《本草纲目》中记载:蕨,处处山有之,二三月生芽,拳曲状如小儿拳,长则展开如凤尾,高三四尺;其茎嫩时采集,以灰汤煮去涎滑,晒干作蔬,味甘滑亦可醋食。 安卓H游 http:/ຫໍສະໝຸດ / 清代袁枚在《随园食单》中说蕨菜用鸡肉汤,或煨或炒,自别有风味。蕨菜的营养价值很高,含有丰富的蛋白质、脂肪和维生素等。 据中医鉴定:蕨菜还可以入药,其味甘性寒,有清热利湿、消肿安神、活血止痛之效,补五脏之不足,又是治疗发热、痢疾、黄疸、防治癌症等多种疾病的良药。 宁河人食蕨菜,吃法有多种多样,可炒着吃,也可在开水锅中煮一下拌上清油,泼点油辣子调上醋吃,鲜脆味美,清香可口。如果在缸里腌数月,逢年过节吃,沁香浓郁,味道更美。尤其是鲜蕨炒肉, 既赏心悦目,又清香脆嫩,润滑适口,别有一番风味。 如今,人们吃法变了样,娶媳妇,盖新房,款待亲友,少不了还摆上一大碟蕨菜呢!
明代医药学家李时珍在《本草纲目》中记载:蕨,处处山有之,二三月生芽,拳曲状如小儿拳,长则展开如凤尾,高三四尺;其茎嫩时采集,以灰汤煮去涎滑,晒干作蔬,味甘滑亦可醋食。 安卓H游 http:/ຫໍສະໝຸດ / 清代袁枚在《随园食单》中说蕨菜用鸡肉汤,或煨或炒,自别有风味。蕨菜的营养价值很高,含有丰富的蛋白质、脂肪和维生素等。 据中医鉴定:蕨菜还可以入药,其味甘性寒,有清热利湿、消肿安神、活血止痛之效,补五脏之不足,又是治疗发热、痢疾、黄疸、防治癌症等多种疾病的良药。 宁河人食蕨菜,吃法有多种多样,可炒着吃,也可在开水锅中煮一下拌上清油,泼点油辣子调上醋吃,鲜脆味美,清香可口。如果在缸里腌数月,逢年过节吃,沁香浓郁,味道更美。尤其是鲜蕨炒肉, 既赏心悦目,又清香脆嫩,润滑适口,别有一番风味。 如今,人们吃法变了样,娶媳妇,盖新房,款待亲友,少不了还摆上一大碟蕨菜呢!