求数列通项公式与数列求和精选练习题(有答案)
高考数学专题复习练习题12---数列求通项、求和(理)含答案解析

高考数学专题复习练习题12---数列求通项、求和(理)1.已知数列{}n a 的前n 项和21n n S =-,则数列2{}n a 的前10项和为( )A .1041-B .102(21)-C .101(41)3-D .101(21)3-2.已知数列{}n a 的前n 项和为n S ,满足21n n S a =-,则{}n a 的通项公式为n a =( ) A .21n -B .12n -C .21n-D .21n +3.数列{}n a 满足1(1)nn n a a n ++=-⋅,则数列{}n a 的前20项和为( )A .100-B .100C .110-D .1104.已知数列{}n a 的通项公式为100n a n n=+,则122399100||||||a a a a a a -+-++-=L ( ) A .150B .162C .180D .2105.数列{}n a 中,10a =,1n n a a +-=,若9n a =,则n =( )A .97B .98C .99D .1006.在数列{}n a 中,12a =-,111n na a +=-,则2019a 的值为( ) A .2-B .13 C .12D .327.已知n S 是数列{}n a 的前n 项和,且13n n n S S a +=++,4523a a +=,则8S =( ) A .72B .88C .92D .988.在数列{}n a 中,12a =,已知112(2)2n n n a a n a --=≥+,则n a 等于( )A .21n + B .2n C .31n + D .3n9.已知数列21()n a n n =-∈*N ,n T 为数列11{}n n a a +的前n 项和,求使不等式20194039n T ≥成立的最小 正整数( )一、选择题A .2017B .2018C .2019D .202010.已知直线20x y ++=与直线0x dy -+=互相平行且距离为m ,等差数列{}n a 的公差为d ,7835a a ⋅=,4100a a +<,令123||||||||n n S a a a a =++++L ,则m S 的值为( )A .60B .52C .44D .3611.已知定义在R 上的函数()f x 是奇函数且满足3()()2f x f x -=,(2)3f -=-,数列{}n a 是等差数列, 若23a =,713a =,则1232020()()()()f a f a f a f a ++++=L ( ) A .2-B .3-C .2D .312.已知数列满足12323(21)3nn a a a na n ++++=-⋅L ,设4n nnb a =,n S 为数列{}n b 的前n 项和.若n S λ<(常数),n ∈*N ,则λ的最小值为( )A .32B .94C .3112D .311813.已知数列{}n a 的通项公式为12n n a n -=⋅,其前n 项和为n S ,则n S = .14.设数列{}n a 满足1(1)()2n n n na n a n n +-+=∈+*N ,112a =,n a = . 15.已知数列{}n a 满足1(1)(2)nn n a a n n ---=≥,记n S 为数列{}n a 的前n 项和,则40S = .16.等差数列{}n a 中,3412a a +=,749S =,若[]x 表示不超过x 的最大整数,(如[0.9]0=,[2.6]2=,).令[lg ]()n n b a n =∈*N ,则数列{}n b 的前2000项和为 .1.【答案】C答 案 与 解 析二、填空题一、选择题【解析】∵21n n S =-,∴1121n n S ++=-,∴111(21)(21)2n n nn n n a S S +++=-=---=, 又11211a S ==-=,∴数列{}n a 的通项公式为12n n a -=,∴2121(2)4n n n a --==,∴所求值为1010141(41)143-=--. 2.【答案】B【解析】当1n =时,11121S a a =-=,∴11a =;当2n ≥时,1122n n n n n a S S a a --=-=-,∴12n n a a -=,因此12n n a -=.3.【答案】A【解析】121a a +=-,343a a +=-,565a a +=-,787a a +=-,…, 由上述可知,1219201191(13519)1101002a a a a +++++=-⨯++++=-⨯⨯=-L L . 4.【答案】B【解析】由对勾函数的性质知:当10n ≤时,数列{}n a 为递减; 当10n ≥时,数列{}n a 为递增,故12239910012239101110||||||()()()()a a a a a a a a a a a a a a -+-++-=-+-++-+-L L12111009911010010()()1100(1010)(1001)a a a a a a a a +-++-=-+-=+-+++-L (1010)162+=.5.【答案】D【解析】由1n n a a +-==,利用累加法可得,∴11)n a a -=+++L 1=,∵10a =,∴19n a ==10=,100n =. 6.【答案】B【解析】由题意得,12a =-,111n n a a +=-,∴213122a =+=,321133a =-=,4132a =-=-,…, ∴{}n a 的周期为3,∴20193673313a a a ⨯===. 7.【答案】C【解析】∵13n n n S S a +=++,∴113n n n n S S a a ++-=+=, ∴13n n a a +-=,∴{}n a 是公差为3d =的等差数列,又4523a a +=,可得12723a d +=,解得11a =,∴81878922S a d ⨯=+=. 8.【答案】B 【解析】将等式1122n n n a a a --=+两边取倒数,得到11112n n a a -=+,11112n n a a --=, 1{}n a 是公差为12的等差数列,1112a =,根据等差数列的通项公式的求法得到111(1)222n n n a =+-⨯=,故2n a n=. 9.【答案】C【解析】已知数列21()n a n n =-∈*N ,∵111111()(21)(21)22121n n a a n n n n +==--+-+, ∴11111111(1)()()(1)2335212122121n n T n n n n ⎡⎤=-+-++-=-=⎢⎥-+++⎣⎦L , 不等式20194039n T ≥,即2019214039n n ≥+,解得2019n ≥, ∴使得不等式成立的最小正整数n 的值为2019. 10.【答案】B【解析】由两直线平行得2d =-,由两直线平行间距离公式得10m ==,∵77(2)35a a ⋅-=,得75a =-或77a =, ∵410720a a a +=<,∴75a =-,29n a n =-+,∴12310|||||||||7||5||5||7||9||11|52m S a a a a =++++=+++-+-+-+-=L L . 11.【答案】B【解析】由函数()f x 是奇函数且3()()2f x f x -=,得(3)()f x f x +=, 由数列{}n a 是等差数列,若23a =,713a =,可得到21n a n =-, 可得123456()()()()()()0f a f a f a f a f a f a ++=++=,则其周期为3,12320201()()()()()3f a f a f a f a f a ++++==-L .12.【答案】C【解析】∵12323(21)3nn a a a na n ++++=-⋅L ①,当2n ≥时,类比写出12323a a a ++++L 11(1)(23)3n n n a n ---=-⋅②, 由①-②得143n n na n -=⋅,即143n n a -=⋅.当1n =时,134a =≠,∴13,143,2n n n a n -=⎧=⎨⋅≥⎩,14,13,23n n n b n n -⎧=⎪⎪=⎨⎪≥⎪⎩, 214233333n n n S -=++++=L 021*********n n-+++++L ③, 2311112313933333n n n n nS --=++++++L ④, ③-④得,0231112211111231393333339313n n n n n n n S --=++++++-=+--L ,∴316931124312n n n S +=-<⋅,∵n S λ<(常数),n ∈*N ,∴λ的最小值是3112.13.【答案】(1)21nn -+【解析】由题意得01221122232(1)22n n n S n n --=⨯+⨯+⨯++-⋅+⋅L ①,∴1221222n S =⨯+⨯3132(1)22n n n n -+⨯++-⋅+⋅L ②,①-②得231121222222(1)2112nn nn n n S n n n ---=+++++-⋅=-⋅=-⋅--L ,∴(1)21nn S n =-+.14.【答案】21n n +【解析】∵1(1)()2n n n na n a n n +-+=∈+*N ,∴11111(2)(1)12n n a a n n n n n n +-==-+++++,∴11111n n a a n n n n --=--+,…,21112123a a -=-,累加可得11121n a a n n -=-+, 二、填空题∵112a =,∴1111n a nn n n =-=++,∴21n n a n =+. 15.【答案】440【解析】由1(1)(2)nn n a a n n ---=≥可得:当2n k =时,2212k k a a k --=①;当21n k =-时,212221k k a a k --+=-②; 当21n k =+时,21221k k a a k ++=+③;①+②有:22241k k a a k -+=-,③-①得有:21211k k a a +-+=, 则40135739()S a a a a a =+++++L24640109()110(71523)1071084402a a a a ⨯+++++=⨯++++=+⨯+⨯=L L . 16.【答案】5445【解析】设等差数列{}n a 的公差为d ,∵3412a a +=,749S =,∴12512a d +=,1767492a d ⨯+=,解得11a =,2d =, ∴12(1)21n a n n =+-=-,[lg ][lg(21)]n n b a n ==-,1,2,3,4,5n =时,0n b =;650n ≤≤时,1n b =; 51500n ≤≤时,2n b =; 5012000n ≤≤时,3n b =,∴数列{}n b 的前2000项和454502150035445=+⨯+⨯=.。
(完整版)求数列通项公式与数列求和精选练习题(有答案)

数列的通项公式与求和112342421{},1(1,2,3,)3(1),,{}.(2)n n n n n na n S a a S n a a a a a a a +===+++L L 数列的前项为且,求的值及数列的通项公式求1112{},1(1,2,).:(1){};(2)4n n n n nn n n a n S a a S n nS nS a +++====L 数列的前项和记为已知,证明数列是等比数列*121{}(1)()3(1),;(2):{}.n n nn n a n S S a n N a a a =-∈ 已知数列的前项为,求求证数列是等比数列11211{},,.2n n n n a a a a a n n +==++ 已知数列满足求练习1 练习2 练习3 练习4112{},,,.31n n n n n a a a a a n +==+ 已知数列满足求111511{},,().632n n n n n a a a a a ++==+ 已知数列中,求111{}:1,{}.31n n nn n a a a a a a --==⋅+ 已知数列满足,求数列的通项公式练习8 等比数列{}n a 的前n 项和Sn=2n-1,则2232221na a a a ++++Λ练习9 求和:5,55,555,5555,…,5(101)9n-,…;练习5 练习6练习7练习10 求和:1111447(32)(31)n n+++⨯⨯-⨯+L练习11 求和:111112123123n ++++= +++++++LL练习12 设{}na是等差数列,{}nb是各项都为正数的等比数列,且111a b==,3521a b+=,5313a b+=(Ⅰ)求{}na,{}nb的通项公式;(Ⅱ)求数列nnab⎧⎫⎨⎬⎩⎭的前n项和n S.答案练习1答案:练习2 证明: (1)注意到:a(n+1)=S(n+1)-S(n)代入已知第二条式子得: S(n+1)-S(n)=S(n)*(n+2)/n nS(n+1)-nS(n)=S(n)*(n+2) nS(n+1)=S(n)*(2n+2) S(n+1)/(n+1)=S(n)/n*2又S(1)/1=a(1)/1=1不等于0 所以{S(n)/n}是等比数列 (2)由(1)知,{S(n)/n}是以1为首项,2为公比的等比数列。
高二数学数列求和试题答案及解析

高二数学数列求和试题答案及解析1.数列的通项,其前项和为,则为()A.B.C.D.【答案】A【解析】,注意到数列的周期为3,并且【考点】1.三角恒等变换;2.数列求和2.设等比数列都在函数的图象上。
(1)求r的值;(2)当;(3)若对一切的正整数n,总有的取值范围。
【答案】(1)(2)(3)【解析】(1)由已知可得,当时,是等比数列, 4分(2)由(1)可知,8分(3)递增,当时,取最小值为所以一切的 12分【考点】数列求通项求和点评:数列求和采用的错位相减法,此法适用于通项公式为关于n的一次式与指数式的乘积形式的数列,第三问不等式恒成立转化为求数列前n项和的最值,期间借助了数列的单调性}中,,试猜想这个数列的通项公式。
3.在数列{an【答案】【解析】因为,,所以,。
【考点】本题主要考查数列的递推公式,等差数列的通项公式。
点评:简单题,考察数列要从多方面入手,如本题中,通过研究的特征,利用等差数列的知识,使问题得解。
4.对正整数,设曲线在处的切线与轴交点的纵坐标为,则数列的前项和的公式是【答案】=-2n-1(n+2),所以,切线方程为:y+2n=-2n-1(n+2)(x-2),【解析】因为y'|x=2=(n+1)2n,令x=0,求出切线与y轴交点的纵坐标为y=。
所以,则数列{}的前n项和Sn【考点】本题主要考查导数的几何意义,直线方程,等比数列的求和公式。
点评:中档题,切线的斜率等于函数在切点的导函数值。
最终转化成等比数列的求和问题。
5.在数列中,=1,,其中实数.(I)求;(Ⅱ)猜想的通项公式, 并证明你的猜想.【答案】(Ⅰ)(Ⅱ)猜想:应用数学归纳法证明。
【解析】(Ⅰ)由6分(Ⅱ)猜想:①当时,,猜想成立;②假设时,猜想成立,即:,则时,=猜想成立.综合①②可得对,成立. 12分【考点】本题主要考查归纳法及数学归纳法。
点评:中档题,“归纳,猜想,证明”是创造发明的良好方法。
利用数学归纳法证明命题的正确性,要注意遵循“两步一结”。
数列专题复习之典型例题(含答案)

数列知识点-——-求通项一、由数列的前几项求数列的通项:观察法和分拆与类比法-—-—-猜测———-证明(略)二、由a n 与S n 的关系求通项a n例1已知数列{a n }的前n 项和为S n =3n -1,则它的通项公式为a n =________。
答案2·3n -1练1 已知数列{a n }的前n 项和S n =3n 2-2n +1,则其通项公式为________. 答案a n =错误!三、由数列的递推公式求通项例3、(1)设数列{}n a 的前n 项和为n S .已知1a a =,13n n n a S +=+,*n ∈N .设3n n n b S =-,求数列{}n b 的通项公式;答案: 13(3)2n n n n b S a -=-=-,*n ∈N .(2)(4)在数列{}n a 中,11a =,22a =,且11(1)n n n a q a qa +-=+-(2,0n q ≥≠).(Ⅰ)设1n n n b a a +=-(*n N ∈),证明{}n b 是等比数列;(Ⅱ)求数列{}n a 的通项公式;答案: 11,,.1,111n n q q q a n q-≠=⎧-+⎪=-⎨⎪⎩(3)在数列{}n a 中,1112(2)2()n n n n a a a n λλλ+*+==++-∈N ,,其中0λ>.(Ⅰ)求数列{}n a 的通项公式; (Ⅱ)求数列{}n a 的前n 项和n S ;答案:(1)2nnn a n λ=-+21212(1)22(1)(1)n n n n n n S λλλλλ+++--+=+-≠- 1(1)22(1)2n n n n S +-=+-λ=(4)已知数列{}n a 满足:()213,22n n a a a n n N *+=+=+∈(1)求数列{}n a 的通项公式; (2)设1234212111n n nT a a a a a a -=+++,求lim n n T →∞答案: 11,,.1,111n n q q q a n q-≠=⎧-+⎪=-⎨⎪⎩注意:由数列的递推式求通项常见类型(请同学们查看高一笔记)1.)(1n f a a n n +=+ 2 . n n a n f a )(1=+.3 q pa a n n +=+1(其中p,q 均为常数,)0)1((≠-p pq )。
数列求和常用方法(含答案)

数列专题 数列求和常用方法一、公式法例1在数列{a n }中,2a n =a n -1+a n +1(n ≥2),且a 2=10,a 5=-5.(1)求{a n }的通项公式;(2)求{a n }的前n 项和S n 的最大值.解: (1)因为2a n =a n -1+a n +1(n ≥2),所以a n +1-a n =a n -a n -1(n ≥2),所以数列{a n }为等差数列,设首项为a 1,公差为d ,则⎩⎪⎨⎪⎧a 2=a 1+d =10,a 5=a 1+4d =-5,解得⎩⎪⎨⎪⎧a 1=15,d =-5, 所以a n =a 1+(n -1)d =15-5(n -1)=-5n +20.(2)由(1)可知S n =na 1+n (n -1)2d =d 2n 2+⎝⎛⎭⎫a 1-d 2n =-52n 2+352n ,因为对称轴n =72, 所以当n =3或4时,S n 取得最大值为S 3=S 4=30. 跟踪练习1、已知等差数列{a n }和等比数列{b n }满足a 1=b 1=1,a 2+a 4=10,b 2b 4=a 5. (1)求{a n }的通项公式; (2)求b 1+b 3+b 5+…+b 2n -1. 解 (1)设等差数列{a n }的公差为d . 因为a 1=1,a 2+a 4=10, 所以2a 1+4d =10, 解得d =2. 所以a n =2n -1.(2)设等比数列{b n }的公比为q . 因为b 2b 4=a 5, 所以b 1q ·b 1q 3=9. 又b 1=1,所以q 2=3.所以b 2n -1=b 1q 2n -2=3n -1.则b 1+b 3+b 5+…+b 2n -1=1+3+32+…+3n -1=3n -12.二、分组转化法例2、已知公差不为0的等差数列{a n }的前n 项和为S n ,S 5=20,a 3是a 2,a 5的等比中项,数列{b n }满足对任意的n ∈N *,S n +b n =2n 2.(1)求数列{a n },{b n }的通项公式;(2)设c n ={b n −n 2,n 为偶数2a n,n 为奇数,求数列{c n }的前2n 项的和T 2n .解:(1)设数列{a n }的公差为d ,由题意得,⎩⎪⎨⎪⎧5a 1+10d =20,(a 1+2d )2=(a 1+d )(a 1+4d ),化简得⎩⎪⎨⎪⎧a 1+2d =4,a 1d =0, 因为d ≠0,所以a 1=0,d =2,所以a n =2n -2(n ∈N *),S n =n 2-n ,n ∈N *, 因为S n +b n =2n 2,所以b n =n 2+n (n ∈N *).(2)由(1)知,c n ={b n −n 2,n 为偶数2a n ,n 为奇数=⎩⎪⎨⎪⎧n ,n 为偶数,4n -1,n 为奇数,所以T 2n =c 1+c 2+c 3+c 4+…+c 2n -1+c 2n =(2+4+…+2n )+(40+42+…+42n -2) =n (2+2n )2+1-16n 1-16=n (n +1)+115(16n -1).跟踪练习1、已知在等差数列{a n }中,S n 为其前n 项和,且a 3=5,S 7=49. (1)求数列{a n }的通项公式;(2)若b n =2n a+a n ,数列{b n }的前n 项和为T n ,且T n ≥1 000,求n 的取值范围. 解 (1)由等差数列性质知,S 7=7a 4=49,则a 4=7, 故公差d =a 4-a 3=7-5=2, 故a n =a 3+(n -3)d =2n -1.(2)由(1)知b n =22n -1+2n -1, T n =21+1+23+3+…+22n -1+2n -1 =21+23+…+22n -1+(1+3+…+2n -1) =21-22n +11-4+n (1+2n -1)2=22n +13+n 2-23.易知T n 单调递增,且T 5=707<1 000,T 6=2 766>1 000, 故T n ≥1 000,解得n ≥6,n ∈N *.三、并项求和法例3、已知等差数列{a n }的前n 项和为S n ,a 5=9,S 5=25. (1)求数列{a n }的通项公式及S n ;(2)设b n =(-1)n S n ,求数列{b n }的前n 项和T n .解 (1)设数列{a n }的公差为d ,由S 5=5a 3=25得a 3=a 1+2d =5, 又a 5=9=a 1+4d ,所以d =2,a 1=1, 所以a n =2n -1,S n =n (1+2n -1)2=n 2.(2)结合(1)知b n =(-1)n n 2,当n 为偶数时, T n =(b 1+b 2)+(b 3+b 4)+(b 5+b 6)+…+(b n -1+b n )=(-12+22)+(-32+42)+(-52+62)+…+[-(n -1)2+n 2]=(2-1)(2+1)+(4-3)(4+3)+(6-5)(6+5)+…+[n -(n -1)][n +(n -1)] =1+2+3+…+n =n (n +1)2.当n 为奇数时,n -1为偶数, T n =T n -1+(-1)n·n 2=(n -1)n 2-n 2=-n (n +1)2. 综上可知,T n =(-1)n n (n +1)2.四、裂项相消法例4、已知数列{a n }的前n 项和为S n ,且2S n =3a n -3(n ∈N *).(1)求数列{a n }的通项公式;(2)若b n =1log 3a n ·log 3a n +1,求数列{b n }的前n 项和T n .解:(1)当n =1时,2a 1=3a 1-3,解得a 1=3;当n ≥2时,2a n =2S n -2S n -1=3a n -3-3a n -1+3=3a n -3a n -1,得a n =3a n -1, 因为a n ≠0,所以a na n -1=3,因为a 1=3, 所以数列{a n }是以3为首项,3为公比的等比数列,所以a n =3n . (2)因为log 3a n =log 33n =n ,所以b n =1log 3a n ·log 3a n +1=1n (n +1)=1n -1n +1,所以数列{b n }的前n 项和T n =⎝⎛⎭⎫11-12+⎝⎛⎭⎫12-13+⎝⎛⎭⎫13-14+…+⎝ ⎛⎭⎪⎫1n -1n +1=1-1n +1=nn +1. 跟踪练习1、已知数列{a n }的前n 项和为S n ,S n =2a n -1,数列{b n }是等差数列,且b 1=a 1,b 6=a 5.(1)求数列{a n }和{b n }的通项公式;(2)若c n =1b n b n +1,记数列{c n }的前n 项和为T n ,证明:3T n <1.解: (1)由S n =2a n -1,可得n =1时,a 1=2a 1-1,解得a 1=1;n ≥2时,S n -1=2a n -1-1,又S n =2a n -1,两式相减可得a n =S n -S n -1=2a n -1-2a n -1+1,即有a n =2a n -1,所以数列{a n }是首项为1,公比为2的等比数列,所以a n =2n -1.设等差数列{b n }的公差为d ,且b 1=a 1=1,b 6=a 5=16,可得d =b 6-b 16-1=3,所以b n =1+3(n -1)=3n -2.(2)证明:c n =1b n b n +1=1(3n -2)(3n +1)=13⎝ ⎛⎭⎪⎫13n -2-13n +1,所以T n =13⎝ ⎛⎭⎪⎫1-14+14-17+17-110+…+13n -2-13n +1=13⎝ ⎛⎭⎪⎫1-13n +1<13,则3T n <1.2、设{a n }是各项都为正数的单调递增数列,已知a 1=4,且a n 满足关系式:a n +1+a n =4+2a n +1a n ,n ∈N *.(1)求数列{a n }的通项公式;(2)若b n =1a n -1,求数列{b n }的前n 项和S n .解 (1)因为a n +1+a n =4+2a n +1a n ,n ∈N *,所以a n +1+a n -2a n +1a n =4,即(a n +1-a n )2=4,又{a n }是各项为正数的单调递增数列, 所以a n +1-a n =2,又a 1=2,所以{a n }是首项为2,公差为2的等差数列, 所以a n =2+2(n -1)=2n ,所以a n =4n 2.(2)b n =1a n -1=14n 2-1=1(2n -1)(2n +1)=12⎝ ⎛⎭⎪⎫12n -1-12n +1,所以S n =b 1+b 2+…+b n =12⎝⎛⎭⎫1-13+12⎝⎛⎭⎫13-15+…+12⎝ ⎛⎭⎪⎫12n -1-12n +1 =12⎝ ⎛⎭⎪⎫1-12n +1=n2n +1.3、已知数列{a n }满足:a 1=2,a n +1=a n +2n . (1)求{a n }的通项公式; (2)若b n =log 2a n ,T n =1b 1b 2+1b 2b 3+…+1b n b n +1,求T n . 解 (1)由已知得a n +1-a n =2n ,当n ≥2时,a n =a 1+(a 2-a 1)+(a 3-a 2)+…+(a n -a n -1) =2+2+22+…+2n -1=2+2(1-2n -1)1-2=2n .又a 1=2,也满足上式,故a n =2n . (2)由(1)可知,b n =log 2a n =n , 1b n b n +1=1n (n +1)=1n -1n +1,T n =1b 1b 2+1b 2b 3+…+1b n b n +1=⎝⎛⎭⎫1-12+⎝⎛⎭⎫12-13+…+⎝ ⎛⎭⎪⎫1n -1n +1=1-1n +1=n n +1,故T n =nn +1.五、错位相减法例5、在数列{a n }中,a 1=1,a n +1=a n -2a n a n +1. (1)求{a n }的通项公式;(2)若b n =3na n ,求数列{b n }的前n 项和S n .解:(1)∵a 1=1,a n +1=a n -2a n a n +1,∴a n ≠0,∴1a n =1a n +1-2⇒1a n +1-1a n =2,又∵1a 1=1,∴⎩⎨⎧⎭⎬⎫1a n 是以1为首项,2为公差的等差数列, ∴1a n =1+2(n -1)=2n -1,∴a n =12n -1(n ∈N *). (2)由(1)知:b n =(2n -1)×3n ,∴S n =1×3+3×32+5×33+7×34+…+(2n -1)×3n , 3S n =1×32+3×33+5×34+7×35+…+(2n -1)×3n +1,两式相减得-2S n =3+2×32+2×33+2×34+…+2×3n -(2n -1)×3n +1 =3+2(32+33+34+…+3n )-(2n -1)×3n +1 =3+2×32(1-3n -1)1-3-(2n -1)×3n +1=3+3n +1-9-(2n -1)×3n +1=2(1-n )×3n +1-6 ∴S n =(n -1)×3n +1+3. 跟踪练习1、已知数列{a n }满足:a 1=1,a n +1=2a n +n -1.(1)证明:数列{a n +n }是等比数列并求数列{a n }的前n 项和S n ; (2)设b n =(2n -1)·(a n +n ),求数列{b n }的前n 项和T n .解: (1)因为a n +1=2a n +n -1,所以a n +1+(n +1)=2a n +2n ,即a n +1+(n +1)a n +n=2,又a 1+1=2,所以数列{a n +n }是以2为首项2为公比的等比数列, 则a n +n =2·2n -1=2n ,故a n =2n -n ,所以S n =(2+22+…+2n )-(1+2+…+n )=2·(1-2n )1-2-n (1+n )2=2n +1-2-n (1+n )2.(2)由(1)得,b n =(2n -1)·(a n +n )=(2n -1)·2n , 则T n =2+3×22+5×23+…+(2n -1)·2n ,①2T n =22+3×23+5×24+…+(2n -3)·2n +(2n -1)·2n +1,②①-②得-T n =2+2×22+2×23+…+2×2n -(2n -1)·2n +1=2×(2+22+…+2n )-2-(2n -1)·2n +1=-(2n -3)·2n +1-6,所以T n =(2n -3)·2n +1+6.2、已知数列{a n }的前n 项和为S n ,对任意正整数n ,均有S n +1=3S n -2n +2成立,a 1=2.(1)求证:数列{a n -1}为等比数列,并求{a n }的通项公式; (2)设b n =na n ,求数列{b n }的前n 项和T n .解:(1)当n ≥2时,S n =3S n -1-2(n -1)+2,又S n +1=3S n -2n +2, 两式相减可得S n +1-S n =3S n -3S n -1-2,即a n +1=3a n -2, 即有a n +1-1=3(a n -1),令n =1,可得a 1+a 2=3a 1,解得a 2=2a 1=4,也符合a n +1-1=3(a n -1), 则数列{a n -1}是首项为1,公比为3的等比数列, 则a n -1=3n -1,故a n =1+3n -1. (2)由(1)知b n =na n =n +n ·3n -1,则T n =(1+2+…+n )+(1·30+2·31+3·32+…+n ·3n -1), 设M n =1·30+2·31+3·32+…+n ·3n -1, 3M n =1·3+2·32+3·33+…+n ·3n ,两式相减可得-2M n =1+3+32+…+3n -1-n ·3n =1-3n1-3-n ·3n , 化简可得M n =(2n -1)·3n +14.所以T n =12n (n +1)+(2n -1)·3n +14.3、设{a n }是公比不为1的等比数列,a 1为a 2,a 3的等差中项. (1)求{a n }的公比;(2)若a 1=1,求数列{na n }的前n 项和. 解 (1)设{a n }的公比为q , ∵a 1为a 2,a 3的等差中项, ∴2a 1=a 2+a 3=a 1q +a 1q 2,a 1≠0, ∴q 2+q -2=0, ∵q ≠1,∴q =-2.(2)设{na n }的前n 项和为S n , a 1=1,a n =(-2)n -1,S n =1×1+2×(-2)+3×(-2)2+…+n (-2)n -1,①-2S n =1×(-2)+2×(-2)2+3×(-2)3+…+(n -1)·(-2)n -1+n (-2)n ,② ①-②得,3S n =1+(-2)+(-2)2+…+(-2)n -1-n (-2)n =1-(-2)n 1-(-2)-n (-2)n =1-(1+3n )(-2)n3,∴S n =1-(1+3n )(-2)n9,n ∈N *.4、设数列{a n }满足a 1=3,a n +1=3a n -4n . (1)计算a 2,a 3,猜想{a n }的通项公式; (2)求数列{2n a n }的前n 项和S n .解 (1)由题意可得a 2=3a 1-4=9-4=5, a 3=3a 2-8=15-8=7,由数列{a n }的前三项可猜想数列{a n }是以3为首项,2为公差的等差数列,即a n =2n +1. (2)由(1)可知,a n ·2n =(2n +1)·2n ,S n =3×2+5×22+7×23+…+(2n -1)·2n -1+(2n +1)·2n ,①2S n =3×22+5×23+7×24+…+(2n -1)·2n +(2n +1)·2n +1,② 由①-②得,-S n =6+2×(22+23+…+2n )-(2n +1)·2n +1 =6+2×22×(1-2n -1)1-2-(2n +1)·2n +1=(1-2n )·2n +1-2, 即S n =(2n -1)·2n +1+2.5、已知正项数列{a n }的前n 项和为S n ,且a 2n +1=2S n +n +1,a 2=2. (1)求数列{a n }的通项公式a n ;(2)若b n =a n ·2n ,数列{b n }的前n 项和为T n ,求使T n >2 022的最小的正整数n 的值. 解 (1)当n ≥2时,由a 2n +1=2S n +n +1,a 2=2, 得a 2n =2S n -1+n -1+1,两式相减得a 2n +1-a 2n =2a n +1, 即a 2n +1=a 2n +2a n +1=(a n +1)2.∵{a n }是正项数列,∴a n +1=a n +1. 当n =1时,a 22=2a 1+2=4, ∴a 1=1,∴a 2-a 1=1,∴数列{a n }是以a 1=1为首项,1为公差的等差数列,∴a n =n . (2)由(1)知b n =a n ·2n =n ·2n ,∴T n =1×21+2×22+3×23+…+n ·2n , 2T n =1×22+2×23+…+(n -1)·2n +n ·2n +1, 两式相减得-T n =2·(1-2n )1-2-n ·2n +1=(1-n )2n +1-2, ∴T n =(n -1)2n +1+2.∴T n -T n -1=n ·2n >0, ∴T n 单调递增.当n =7时,T 7=6×28+2=1 538<2 022, 当n =8时,T 8=7×29+2=3 586>2 022, ∴使T n >2 022的最小的正整数n 的值为8.6、已知数列{a n }的前n 项和为S n ,a 1=-94,且4S n +1=3S n -9(n ∈N *).(1)求数列{a n }的通项公式;(2)设数列{b n }满足3b n +(n -4)a n =0(n ∈N *),记{b n }的前n 项和为T n .若T n ≤λb n ,对任意n ∈N *恒成立,求实数λ的取值范围.解 (1)因为4S n +1=3S n -9,所以当n ≥2时,4S n =3S n -1-9,两式相减可得4a n +1=3a n ,即a n +1a n =34.当n =1时,4S 2=4⎝⎛⎭⎫-94+a 2=-274-9,解得a 2=-2716, 所以a 2a 1=34.所以数列{a n }是首项为-94,公比为34的等比数列,所以a n =-94×⎝⎛⎭⎫34n -1=-3n+14n .(2)因为3b n +(n -4)a n =0, 所以b n =(n -4)×⎝⎛⎭⎫34n.所以T n =-3×34-2×⎝⎛⎭⎫342-1×⎝⎛⎭⎫343+0×⎝⎛⎭⎫344+…+(n -4)×⎝⎛⎭⎫34n ,① 且34T n =-3×⎝⎛⎭⎫342-2×⎝⎛⎭⎫343-1×⎝⎛⎭⎫344+0×⎝⎛⎭⎫345+…+(n -5)×⎝⎛⎭⎫34n +(n -4)×⎝⎛⎭⎫34n +1,② ①-②得14T n =-3×34+⎝⎛⎭⎫342+⎝⎛⎭⎫343+…+⎝⎛⎭⎫34n -(n -4)×⎝⎛⎭⎫34n +1 =-94+916⎣⎡⎦⎤1-⎝⎛⎭⎫34n -11-34-(n -4)×⎝⎛⎭⎫34n +1 =-n ×⎝⎛⎭⎫34n +1,所以T n =-4n ×⎝⎛⎭⎫34n +1.因为T n ≤λb n 对任意n ∈N *恒成立,所以-4n ×⎝⎛⎭⎫34n +1≤λ⎣⎡⎦⎤(n -4)×⎝⎛⎭⎫34n 恒成立,即-3n ≤λ(n -4)恒成立, 当n <4时,λ≤-3n n -4=-3-12n -4,此时λ≤1; 当n =4时,-12≤0恒成立,当n >4时,λ≥-3n n -4=-3-12n -4,此时λ≥-3. 所以-3≤λ≤1.。
高二数学数列求和试题答案及解析

高二数学数列求和试题答案及解析1.已知数列的前项和为,且,;数列中,点在直线上.(1)求数列和的通项公式;(2)设数列的前和为,求;【答案】(1),(2)【解析】(1)求数列的通项公式用公式法即可推导数列为等比数列,根据等比数列通项公式可求。
求的通项公式也用公式法,根据已知条件可知数列为等差数列,根据等差数列的通项公式可直接求得。
(2)用列项相消法求和。
试题解析:解:(1)∵,∴当时,…2分所以,即∴数列是等比数列.∵,∴∴. 5分∵点在直线上,∴,即数列是等差数列,又,∴.…7分(2)由题意可得,∴, 9分∴,…10分∴. 14分【考点】1求数列的通向公式;2数列求和。
2.数列的通项公式,则该数列的前()项之和等于.A.B.C.D.【答案】B【解析】,令,解得.故选B.【考点】数列求和的其他方法(倒序相加,错位相减,裂项相加等)3.设数列中,,则通项 ___________.【答案】.【解析】由已知得,即数列后项与前项的差,求它的通项公式的方法是的累加法,,=.【考点】数列的求和.4.已知数列的前n项和,则()A.20B.19C.18D.17【答案】C【解析】当时,有【考点】数列求通项点评:由数列前n项和求通项5.观察下列三角形数表:第一行第二行第三行第四行第五行………………………………………….假设第行的第二个数为.(1)依次写出第八行的所有8个数字;(2)归纳出的关系式,并求出的通项公式.【答案】(1)根据已知条件可知每一个数字等于肩上两个数之和,那么可知第八行中的8个数字为8,29,63,91,91,63,29,8(2)【解析】(1)8,29,63,91,91,63,29,8(规律:每行除首末数字外,每个数等于其肩上两数字之和)(2)由已知:,所以有:,, ,……,,将以上各式相加的:所以的通项公式为:。
【考点】累加法求解数列的通项公式点评:主要是考查了递推关系式的运用,结合累加法来求解数列的通项公式,属于基础题。
数列求和-简单(含答案)

.数列求和1.已知数列{}n a 的前n 项和为n S ,))(1(31*∈-=N n a S n n (1)求21,a a ;(2)求知数列{}n a 的通项公式。
【答案】(1)12-,14(2)n n a 21-=【解析】(1)由))(1(31),1(311111*∈-=-=N n a a a S 得211-=∴a 又)1(3122-=a S即41),1(312221=-=+a a a a 得,当)1(31)1(31211---=-=≥--n n n n n a a S S a n 时,得211-=-n n a a所以 21-=q 公比,n n a 21-=考点:求数列通项 2.已知等差数列{}n a 满足:52611,18a a a =+=.(Ⅰ)求数列{}n a 的通项公式;(Ⅱ)若n n n a b 3+=,求数列}{n b 的前n 项和n S .【答案】(Ⅰ)21n a n =+;(Ⅱ)2323212-+-+=n n n n S .【解析】(Ⅰ)设{}n a 的首项为1a ,公差为d ,则由18,11625=+=a a a 得⎩⎨⎧=+=+186211411d a d a ,解得13,2,a d ==所以21n a n =+;(Ⅱ)由12+=n a n 得213nn b n =++.]()()123357213333nn S n =++++++++++⎡⎤⎣⎦L L ()12231333221322n n n n n n +-=++=+-+-考点:1.等差数列;2.等比数列求和;3.分组转化法求和. 3.已知数列{}n a 是等比数列,数列{}n b 是等差数列,且,,,.(Ⅰ)求{}n b 通项公式;(Ⅱ)设n n n b a c -=,求数列{}n c 的前n 项和.【答案】(Ⅰ);(Ⅱ).【解析】(Ⅰ)设等比数列的公比为,则,所以,,所以.设等比数列的公比为,因为,,所以,即,(Ⅱ)由(Ⅰ)知,,,所以.从而数列的前项和.4.已知数列{}n a 是等差数列, {}n b 是等比数列,且,,,.(1)求{}n a 的通项公式;(2)设n n n b a c +=,求数列{}n c 的前n 项和{}n T .【答案】(1);(2).【解析】(1)设数列的公差为,的公比为,由,,得,,即有,,则,故.(2)由(1)知,,∴…….5.已知{}n a 是公差不为零的等差数列,且12a =,1a ,5a ,17a 成等比数列. (1)求数列{}n a 的通项公式;(2)设2n an n b a =+,求数列{}n b 的前n 项和n T .【答案】(1)1n a n =+; (2)n T ()21242n n n n ++=++-..【解析】(1)设等差数列{}n a 的公差为d , 由1a ,5a ,17a 成等比数列得:25117a a a =⋅,即()()2242216d d +=⨯+, 整理得()10d d -=, 0d ≠Q ,1d ∴=,∴ ()2111n a n n =+-⨯=+.(2)由(1)可得+12+1n n b n =+.所以123n n T b b b b =+++⋅⋅⋅+()()()()234121122123121n n +++=++++++++++L()()23412222123n n n +=+++⋅⋅⋅+++++⋅⋅⋅++()211222122n n n n +⨯+-⨯=++-()21242n n n n ++=++-考点:等差数列和等比数列的性质,等差数列的通项公式,分组求和法,等差等比数列的求和公式.6.已知数列{}n a 的前n 项和2*,2n n nS n N +=∈. (Ⅰ)求数列{}n a 的通项公式;(Ⅱ)设2(1)n ann n b a =+-,求数列{}n b 的前2n 项和.【答案】(Ⅰ)数列{}n a 的通项公式为n a n =;(Ⅱ)数列{}n b 的前2n 项和21222n n T A B n +=+=+- 【解析】(Ⅰ)当1n =时,111a S ==;当2n ≥时,221(1)(1)22n n n n n n n a S S n -+-+-=-=-=, 故数列{}n a 的通项公式为n a n =.(Ⅱ)由(Ⅰ)知2(1)n nn b n =+-⋅,记数列{}n b 的前2n 项和为2n T ,则1222(222)(12342)n n T n =++++-+-+-+L L ,记122222,12342nA B n =+++=-+-+-+L L ,则2212(12)2212n n A +-==--, (12)(34)[(21)2]B n n n =-++-++--+=L ,故数列{}n b 的前2n 项和21222n n T A B n +=+=+- 7.在等差数列{a n }中,a 2+a 7=-23,a 3+a 8=-29.(Ⅰ)求数列{a n }的通项公式;(Ⅱ)设数列{a n +b n }是首项为1,公比为c 的等比数列,求数列{b n }的前n 项和S n .【答案】(Ⅰ)32n a n =-+;(Ⅱ)当c =1时,S n =()312n n -+n =232n n+;当c ≠1时,S n =()312n n -+11nc c--. 【解析】(Ⅰ)设等差数列{a n }的公差为d ,则1127232929a d a d +=-⎧⎨+=-⎩解得113a d =-⎧⎨=-⎩∴数列{a n }的通项公式为a n =-3n +2.(Ⅱ)∵数列{a n +b n }是首项为1,公比为c 的等比数列,∴a n +b n =c n -1,即-3n +2+b n =c n -1,∴b n =3n -2+c n -1. ∴S n =[1+4+7+…+(3n -2)]+(1+c +c 2+…+cn -1)=()312n n -+(1+c +c 2+…+c n -1). 当c =1时,S n =()312n n -+n =232n n+;当c ≠1时,S n =()312n n -+11n c c--.考点:1.数列的通项公式;2.数列的求和;3.等差数列和等比数列的性质应用.8.已知数列{}n a 的前n 项和为n S ,且2n S n =.数列{}n b 为等比数列,且11b =,48b =.(1)求数列{}n a ,{}n b 的通项公式;(2)若数列{}n c 满足n n b c a =,求数列{}n c 的前n 项和n T . 【答案】(1)21n a n =-,12n n b -= (2)122n n T n+=--【解析】(Ⅰ )∵ 数列{}n a 的前n 项和为n S ,且2n S n =,∴ 当2n ≥时,221(1)21n n n a S S n n n -=-=--=-.当1n =时,111a S == 亦满足上式, 故21n a n =-(*n N ∈).又数列{}n b 为等比数列,设公比为q ∵ 11b =,3418b b q ==, ∴2q =.∴ 12n n b -= (*n N ∈).(Ⅱ)2121n nn b n c a b ==-=-.123n n T c c c c =+++L12(21)(21)(21)n=-+-++-L 12(222)nn =++-L 2(12)12n n -=--.所以 122n n T n +=--. 考点:等差数列,等比数列,求和9.已知等差数列{}n a 满足:37a =,5726a a +=,{}n a 的前n 项和为n S . (1)求n a 及n S ;.(2)令n b =211n a -(n N *∈),求数列{}n b 的前n 项和n T . 【答案】(1)2n+1n a =;n S =2n +2n 。
数列求和专题(必考必练,方法全面,有答案)

数列求和专题一.公式法(已知数列是等差或等比数列可以直接使用等差或等比的求和公式求和) 二.分组求和法若数列的通项是若干项的代数和,可将其分成几部分来求.例1:求数列11111246248162n n ++L ,,,,,…的前n 项和n S .- 23411111111(2462)(1)222222n n n S n n n ++⎛⎫=+++++++++=++- ⎪⎝⎭L L .例2: 求数列5,55,555,…,55…5 的前n 项和S n解: 因为55…5=)110(95-n 所以 S n =5+55+555+...+55 (5)=[])110()110()110(952-+⋅⋅⋅+-+-n=⎥⎦⎤⎢⎣⎡---n n 110)110(1095 =815095108150--⨯n n 练习:、求数列11111,2,3,4,392781L 的前n 项和。
解:211223nn n ++-⋅三.错位相减法这种方法是在推导等比数列的前n 项和公式时所用的方法,这种方法主要用于求数列{a n · b n }的前n 项和,其中{ a n }、{ b n }分别是等差数列和等比数列.例: 求和:132)12(7531--+⋅⋅⋅++++=n n x n x x x S ………(0x ≠)解: 当x=1时,23121315171(21)1135(21)n n S n n n -=+∙+∙+∙+⋅⋅⋅+-∙=++++-=当x ≠1时, 132)12(7531--+⋅⋅⋅++++=n n x n x x x S ………………. ① ①式两边同乘以x 得n xS = 231135(23)(21)n n x x x n x n x -+++⋅⋅⋅+-+-………② (设制错位)①-②得 n n n x n xx x x x S x )12(222221)1(1432--+⋅⋅⋅+++++=-- (错位相减)再利用等比数列的求和公式得:n n n x n xx x S x )12(1121)1(1----⋅+=-- ∴ 21)1()1()12()12(x x x n x n S n n n -+++--=+n练习: 1:求数列⋅⋅⋅⋅⋅⋅,22,,26,24,2232n n 前n 项的和. 1224-+-=n n n S2. 已知数列.}{,)109()1(n n nn S n a n a 项和的前求⨯+=四.裂项相消法 常见的拆项公式有:1()n n k =+111()k n n k -+=1k,1(21)(21)n n =-+111()22121n n --+,等. 例1:求数列311⨯,421⨯,531⨯,…,)2(1+n n ,…的前n 项和S. 解:∵)2(1+n n =211(21+-n n )S n =⎥⎦⎤⎢⎣⎡+-+⋅⋅⋅+-+-)211()4121()311(21n n =)2111211(21+-+--n n =42122143+-+-n n 例2:设9)(2+=x x f ,(1)若;),2(),(,111n n n u n u f u u 求≥==-(2)若;}{,,3,2,1,11n n k k k S n a k u u a 项和的前求数列 =+=+解:(1)}{),2(9122121n n nu n u u u ∴⎩⎨⎧≥+==- 是公差为9的等差数列,,89,0,892-=∴>-=∴n u u n u n n n(2)),8919(9119891--+=++-=k k k k a k);119(91)]8919()1019()110[(91-+=--+++-+-=∴n n n S n练习: 1、 求数列2112+,2124+,2136+,2148+,…的前n 项和n S .2、求数列⋅⋅⋅++⋅⋅⋅++,11,,321,211n n 的前n 项和.五.倒序相加法这是推导等差数列的前n 项和公式时所用的方法,就是将一个数列倒过来排列(反序),再把它与原数列相加,就可以得到n 个)(1n a a +.例1:求89sin 88sin 3sin 2sin 1sin 22222++⋅⋅⋅+++的值解:设89sin 88sin 3sin 2sin 1sin 22222++⋅⋅⋅+++=S …………. ①将①式右边反序得1sin 2sin 3sin 88sin 89sin 22222+++⋅⋅⋅++=S …………..② (反序) 又因为 1cos sin ),90cos(sin 22=+-=x x x x①+②得 (反序相加))89cos 89(sin )2cos 2(sin )1cos 1(sin 2222222 ++⋅⋅⋅++++=S =89∴ S =44.5例2: 求222222222222123101102938101++++++++的和. 解:设222222222222123101102938101S =++++++++ 则222222222222109811012938101S =++++++++.两式相加,得 2111105S S =+++=∴=,.练习:设221)(xx x f +=,求:⑴)4()3()2()()()(111f f f f f f +++++; ⑵).2010()2009()2()()()()(21312009120101f f f f f f f ++++++++ 【解题思路】观察)(x f 及⎪⎭⎫ ⎝⎛x f 1的特点,发现1)1()(=+xf x f 六、合并法求和针对一些特殊的数列,将某些项合并在一起就具有某种特殊的性质,因此,在求数列的和时,可将这些项放在一起先求和,然后再求S n .例6: 求cos1°+ cos2°+ cos3°+···+ cos178°+ cos179°的值.解:设S n = cos1°+ cos2°+ cos3°+···+ cos178°+ cos179°∵ cos(180)cos n n -=- (找特殊性质项)∴S n = (cos1°+ cos179°)+( cos2°+ cos178°)+ (cos3°+ cos177°)+···+(cos89°+ cos91°)+ cos90° (合并求和)= 0练习:已知:n S n n ⋅-++-+-+-=+1)1(654321 .求n S .(⎪⎪⎩⎪⎪⎨⎧-+=)(2)(21为正偶数为正奇数n n n n S n )。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数列的通项公式与求和
1
练习1数列佝}的前n项为S n,且a =1, a ni=-S n(n =1,2,3,)
3
(1) 求a2,a3, a4B值及数列{a n}的通项公式.
(2) 求a2a4一-玄
n ■ 2
练习2 数列{a n}的前n项和记为S n,已知a^1, 3n1 6(n = 1,2,…)•证明:
n
(1) 数列{§L}是等比数列;
n
(2) S n 1 = 4a n
1 *
练习3 已知数列{a n}的前n项为S n,S n = —@n -1)(门,N )
3
(1)求耳忌
⑵求证:数列{a n}是等比数列.
1 1
已知数列{a n }满足 @ = — ,a n1 =a n • - ,求a n .
2 n +n
练习5
已知数列
{an }
满足®岭…&an,求歸
5
1 1 n * 练习6已知数列®}中,印
,a n 1 a n - H),求a n . 6 3 2
练习7已知数列{a n }满足:a n 色^ , a , =1,求数列{a n }的通项公式
3色」+1
{ }
2
十2十2+…十2
等比数列
{a n }
的前n 项和S n = 2n - 1,则a1 a 2
a
3
a
n
5
(10n -1)
练习 9 求和:5, 55, 555, 5555,…,9
练习4
练习
练习10
求和:
+ +… +
1 4 4 7
(3n - 2) (3n 1)
’ 1 1 1
1
练习11
求和:
1 2 12 3 12 3 n
练习12 设
{a
n
}
是等差数列,
{b
n
}
是各项都为正数的等比数列,且
= b^=1 ,
fa 1
a 5
b 3 =13
(I)求
{a
n }
, {
b n
}
的通项公式;(H)求数列• 的前门项和S n .
Sb = 21
答案
1 4 练习1答案:a
2 ,a
3 :
3 9
卩
a
n - 1 4 n _2
3(3) 16 3 4
a4 : -[(-)-1]
27
n =1
n _2
练习2 证明:
(1)
注意到:
a( n+1)=S( n+1)-S( n)
代入已知第二条式子得:
S(n +1)-S( n)=S( n)* (n+2)/n n S( n+1)-nS( n)=S( n) *( n+2) n S( n+1)=S (n )*(2 n+2)
S(n +1)/( n+1)=S( n)/n*2
又S(1)/1=a(1)/1=1 不等于0 所以{S(n)/n}是等比数列
⑵
由⑴知,
{S(n)/n}是以1为首项,2为公比的等比数列。
所以S(n)/n=1*2A(n-1)=2:A(n-1)
即S(n)=n*2A(n-1) (*)
代入a(n+1) = S(n)*(n+2)/n 得a(n +1)=(n+2)*2A(n-1) (n 属于N)
即a(n)=(n+1)*2A(n-2) (n 属于N 且n>1)
又当n=1时上式也成立
所以a(n)=(n+1)*2A(n-2) (n 属于N) 由(*)式得:
S( n+1)=( n+1)*2A n
=(n+1)*2A(门-2)*2人2
=(n+1)*2A( n-2)*4
对比以上两式可知:S(n+1)=4*a(n
练习3 答案:
1)
a 仁 S1=1/3(a1-1) a1=-1/2 a2=S2-S1=1/3(a2-1)+1/2 3a2=a2-1+3/2 2a2=1/2 a2=1/4
2)
3Sn=a n-1 3S( n-1)=a( n-1)-1
相减:
3an=an-a( n-1) 2an=_a( n_1) an/a(n-1)=-1/2
所以{an }为等比数列!
练习4 累加法,答案:
n
4 -1
公式法,答案: 3
答案:5 =5+55+555 1 +瓷5 ^(9十"任旷…十脇‘9)
= -[(10 一1) (102 -1) (103 -1)… (10n -1)]
9
=5[10 102 103 」10n -n] ^^(忖-1)-5n 9 81 9
练习10 ,列项相消法,答案 3n /
练习5 累乘法,答案:
3n
1 i
练习6
待定系数法,答案:
a n =3(—)n -2(—)n
2 3 练习7
倒数法,答案:
1 3n -2
练习8
练习9
练习11,,列项相消法
1/(1+2+3+ ……+n )=1/ [n(n+1)/2]=2/[ n(n+1)] 所以原式=1+2/2*3+2/3*4+ ……+2/[ n(n+1)]
+(1/F1/( n+1)] =1+2*[(1/2-1/3)+(1/3- 1/4)+
=1+2*[1/2-1/( n+1)]
=2-2/( n+1)
练习12(错位相减
法)
答案:解:
曲的公比为q,则依题意有q 0且「4d q2=
13, =2q=2a n =1(n -1 d)
3n 2 n -1
S n
3 5
=1 -
1 2
2 2
2n -3 2n -1 +
------- + —
n 2 2 - 2
2S n = 2 3 5
① 2
2n -3 2n -1
2 n _2 ,②
②一①得
=2 2 2 $
2 22+----
2n -2
2 2n -1
2* 1
=2 2 1 1
I 2
1
2
1
2n"
2n -1
2心1
=2 2- _ 1
2*」
__T — 2n」
1 2 =6
2
2n -1
2n 3
2* 1。