多级放大电路电压增益的计算
模电放大电路公式

模电放大电路公式模拟电路设计中的放大电路可以采用多种不同的拓扑和设计方法,每种方法都有其特定的公式和特性。
以下是一些常见的放大电路公式。
1.基本放大电路公式:放大电路的基本公式是电流倍增关系和电压增益关系。
对于共射放大电路,其电流倍增率为:β = ic / ib其中,ic是集电极电流,ib是基极电流。
电压增益为:Av = vo / vi其中,vo是输出电压,vi是输入电压。
2.电压放大器公式:电压放大器的电压增益公式可以通过放大器的输入和输出电压之间的关系来表示。
一般情况下,电压放大器的电压增益可以通过放大器中的电流倍增率和电阻值来计算。
例如,共射放大器的电压增益公式为:Av = - β * Rc / re其中,Rc是集电极电阻,re是发射极电阻。
3.电流放大器公式:电流放大器的电流增益公式可以通过放大器的输入和输出电流之间的关系来表示。
一般情况下,电流放大器的电流增益可以通过放大器中的电压增益和电阻值来计算。
例如,共射放大器的电流增益公式为:Ai=β*(Rc/Re)其中,Rc是集电极电阻,Re是发射极电阻。
4.差分放大器公式:差分放大器是一种常用的放大电路,可以对输入信号进行放大。
差分放大器的增益公式可以通过输入和输出电压之间的关系来表示。
一般情况下,差分放大器的增益公式为:Ad = gm * Rd其中,gm是差分对的跨导,Rd是差分对的负载电阻。
5.反馈放大器公式:反馈放大器是一种通过在放大电路中添加反馈电路来改变增益和频率响应的放大器。
反馈放大器的增益公式可以通过输入和输出电压之间的关系来表示。
一般情况下,反馈放大器的增益公式为:Af=Av/(1+β*Af)其中,Av是放大器的开环增益,β是反馈电阻和输入电阻之比,Af 是放大器的反馈增益。
这些是一些常见的模拟放大电路的基本公式,用于计算电压增益、电流增益和反馈增益等参数。
在实际设计中,根据具体的电路拓扑和设计需求,还可以采用其他公式和方法来计算放大电路的性能和参数。
共源极放大电路增益计算

共源极放大电路增益计算共源极放大电路是一种常见的放大电路,它在电子设备中有着广泛的应用。
本文将从增益计算的角度,对共源极放大电路进行详细介绍。
我们需要了解共源极放大电路的基本结构和原理。
共源极放大电路由一个场效应管(通常是N沟道MOSFET)构成,该管的栅极与信号源相连,漏极与负载电阻相连,源极接地。
通过对栅极施加不同的电压信号,可以控制漏极电流的大小,从而实现电压信号的放大。
接下来,我们将重点讨论共源极放大电路的增益计算。
在共源极放大电路中,增益可以分为电压增益和功率增益两种。
首先是电压增益的计算。
电压增益是指输出电压与输入电压之间的比值。
在共源极放大电路中,电压增益可以通过以下公式来计算:电压增益(Av) = -gm * RL其中,gm表示场效应管的跨导,RL表示负载电阻。
跨导是指单位栅极-源极电压变化引起的漏极电流变化的比值。
负载电阻则是指连接在漏极和电源之间的电阻。
通过调节跨导和负载电阻的大小,可以改变电压增益的值。
功率增益是指输出功率与输入功率之间的比值。
功率增益可以通过以下公式来计算:功率增益(Ap) = -gm^2 * RL从公式可以看出,功率增益与电压增益相比,多了一个跨导的平方项。
这是因为功率增益不仅与电压增益有关,还与输入信号的功率有关。
通过调节跨导和负载电阻的大小,可以改变功率增益的值。
需要注意的是,上述公式中的负号表示输出信号与输入信号之间的相位差为180度,即反相。
这是由于共源极放大电路的特性决定的。
在实际应用中,为了获得更高的增益,可以采取一些增益增强技术。
例如,可以使用级联放大电路来实现更高的增益。
级联放大电路将多个共源极放大电路连接在一起,输出信号经过多级放大,从而实现更高的增益。
为了提高共源极放大电路的性能,还可以采取一些补偿措施。
例如,可以增加源极电阻,以提高电路的稳定性和频率响应。
另外,可以采用负反馈的方法,通过将部分输出信号反馈到输入端,来抑制非线性失真和增加电路的线性范围。
什么是电路的增益和衰减

什么是电路的增益和衰减电路的增益和衰减是在信号传输过程中起到重要作用的两个参数。
电路增益指的是信号经过电路传输后的放大程度,而衰减则表示信号经过电路传输后的减少程度。
在本文中,我们将详细介绍电路的增益和衰减的概念、计算方法以及应用场景。
一、电路增益的概念和计算方法电路增益是指信号在电路中传输时的放大效果。
它通常用dB(分贝)来表示。
电路增益可以分为电压增益和功率增益两种类型。
1. 电压增益电压增益是指在电路中,输入信号经过放大后输出信号的电压与输入信号电压之间的比值。
其计算公式为:电压增益(dB)= 20log10(Vout/Vin)其中,Vout表示输出信号的电压,Vin表示输入信号的电压。
2. 功率增益功率增益是指在电路中,输入信号经过放大后输出信号的功率与输入信号功率之间的比值。
其计算公式为:功率增益(dB)= 10log10(Pout/Pin)其中,Pout表示输出信号的功率,Pin表示输入信号的功率。
二、电路衰减的概念和计算方法电路衰减是指信号在电路中传输时的减少效果。
与电路增益相反,电路衰减通常用负值的dB表示。
1. 电压衰减电压衰减是指在电路中,输入信号经过传输后输出信号的电压与输入信号电压之间的比值。
其计算公式为:电压衰减(dB)= -20log10(Vout/Vin)其中,Vout表示输出信号的电压,Vin表示输入信号的电压。
2. 功率衰减功率衰减是指在电路中,输入信号经过传输后输出信号的功率与输入信号功率之间的比值。
其计算公式为:功率衰减(dB)= -10log10(Pout/Pin)其中,Pout表示输出信号的功率,Pin表示输入信号的功率。
三、电路增益和衰减的应用场景电路增益和衰减在实际应用中具有广泛的使用场景。
1. 电子音频设备在音频放大器、扬声器等音频设备中,常需要对音频信号进行放大或衰减。
电路的增益和衰减参数可以帮助调节音量大小,使音频信号达到合适的水平。
2. 无线通信系统在无线通信系统中,信号传输过程中常会遇到信号衰减问题。
电路基础原理理解电路中的增益与衰减

电路基础原理理解电路中的增益与衰减电路是现代社会中重要的基础设施之一,它的性能直接关系到电子设备的正常运行和性能表现。
在电路中,增益与衰减是两个重要的概念,对于理解电路的工作原理和调节电路性能具有重要意义。
一、什么是增益与衰减增益和衰减都是描述电路信号变化的概念,它们体现了信号在电路中的放大或衰减程度。
增益是指信号在电路中经过放大后的变化程度。
在电路中,增益可以通过放大器来实现,放大器是一种能够将输入信号放大到更高幅度的电路元件。
通过放大器,信号的幅度可以得到放大,从而使得信号的能量得以传递和处理。
衰减则是指信号在电路中经过减小后的变化程度。
常见的衰减方式有电阻、衰减器等。
通过选择适当的电阻或衰减器,可以将信号的幅度控制在合适的范围内,以满足特定的应用需求。
二、增益与衰减的计算方法对于放大器而言,增益可以通过增益系数来表示。
增益系数是输出信号幅度与输入信号幅度之间的比值。
例如,如果一个放大器的增益系数为10倍,那么输出信号的幅度将是输入信号的10倍。
一般来说,增益系数可以用电压增益和功率增益来表示。
电压增益是指输出信号的电压与输入信号电压之间的比值。
通常用分贝(dB)来表示电压增益的大小。
分贝是一种对数单位,用于表示信号的放大或衰减程度。
计算电压增益的公式为:电压增益(dB)=20log10(输出电压/输入电压)。
功率增益则是指输出信号的功率与输入信号功率之间的比值。
同样,功率增益也可以用分贝表示。
计算功率增益的公式为:功率增益(dB)= 10log10(输出功率/输入功率)。
对于衰减器而言,衰减程度可以用衰减系数来表示。
衰减系数是输出信号幅度与输入信号幅度之间的比值。
例如,如果一个衰减器的衰减系数为0.1,那么输出信号的幅度将是输入信号的0.1倍。
同样,衰减系数也可以用分贝来表示。
计算衰减系数的公式为:衰减系数(dB)= 20log10(输出信号幅度/输入信号幅度)。
三、应用举例增益和衰减在电路中有着广泛的应用。
lna 电压增益和功率增益计算

lna 电压增益和功率增益计算LNA(低噪声放大器)是通信系统中的关键组件,用于放大微弱的信号并尽可能降低噪声。
在设计和评估LNA时,常常需要计算电压增益和功率增益。
本文将介绍如何计算这些参数,并提供相关参考内容。
为了计算LNA的电压增益和功率增益,我们首先需要了解LNA的电路结构和工作原理。
LNA通常由一个放大器级和一个匹配网络级组成。
放大器级负责放大输入信号,而匹配网络级负责将输出阻抗与后级电路相匹配。
在计算LNA的电压增益时,我们可以通过下面的公式进行计算:\[Voltage\ Gain = 20 \times log\left(\frac{V_{out}}{V_{in}}\right) \]其中\(V_{out}\)是LNA的输出电压,\(V_{in}\)是LNA的输入电压。
通常情况下,LNA的输出电压可以通过测量电压表或示波器来获得。
而输入电压可以通过信号发生器的输出电压来获得。
最后,我们可以通过计算得到电压增益。
在计算LNA的功率增益时,我们可以通过下面的公式进行计算:\[Power\ Gain = Voltage\ Gain + 10\timeslog\left(\frac{P_{out}}{P_{in}}\right)\]其中\(P_{out}\)是LNA的输出功率,\(P_{in}\)是LNA的输入功率。
通常情况下,LNA的输出功率可以通过功率表或功率计来测量。
而输入功率可以通过信号发生器的输出功率和插入损耗来获得。
最后,我们可以通过计算得到功率增益。
在参考文献中,我们可以找到一些与LNA的电压增益和功率增益计算相关的内容。
以下是一些可能的参考资料:1. 岩崎龙太郎, 雷利了解射频电路设计[M]. 郑州: 郑州大学出版社, 2009.这本书详细介绍了射频电路的各个方面,包括放大器设计和LNA的特点。
对于电压增益和功率增益的计算,可以在该书的相关章节中找到。
2. Lee T H. 高频/射频集成电路设计[M]. 人民邮电出版社, 2015. 这本书主要关注高频/射频集成电路的设计和应用。
运算放大电路放大倍数

运算放大电路放大倍数
运算放大电路的放大倍数是指输入信号与输出信号之间的电压或电流增益的比值。
在运算放大电路中,放大倍数由放大器的增益来决定。
一般来说,运算放大器的增益非常高,可以达到几万甚至几十万倍。
具体地说,运算放大电路的放大倍数可以通过以下公式计算:
放大倍数 = 输出信号的电压 / 输入信号的电压
放大倍数 = 输出信号的电流 / 输入信号的电流
需要注意的是,实际上放大倍数不会超过运算放大器的供电电压,并且会受到电阻、电容等元件的影响而有所减小。
因此,在设计运算放大电路时,需要考虑这些因素以确定合适的放大倍数。
多级放大电路总的电压增益等于

多级放大电路总的电压增益等于
等于各级增益之乘积。
多级放大电路的增益公式?
三级放大总增益算:
电压增益:A=Rc分之Re限制是A必须小于三极管的β值。
交直流工作点:设Vo=VCC分之2使得输出波形得到最大的电压范围,三极管饱和导通时Vo=VCC*Re分之(Rc+Re),三极管截止时Vo=VCC。
由于一般情况下Re一定远远小于Rc以得到较高的增益,所以三极管饱和导通时的Vo(即交流输出的波谷)可忽略不计。
Vi=VCC*Rb2分之(Rb1+Rb2)=Vo分之A+Ube
Ube一般选0.54-0.6V而不是0.7V,依据上面的关系式即可得到Rb1和Rb2的比例关系。
然后根据输入阻抗的要求即可求得Rb1和Rb2的实际阻值。
三极管多级放大电路动态参数详解

三极管多级放大电路动态参数详解许峰川,邹丽新,吕清松(苏州大学文正学院,江苏苏州215104)一、引言单个三极管可以构成共射极、共基极、共集电极放大电路,不同组态的放大电路具有各自的优点和用途。
当单管放大电路的主要技术指标———如:电压增益、输入电阻、输出电阻、带宽和输出功率等———无法满足实际应用需要时,往往通过合适的方式将它们组合起来,构成多级放大电路,以充分利用各组态的优点,获得更好的电路性能。
该内容,也是“模拟电路”课程中三极管章节的教学重点和难点之一。
目前的教材主要以共射—共基放大电路为例,如图1所示,介绍多级放大电路动态参数的求解。
在对所给共射—共基放大电路进行工作原理分析和动态参数定量计算时,首先需要准确地画出其对应的小信号等效电路图。
在阐述该部分内容时,康华光教授主编的《电子技术基础———模拟部分(第六版)》第202页和童诗白、华成英教授主编的《模拟电子技术基础(第五版)》第105页都只给出了共射—共基放大电路的交流通路,如图2所示,并没有给出放大电路的小信号等效电路图。
因此,大部分学生难以理解相关动态参数的分析求解过程以及多级放大电路和单管放大电路动态参数求解过程的区别,尤其难以理解为什么要先求后一级放大电路的输入电阻。
本文明晰了放大电路相关动态参数的定义,给出了方便学生理解和记忆的画小信号等效电路图具体步骤,详细分析了共射—共基放大电路动态参数的求解过程。
由于静态参数的求解过程与基极分压式射极偏置电路类似,文中不再赘述。
二、动态参数求解在对三极管构成的放大电路动态参数求解之前,首先应画出其对应的小信号等效电路。
而在画小信号等效电路图前,应先判断三极管的工作组态,具体的判断方法是:看输入信号加在哪个电极,输出信号从哪个电极取出,剩下的电极便是共同电极。
如图1所示,对于直接耦合的多级放大电路而言,两级之间的连接点A,既是前一级信号的输出点,又是后一级信号的输入点。
因此,三极管T 1的工作组态为共射极,三极管T 2的工作组态为共基极。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
多级放大电路电压增益的计算在求分立元件多级放大电路的电压放大倍数时有两种处理方法:一是将后一级的输入电阻作为前一级的负载考虑,即将第二级的输入电阻与第一级集电极负载电阻并联,简称输入电阻法。
二是将后一级与前一级开路,计算前一级的开路电压放大倍数和输出电阻,并将其作为信号源阻加以考虑,共同作用到后一级的输入端,简称开路电压法。
现以图示两级放大电路为例加以说明。
例1:三极管的β1=β2=β=100,V BE1=V BE2=0.7V。
计算总电压放大倍数。
分别用输入电阻法和开路电压法计算。
解:一、求静态工作点:A9.3=mA0.0093=mA7.2101)20//51(7.038.3)+(1+)//('=e1b2b1BE1CCBQ1μβ⨯+-=-RRRVVImA93.0BQ1CQ1==IIβV26.7V)1.593.012(c1CQ1ccB2C1=⨯-=-==RIVVVCEQ1cc CQ1c1CQ1BQ1e1cc CQ1c1e1=1209378 V47 V()()(..).V V I R I I R V I R R--+≈-+=-⨯=V96.7V)7.026.7(BE2B2E2=+=+=VVVV47.4V)3.404.1(mA04.1mA9.3/04.4mA]9.3/)96.712[(/)(c2CQ2C2e2E2CCCQ2EQ2=⨯====-=-=≈RIVRVVIIV45.3V)96.747.4(E2C2CEQ2-=-=-=VVV二、求电压增益:(1)用输入电阻法求电压增益 先计算三极管的输入电阻Ω=Ω⨯+Ω=++Ω=Ω⨯+Ω=++k 8.2 04.126101 300mA)(mV)(26)1(=k 1.3 93.026101 300mA)(mV)(26)1(=E2bb be2E1bb be1I r r I r r ββ电压增益be2i2be1i2c113.581.3)8.2//1.5(100)//(=r R r R R A v =-=⨯-=-式中β6.1538.23.4100)//(=be2L c22-=⨯-=-r R R A v β8955)6.153(3.5821=-⨯-==v v v A A A 如果求从V S 算起的电压增益,需计算输入电阻 Ω===k 55.220//51//1.3//// b2b1be1i1R R r R 9.41)3.58(55.2155.21i1S i1s1-=-⨯+=+=v v A R R R A6436)6.153(9.412s1s =-⨯-==v v v A A A(2)用开路电压法求电压增益第一级的开路电压增益8932)3.54()5.164(==3.548.23.41008.21.58.2=5.1641.31.5100=2O1be2c2i2o1i22c1o1be1c1O1=-⨯--=⨯⨯+-=⨯+-≈-=⨯-=-v v v v v A A A r R R R R A R R r R A ββ例2:如图所示为两级阻容耦合放大电路,已知12CC =U V ,20B1B1='=R R k Ω,10B2B2='=R R k Ω,2C2C1==R R k Ω,2E2E1==R R k Ω,2L =R k Ω,5021==ββ,6.0BE2BE1==U U V 。
(1)求前、后级放大电路的静态值。
(2)画出微变等效电路。
(3)求各级电压放大倍数u1A 、u2A 和总电压放大倍数u A 。
u s+u o -CC分析: 两级放大电路都是共发射极的分压式偏置放大电路,由于级间采用阻容耦合方式,故各级电路的静态值可分别计算,动态分析时需注意第二级的输入电阻就是第一级的负载电阻,即i2L1r R =。
解: (1)各级电路静态值的计算采用估算法。
第一级:412102010CC B2B1B2B1=⨯+=+=U R R R U (V )7.126.04E1BE1B1E1C1=-=-=≈R U U I I (mA )0.034507.11C1B1===βI I (mA ) 2.5)22(7.112)(E1C1C1CC CE1=+⨯-=+-=R R I U U (V )第二级:412102010CC B2B1B2B2=⨯+='+''=U R R R U (V )7.126.04E2BE2B2E2C2=-=-=≈R U U I I (mA )0.034507.12C2B2===βI I (mA )2.5)22(7.112)(E2C2C2CC CE2=+⨯-=+-=R R I U U (V )(2)微变等效电路如图所示。
R U +-(3)求各级电路的电压放大倍数u1A 、u2A 和总电压放大倍数u A 。
三极管V 1的动态输入电阻为:10807.126)501(30026)1(300E11be1=⨯++=++=I r β(Ω) 三极管V 2的动态输入电阻为:10807.126)501(30026)1(300E22be2=⨯++=++=I r β(Ω) 第二级输入电阻为:93.008.1//10//20////be2B2B1i2==''=r R R r (k Ω) 第一级等效负载电阻为:63.093.0//2//i2C1L1==='r R R (k Ω) 第二级等效负载电阻为:12//2//L C2L2==='R R R (k Ω) 第一级电压放大倍数为:3008.163.050be1L11u1-=⨯-='-=r R A β 第二级电压放大倍数为:5008.1150be2L22u2-=⨯-='-=r R A β 两级总电压放大倍数为:1500)50()30(u2u1u =-⨯-==A A A例3:在 如图所示的两级阻容耦合放大电路中,已知12CC =U V ,30B1=R k Ω,20B2=R kΩ,4E1C1==R R k Ω,130B3=R k Ω,3E2=R k Ω,5.1L =R k Ω,5021==ββ,8.0BE2BE1==U U V 。
(1)求前、后级放大电路的静态值。
(2)画出微变等效电路。
(3)求各级电压放大倍数u1A 、u2A 和总电压放大倍数u A 。
(4)后级采用射极输出器有何好处?+u o -CC分析 第一级放大电路是共发射极的分压式偏置放大电路,第二级放大电路是射极输出器。
射极输出器的输出电阻很小,可使输出电压稳定,增强带负载能力。
解 (1)各级电路静态值的计算采用估算法。
第一级:8.412203020CC B2B1B2B1=⨯+=+=U R R R U (V )148.08.4E1BE1B1E1C1=-=-=≈R U U I I (mA )0.025011C1B1===βI I (mA ) 4)44(112)(E1C1C1CC CE1=+⨯-=+-=R R I U U (V )第二级:04.03)501(1308.012)1(E22B3BE2CC B2=⨯++-=++-=R R U U I β(mA )204.050B22C2=⨯==I I β(mA )63212E2C2CC CE2=⨯-=-=R I U U (V )(2)微变等效电路如图所示。
+-(3)求各级电路的电压放大倍数u1A 、u2A 和总电压放大倍数u A 。
三极管V 1的动态输入电阻为:1630126)501(30026)1(300E11be1=⨯++=++=I r β(Ω) 三极管V 2的动态输入电阻为:960226)501(30026)1(300E22be2=⨯++=++=I r β(Ω) 第二级输入电阻为:5.70]3)501(96.0//[130])1(//[E22be2B3i2=⨯++=++=R r R r β(k Ω)第一级等效负载电阻为:8.35.70//4//i2C1L1==='r R R (k Ω) 第二级等效负载电阻为:15.1//3//L E2L2==='R R R (k Ω) 第一级电压放大倍数为:11663.18.350be1L11u1-=⨯-='-=r R A β 第二级电压放大倍数为:98.01)501(96.01)501()1()1(L22be2L22u2=⨯++⨯+='++'+=R r R A ββ 两级总电压放大倍数为:11498.0)116(u2u1u =⨯-==A A A(4)后级采用射极输出器是由于射极输出器的输出电阻很小,可使输出电压稳定,增强带负载能力。
例4: 在如图所示的两级阻容耦合放大电路中,已知24CC =U V ,1B1=R M Ω,27E1=R k Ω,82B1='R k Ω,43B2='R k Ω,10C2=R k Ω,2.8E2=R k Ω,10L =R k Ω,5021==ββ。
(1)求前、后级放大电路的静态值。
(2)画出微变等效电路。
(3)求各级电压放大倍数u1A 、u2A 和总电压放大倍数u A 。
(4)前级采用射极输出器有何好处?+u o -CC分析 第一级放大电路是射极输出器,第二级放大电路是共发射极的分压式偏置放大电路。
射极输出器的输入电阻很高,可减小信号源阻压降,减轻信号源的负担。
解: (1)各级电路静态值的计算采用估算法。
第一级:01.027)501(100024)1()1(E11B1BE1CC E11B1BE1CC B1=⨯++=++-≈++-=R R U U R R U U I ββ(mA )5.001.050B11C1=⨯==I I β(mA ) 5.10275.024E1C1CC CE1=⨯-=-=R I U U (V )第二级:3.824438243CC B2B1B2B2=⨯+='+''=U R R R U (V )12.83.8E2B2E2BE2B2E2C2==≈-=≈R U R U U I I (mA )0.025012C2B2===βI I (mA ) 8.5)2.810(124)(E2C2C2CC CE2=+⨯-=+-=R R I U U (V )(2)微变等效电路如图所示。
+-(3)求各级电路的电压放大倍数u1A 、u2A 和总电压放大倍数u A 。
三极管V 1的动态输入电阻为:29505.026)501(30026)1(300E11be1=⨯++=++=I r β(Ω) 三极管V 2的动态输入电阻为:1630126)501(30026)1(300E22be2=⨯++=++=I r β(Ω) 第二级输入电阻为:27.163.1//43//82////be2B2B1i2==''=r R R r (k Ω) 第一级等效负载电阻为:2.127.1//27//i2E1L1==='r R R (k Ω) 第二级等效负载电阻为:510//10//L C2L2==='R R R (k Ω) 第一级电压放大倍数为:95.02.1)501(95.22.1)501()1()1(L11be1L11u1=⨯++⨯+='++'+=R r R A ββ 第二级电压放大倍数为:4.15363.1550be2L22u2-=⨯-='-=r R A β 两级总电压放大倍数为:146)4.153(95.0u2u1u -=-⨯==A A A(4)前级采用射极输出器是由于射极输出器的输入电阻很高,可减小信号源阻压降,减轻信号源的负担。