10KV的电网中性点不接地单相接地时的电容电流

合集下载

10kV变配电站单相接地与零序过电流保护有关问题分析

10kV变配电站单相接地与零序过电流保护有关问题分析

10kV变配电站单相接地与零序过电流保护有关问题分析
10kV变配电站单相接地与零序过电流保护有关问题分析
微机保护装置有单相接地保护与零序过电流保护,单相接地保护又称为小电流接地选线。

单相接地保护与零序过电流保护是两种完全不同的保护。

1
倍。

1.2
序过电流保护。

2电源中性点不接地的供电系统单相接地小电流接地选线
2.1电源中性点不接地的供电系统单相接地保护可选用小电流接地选线装置。

二次电路设计时将所有零序电流互感器和Y/Y/△(开口三角形)型电压互感器的开口三角形电压接到小电流接地选线装置的测量端子上,就可以检测出是某一路线路发
生单相接地故障,然后进行报警或跳闸。

需要跳闸时还应将跳闸输出接到所需要跳闸的回路。

二次电路接线比较多。

2.2微机保护装置都有单相接地保护后,保护原理与小电流接地选线装置完全相同,不仅节省了一套设备,可以直接跳闸,二次电路接线也简化了许多。

3电源中性点不接地的供电系统单相接地保护的整定
3 3.2
4
随着10kV供电系统电网的不断扩大,对地电容电流也随之增加,发生单相接地故障后故障电流比较大,需要立即跳闸,为了提高单相接地故障后保护跳闸的可靠性,将电源中性点串联一个电阻后接地,发生单相接地故障后故障电流就成为对地短路电流。

此时零序电流互感器就可以感应出三相不平衡电流,发生单相接地故障后故障电流为对地短路电流。

零序过电流保护整定可以按照躲过三相不平衡电流来
整定。

单相接地保护动作的可靠性就可以提高。

10kV系统不同接地方式的优缺点比较

10kV系统不同接地方式的优缺点比较

10kV系统不同接地方式的优缺点比较摘要:本文简要研究比较了10kV系统不同接地方式之间的优缺点,主要研究比较中性点不接地、中性点经消弧线圈接地、中性点经小电阻接地和中性点经消弧线圈并联小电阻接地四种方式。

关键词:10kV系统;接地方式;优缺点一、前言本文针对工作中遇到的多个变电站10kV系统由中性点不接地系统或经消弧线圈接地系统改造为中性点经小电阻接地系统。

简要研究了10kV系统的不同接地方式的优缺点比较,主要研究比较中性点不接地、中性点经消弧线圈接地、中性点经小电阻接地和中性点经消弧线圈并联小电阻接地四种方式。

中性点接地的方式对电力系统稳定运行会产生影响,考虑供电的可靠性和连续性、设备安全和人身安全、过电压和设备绝缘水平、继电保护和是否准确跳闸等因素。

近年来,10kV配电网中的接地故障或者线路断线造成的社会人员伤亡等事故时有发生。

10kV配电网中,中性点接地方式不同,有的线路接地故障发生时,该线路未能及时切除,故障点未能及时与电源断开。

二、10kV系统的不同接地方式的优缺点比较1、中性点不接地方式主要优点:(1)在单相接地故障发生时,故障点流过的电流只是系统等值的电容电流。

在接地故障电流小于10A的情况下,一般息弧能自动发生。

(2)故障发生时,该相电压将降低至零,非故障相线电压将保持不变,相电压升为原来的倍,故障线路可保持1~2小时运行状态,供电的可靠性相对地提高了。

主要缺点:(1)在单相接地故障发生时,非故障相的电压会上升到线电压,且因为过电压会保持较长的一段时间,在选择设备的耐压水平时需要按线电压的电压水平考虑,提高了设备绝缘水平要求。

(2)因为线路对地的电容中积蓄的能量得不到释放,电容电压伴随每个循环会升高,因而在弧光接地过程中,中性点不接地系统的电压能达到比较高的倍数,极大地危害了系统设备的绝缘。

(3)在一定条件下,由于故障或者倒闸操作,线性谐振或铁磁谐振可能引起谐振过电压,电压互感器的绝缘容易被击穿。

10kV接地变的作用及接地方式

10kV接地变的作用及接地方式

10kV接地变的作用及接地方式接地变压器简称为接地变。

当中性点不接地系统发生单相接地故障时,线电压三角形仍然保持对称,因此对继续供电影响不大,并且当电容电流比较小(小于10A)时,一些瞬时性接地故障能够自行消失。

但现在随着城市中电缆电路的增多,电容电流也越来越大,甚至超过10A。

这将导致相关问题的产生,危及电网的安全运行。

根据国家原电力工业部《交流电气装置的过电压保护和绝缘配合》规定,3~66kV系统的单相接地故障电容电流超过10A时,应采用消弧线圈接地方式。

我国电力系统中的10kV电网中一般都采用中性点不接地的运行方式,变压器的10kV低压侧采用三角形接线,无中性点引出。

因此需要考虑设置10kV接地变。

接地变的作用是为中性点不接地的系统提供一个人为的中性点,便于采用消弧线圈或小电阻的接地方式,从而减少配电网发生接地短路故障时的对地电容电流的大小,提高配电系统的供电可靠性。

接地变压器有两种:Z型接地变压器和星型/三角形接地变压器。

在我国,接地变通常采用Z型接线(或称曲折型接线),其中性点可接入消弧线圈。

此外,为节省投资和变电所空间,通常在接地变压器上增加第三绕组,替代所用变压器,为变电所用设备供电。

Z型接地变压器,在结构上与普通三相芯式电力变压器相同,只是每相分为上、下相等匝数的两部分,接成曲折型连接,这样连接的好处是零序磁通可沿磁柱流通,而普通变压器的零序磁通是沿着漏磁磁路流通,所以Z型接地变压器的零序阻抗很小,而普通变压器要大很多。

因此规程规定,用普通变压器带消弧线圈时,其容量不得超过变压器容量的20%,而Z型变压器则可以带90%~100%容量的消弧线圈。

当系统发生接地故障时,接地变对正序负序电流呈高阻抗,对零序电流呈低阻抗性使接地保护可靠工作。

10kV系统中性点接地方式

10kV系统中性点接地方式
10kV系统的接地方式
10kV系统中性点接地可分为:
中性点不接地系统(中性点非有效接地系统)(包括中性点不接地系统、经消弧线圈接地系统、高电阻接地系统);
中性点接地系统(中性点有效接地系统)(中性点直接接地系统或经低电阻接地系统)。
1.10kV系统中性点不接地系统
(பைடு நூலகம்)接地故障特点
配电系统在正常运行时,三相基本平衡电压作用下,各相对地电容电流ICL1、ICL2、ICL3相等,分别超前相电压90°,ICL1=ICL2=ICL3=UΦωC,其ICL1+ICL2+ICL3=0,系统中性点与地有相同电位。
过补偿方式,接地故障残余电流Id较大,不利于接地故障点电弧自熄,但它不易产生串联谐振过电压。实际运行中,过补偿方式常被采用。
系统在运行中,经常接通或切除部分回路,系统中分布电容电流有较大的变化,满足脱谐度的要求,消弧线圈的电感也相应改变,需人工改变消弧线圈的抽头位置,接地故障残余电流Id小于5A~10A以下,系统出现谐振过电压可能性降低。发生接地故障时,非故障相对地电压升高 倍。
IC——接地电容电流(单位:A)。
上述电容电流的计算值只能用于某些对准确度要求不很高的场合.
通过上述估算,可知道系统的总的零序电流,然后进行电流互感器的选择,电流互感器选择的基本原则是:线路发生单相故障时,安装在该线路的零序电流电流互感器二次侧能提供大于10mA ,且小于800mA的零序电流。
零序电流的检测,架空出线是采用三相电流组成滤过器来检测零序电流,接线如图14.2-5所示;电缆出线是采用零序电流互感器,电缆穿过零序电流互感器内孔,电缆头的接地线务必穿过零序电流互感器后再接地,接线如图14.2-6所示。
10kV经低电阻接地系统中,发生接地故障时的故障电压虽时间不长,但幅值很高。低压采用TN系统供电时,应采取以下措施:变电所内设置两组接地极;采用主等电位联结措施;在主等电位联结范围外供电时,采用局部TT系统供电。低压采用TT系统供电时,变电所的外露可导电部分的接地电阻不超过1Ω或带有已接地的合适的有金属护层的高压电缆和低压电缆总长度超过1km。

10kV中心点不接地系统单相接地故障分析及处理

10kV中心点不接地系统单相接地故障分析及处理

10kV中心点不接地系统单相接地故障分析及处理文章结合宝钢冷轧薄板厂的相关经验,综述了中性点不接地系统发生单相接地短路故障的原因、影响,从管理及技术两方面总结了预防、处理小电流接地系统发生单相接地短路故障的措施、步骤和办法。

标签:不接地系统;单相接地;小电流接地宝钢冷轧薄板厂10kV系统属于中性点不接地的系统,也成为小电流接地的系统。

这种系统的最大的优点是:采用中性点不接地的,“三相三线”的供电方式,大大地提高了供电的可靠性,减少了线路损耗,降低了跳闸发生率,增强了线路的绝缘。

当电网发生单相接地故障时,暂时不会影响用户的用电,电网可以带故障运行1-2小时。

然而当发生单相接地故障后,非故障相对地电压将抬升至接近线电压,对地电容电流亦将增大。

如此极易导致电网非故障相的绝缘的薄弱处发生对地绝缘的击穿,造成两相或者三相短路,事故范围扩大。

急剧增加的电容电流极容易造成接地弧光,而且难以自动熄灭,还会产生间隙弧光性过电压,损坏设备,破坏电网的稳定性。

因此,如果系统发生单相接地故障,必须在最短的时间内查到故障点,并及时处理。

1 中性点不接地系统单相接地原理中性点不接地电网在正常运行时,三相对地电压呈对称性,中性点对地电压为零,无零序电压。

由于各相对地电容均相同,故各相电容电流相等,并超前于各相电压90度。

可得出下列结论[1]:(1)中性点不接地电网发生单相接地后,中性点电压UN上升为相压电(-EA),A、B、C三相对地电压:冷轧薄板厂发生此类故障后,读取各相相电压,故障相相电压平均在0.6kV,其余两相相电压平均在9.8kV。

各相相电压情况也是我厂单相接地故障报警是否真是的最终判断标准,即为电网线电压。

同时电网出现零序电压:(2)所有线路都出现零序电流,故障线路的接地电容电流等于所有其他线路的接地电容电流的总和。

根据历史统计,冷轧薄板厂单相接地电流一般在40至60安培之间。

(3)故障线路零序电流相位滞后零序电压90度,非故障线路的零序电流相位超前零序电压90度两者之间相差180度。

中性点不接地系统发生单相接地时向量分析

中性点不接地系统发生单相接地时向量分析

中性点不接地系统单相接地时的向量分析为了熟悉不接地电网的零序保护,需要首先熟悉这类电网发生单相接地故障时电压、电流零序分量的特点。

下面着重介绍单相接地时稳态电容电流的特点。

下面图a示出最简单的中性点不接地网,图中表示负荷就是断开的,因为单相接地时三相的相线电压与负荷电流仍然对称,所以不考虑负荷电流,不会影响分析的结果。

正常运行情况下,各相对地有相同的电容C(用集中参数表示),在相电压的作用下,每相都有一超前电压90°的电容电流流入地中,并三相电容电流之与为零,中性点对地无电压,因为电容电流很小,其在线路上产生的电压降可以忽略不计,故可以认为各相电压均与各相电势相等,电压、电流向量图如图b所示。

发生单相(例如A相)金属性接地时,若忽略较小的电容电流产生的电压降,则电网中各处故障相的对地电压都变为零。

于就是A 相对地电容被短接,只有B 相与C 相对地电容中还存在电流,此时中性点对地电压上升为相电压(-aE ),非故障相的对地电压变为线间电压(升高3倍),其向量关系图如下图c 。

这时三相对地电压可分别写为:A U =0,B U =BA U =A B E E =3A E 0150j e ,C U =CA U =C E -A E =3AE 0150j e ,由于相电压与电容电流的对称性已破坏,因而出现了零序电压与零序电流,因为A U =0,所以零序电压03U =B U +C U =-3A E ,即等于故障相正常电势的三倍,则相位与之相反。

在B U 与C U 的作用下,在两非故障相及其对地电容中出现超前电压90°的电流,B I =C B jX U - =B U 0jWC ,C I =CC jX U - =C U 0jWC ,其有效值为B I +C I =3X U 0WC ,X U 为相电压的有效值,从故障点流回的电流即零序电流为:03I =-(B I +C I )=-(B U +C U )0jWC 。

中性点不接地系统单相接地电容电流的工程计算方法

中性点不接地系统单相接地电容电流的工程计算方法

计 算往 往只 计算 电力线路 的 电容 电流 。近 几年 ,余
热 发 电、热 电联 产 、小水 电发 电、小 风 电等项 目大 量接 入 6 - 3 5 k V系统 , 配 电网中存 在大 量 的 同步 发 电
说 明几 点:①水 泥 杆线 路 ,铁 塔 ( 钢杆 ) ,增 加 1 0 9 6 ;② 2 . 7 一 系数 ,适用 于无 架 空地线 的 线路 ,3 . 3 一 系数 ,适 用于 有架 空地 线 的线路 ;③ 同杆双 回架 空 线 电容 电流 :I c 2 =( 1 . 3 1 . 6 )I c ( 1 . 3 一 对应 1 0 K V 线路 , l _ 6 一 对应 3 5 k V线 路 , I c 一 单 回线路 电容 电流 ) ;
首先选择出线电力电缆较多的2实际测试对比验证分析110kv科技园变该站10kv母线共有24回电缆出随着电网的改造建设供电负荷迅速增加配线我们详细统计输电线路参数电力电缆架空网网架结构在飞速的优化和延伸同杆多回线路线路型号长度
4 2






中性 点不接地 系统单相接 地 电容 电流 的工程 计算方法
④根据 实际测量积累经验:夏季比冬季 电容 电流增
加 1 0 % 左右 。
( 2 ) 6 — 3 5 k V架空 线路 单相 电容 电流经 验数 据 如
表 1 所 示
1 电容 电流 计算
( 1 ) 6 - 3 5 k V架 空线 路单 相接 地单 位 长度 的 电容
电流 为 :
吴玉硕 杨志华 。 贺得瑁 。 张兰平
( 国网甘肃省 电力公司电力科学研究院 甘肃省 兰州市 7 3 0 0 5 0
国网 白银供 电公 司 甘 肃省 白银 市 7 3 0 9 0 0 )

10kV电网单相接地电容电流测量的研究

10kV电网单相接地电容电流测量的研究

10kV电网单相接地电容电流测量的研究随着系统电容电流的不断增大,越来越多的电網采用谐振接地的方式,谐振接地能有效补偿接地电容电流,如何准确地跟踪测量接地电容电流成为了关键。

本文首先分析了传统极值法的局限性,提出了采用改进极值法测量单相接地电容电流,并经过实际测量证明了该方法的有效性和准确性。

标签:接地电容电流;改进极值法;跟踪测量;谐振接地0 引言我国10 kV电网一般采用中性点不接地方式,但随着电力系统的不断发展,发生单相接地故障时电网对地电容电流不断增大,接地故障容易发生电缆绝缘击穿事故,引发相间短路等严重的事故[1]。

目前有效方法是加装消弧线圈补偿装置,利用消弧线圈来补偿电网对地的电容电流,由于有电感和电容的存在,因此形成了并联谐振和串联谐振,构成了谐振接地的基本原理[2]。

在实际应用中,由于电网运行方式的变化会引起电网对地电容电流值的改变,必须使消弧补偿装置对电网接地电容电流实现自动跟踪补偿,这就需要准确快速地测量出单相接地电容电流,基于这个目的,本文采用改进极值法跟踪测量接地电容电流,为消弧线圈补偿电容电流提供依据。

1 电容电流在线测量方法研究本文采用改进极值法跟踪测量接地电容电流。

极值法[3]:中性点的位移电压零序电压的幅值表示为:(1)由式(1)可知,当电网的阻尼率以及电网自然位移电压一定时,随的下降而增大,当=0,将达到极大值,此时,接地电流最小,处于最佳补偿状态[4]。

对(1)式求一阶导数可得:(2)该式说明随的变化呈单调递减的规律,当电感电流的数值远离电网对地电容电流的数值(即较大),和在接近全补偿状态附近(即较小),的变化对影响较小,这是极值法的不足。

根据极值法的不足,本文采用了改进的极值法。

以电缆作为供电线路的6~10kV电网,取不平衡度且则可求出当时,。

图1为时的曲线图。

由图可以看出当时曲线陡度明显减小,曲线的顶端较平缓,即在全补偿附近零序电压随脱谐度的变化较小,所以如果直接采用极值法误差较大,难以调节到最佳补偿点。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

10KV的电网中性点不接地单相接地时的电容电流
下面是一些摘录资料:
在GB50070-94《矿山电力设计规范》第2。

0。

10条中规定,“矿井6-10KV电网,当单相接地电容电流小于等于10A时,宜采用电源中性点不接地方式;大于10A时,必须采取限制措施”。

这条规定是依据国内外有关科研成果和国内外现行规程、标准以及人身触电安全要求等三方面作出的。

现分述如下:
1、试验研究和运行经验数据
①《电缆网络单相接地电弧电流不自熄下限试验研究》技术鉴定书指出,“电弧引弧试验的数据近200个。

这些数据客观地、真实地描述了在给定工况条件下,电缆接地电弧电流的熄灭情况”。

部级鉴定委员会同意由西北电力中试所和北京煤炭设计研究院完成的试验研究报告,并肯定该报告可供修改规程、规范时参考。

该报告的结论是,电弧接地不自熄电流下限值:全塑电缆25A;油浸纸绝缘电缆15A;交联电缆10A。

以安全计应取其中最小值10A。

②华中、湖北电力试验研究所1992年试验研究的成果表明,3-10KV架空配电线路,当电容电流在16A及以上时,不能自熄电弧;当电容电流小于10A,几乎全能自熄。

③湖北省6-10KV配电网运行经验与上述试验研究结果一致。

④开滦矿务局赵各庄煤矿从60年代以来,单相接地电容电流达18A左右,井下高压电缆发生着火事故次数显著增多。

⑤原中国统配煤矿总公司6KV电网安全调研组于1988年对引起矿井电缆“放炮”事故做了统计分析。

结论是,电容电流在20A左右的矿井电缆“放炮”事故仍很严重。

⑥(GB50070-94)《矿山电力设计规范》专题组编写的《关于矿井高压电网单相接地电流限值问题的分析讨论》报告中指出,某矿实测6KV电网电容电流为16A,曾发生多重接地故障。

⑦中国矿业大学《矿井6KV电网单相接地电流及限制方案的制定》一文指出,实验研究和仿真计算结果表明,当单相接地电弧电流小于10A时,电弧可自熄。

⑧前苏联《煤矿供电效率的提高》专著中指出,当接地电容电流大于10A时,中性点应采用消弧线圈补偿方式。

⑨美国EBASCO公司认为,为了减少单相接地故障对设备的损坏程度,应限制单相接地电流在10-15A范围之内。

⑩前苏联电力专家石林才思认为,接地故障电流减小到10A以下,配电装置单相接地故障不易转变为相间短路故障。

2、国内外标准、规程的相关规定
①《苏联电气装置安装法规》(1988年版)规定,3-20KV架空线路电网(钢筋水泥或金属电杆)和所有35KV电网,当接地电容电流大于10A时,应进行补偿。

②美国电气标准规定,为了减少单相接地故障时对设备的损坏程度,单相接地电流应限制在不大于10-15A。

③英国电气规程规定,由于电弧接地引起电缆故障,并常引起电气灾害,为此限制接地故障电流小于等于15A。

英国变压器制造厂向我国及英国国内供货时,均保证符合这一要求。

④德国矿业电气规程规定,接地故障电流大于10A时,必须加装自动跟踪补偿灭弧装置,以把接地残流限制在4A以内。

⑤瑞典推荐中性点消弧装置的补偿效果是应使6-11KV电网故障点的残流小于等于7A。

⑥罗马尼亚国家电气规程规定,接地电容电流大于10A时,应采用连续可调式消弧装置。

⑦法国电力公司(EDF)近年决定,改变60年代制定的电阻接地方式,将中压电网的中性点全部改为自动调谐消狐线圈接地方式,并已有实施运行经验,效果良好。

⑧我国现行国标(GB50062-92)《电力装置继电保护和自动装置设计规范》规定,“3KV 及以上电机,当单相接地电流为10A及以上时,保护装置应动作于跳闸;3KV以上电力线路的接地保护装置,当危及人身及设备安全时,保护装置应动作于跳闸”。

这说明,从人身及设备安全考虑,10A是分界点。

⑨我国现行国标(GBJ63-83)《电力设备过电压保护及设计规范》中规定,“60KV及以下电网,故障点的残流不得超过10A”。

⑩《矿山电力设计规范》等效采用《苏联电气装置安装法规》的规定,即当接地电容电流大于10A时应进行补偿。

综上所述,国内外的国家标准、规程均把中压网络的接地故障电流补偿值界定在10-15A。

3、保证人身间接触电安全的必要条件
我国规定人身安全电流极限值为30mA。

目前,西欧、日本、前苏联等国家均规定为25 mA。

其科学依据是考虑了人的心脏对电流存在着敏感相位,该相位刚好与心电图T波段相对应,称为复极化期。

其时间约为0.2秒。

如果电流持续0.2秒通过心脏,则心脏对电流最敏感,只要数十毫安的电流,即可引起人的心室颤动,造成人员死亡。

由此可以看出,任何想借助快速断电的方式来实现对人的安全保护意图是很难实现的。

如果把继电保护整定在0.5秒时,则危险性更大。

而把故障点的残流降下来,才是比较有效的途径。

《矿山电力设计规范》在确定电网电容电流限值时,只考虑6-10KV电网结构特点和电弧特征,与矿井客观条件(如煤矿沼气)无关,因为引爆煤矿瓦斯的能量只需要28mJ。

企图用降低电容电流的办法,去避免瓦斯引爆是不现实的。

但是,这种接地方式具有灭弧条件好、残流小、故障电位低、安全性高、供电可靠性等优点,是其他接地方式不可比拟的。

相关文档
最新文档