江苏省2015年高考数学压轴填空题1(无答案)

合集下载

2015年江苏省高考数学试卷及解析

2015年江苏省高考数学试卷及解析

2015年江苏省高考数学试卷一、填空题(本大题共14小题,每小题5分,共计70分)1、(5分)已知集合A={1,2,3},B={2,4,5},则集合A∪B中元素的个数为、2、(5分)已知一组数据4,6,5,8,7,6,那么这组数据的平均数为、3、(5分)设复数z满足z2=3+4i(i是虚数单位),则z的模为、4、(5分)根据如图所示的伪代码,可知输出的结果S为、5、(5分)袋中有形状、大小都相同的4只球,其中1只白球、1只红球、2只黄球,从中一次随机摸出2只球,则这2只球颜色不同的概率为、6、(5分)已知向量=(2,1),=(1,﹣2),若m+n=(9,﹣8)(m,n∈R),则m﹣n的值为、7、(5分)不等式2<4的解集为、8、(5分)已知tanα=﹣2,tan(α+β)=,则tanβ的值为、9、(5分)现有橡皮泥制作的底面半径为5,高为4的圆锥和底面半径为2,高为8的圆柱各一个,若将它们重新制作成总体积与高均保持不变,但底面半径相同的新的圆锥和圆柱各一个,则新的底面半径为、10、(5分)在平面直角坐标系xOy中,以点(1,0)为圆心且与直线mx﹣y﹣2m﹣1=0(m∈R)相切的所有圆中,半径最大的圆的标准方程为、11、(5分)设数列{a n}满足a1=1,且a n+1﹣a n=n+1(n∈N*),则数列{}的前10项的和为、12、(5分)在平面直角坐标系xOy中,P为双曲线x2﹣y2=1右支上的一个动点,若点P到直线x﹣y+1=0的距离大于c恒成立,则实数c的最大值为、13、(5分)已知函数f(x)=|lnx|,g(x)=,则方程|f(x)+g(x)|=1实根的个数为、14、(5分)设向量=(cos,sin+cos)(k=0,1,2,…,12),则(a k•a k+1)的值为、二、解答题(本大题共6小题,共计90分,解答时应写出文字说明、证明过程或演算步骤)15、(14分)在△ABC中,已知AB=2,AC=3,A=60°、(1)求BC的长;(2)求sin2C的值、16、(14分)如图,在直三棱柱ABC﹣A1B1C1中,已知AC⊥BC,BC=CC1,设AB1的中点为D,B1C∩BC1=E、求证:(1)DE∥平面AA1C1C;(2)BC1⊥AB1、17、(14分)某山区外围有两条相互垂直的直线型公路,为进一步改善山区的交通现状,计划修建一条连接两条公路和山区边界的直线型公路,记两条相互垂直的公路为l1,l2,山区边界曲线为C,计划修建的公路为l,如图所示,M,N为C的两个端点,测得点M到l1,l2的距离分别为5千米和40千米,点N到l1,l2的距离分别为20千米和2.5千米,以l2,l1在的直线分别为x,y轴,建立平面直角坐标系xOy,假设曲线C符合函数y=(其中a,b为常数)模型、(1)求a,b的值;(2)设公路l与曲线C相切于P点,P的横坐标为t、①请写出公路l长度的函数解析式f(t),并写出其定义域;②当t为何值时,公路l的长度最短?求出最短长度、18、(16分)如图,在平面直角坐标系xOy中,已知椭圆+=1(a>b>0)的离心率为,且右焦点F到左准线l的距离为3、(1)求椭圆的标准方程;(2)过F的直线与椭圆交于A,B两点,线段AB的垂直平分线分别交直线l和AB于点P,C,若PC=2AB,求直线AB的方程、19、(16分)已知函数f(x)=x3+ax2+b(a,b∈R)、(1)试讨论f(x)的单调性;(2)若b=c﹣a(实数c是与a无关的常数),当函数f(x)有三个不同的零点时,a的取值范围恰好是(﹣∞,﹣3)∪(1,)∪(,+∞),求c的值、20、(16分)设a1,a2,a3、a4是各项为正数且公差为d(d≠0)的等差数列、(1)证明:2,2,2,2依次构成等比数列;(2)是否存在a1,d,使得a1,a22,a33,a44依次构成等比数列?并说明理由;(3)是否存在a1,d及正整数n,k,使得a1n,a2n+k,a3n+2k,a4n+3k依次构成等比数列?并说明理由、三、附加题(本大题包括选做题和必做题两部分)【选做题】本题包括21-24题,请选定其中两小题作答,若多做,则按作答的前两小题评分,解答时应写出文字说明、证明过程或演算步骤【选修4-1:几何证明选讲】21、(10分)如图,在△ABC中,AB=AC,△ABC的外接圆⊙O的弦AE交BC于点D、求证:△ABD∽△AEB、【选修4-2:矩阵与变换】22、(10分)已知x,y∈R,向量=是矩阵的属于特征值﹣2的一个特征向量,求矩阵A以及它的另一个特征值、【选修4-4:坐标系与参数方程】23、已知圆C的极坐标方程为ρ2+2ρsin(θ﹣)﹣4=0,求圆C的半径、[选修4-5:不等式选讲】24、解不等式x+|2x+3|≥2、【必做题】每题10分,共计20分,解答时写出文字说明、证明过程或演算步骤25、(10分)如图,在四棱锥P﹣ABCD中,已知PA⊥平面ABCD,且四边形ABCD 为直角梯形,∠ABC=∠BAD=,PA=AD=2,AB=BC=1、(1)求平面PAB与平面PCD所成二面角的余弦值;(2)点Q是线段BP上的动点,当直线CQ与DP所成的角最小时,求线段BQ 的长、26、(10分)已知集合X={1,2,3},Y n={1,2,3,…,n)(n∈N*),设S n={(a,b)|a整除b或b整除a,a∈X,B∈Y n},令f(n)表示集合S n所含元素的个数、(1)写出f(6)的值;(2)当n≥6时,写出f(n)的表达式,并用数学归纳法证明、参考答案与试题解析一、填空题(本大题共14小题,每小题5分,共计70分)1、(5分)已知集合A={1,2,3},B={2,4,5},则集合A∪B中元素的个数为5、题目分析:求出A∪B,再明确元素个数试题解答解:集合A={1,2,3},B={2,4,5},则A∪B={1,2,3,4,5};所以A∪B中元素的个数为5;故答案为:5点评:题考查了集合的并集的运算,根据定义解答,注意元素不重复即可,属于基础题2、(5分)已知一组数据4,6,5,8,7,6,那么这组数据的平均数为6、题目分析:直接求解数据的平均数即可、试题解答解:数据4,6,5,8,7,6,那么这组数据的平均数为:=6、故答案为:6、点评:本题考查数据的均值的求法,基本知识的考查、3、(5分)设复数z满足z2=3+4i(i是虚数单位),则z的模为、题目分析:直接利用复数的模的求解法则,化简求解即可、试题解答解:复数z满足z2=3+4i,可得|z||z|=|3+4i|==5,∴|z|=、故答案为:、点评:本题考查复数的模的求法,注意复数的模的运算法则的应用,考查计算能力、4、(5分)根据如图所示的伪代码,可知输出的结果S为7、题目分析:模拟执行程序框图,依次写出每次循环得到的I,S的值,当I=10时不满足条件I<8,退出循环,输出S的值为7、试题解答解:模拟执行程序,可得S=1,I=1满足条件I<8,S=3,I=4满足条件I<8,S=5,I=7满足条件I<8,S=7,I=10不满足条件I<8,退出循环,输出S的值为7、故答案为:7、点评:本题主要考查了循环结构的程序,正确判断退出循环的条件是解题的关键,属于基础题、5、(5分)袋中有形状、大小都相同的4只球,其中1只白球、1只红球、2只黄球,从中一次随机摸出2只球,则这2只球颜色不同的概率为、题目分析:根据题意,把4个小球分别编号,用列举法求出基本事件数,计算对应的概率即可、试题解答解:根据题意,记白球为A,红球为B,黄球为C1、C2,则一次取出2只球,基本事件为AB、AC1、AC2、BC1、BC2、C1C2共6种,其中2只球的颜色不同的是AB、AC1、AC2、BC1、BC2共5种;所以所求的概率是P=,故答案为:、点评:本题考查了用列举法求古典概型的概率的应用问题,是基础题目、6、(5分)已知向量=(2,1),=(1,﹣2),若m+n=(9,﹣8)(m,n∈R),则m﹣n的值为﹣3、题目分析:直接利用向量的坐标运算,求解即可、试题解答解:向量=(2,1),=(1,﹣2),若m+n=(9,﹣8)可得,解得m=2,n=5,∴m﹣n=﹣3、故答案为:﹣3、点评:本题考查向量的坐标运算,向量相等条件的应用,考查计算能力、7、(5分)不等式2<4的解集为(﹣1,2)、题目分析:利用指数函数的单调性转化为x2﹣x<2,求解即可、试题解答解;∵2<4,∴x2﹣x<2,即x2﹣x﹣2<0,解得:﹣1<x<2故答案为:(﹣1,2)点评:本题考查了指数函数的性质,二次不等式的求解,属于简单的综合题目,难度不大、8、(5分)已知tanα=﹣2,tan(α+β)=,则tanβ的值为3、题目分析:直接利用两角和的正切函数,求解即可、试题解答解:tanα=﹣2,tan(α+β)=,可知tan(α+β)==,即=,解得tanβ=3、故答案为:3、点评:本题考查两角和的正切函数,基本知识的考查、9、(5分)现有橡皮泥制作的底面半径为5,高为4的圆锥和底面半径为2,高为8的圆柱各一个,若将它们重新制作成总体积与高均保持不变,但底面半径相同的新的圆锥和圆柱各一个,则新的底面半径为、题目分析:由题意求出原来圆柱和圆锥的体积,设出新的圆柱和圆锥的底面半径r,求出体积,由前后体积相等列式求得r、试题解答解:由题意可知,原来圆锥和圆柱的体积和为:、设新圆锥和圆柱的底面半径为r,则新圆锥和圆柱的体积和为:、∴,解得:、故答案为:、点评:本题考查了圆柱与圆锥的体积公式,是基础的计算题、10、(5分)在平面直角坐标系xOy中,以点(1,0)为圆心且与直线mx﹣y﹣2m﹣1=0(m∈R)相切的所有圆中,半径最大的圆的标准方程为(x﹣1)2+y2=2、题目分析:求出圆心到直线的距离d的最大值,即可求出所求圆的标准方程、试题解答解:圆心到直线的距离d==≤,∴m=1时,圆的半径最大为,∴所求圆的标准方程为(x﹣1)2+y2=2、故答案为:(x﹣1)2+y2=2、点评:本题考查所圆的标准方程,考查点到直线的距离公式,考查学生的计算能力,比较基础、11、(5分)设数列{a n}满足a1=1,且a n+1﹣a n=n+1(n∈N*),则数列{}的前10项的和为、题目分析:数列{a n}满足a1=1,且a n+1﹣a n=n+1(n∈N*),利用“累加求和”可得a n=、再利用“裂项求和”即可得出、试题解答解:∵数列{a n}满足a1=1,且a n+1﹣a n=n+1(n∈N*),∴当n≥2时,a n=(a n﹣a n﹣1)+…+(a2﹣a1)+a1=n+…+2+1=、当n=1时,上式也成立,∴a n=、∴=2、∴数列{}的前n项的和S n===、∴数列{}的前10项的和为、故答案为:、点评:本题考查了数列的“累加求和”方法、“裂项求和”方法、等差数列的前n项和公式,考查了推理能力与计算能力,属于中档题、12、(5分)在平面直角坐标系xOy中,P为双曲线x2﹣y2=1右支上的一个动点,若点P到直线x﹣y+1=0的距离大于c恒成立,则实数c的最大值为、题目分析:双曲线x2﹣y2=1的渐近线方程为x±y=0,c的最大值为直线x﹣y+1=0与直线x﹣y=0的距离、试题解答解:由题意,双曲线x2﹣y2=1的渐近线方程为x±y=0,因为点P到直线x﹣y+1=0的距离大于c恒成立,所以c的最大值为直线x﹣y+1=0与直线x﹣y=0的距离,即、故答案为:、点评:本题考查双曲线的性质,考查学生的计算能力,比较基础、13、(5分)已知函数f(x)=|lnx|,g(x)=,则方程|f(x)+g(x)|=1实根的个数为4、题目分析::由|f(x)+g(x)|=1可得g(x)=﹣f(x)±1,分别作出函数的图象,即可得出结论、试题解答解:由|f(x)+g(x)|=1可得g(x)=﹣f(x)±1、g(x)与h(x)=﹣f(x)+1的图象如图所示,图象有2个交点g(x)与φ(x)=﹣f(x)﹣1的图象如图所示,图象有两个交点;所以方程|f(x)+g(x)|=1实根的个数为4、故答案为:4、点评:本题考查求方程|f(x)+g(x)|=1实根的个数,考查数形结合的数学思想,考查学生分析解决问题的能力,属于中档题、14、(5分)设向量=(cos,sin+cos)(k=0,1,2,…,12),则(a k•a k+1)的值为、题目分析:利用向量数量积运算性质、两角和差的正弦公式、积化和差公式、三角函数的周期性即可得出、试题解答解:=+=++++=++=++,∴(a k•a k+1)=+++++++…+++++++…+=+0+0=、故答案为:9、点评:本题考查了向量数量积运算性质、两角和差的正弦公式、积化和差公式、三角函数的周期性,考查了推理能力与计算能力,属于中档题、二、解答题(本大题共6小题,共计90分,解答时应写出文字说明、证明过程或演算步骤)15、(14分)在△ABC中,已知AB=2,AC=3,A=60°、(1)求BC的长;(2)求sin2C的值、题目分析:(1)直接利用余弦定理求解即可、(2)利用正弦定理求出C的正弦函数值,然后利用二倍角公式求解即可、试题解答解:(1)由余弦定理可得:BC2=AB2+AC2﹣2AB•ACcosA=4+9﹣2×2×3×=7,所以BC=、(2)由正弦定理可得:,则sinC===,∵AB<BC,BC=,AB=2,角A=60°,在三角形ABC中,大角对大边,大边对大角,>2,∴角C<角A,角C为锐角、sinC>0,cosC>0则cosC===、因此sin2C=2sinCcosC=2×=、点评:本题考查余弦定理的应用,正弦定理的应用,二倍角的三角函数,注意角的范围的解题的关键、16、(14分)如图,在直三棱柱ABC﹣A1B1C1中,已知AC⊥BC,BC=CC1,设AB1的中点为D,B1C∩BC1=E、求证:(1)DE∥平面AA1C1C;(2)BC1⊥AB1、题目分析:(1)根据中位线定理得DE∥AC,即证DE∥平面AA1C1C;(2)【方法一】先由直三棱柱得出CC1⊥平面ABC,即证AC⊥CC1;再证明AC⊥平面BCC1B1,即证BC1⊥AC;最后证明BC1⊥平面B1AC,即可证出BC1⊥AB1、【方法二】建立空间直角坐标系,利用向量数量积证明异面直线垂直、试题解答证明:(1)如图所示,由据题意得,E为B1C的中点,D为AB1的中点,所以DE∥AC;又因为DE⊄平面AA1C1C,AC⊂平面AA1C1C,所以DE∥平面AA1C1C;(2)【方法一】因为棱柱ABC﹣A1B1C1是直三棱柱,所以CC1⊥平面ABC,因为AC⊂平面ABC,所以AC⊥CC1;又因为AC⊥BC,CC1⊂平面BCC1B1,BC⊂平面BCC1B1,BC∩CC1=C,所以AC⊥平面BCC1B1;又因为BC1⊂平面BCC1B1,所以BC1⊥AC;因为BC=CC1,所以矩形BCC1B1是正方形,所以BC1⊥平面B1AC;又因为AB1⊂平面B1AC,所以BC1⊥AB1、【方法二】根据题意,A1C1⊥B1C1,CC1⊥平面A1B1C1,以C1为原点建立空间直角座标系,C1A1为x轴,C1B1为y轴,C1C为z轴,如图所示;设BC=CC1=a,AC=b,则A(b,0,a),B1(0,a,0),B(0,a,a),C1(0,0,0);∴=(﹣b,a,﹣a),=(0,﹣a,﹣a),∴•=﹣b×0+a×(﹣a)﹣a×(﹣a)=0,∴⊥,即AB1⊥BC1、点评:本题考查了直线与直线,直线与平面以及平面与平面的位置关系,也考查了空间想象能力和推理论证能力的应用问题、17、(14分)某山区外围有两条相互垂直的直线型公路,为进一步改善山区的交通现状,计划修建一条连接两条公路和山区边界的直线型公路,记两条相互垂直的公路为l1,l2,山区边界曲线为C,计划修建的公路为l,如图所示,M,N为C的两个端点,测得点M到l1,l2的距离分别为5千米和40千米,点N到l1,l2的距离分别为20千米和2.5千米,以l2,l1在的直线分别为x,y轴,建立平面直角坐标系xOy,假设曲线C符合函数y=(其中a,b为常数)模型、(1)求a,b的值;(2)设公路l与曲线C相切于P点,P的横坐标为t、①请写出公路l长度的函数解析式f(t),并写出其定义域;②当t为何值时,公路l的长度最短?求出最短长度、题目分析:(1)由题意知,点M,N的坐标分别为(5,40),(20,2.5),将其分别代入y=,建立方程组,即可求a,b的值;(2)①求出切线l的方程,可得A,B的坐标,即可写出公路l长度的函数解析式f(t),并写出其定义域;②设g(t)=,利用导数,确定单调性,即可求出当t为何值时,公路l的长度最短,并求出最短长度、试题解答解:(1)由题意知,点M,N的坐标分别为(5,40),(20,2.5),将其分别代入y=,得,解得,(2)①由(1)y=(5≤x≤20),P(t,),∴y′=﹣,∴切线l的方程为y﹣=﹣(x﹣t)设在点P处的切线l交x,y轴分别于A,B点,则A(,0),B(0,),∴f(t)==,t∈[5,20];②设g(t)=,则g′(t)=2t﹣=0,解得t=10,t∈(5,10)时,g′(t)<0,g(t)是减函数;t∈(10,20)时,g′(t)>0,g(t)是增函数,从而t=10时,函数g(t)有极小值也是最小值,∴g(t)min=300,∴f(t)min=15,答:t=10时,公路l的长度最短,最短长度为15千米、点评:本题考查利用数学知识解决实际问题,考查导数知识的综合运用,确定函数关系,正确求导是关键、18、(16分)如图,在平面直角坐标系xOy中,已知椭圆+=1(a>b>0)的离心率为,且右焦点F到左准线l的距离为3、(1)求椭圆的标准方程;(2)过F的直线与椭圆交于A,B两点,线段AB的垂直平分线分别交直线l和AB于点P,C,若PC=2AB,求直线AB的方程、题目分析:(1)运用离心率公式和准线方程,可得a,c的方程,解得a,c,再由a,b,c的关系,可得b,进而得到椭圆方程;(2)讨论直线AB的斜率不存在和存在,设出直线方程,代入椭圆方程,运用韦达定理和弦长公式,以及两直线垂直的条件和中点坐标公式,即可得到所求直线的方程、试题解答解:(1)由题意可得,e==,且c+=3,解得c=1,a=,则b=1,即有椭圆方程为+y2=1;(2)当AB⊥x轴,AB=,CP=3,不合题意;当AB与x轴不垂直,设直线AB:y=k(x﹣1),A(x1,y1),B(x2,y2),将AB方程代入椭圆方程可得(1+2k2)x2﹣4k2x+2(k2﹣1)=0,则x1+x2=,x1x2=,则C(,),且|AB|=•=,若k=0,则AB的垂直平分线为y轴,与左准线平行,不合题意;则k≠0,故PC:y+=﹣(x﹣),P(﹣2,),从而|PC|=,由|PC|=2|AB|,可得=,解得k=±1,此时AB的方程为y=x﹣1或y=﹣x+1、点评:本题考查椭圆的方程和性质,主要考查椭圆的离心率和方程的运用,联立直线方程,运用韦达定理和弦长公式,同时考查两直线垂直和中点坐标公式的运用,属于中档题、19、(16分)已知函数f(x)=x3+ax2+b(a,b∈R)、(1)试讨论f(x)的单调性;(2)若b=c﹣a(实数c是与a无关的常数),当函数f(x)有三个不同的零点时,a的取值范围恰好是(﹣∞,﹣3)∪(1,)∪(,+∞),求c的值、题目分析:(1)求导数,分类讨论,利用导数的正负,即可得出f(x)的单调性;(2)由(1)知,函数f(x)的两个极值为f(0)=b,f(﹣)=+b,则函数f(x)有三个不同的零点等价于f(0)f(﹣)=b(+b)<0,进一步转化为a>0时,﹣a+c>0或a<0时,﹣a+c<0、设g(a)=﹣a+c,利用条件即可求c的值、试题解答解:(1)∵f(x)=x3+ax2+b,∴f′(x)=3x2+2ax,令f′(x)=0,可得x=0或﹣、a=0时,f′(x)>0,∴f(x)在(﹣∞,+∞)上单调递增;a>0时,x∈(﹣∞,﹣)∪(0,+∞)时,f′(x)>0,x∈(﹣,0)时,f′(x)<0,∴函数f(x)在(﹣∞,﹣),(0,+∞)上单调递增,在(﹣,0)上单调递减;a<0时,x∈(﹣∞,0)∪(﹣,+∞)时,f′(x)>0,x∈(0,﹣)时,f′(x)<0,∴函数f(x)在(﹣∞,0),(﹣,+∞)上单调递增,在(0,﹣)上单调递减;(2)由(1)知,函数f(x)的两个极值为f(0)=b,f(﹣)=+b,则函数f(x)有三个不同的零点等价于f(0)>0,且f(﹣)<0,∴b>0且+b<0,∵b=c﹣a,∴a>0时,﹣a+c>0或a<0时,﹣a+c<0、设g(a)=﹣a+c,∵函数f(x)有三个不同的零点时,a的取值范围恰好是(﹣∞,﹣3)∪(1,)∪(,+∞),∴在(﹣∞,﹣3)上,g(a)<0且在(1,)∪(,+∞)上g(a)>0均恒成立,∴g(﹣3)=c﹣1≤0,且g()=c﹣1≥0,∴c=1,此时f(x)=x3+ax2+1﹣a=(x+1)[x2+(a﹣1)x+1﹣a],∵函数有三个零点,∴x2+(a﹣1)x+1﹣a=0有两个异于﹣1的不等实根,∴△=(a﹣1)2﹣4(1﹣a)>0,且(﹣1)2﹣(a﹣1)+1﹣a≠0,解得a∈(﹣∞,﹣3)∪(1,)∪(,+∞),综上c=1、点评:本题考查导数知识的综合运用,考查函数的单调性,考查函数的零点,考查分类讨论的数学思想,难度大、20、(16分)设a1,a2,a3、a4是各项为正数且公差为d(d≠0)的等差数列、(1)证明:2,2,2,2依次构成等比数列;(2)是否存在a1,d,使得a1,a22,a33,a44依次构成等比数列?并说明理由;(3)是否存在a1,d及正整数n,k,使得a1n,a2n+k,a3n+2k,a4n+3k依次构成等比数列?并说明理由、题目分析:(1)根据等比数列和等差数列的定义即可证明;(2)利用反证法,假设存在a1,d使得a1,a22,a33,a44依次构成等比数列,推出矛盾,否定假设,得到结论;(3)利用反证法,假设存在a1,d及正整数n,k,使得a1n,a2n+k,a3n+2k,a4n+3k 依次构成等比数列,得到a1n(a1+2d)n+2k=(a1+d)2(n+k),且(a1+d)n+k(a1+3d)n+3k=(a1+2d)2(n+2k),利用等式以及对数的性质化简整理得到ln(1+3t)ln(1+2t)+3ln(1+2t)ln(1+t)=4ln(1+3t)ln(1+t),(**),多次构造函数,多次求导,利用零点存在定理,推出假设不成立、试题解答解:(1)证明:∵==2d,(n=1,2,3,)是同一个常数,∴2,2,2,2依次构成等比数列;(2)令a1+d=a,则a1,a2,a3,a4分别为a﹣d,a,a+d,a+2d(a>d,a>﹣2d,d≠0)假设存在a1,d使得a1,a22,a33,a44依次构成等比数列,则a4=(a﹣d)(a+d)3,且(a+d)6=a2(a+2d)4,令t=,则1=(1﹣t)(1+t)3,且(1+t)6=(1+2t)4,(﹣<t<1,t≠0),化简得t3+2t2﹣2=0(*),且t2=t+1,将t2=t+1代入(*)式,t(t+1)+2(t+1)﹣2=t2+3t=t+1+3t=4t+1=0,则t=﹣,显然t=﹣不是上面方程的解,矛盾,所以假设不成立,因此不存在a1,d,使得a1,a22,a33,a44依次构成等比数列、(3)假设存在a1,d及正整数n,k,使得a1n,a2n+k,a3n+2k,a4n+3k依次构成等比数列,则a1n(a1+2d)n+2k=(a1+d)2(n+k),且(a1+d)n+k(a1+3d)n+3k=(a1+2d)2(n+2k),分别在两个等式的两边同除以a12(n+k),a12(n+2k),并令t=,(t>,t≠0),则(1+2t)n+2k=(1+t)2(n+k),且(1+t)n+k(1+3t)n+3k=(1+2t)2(n+2k),将上述两个等式取对数,得(n+2k)ln(1+2t)=2(n+k)ln(1+t),且(n+k)ln(1+t)+(n+3k)ln(1+3t)=2(n+2k)ln(1+2t),化简得,2k[ln(1+2t)﹣ln(1+t)]=n[2ln(1+t)﹣ln(1+2t)],且3k[ln(1+3t)﹣ln(1+t)]=n[3ln(1+t)﹣ln(1+3t)],再将这两式相除,化简得,ln(1+3t)ln(1+2t)+3ln(1+2t)ln(1+t)=4ln(1+3t)ln(1+t),(**)令g(t)=4ln(1+3t)ln(1+t)﹣ln(1+3t)ln(1+2t)+3ln(1+2t)ln(1+t),则g′(t)=[(1+3t)2ln(1+3t)﹣3(1+2t)2ln(1+2t)+3(1+t)2ln(1+t)],令φ(t)=(1+3t)2ln(1+3t)﹣3(1+2t)2ln(1+2t)+3(1+t)2ln(1+t),则φ′(t)=6[(1+3t)ln(1+3t)﹣2(1+2t)ln(1+2t)+3(1+t)ln(1+t)],令φ1(t)=φ′(t),则φ1′(t)=6[3ln(1+3t)﹣4ln(1+2t)+ln(1+t)],令φ2(t)=φ1′(t),则φ2′(t)=>0,由g(0)=φ(0)=φ1(0)=φ2(0)=0,φ2′(t)>0,知g(t),φ(t),φ1(t),φ2(t)在(﹣,0)和(0,+∞)上均单调,故g(t)只有唯一的零点t=0,即方程(**)只有唯一解t=0,故假设不成立,所以不存在a1,d及正整数n,k,使得a1n,a2n+k,a3n+2k,a4n+3k依次构成等比数列、点评:本题主要考查等差数列、等比数列的定义和性质,函数与方程等基础知识,考查代数推理、转化与化归及综合运用数学知识探究与解决问题的能力,属于难题、三、附加题(本大题包括选做题和必做题两部分)【选做题】本题包括21-24题,请选定其中两小题作答,若多做,则按作答的前两小题评分,解答时应写出文字说明、证明过程或演算步骤【选修4-1:几何证明选讲】21、(10分)如图,在△ABC中,AB=AC,△ABC的外接圆⊙O的弦AE交BC于点D、求证:△ABD∽△AEB、题目分析:直接利用已知条件,推出两个三角形的三个角对应相等,即可证明三角形相似、试题解答证明:∵AB=AC,∴∠ABD=∠C,又∵∠C=∠E,∴∠ABD=∠E,又∠BAE 是公共角,可知:△ABD∽△AEB、点评:本题考查圆的基本性质与相似三角形等基础知识,考查逻辑推理能力、【选修4-2:矩阵与变换】22、(10分)已知x,y∈R,向量=是矩阵的属于特征值﹣2的一个特征向量,求矩阵A以及它的另一个特征值、题目分析:利用A=﹣2,可得A=,通过令矩阵A的特征多项式为0即得结论、试题解答解:由已知,可得A=﹣2,即==,则,即,∴矩阵A=,从而矩阵A的特征多项式f(λ)=(λ+2)(λ﹣1),∴矩阵A的另一个特征值为1、点评:本题考查求矩阵及其特征值,注意解题方法的积累,属于中档题、【选修4-4:坐标系与参数方程】23、已知圆C的极坐标方程为ρ2+2ρsin(θ﹣)﹣4=0,求圆C的半径、题目分析:先根据x=ρcosθ,y=ρsinθ,求出圆的直角坐标方程,求出半径、试题解答解:圆的极坐标方程为ρ2+2ρsin(θ﹣)﹣4=0,可得ρ2﹣2ρcosθ+2ρsinθ﹣4=0,化为直角坐标方程为x2+y2﹣2x+2y﹣4=0,化为标准方程为(x﹣1)2+(y+1)2=6,圆的半径r=、点评:本题主要考查把极坐标方程化为直角坐标方程的方法,以及求点的极坐标的方法,关键是利用公式x=ρcosθ,y=ρsinθ,比较基础,[选修4-5:不等式选讲】24、解不等式x+|2x+3|≥2、题目分析:思路1(公式法):利用|f(x)|≥g(x)⇔f(x)≥g(x),或f(x)≤﹣g(x);思路2(零点分段法):对x的值分“x≥”“x<”进行讨论求解、试题解答解法1:x+|2x+3|≥2变形为|2x+3|≥2﹣x,得2x+3≥2﹣x,或2x+3≤﹣(2﹣x),即x≥,或x≤﹣5,即原不等式的解集为{x|x≥,或x≤﹣5}、解法2:令|2x+3|=0,得x=、①当x≥时,原不等式化为x+(2x+3)≥2,即x≥,所以x≥;②x<时,原不等式化为x﹣(2x+3)≥2,即x≤﹣5,所以x≤﹣5、综上,原不等式的解集为{x|x≥,或x≤﹣5}、点评:本题考查了含绝对值不等式的解法、本解答给出的两种方法是常见的方法,不管用哪种方法,其目的是去绝对值符号、若含有一个绝对值符号,利用公式法要快捷一些,其套路为:|f(x)|≥g(x)⇔f(x)≥g(x),或f(x)≤﹣g(x);|f(x)|≤g(x)⇔﹣g(x)≤f(x)≤g(x)、可简记为:大于号取两边,小于号取中间、使用零点分段法时,应注意:同一类中取交集,类与类之间取并集、【必做题】每题10分,共计20分,解答时写出文字说明、证明过程或演算步骤25、(10分)如图,在四棱锥P﹣ABCD中,已知PA⊥平面ABCD,且四边形ABCD 为直角梯形,∠ABC=∠BAD=,PA=AD=2,AB=BC=1、(1)求平面PAB与平面PCD所成二面角的余弦值;(2)点Q是线段BP上的动点,当直线CQ与DP所成的角最小时,求线段BQ 的长、题目分析:以A为坐标原点,以AB、AD、AP所在直线分别为x、y、z轴建系A ﹣xyz、(1)所求值即为平面PAB的一个法向量与平面PCD的法向量的夹角的余弦值的绝对值,计算即可;(2)利用换元法可得cos2<,>≤,结合函数y=cosx在(0,)上的单调性,计算即得结论、试题解答解:以A为坐标原点,以AB、AD、AP所在直线分别为x、y、z轴建系A﹣xyz如图,由题可知B(1,0,0),C(1,1,0),D(0,2,0),P(0,0,2)、(1)∵AD⊥平面PAB,∴=(0,2,0),是平面PAB的一个法向量,∵=(1,1,﹣2),=(0,2,﹣2),设平面PCD的法向量为=(x,y,z),由,得,取y=1,得=(1,1,1),∴cos<,>==,∴平面PAB与平面PCD所成两面角的余弦值为;(2)∵=(﹣1,0,2),设=λ=(﹣λ,0,2λ)(0≤λ≤1),又=(0,﹣1,0),则=+=(﹣λ,﹣1,2λ),又=(0,﹣2,2),从而cos<,>==,设1+2λ=t,t∈[1,3],则cos2<,>==≤,当且仅当t=,即λ=时,|cos<,>|的最大值为,因为y=cosx在(0,)上是减函数,此时直线CQ与DP所成角取得最小值、又∵BP==,∴BQ=BP=、点评:本题考查求二面角的三角函数值,考查用空间向量解决问题的能力,注意解题方法的积累,属于中档题、26、(10分)已知集合X={1,2,3},Y n={1,2,3,…,n)(n∈N*),设S n={(a,b)|a整除b或b整除a,a∈X,B∈Y n},令f(n)表示集合S n所含元素的个数、(1)写出f(6)的值;(2)当n≥6时,写出f(n)的表达式,并用数学归纳法证明、题目分析:(1)f(6)=6+2++=13;(2)根据数学归纳法的证明步骤,分类讨论,即可证明结论、试题解答解:(1)f(6)=6+2++=13;(2)当n≥6时,f(n)=、下面用数学归纳法证明:①n=6时,f(6)=6+2++=13,结论成立;在S k的基础上新增加的②假设n=k(k≥6)时,结论成立,那么n=k+1时,S k+1元素在(1,k+1),(2,k+1),(3,k+1)中产生,分以下情形讨论:1)若k+1=6t,则k=6(t﹣1)+5,此时有f(k+1)=f(k)+3=(k+1)+2++,结论成立;2)若k+1=6t+1,则k=6t,此时有f(k+1)=f(k)+1=k+2+++1=(k+1)+2++,结论成立;3)若k+1=6t+2,则k=6t+1,此时有f(k+1)=f(k)+2=k+2+++2=(k+1)+2++,结论成立;4)若k+1=6t+3,则k=6t+2,此时有f(k+1)=f(k)+2=k+2+++2=(k+1)+2++,结论成立;5)若k+1=6t+4,则k=6t+3,此时有f(k+1)=f(k)+2=k+2+++2=(k+1)+2++,结论成立;6)若k+1=6t+5,则k=6t+4,此时有f(k+1)=f(k)+2=k+2+++2=(k+1)+2++,结论成立综上所述,结论f(n)=n+[]+[]+2,对满足n≥6的自然数n均成立点评:本题考查数学归纳法,考查学生分析解决问题的能力,正确归纳是关键。

2015江苏高考压轴卷数学

2015江苏高考压轴卷数学
3
¬
¬
1
x
−2
P ∧ ¬Q
P ∨ ¬Q
P ∧ ¬Q 中任取一个命题 则取得真命题的概
率是 9.若函数 f ( x ) =
bx + c (a, b, c ∈ R ) (a, b, c, d ∈ R ) 其 象如 3 所示 则 a + b + c = x + ax + 1 a 2 3 3 2 10.函数 f ( x ) = x − x − 2a x + 的 象 过四个象限 则 a 的取值范围是 2 2 sin A − sin C sin B 11.在 ∆ABC 中,已知角 A,B,C 的对边 别为 a,b,c,且 = 则函数 b−c a+c
定义使 log 2 ak 为整数的实数 k 为
青奥 祥数
则在 间[1 2014]内的所有
青奥 祥数之和 为________
x 2 − 2, x ≤ 0 14.已知 f ( x ) = 3x − 2, x > 0
对同一 x 的值 总有 y1 ≥ y2 二
设集
A = y y = f ( x ) , −1 ≤ x ≤ 1
2 求四棱锥 P − ABCD 的体
17.如 5 GH 是东西方向的公路 侧的边缘线 某公 准备在 GH 的一点 B 的 方向的 A 处建一仓 设 AB = y km 并在公路同侧建造边长为 x km 的 方形无顶中转站 CDEF 其中边 EF 在 GH 现从仓 A o 向 GH 和中转站 别修两条道路 AB AC 已知 AB = AC + 1 且∠ABC = 60 1 求 y 关于 x 的函数解析式 2 如果中转站四周围墙造 为 1 万元/km 两条道路造 为 3 万元/km 问 x 取何值时 该公 建中转 站围墙和两条道路总造 M 最低?

2015年普通高等学校招生全国统一考试(江苏卷)数学试题 解析版

2015年普通高等学校招生全国统一考试(江苏卷)数学试题 解析版

一,填空题:本大题共14个小题,每小题5分,共70分.1.已知集合{}3,2,1=A ,{}5,4,2=B ,则集合B A 中圆素地个数为_______.【结果】5【思路】试题思路:{123}{245}{12345}5A B == ,,,,,,,,,个元素考点:集合运算2.已知一组数据4,6,5,8,7,6,那么这组数据地平均数为________.【结果】6考点:平均数3.设复数z 满足234z i =+(i 是虚数单位),则z 地模为_______.【思路】试题思路:22|||34|5||5||z i z z =+=⇒=⇒=考点:复数地模,可知输出地结果S 为________.【结果】7【思路】试题思路:第一次循环:3,4S I ==;第二次循环:5,7S I ==;第三次循环:7,10S I ==;结束循环,输出7.S =考点:循环结构流程图5.袋中有形状,大小都相同地4只球,其中1只白球,1只红球,2只黄球,从中一次随机摸出2只球,则这2只球颜色不同地概率为________.【结果】5.6(第4题图)考点:古典概型概率6.已知向量a =)1,2(,b=)2,1(-, 若m a +n b =)8,9(-(R n m ∈,), n m -地值为______.【结果】3-【思路】试题思路:由题意得:29,282,5, 3.m n m n m n m n +=-=-⇒==-=-考点:向量相等7.不等式224x x-<地解集为________.【结果】(1,2).-【思路】试题思路:由题意得:2212x x x -<⇒-<<,解集为(1,2).-考点:解指数不等式与一圆二次不等式8.已知tan 2α=-,()1tan 7αβ+=,则tan β地值为_______.【结果】3【思路】试题思路:12tan()tan 7tan tan() 3.21tan()tan 17αβαβαβααβα++-=+-===++-考点:两角差正切公式9.现有橡皮泥制作地底面半径为5,高为4地圆锥和底面半径为2,高为8地圆柱各一个。

2015年高考真题高中数学江苏卷(1)和答案

2015年高考真题高中数学江苏卷(1)和答案

2015年普通高等学校招生全国统一考试(江苏卷)数学I一、填空题:本大题共14小题,每小题5分,共计70分.请把答案填写在答题卡相应的位置1.已知集合{}123A =,,,{}245B =,,,则集合A B 中元素的个数为_______.解析:{}5,4,3,2,1=⋃B A ,故答案5 2.已知一组数据4,6,5,8,7,6,那么这组数据的平均数为________. 解析:66678564=+++++,故答案63.设复数z 满足234z i =+(i 是虚数单位),则z 的模为_______.解析:设z=a+bi,,则()i bi a 432+=+化为i abi b a 43222+=+-,所以⎩⎨⎧==-42322ab b a解得⎪⎩⎪⎨⎧==1422b a ,所以z 的模为522=+b a ,故答案54.根据如图所示的伪代码,可知输出的结果S 为________.解析:第一次:S=1+2=3,I=1+3=4;第二次:S=3+2=5,I=4+3=7;第三次:S=5+2=7,I=7+3=10;因为10>8,所以程序结束,故S=75.袋中有形状、大小都相同的4只球,其中1只白球,1只红球,2只黄球,从中一次随机摸出2只球,则这2只球颜色不同的概率为________.6.已知向量()21a =,,()2-1,=b ,若()()R n m b n a m ∈-=+,89,,则m-n 的值为______. 解析:因为()()R n m b n a m ∈-=+,89,,所以⎩⎨⎧-=-=+8292n m n m ,所以352-=-⎩⎨⎧==n m n m , S ←1 I ←1While I<8 S ←S+2 I ←I+3 End While Print S7.不等式224x x-<的解集为________.解析:因为224x x-<,所以()()2102102222<<-<-+<--<-x x x x x x x ,,,,故解析为()21,-8.已知tan 2α=-,()1tan 7αβ+=,则tan β的值为_______. 解析:()[]()()3757152711271tan tan 1tan tan tan tan ==⨯-+=++-+=-+=αβααβααβαβ,故答案3 9.现有橡皮泥制作的底面半径为5,高为4的圆锥和底面半径为2、高为8的圆柱各一个。

2015年江苏数学高考试卷含答案和解析

2015年江苏数学高考试卷含答案和解析

2015年江苏数学高考试卷一、填空题(本大题共14小题,每小题5分,共计70分)1.(5分)(2015•江苏)已知集合A={1,2,3},B={2,4,5},则集合A∪B中元素的个数为.2.(5分)(2015•江苏)已知一组数据4,6,5,8,7,6,那么这组数据的平均数为.3.(5分)(2015•江苏)设复数z满足z2=3+4i(i是虚数单位),则z的模为.4.(5分)(2015•江苏)根据如图所示的伪代码,可知输出的结果S为.5.(5分)(2015•江苏)袋中有形状、大小都相同的4只球,其中1只白球、1只红球、2只黄球,从中一次随机摸出2只球,则这2只球颜色不同的概率为.6.(5分)(2015•江苏)已知向量=(2,1),=(1,﹣2),若m+n=(9,﹣8)(m,n∈R),则m﹣n的值为.7.(5分)(2015•江苏)不等式2<4的解集为.8.(5分)(2015•江苏)已知tanα=﹣2,tan(α+β)=,则tanβ的值为.9.(5分)(2015•江苏)现有橡皮泥制作的底面半径为5,高为4的圆锥和底面半径为2,高为8的圆柱各一个,若将它们重新制作成总体积与高均保持不变,但底面半径相同的新的圆锥和圆柱各一个,则新的底面半径为.10.(5分)(2015•江苏)在平面直角坐标系xOy中,以点(1,0)为圆心且与直线mx﹣y ﹣2m﹣1=0(m∈R)相切的所有圆中,半径最大的圆的标准方程为.11.(5分)(2015•江苏)设数列{a n}满足a1=1,且a n+1﹣a n=n+1(n∈N*),则数列{}的前10项的和为.12.(5分)(2015•江苏)在平面直角坐标系xOy中,P为双曲线x2﹣y2=1右支上的一个动点,若点P到直线x﹣y+1=0的距离大于c恒成立,则实数c的最大值为.13.(5分)(2015•江苏)已知函数f(x)=|lnx|,g(x)=,则方程|f(x)+g(x)|=1实根的个数为.14.(5分)(2015•江苏)设向量=(cos,sin+cos)(k=0,1,2,…,12),则(a k•a k+1)的值为.二、解答题(本大题共6小题,共计90分,解答时应写出文字说明、证明过程或演算步骤)15.(14分)(2015•江苏)在△ABC中,已知AB=2,AC=3,A=60°.(1)求BC的长;(2)求sin2C的值.16.(14分)(2015•江苏)如图,在直三棱柱ABC﹣A1B1C1中,已知AC⊥BC,BC=CC1,设AB1的中点为D,B1C∩BC1=E.求证:(1)DE∥平面AA1C1C;(2)BC1⊥AB1.17.(14分)(2015•江苏)某山区外围有两条相互垂直的直线型公路,为进一步改善山区的交通现状,计划修建一条连接两条公路和山区边界的直线型公路,记两条相互垂直的公路为l1,l2,山区边界曲线为C,计划修建的公路为l,如图所示,M,N为C的两个端点,测得点M到l1,l2的距离分别为5千米和40千米,点N到l1,l2的距离分别为20千米和2.5千米,以l2,l1在的直线分别为x,y轴,建立平面直角坐标系xOy,假设曲线C符合函数y=(其中a,b为常数)模型.(1)求a,b的值;(2)设公路l与曲线C相切于P点,P的横坐标为t.①请写出公路l长度的函数解析式f(t),并写出其定义域;②当t为何值时,公路l的长度最短?求出最短长度.18.(16分)(2015•江苏)如图,在平面直角坐标系xOy中,已知椭圆+=1(a>b>0)的离心率为,且右焦点F到左准线l的距离为3.(1)求椭圆的标准方程;(2)过F的直线与椭圆交于A,B两点,线段AB的垂直平分线分别交直线l和AB于点P,C,若PC=2AB,求直线AB的方程.19.(16分)(2015•江苏)已知函数f(x)=x3+ax2+b(a,b∈R).(1)试讨论f(x)的单调性;(2)若b=c﹣a(实数c是与a无关的常数),当函数f(x)有三个不同的零点时,a的取值范围恰好是(﹣∞,﹣3)∪(1,)∪(,+∞),求c的值.20.(16分)(2015•江苏)设a1,a2,a3.a4是各项为正数且公差为d(d≠0)的等差数列.(1)证明:2,2,2,2依次构成等比数列;(2)是否存在a1,d,使得a1,a22,a33,a44依次构成等比数列?并说明理由;(3)是否存在a1,d及正整数n,k,使得a1n,a2n+k,a3n+2k,a4n+3k依次构成等比数列?并说明理由.三、附加题(本大题包括选做题和必做题两部分)【选做题】本题包括21-24题,请选定其中两小题作答,若多做,则按作答的前两小题评分,解答时应写出文字说明、证明过程或演算步骤【选修4-1:几何证明选讲】21.(10分)(2015•江苏)如图,在△ABC中,AB=AC,△ABC的外接圆⊙O的弦AE交BC于点D.求证:△ABD∽△AEB.【选修4-2:矩阵与变换】22.(10分)(2015•江苏)已知x,y∈R,向量=是矩阵的属于特征值﹣2的一个特征向量,求矩阵A以及它的另一个特征值.【选修4-4:坐标系与参数方程】23.(2015•江苏)已知圆C的极坐标方程为ρ2+2ρsin(θ﹣)﹣4=0,求圆C的半径.[选修4-5:不等式选讲】24.(2015•江苏)解不等式x+|2x+3|≥2.【必做题】每题10分,共计20分,解答时写出文字说明、证明过程或演算步骤25.(10分)(2015•江苏)如图,在四棱锥P﹣ABCD中,已知PA⊥平面ABCD,且四边形ABCD为直角梯形,∠ABC=∠BAD=,PA=AD=2,AB=BC=1.(1)求平面PAB与平面PCD所成二面角的余弦值;(2)点Q是线段BP上的动点,当直线CQ与DP所成的角最小时,求线段BQ的长.26.(10分)(2015•江苏)已知集合X={1,2,3},Y n={1,2,3,…,n)(n∈N*),设S n={(a,b)|a整除b或整除a,a∈X,B∈Y n},令f(n)表示集合S n所含元素的个数.(1)写出f(6)的值;(2)当n≥6时,写出f(n)的表达式,并用数学归纳法证明.2015年江苏数学高考试卷参考答案与试题解析一、填空题(本大题共14小题,每小题5分,共计70分)1.(5分)考点:并集及其运算.专题:集合.分析:求出A∪B,再明确元素个数解答:解:集合A={1,2,3},B={2,4,5},则A∪B={1,2,3,4,5};所以A∪B中元素的个数为5;故答案为:5点评:题考查了集合的并集的运算,根据定义解答,注意元素不重复即可,属于基础题2.(5分)考点:众数、中位数、平均数.专题:概率与统计.分析:直接求解数据的平均数即可.解答:解:数据4,6,5,8,7,6,那么这组数据的平均数为:=6.故答案为:6.点评:本题考查数据的均值的求法,基本知识的考查.3.(5分)考点:复数求模.专题:数系的扩充和复数.分析:直接利用复数的模的求解法则,化简求解即可.解答:解:复数z满足z2=3+4i,可得|z||z|=|3+4i|==5,∴|z|=.故答案为:.点评:本题考查复数的模的求法,注意复数的模的运算法则的应用,考查计算能力.4.(5分)考点:伪代码.专题:图表型;算法和程序框图.分析:模拟执行程序框图,依次写出每次循环得到的I,S的值,当I=10时不满足条件I<8,退出循环,输出S的值为7.解答:解:模拟执行程序,可得S=1,I=1满足条件I<8,S=3,I=4满足条件I<8,S=5,I=7满足条件I<8,S=7,I=10不满足条件I<8,退出循环,输出S的值为7.故答案为:7.点评:本题主要考查循环结构的程序,正确判断退出循环的条件是解题的关键,属于基础题.5.(5分)考点:古典概型及其概率计算公式.专题:概率与统计.分析:根据题意,把4个小球分别编号,用列举法求出基本事件数,计算对应的概率即可.解答:解:根据题意,记白球为A,红球为B,黄球为C1、C2,则一次取出2只球,基本事件为AB、AC1、AC2、BC1、BC2、C1C2共6种,其中2只球的颜色不同的是AB、AC1、AC2、BC1、BC2共5种;所以所求的概率是P=.故答案为:.点评:本题考查了用列举法求古典概型的概率的应用问题,是基础题目.6.(5分)考点:平面向量的基本定理及其意义.专题:平面向量及应用.分析:直接利用向量的坐标运算,求解即可.解答:解:向量=(2,1),=(1,﹣2),若m+n=(9,﹣8)可得,解得m=2,n=5,∴m﹣n=﹣3.故答案为:﹣3.点评:本题考查向量的坐标运算,向量相等条件的应用,考查计算能力.7.(5分)考点:指、对数不等式的解法.专题:函数的性质及应用;不等式的解法及应用.分析:利用指数函数的单调性转化为x2﹣x<2,求解即可.解答:解;∵2<4,∴x2﹣x<2,即x2﹣x﹣2<0,解得:﹣1<x<2故答案为:(﹣1,2)点评:本题考查了指数函数的性质,二次不等式的求解,属于简单的综合题目,难度不大.8.(5分)考点:两角和与差的正切函数.专题:三角函数的求值.分析:直接利用两角和的正切函数,求解即可.解答:解:tanα=﹣2,tan(α+β)=,可知tan(α+β)==,即=,解得tanβ=3.故答案为:3.点评:本题考查两角和的正切函数,基本知识的考查.9.(5分)考点:棱柱、棱锥、棱台的体积.专题:计算题;空间位置关系与距离.分析:由题意求出原来圆柱和圆锥的体积,设出新的圆柱和圆锥的底面半径r,求出体积,由前后体积相等列式求得r.解答:解:由题意可知,原来圆锥和圆柱的体积和为:.设新圆锥和圆柱的底面半径为r,则新圆锥和圆柱的体积和为:.∴,解得:.故答案为:.点评:本题考查了圆柱与圆锥的体积公式,是基础的计算题.10.(5分)考点:圆的标准方程;圆的切线方程.专题:计算题;直线与圆.分析:求出圆心到直线的距离d的最大值,即可求出所求圆的标准方程.解答:解:圆心到直线的距离d==≤,∴m=1时,圆的半径最大为,∴所求圆的标准方程为(x﹣1)2+y2=2.故答案为:(x﹣1)2+y2=2.点评:本题考查所圆的标准方程,考查点到直线的距离公式,考查学生的计算能力,比较基础.11.(5分)考点:数列的求和;数列递推式.专题:等差数列与等比数列.分析:数列{a n}满足a1=1,且a n+1﹣a n=n+1(n∈N*),利用“累加求和”可得a n=.再利用“裂项求和”即可得出.解答:解:∵数列{a n}满足a1=1,且a n+1﹣a n=n+1(n∈N*),∴当n≥2时,a n=(a n﹣a n﹣1)+…+(a2﹣a1)+a1=+n+…+2+1=.当n=1时,上式也成立,∴a n=.∴=2.∴数列{}的前n项的和S n===.∴数列{}的前10项的和为.故答案为:.点评:本题考查了数列的“累加求和”方法、“裂项求和”方法、等差数列的前n项和公式,考查了推理能力与计算能力,属于中档题.12.(5分)考点:双曲线的简单性质.专题:计算题;圆锥曲线的定义、性质与方程.分析:双曲线x2﹣y2=1的渐近线方程为x±y=0,c的最大值为直线x﹣y+1=0与直线x﹣y=0的距离.解答:解:由题意,双曲线x2﹣y2=1的渐近线方程为x±y=0,因为点P到直线x﹣y+1=0的距离大于c恒成立,所以c的最大值为直线x﹣y+1=0与直线x﹣y=0的距离,即.故答案为:.点评:本题考查双曲线的性质,考查学生的计算能力,比较基础.13.(5分)考点:根的存在性及根的个数判断.专题:综合题;函数的性质及应用.分析::由|f(x)+g(x)|=1可得g(x)=﹣f(x)±1,分别作出函数的图象,即可得出结论.解答:解:由|f(x)+g(x)|=1可得g(x)=﹣f(x)±1.g(x)与h(x)=﹣f(x)+1的图象如图所示,图象有两个交点;g(x)与φ(x)=﹣f(x)﹣1的图象如图所示,图象有两个交点;所以方程|f(x)+g(x)|=1实根的个数为4.故答案为:4.点评:本题考查求方程|f(x)+g(x)|=1实根的个数,考查数形结合的数学思想,考查学生分析解决问题的能力,属于中档题.14.(5分)考点:数列的求和.专题:等差数列与等比数列;平面向量及应用.分析:利用向量数量积运算性质、两角和差的正弦公式、积化和差公式、三角函数的周期性即可得出.解答:解:=+=++++=++=++,∴(a k•a k+1)=+++++++…+++++++…+=+0+0=.故答案为:9.点评:本题考查了向量数量积运算性质、两角和差的正弦公式、积化和差公式、三角函数的周期性,考查了推理能力与计算能力,属于中档题.二、解答题(本大题共6小题,共计90分,解答时应写出文字说明、证明过程或演算步骤)15.(14分)考点:余弦定理的应用;二倍角的正弦.专题:解三角形.分析:(1)直接利用余弦定理求解即可.(2)利用正弦定理求出C的正弦函数值,然后利用二倍角公式求解即可.解答:解:(1)由余弦定理可得:BC2=AB2+AC2﹣2AB•ACcosA=4+8﹣2×2×3×=7,所以BC=.(2)由正弦定理可得:,则sinC===,∵AB<BC,∴C为锐角,则cosC===.因此sin2C=2sinCcosC=2×=.点评:本题考查余弦定理的应用,正弦定理的应用,二倍角的三角函数,注意角的范围的解题的关键.16.(14分)考点:直线与平面平行的判定;直线与平面垂直的性质.专题:证明题;空间位置关系与距离.分析:(1)根据中位线定理得DE∥AC,即证DE∥平面AA1C1C;(2)先由直三棱柱得出CC1⊥平面ABC,即证AC⊥CC1;再证明AC⊥平面BCC1B1,即证BC1⊥AC;最后证明BC1⊥平面B1AC,即可证出BC1⊥AB1.解答:证明:(1)根据题意,得;E为B1C的中点,D为AB1的中点,所以DE∥AC;又因为DE⊄平面AA1C1C,AC⊂平面AA1C1C,所以DE∥平面AA1C1C;(2)因为棱柱ABC﹣A1B1C1是直三棱柱,所以CC1⊥平面ABC,因为AC⊂平面ABC,所以AC⊥CC1;又因为AC⊥BC,CC1⊂平面BCC1B1,BC⊂平面BCC1B1,BC∩CC1=C,所以AC⊥平面BCC1B1;又因为BC1⊂平面平面BCC1B1,所以BC1⊥AC;因为BC=CC1,所以矩形BCC1B1是正方形,所以BC1⊥平面B1AC;又因为AB1⊂平面B1AC,所以BC1⊥AB1.点评:本题考查了直线与直线,直线与平面以及平面与平面的位置关系,也考查了空间想象能力和推理论证能力的应用问题,是基础题目.17.(14分)考点:函数与方程的综合运用.专题:综合题;导数的综合应用.分析:(1)由题意知,点M,N的坐标分别为(5,40),(20,2.5),将其分别代入y=,建立方程组,即可求a,b的值;(2)①求出切线l的方程,可得A,B的坐标,即可写出公路l长度的函数解析式f (t),并写出其定义域;②设g(t)=,利用导数,确定单调性,即可求出当t为何值时,公路l的长度最短,并求出最短长度.解答:解:(1)由题意知,点M,N的坐标分别为(5,40),(20,2.5),将其分别代入y=,得,解得,(2)①由(1)y=(5≤x≤20),P(t,),∴y′=﹣,∴切线l的方程为y﹣=﹣(x﹣t)设在点P处的切线l交x,y轴分别于A,B点,则A(,0),B(0,),∴f(t)==,t∈[5,20];②设g(t)=,则g′(t)=2t﹣=0,解得t=10,t∈(5,10)时,g′(t)<0,g(t)是减函数;t∈(10,20)时,g′(t)>0,g(t)是增函数,从而t=10时,函数g(t)有极小值也是最小值,∴g(t)min=300,∴f(t)min=15,答:t=10时,公路l的长度最短,最短长度为15千米.点评:本题考查利用数学知识解决实际问题,考查导数知识的综合运用,确定函数关系,正确求导是关键.18.(16分)考点:直线与圆锥曲线的综合问题;椭圆的标准方程.专题:直线与圆;圆锥曲线的定义、性质与方程.分析:(1)运用离心率公式和准线方程,可得a,c的方程,解得a,c,再由a,b,c的关系,可得b,进而得到椭圆方程;(2)讨论直线AB的斜率不存在和存在,设出直线方程,代入椭圆方程,运用韦达定理和弦长公式,以及两直线垂直的条件和中点坐标公式,即可得到所求直线的方程.解答:解:(1)由题意可得,e==,且c+=3,解得c=1,a=,则b=1,即有椭圆方程为+y2=1;(2)当AB⊥x轴,AB=,CP=3,不合题意;当AB与x轴不垂直,设直线AB:y=k(x﹣1),A(x1,y1),B(x2,y2),将AB方程代入椭圆方程可得(1+2k2)x2﹣4k2x+2(k2﹣1)=0,则x1+x2=,x1x2=,则C(,),且|AB|=•=,若k=0,则AB的垂直平分线为y轴,与左准线平行,不合题意;则k≠0,故PC:y+=﹣(x﹣),P(﹣2,),从而|PC|=,由|PC|=2|AB|,可得=,解得k=±1,此时AB的方程为y=x﹣1或y=﹣x+1.点评:本题考查椭圆的方程和性质,主要考查椭圆的离心率和方程的运用,联立直线方程,运用韦达定理和弦长公式,同时考查两直线垂直和中点坐标公式的运用,属于中档题.19.(16分)考点:利用导数研究函数的单调性;函数零点的判定定理.专题:综合题;导数的综合应用.分析:(1)求导数,分类讨论,利用导数的正负,即可得出f(x)的单调性;(2)由(1)知,函数f(x)的两个极值为f(0)=b,f(﹣)=+b,则函数f(x)有三个不同的零点等价于f(0)f(﹣)=b(+b)<0,进一步转化为a>0时,﹣a+c>0或a<0时,﹣a+c<0.设g(a)=﹣a+c,利用条件即可求c的值.解答:解:(1)∵f(x)=x3+ax2+b,∴f′(x)=3x2+2ax,令f′(x)=0,可得x=0或﹣.a=0时,f′(x)>0,∴f(x)在(﹣∞,+∞)上单调递增;a>0时,x∈(﹣∞,﹣)∪(0,+∞)时,f′(x)>0,x∈(﹣,0)时,f′(x)<0,∴函数f(x)在(﹣∞,﹣),(0,+∞)上单调递增,在(﹣,0)上单调递减;a<0时,x∈(﹣∞,0)∪(﹣,+∞)时,f′(x)>0,x∈(0,﹣)时,f′(x)<0,∴函数f(x)在(﹣∞,0),(﹣,+∞)上单调递增,在(0,﹣)上单调递减;(2)由(1)知,函数f(x)的两个极值为f(0)=b,f(﹣)=+b,则函数f(x)有三个不同的零点等价于f(0)f(﹣)=b(+b)<0,∵b=c﹣a,∴a>0时,﹣a+c>0或a<0时,﹣a+c<0.设g(a)=﹣a+c,∵函数f(x)有三个不同的零点时,a的取值范围恰好是(﹣∞,﹣3)∪(1,)∪(,+∞),∴在(﹣∞,﹣3)上,g(a)<0且在(1,)∪(,+∞)上g(a)>0均恒成立,∴g(﹣3)=c﹣1≤0,且g()=c﹣1≥0,∴c=1,此时f(x)=x3+ax2+1﹣a=(x+1)[x2+(a﹣1)x+1﹣a],∵函数有三个零点,∴x2+(a﹣1)x+1﹣a=0有两个异于﹣1的不等实根,∴△=(a﹣1)2﹣4(1﹣a)>0,且(﹣1)2﹣(a﹣1)+1﹣a≠0,解得a∈(﹣∞,﹣3)∪(1,)∪(,+∞),综上c=1.点评:本题考查导数知识的综合运用,考查函数的单调性,考查函数的零点,考查分类讨论的数学思想,难度大.20.(16分)考点:等比关系的确定;等比数列的性质.专题:等差数列与等比数列.分析:(1)根据等比数列和等差数列的定义即可证明;(2)利用反证法,假设存在a1,d使得a1,a22,a33,a44依次构成等比数列,推出矛盾,否定假设,得到结论;(3)利用反证法,假设存在a1,d及正整数n,k,使得a1n,a2n+k,a3n+2k,a4n+3k依次构成等比数列,得到a1n(a1+2d)n+2k=(a1+2d)2(n+k),且(a1+d)n+k(a1+3d)n+3k=(a1+2d)2(n+2k),利用等式以及对数的性质化简整理得到ln(1+3t)ln(1+2t)+3ln (1+2t)ln(1+t)=4ln(1+3t)ln(1+t),(**),多次构造函数,多次求导,利用零点存在定理,推出假设不成立.解答:解:(1)证明:∵==2d,(n=1,2,3,)是同一个常数,∴2,2,2,2依次构成等比数列;(2)令a1+d=a,则a1,a2,a3,a4分别为a﹣d,a,a+d,a+2d(a>d,a>﹣2d,d≠0)假设存在a1,d使得a1,a22,a33,a44依次构成等比数列,则a4=(a﹣d)(a+d)3,且(a+d)6=a2(a+2d)4,令t=,则1=(1﹣t)(1+t)3,且(1+t)6=(1+2t)4,(﹣<t<1,t≠0),化简得t3+2t2﹣2=0(*),且t2=t+1,将t2=t+1代入(*)式,t(t+1)+2(t+1)﹣2=t2+3t=t+1+3t=4t+1=0,则t=﹣,显然t=﹣不是上面方程的解,矛盾,所以假设不成立,因此不存在a1,d,使得a1,a22,a33,a44依次构成等比数列.(3)假设存在a1,d及正整数n,k,使得a1n,a2n+k,a3n+2k,a4n+3k依次构成等比数列,则a1n(a1+2d)n+2k=(a1+2d)2(n+k),且(a1+d)n+k(a1+3d)n+3k=(a1+2d)2(n+2k),分别在两个等式的两边同除以=a12(n+k),a12(n+2k),并令t=,(t>,t≠0),则(1+2t)n+2k=(1+t)2(n+k),且(1+t)n+k(1+3t)n+3k=(1+2t)2(n+2k),将上述两个等式取对数,得(n+2k)ln(1+2t)=2(n+k)ln(1+t),且(n+k)ln(1+t)+(n+3k)ln(1+3t)=2(n+2k)ln(1+2t),化简得,2k[ln(1+2t)﹣ln(1+t)]=n[2ln(1+t)﹣ln(1+2t)],且3k[ln(1+3t)﹣ln(1+t)]=n[3ln(1+t)﹣ln(1+3t)],再将这两式相除,化简得,ln(1+3t)ln(1+2t)+3ln(1+2t)ln(1+t)=4ln(1+3t)ln(1+t),(**)令g(t)=4ln(1+3t)ln(1+t)﹣ln(1+3t)ln(1+2t)+3ln(1+2t)ln(1+t),则g′(t)=[(1+3t)2ln(1+3t)﹣3(1+2t)2ln(1+2t)+3(1+t)2ln(1+t)],令φ(t)=(1+3t)2ln(1+3t)﹣3(1+2t)2ln(1+2t)+3(1+t)2ln(1+t),则φ′(t)=6[(1+3t)ln(1+3t)﹣2(1+2t)ln(1+2t)+3(1+t)ln(1+t)],令φ1(t)=φ′(t),则φ1′(t)=6[3ln(1+3t)﹣4ln(1+2t)+ln(1+t)],令φ2(t)=φ1′(t),则φ2′(t)=>0,由g(0)=φ(0)=φ1(0)=φ2(0)=0,φ2′(t)>0,知g(t),φ(t),φ1(t),φ2(t)在(﹣,0)和(0,+∞)上均单调,故g(t)只有唯一的零点t=0,即方程(**)只有唯一解t=0,故假设不成立,所以不存在a1,d及正整数n,k,使得a1n,a2n+k,a3n+2k,a4n+3k依次构成等比数列.点评:本题主要考查等差数列、等比数列的定义和性质,函数与方程等基础知识,考查代数推理、转化与化归及综合运用数学知识探究与解决问题的能力,属于难题.三、附加题(本大题包括选做题和必做题两部分)【选做题】本题包括21-24题,请选定其中两小题作答,若多做,则按作答的前两小题评分,解答时应写出文字说明、证明过程或演算步骤【选修4-1:几何证明选讲】21.(10分)考点:相似三角形的判定.专题:推理和证明.分析:直接利用已知条件,推出两个三角形的三个角对应相等,即可证明三角形相似.解答:证明:∵AB=AC,∴∠ABD=∠C,又∵∠C=∠E,∴∠ABD=∠E,又∠BAE是公共角,可知:△ABD∽△AEB.点评:本题考查圆的基本性质与相似三角形等基础知识,考查逻辑推理能力.【选修4-2:矩阵与变换】22.(10分)考点:特征值与特征向量的计算.专题:矩阵和变换.分析:利用A=﹣2,可得A=,通过令矩阵A的特征多项式为0即得结论.解答:解:由已知,可得A=﹣2,即==,则,即,∴矩阵A=,从而矩阵A的特征多项式f(λ)=(λ+2)(λ﹣1),∴矩阵A的另一个特征值为1.点评:本题考查求矩阵及其特征值,注意解题方法的积累,属于中档题.【选修4-4:坐标系与参数方程】23.(2015•江苏)考点:简单曲线的极坐标方程.专题:计算题;坐标系和参数方程.分析:先根据x=ρcosθ,y=ρsinθ,求出圆的直角坐标方程,求出半径.解答:解:圆的极坐标方程为ρ2+2ρsin(θ﹣)﹣4=0,可得ρ2﹣2ρcosθ+2ρsinθ﹣4=0,化为直角坐标方程为x2+y2﹣2x+2y﹣4=0,化为标准方程为(x﹣1)2+(y+1)2=6,圆的半径r=.点评:本题主要考查把极坐标方程化为直角坐标方程的方法,以及求点的极坐标的方法,关键是利用公式x=ρcosθ,y=ρsinθ,比较基础,[选修4-5:不等式选讲】24.(2015•江苏)考点:绝对值不等式的解法.专题:不等式.分析:思路1(公式法):利用|f(x)|≥g(x)⇔f(x)≥g(x),或f(x)≤﹣g(x);思路2(零点分段法):对x的值分“x≥”“x<”进行讨论求解.解答:解法1:x+|2x+3|≥2变形为|2x+3|≥2﹣x,得2x+3≥2﹣x,或2x+3≥﹣(2﹣x),即x≥,或x≤﹣5,即原不等式的解集为{x|x≥,或x≤﹣5}.解法2:令|2x+3|=0,得x=.①当x≥时,原不等式化为x+(2x+3)≥2,即x≥,所以x≥;②x<时,原不等式化为x﹣(2x+3)≥2,即x≤﹣5,所以x≤﹣5.综上,原不等式的解集为{x|x≥,或x≤﹣5}.点评:本题考查了含绝对值不等式的解法.本解答给出的两种方法是常见的方法,不管用哪种方法,其目的是去绝对值符号.若含有一个绝对值符号,利用公式法要快捷一些,其套路为:|f(x)|≥g(x)⇔f(x)≥g(x),或f(x)≤﹣g(x);|f(x)|≤g(x)⇔﹣g(x)≤f(x)≤g(x).可简记为:大于号取两边,小于号取中间.使用零点分段法时,应注意:同一类中取交集,类与类之间取并集.【必做题】每题10分,共计20分,解答时写出文字说明、证明过程或演算步骤25.(10分)(考点:二面角的平面角及求法;点、线、面间的距离计算.专题:空间位置关系与距离;空间角.分析:以A为坐标原点,以AB、AD、AP所在直线分别为x、y、z轴建系A﹣xyz.(1)所求值即为平面PAB的一个法向量与平面PCD的法向量的夹角的余弦值的绝对值,计算即可;(2)利用换元法可得cos2<,>≤,结合函数y=cosx在(0,)上的单调性,计算即得结论.解答:解:以A为坐标原点,以AB、AD、AP所在直线分别为x、y、z轴建系A﹣xyz如图,由题可知B(1,0,0),C(1,1,0),D(0,2,0),P(0,0,2).(1)∵AD⊥平面PAB,∴=(0,2,0),是平面PAB的一个法向量,∵=(1,1,﹣2),=(0,2,﹣2),设平面PCD的法向量为=(x,y,z),由,得,取y=1,得=(1,1,1),∴cos<,>==,∴平面PAB与平面PCD所成两面角的余弦值为;(2)∵=(﹣1,0,2),设=λ=(﹣λ,0,2λ)(0≤λ≤1),又=(0,﹣1,0),则=+=(﹣λ,﹣1,2λ),又=(0,﹣2,2),从而cos<,>==,设1+2λ=t,t∈[1,3],则cos2<,>==≤,当且仅当t=,即λ=时,|cos<,>|的最大值为,因为y=cosx在(0,)上是减函数,此时直线CQ与DP所成角取得最小值.又∵BP==,∴BQ=BP=.点评:本题考查求二面角的三角函数值,考查用空间向量解决问题的能力,注意解题方法的积累,属于中档题.26.(10分)考点:数学归纳法.专题:综合题;点列、递归数列与数学归纳法.分析:(1)f(6)=6+2++=13;(2)根据数学归纳法的证明步骤,分类讨论,即可证明结论.解答:解:(1)f(6)=6+2++=13;(2)当n≥6时,f(n)=.下面用数学归纳法证明:①n=6时,f(6)=6+2++=13,结论成立;②假设n=k(k≥6)时,结论成立,那么n=k+1时,S k+1在S k的基础上新增加的元素在(1,k+1),(2,k+1),(3,k+1)中产生,分以下情形讨论:1)若k+1=6t,则k=6(t﹣1)+5,此时有f(k+1)=f(k)+3=(k+1)+2++,结论成立;2)若k+1=6t+1,则k=6t+1,此时有f(k+1)=f(k)+1=k+2+++1=(k+1)+2++,结论成立;3)若k+1=6t+2,则k=6t+1,此时有f(k+1)=f(k)+2=k+2+++2=(k+1)+2++,结论成立;4)若k+1=6t+3,则k=6t+2,此时有f(k+1)=f(k)+2=k+2+++2=(k+1)+2++,结论成立;5)若k+1=6t+4,则k=6t+3,此时有f(k+1)=f(k)+2=k+2+++2=(k+1)+2++,结论成立;6)若k+1=6t+5,则k=6t+4,此时有f(k+1)=f(k)+2=k+2+++2=(k+1)+2++,结论成立.综上所述,结论对满足n≥6的自然数n均成立.点评:本题考查数学归纳法,考查学生分析解决问题的能力,正确归纳是关键.。

2015年高考真题——数学(江苏卷) 解析版

2015年高考真题——数学(江苏卷) 解析版

2015年普通高等学校招生全国统一考试(江苏卷)数学I一、填空题:本大题共14小题,每小题5分,共计70分.请把答案填写在答题卡相应的位置 1.已知集合{}123A =,,,{}245B =,,,则集合A B U 中元素的个数为_______.解析:{}5,4,3,2,1=⋃B A ,故答案5 2.已知一组数据4,6,5,8,7,6,那么这组数据的平均数为________. 解析:66678564=+++++,故答案63.设复数z 满足234z i =+(i 是虚数单位),则z 的模为_______. 解析:设z=a+bi,,则()i bi a 432+=+化为i abi b a 43222+=+-,所以⎩⎨⎧==-42322ab b a解得⎪⎩⎪⎨⎧==1422b a ,所以z 的模为522=+b a ,故答案54.根据如图所示的伪代码,可知输出的结果S 为________.解析:第一次:S=1+2=3,I=1+3=4;第二次:S=3+2=5,I=4+3=7;第三次:S=5+2=7,I=7+3=10;因为10>8,所以程序结束,故S=75.袋中有形状、大小都相同的4只球,其中1只白球,1只红球,2只黄球,从中一次随机摸出2只球,则这2只球颜色不同的概率为________.6.已知向量()21a =r,,()2-1,=,若()()R n m n m ∈-=+,89,,则m-n 的值为______. 解析:因为()()R n m n m ∈-=+,89,,所以⎩⎨⎧-=-=+8292n m n m ,所以352-=-⎩⎨⎧==n m n m ,7.不等式224x x-<的解集为________.解析:因为224x x-<,所以()()2102102222<<-<-+<--<-x x x x x x x ,,,,故解析为()21,-8.已知tan 2α=-,()1tan 7αβ+=,则tan β的值为_______.解析:()[]()()3757152711271tan tan 1tan tan tan tan ==⨯-+=++-+=-+=αβααβααβαβ,故答案3 9.现有橡皮泥制作的底面半径为5,高为4的圆锥和底面半径为2、高为8的圆柱各一个。

2015江苏高考数学试卷及答案

2015年全国高等学校统一招生考试(江苏卷)数学(Ⅰ)一、填空题(共14小题,每小题5分,共70分) 1.已知集合{}123A =,,,{}245B =,,,则集合AB 中元素的个数为_____.2.已知一组数据4,6,5,8,7,6,那么这组数据的平均数为______.3.设复数z 满足234i z =+(i 是虚数单位),则z 的模为______.4.根据如图所示的伪代码,可知输出的结果S 为________. 5.袋中有形状、大小都相同的4只球,其中1只白球,1只红球,2只黄球,从中一次随机摸出2只球,则这2只球颜色不同的概率为________.6.已知向量,(21)=,a ,(12)=-,b ,若(98)m n +=-,a b ()m n ∈R ,,则m n -的值为______. 7.不等式224x x-<的解集为________.8.已知tan 2α=-,()1tan 7αβ+=,则tan β的值为_______. 9.现有橡皮泥制作的底面半径为5,高为4的圆锥和底面半径为2,高为8的圆柱各一个.若将它们重新制作成总体积与高均保持不变,但底面半径相同的新的圆锥与圆柱各一个,则新的底面半径为 .10.在平面直角坐标系xOy 中,以点(10),为圆心且与直线210()mx y m m ---=∈R 相切的所有圆中,半径最大的圆的标准方程为 .11.数列}{n a 满足11=a ,且11+=-+n a a n n (*n ∈N ),则数列}1{na 的前10项和为 .12.在平面直角坐标系xOy 中,P 为双曲线122=-y x 右支上的一个动点.若点P 到直线01=+-y x 的距离大于c 恒成立,则实数c 的最大值为 .1S ←1I ←Whiie 8I <2S S +← 3I I +← End Whiie Print S13.已知函数|ln |)(x x f =,2001()|4|21x g x x x <⎧=⎨-->⎩,≤,,,则方程1|)()(|=+x g x f 实根的个数为 .14.设向量(cos sin cos )(01212)666k k k k πππ=+=,,,,,k a ,则11()k =∑1k k+a a 的值为 .二、解答题,本题共6个小题,共计90分,请在答题卡指定区域内作答,解答时应写出文字说明,证明过程或演算步骤.15.在ABC V 中,已知2160AB AC A ===,,o. (1 ) 求BC 的长;(2)求sin 2C 的值.16.如图,在直三棱柱111ABC A B C -中,已知1AC BC BC CC ⊥=,.设1AB 的中点为D ,11B C BC E =I .求证:(1)//DE 平面11AAC C ; (2 ) 11BC AB ⊥.ACBDEA 1B 1C 1(第16题)17.(本小题满分14分)某山区外围有两条相互垂直的直线型公路,为进一步改善山区的交通现状,计划修建一条连接两条公路的山区边界的直线型公路,记两条相互垂直的公路为12l l ,,山区边界曲线为C ,计划修建的公路为l ,如图所示,M ,N 为C 的两个端点,测得点M 到12l l ,的距离分别为5千米和40千米,点N 到12l l ,的距离分别为20千米和2.5千米,以12l l ,所在的直线分别为x ,y 轴,建立平面直角坐标系xOy ,假设曲线C 符合函数2ay x b=+(其中a ,b 为常数)模型. (1)求a ,b 的值;(2)设公路l 与曲线C 相切于P 点,P 的横坐标为t . ①请写出公路l 长度的函数解析式()f t ,并写出其定义域; ②当t 为何值时,公路l 的长度最短?求出最短长度. 18.(本小题满分16分)如图,在平面直角坐标系xOy 中,已知椭圆()222210x y a b a b +=>>的离心率为22,且右焦 点F 到左准线l 的距离为3. (1)求椭圆的标准方程;(2)过F 的直线与椭圆交于A ,B 两点,线段AB 的垂直平分线分别交直线l 和AB 于点P ,C ,若2P C A B =,求直线AB 的方程.ONMxyPlCl 1l 2(第17题)OBAPC yx(第18题)l19.(本小题满分16分)已知函数32()()f x x ax b a b =++∈R ,. (1)试讨论)(x f 的单调性;(2)若a c b -=(实数c 是与a 无关的常数),当函数)(x f 有三个不同的零点时,a的取值范围恰好是33(3)(1)()22-∞-+∞,,,,求c 的值.20.设1234a a a a ,,,是各项为正数且公差为d (0)d ≠的等差数列. (1)证明:31242222a a a a,,,依次成等比数列;(2)是否存在1a d ,,使得2341234a a a a ,,,依次成等比数列,并说明理由; (3)是否存在1a d ,及正整数n k ,,使得231234n n k n k n k a a a a +++,,,依次成等比数列,并说明理由.2015年全国高等学校统一招生考试(江苏卷)数学(Ⅱ)21.【选做题】本题包括A 、B 、C 、D 四小题,请选定其中两小题,并在相应的区域内作答,若多做,则按作答的前两小题评分,解答时应写出文字说明、证明过程或演算步骤. A .[选修4-1:几何证明选讲](本小题满分10分)如图,在ABC ∆中,AC AB =,ABC ∆的外接圆圆O 的弦AE 交BC 于点D .求证:ABD ∆∽AEB ∆.B .[选修4-2:矩阵与变换](本小题满分10分)已知x y ∈R ,,向量11⎡⎤=⎢⎥-⎣⎦α是矩阵⎢⎣⎡⎥⎦⎤=01y x A 的属性特征值2-的一个特征向量,求矩阵A 以及它的另一个特征值.C .[选修4-4:坐标系与参数方程](本小题满分10分)已知圆C 的极坐标方程为222sin()404ρρθπ+--=,求圆C 的半径.D .[选修4-5:不等式选讲](本小题满分10分)解不等式|23|2x x ++≥.OBAD CE(第21-A 题)【必做题】 22.(本小题满分10分)如图,在四棱锥P ABCD -中,已知PA ⊥平面ABCD ,且四边形ABCD 为直角梯形,2ABC BAD π∠=∠=,21PA AD AB BC ====,. (1) 求平面PAB 与平面PCD 所成二面角的余弦值; (2)点Q 是线段BP 上的动点,当直线CQ 与DP 所成角最小时,求线段BQ 的长.23.(本小题满分10分)已知集合*{123}{123}()n X Y n n ==∈N ,,,,,,,,设{()|n S a b a =,整除b或b 整除a ,}n a X b Y ∈∈,,令()f n 表示集合n S 所含元素个数.(1)写出(6)f 的值;(2)当6n ≥时,写出()f n 的表达式,并用数学归纳法证明.Q B A DC P(第22题)。

2015年江苏高考数学试题(答案-WORD版)

2015年江苏高考数学试题(无答案)一、填空题1.已知集合{}123A =,,,{}245B =,,,则集合AB 中元素的个数为_______.2.已知一组数据4,6,5,8,7,6,那么这组数据的平均数为________.3.设复数z 满足234z i =+(i 是虚数单位),则z 的模为_______.4.根据如图所示的伪代码,可知输出的结果S 为________.5.袋中有形状、大小都相同的4只球,其中1只白球,1只红球,2只黄球,从中一次随机摸出2只球,则这2只球颜色不同的概率为________.6.已知向量()21a =,,()2a =-1,,若()()98ma nb mn R +=-∈,,则m-n 的值为______.7.不等式224x x-<的解集为________.8.已知tan 2α=-,()1tan 7αβ+=,则tan β的值为_______.9.现有橡皮泥制作的底面半径为5,高为4的圆锥和底面半径为2、高为8的圆柱各一个。

若将它们重新制作成总体积与高均保持不变,但底面半径相同的新的圆锥与圆柱各一个,则新的底面半径为 。

10.在平面直角坐标系xOy 中,以点)0,1(为圆心且与直线)(012R m m y mx ∈=---相切的所有圆中,半径最大的圆的标准方程为 。

11.数列}{n a 满足11=a ,且11+=-+n a a n n (*N n ∈),则数列}1{na 的前10项和为 。

12.在平面直角坐标系xOy 中,P 为双曲线122=-y x 右支上的一个动点。

若点P 到直线01=+-y x 的距离对c 恒成立,则是实数c 的最大值为 。

13.已知函数|ln |)(x x f =,⎩⎨⎧>--≤<=1,2|4|10,0)(2x x x x g ,则方程1|)()(|=+x g x f 实根的个数为 。

14.设向量)12,,2,1,0)(6cos 6sin ,6(cos =+=k k k k a k πππ,则∑=+111)(k k k a a 的值为 。

2015江苏高考压轴卷 数学

(图1)2015江苏高考压轴卷数 学一、 填空题(本大题共14小题,每小题5分,共70分) 1.已知复数z 的实部为2-,虚部为1,则z 的模等于 . 2.已知集合{}3,,0,1-=A ,集合{}2-==x y x B ,则=B A .3.右图1是一个算法流程图,若输入x 的值为4-,则输出y 的值为 .4.函数)1(log 21)(2---=x x f x的定义域为 .5.样本容量为10的一组数据,它们的平均数是5,频率如条形图2所示,则这组数据的方差等于 .6.设,αβ是两个不重合的平面,,m n 是两条不重合的直线,给出下列四个命题:①若,||,,n n m αβαβ⊂=则||n m ;②若,m n αα⊂⊂,,m n ββ∥∥,则αβ∥;③若,,,m n n m αβαβα⊥=⊂⊥,则n β⊥;④若,,m m n ααβ⊥⊥∥,则n β∥.其中正确的命题序号为7.若圆222)5()3(r y x =++-上有且只有两个点到直线234:=-y x l 的距离等于1,则半径r 的取值范围是 .8.已知命题()()2:,2,P b f x x bx c∀∈-∞=++在(),1-∞-上为减函数;命题0:Q x Z ∃∈,使得021x<.则在命题P Q ⌝⌝∨,图2P Q ⌝⌝∧,P Q ⌝∨,P Q ⌝∧中任取一个命题,则取得真命题的概率是9.若函数2()(,,)1bx cf x a b c R x ax +=∈++),,,(R d c b a ∈,其图象如图3所示,则=++c b a .10.函数2322)(223+--=x a x a x x f 的图象经过四个象限,则a 的取值范围是 .11.在ABC ∆中,已知角A,B,C 的对边分别为a,b,c,且sin sin sin A C Bb c a c-=-+,则函数22()cos ()sin ()22x x f x A A =+--在3,22ππ⎡⎤-⎢⎥⎣⎦上的单调递增区间是 .12. “已知关于x 的不等式02>++c bx ax 的解集为)2,1(,解关于x 的不等式02>++a bx cx .”给出如下参考上述解法:若关于x 的不等式0<++++c x b x a x b 的解集为)1,21()31,1( --,则关于x 的不等式0>----cx bx a x b 的解集为 . 13.2014年第二届夏季青年奥林匹克运动会将在中国南京举行,为了迎接这一盛会,某公司计划推出系列产品,其中一种是写有“青奥吉祥数”的卡片.若设正项数列{}n a 满足()2110n n n n a a +--=,定义使2log k a 为整数的实数k 为“青奥吉祥数”,则在区间[1,2014]内的所有“青奥吉祥数之和”为________14.已知()22,032,0x x f x x x ⎧-≤=⎨->⎩,设集合(){},11A y y f x x ==-≤≤,{},11B y y ax x ==-≤≤,若对同一x 的值,总有12y y ≥,其中12,y A y B ∈∈,则实数a 的取值范围是 二、 解答题(本大题共6小题,共90分)15.在ABC ∆中,角A ,B ,C 的对边分别为a ,b ,c ,向量()(1sin ,1),1,sin cos 2Cm n C C =--=+,且.n m ⊥(1)求sin C 的值;(2)若()2248a b a b +=+-,求边c 的长度.16.如图4,在四棱锥P ABCD -中,平面PAD ⊥平面ABCD ,AB ∥DC ,PAD △ 是等边三角形,已知28BD AD ==,2AB DC ==(1)设M 是PC 上的一点,证明:平面MBD ⊥平面PAD ; (2)求四棱锥P ABCD -的体积.17.如图5,GH 是东西方向的公路北侧的边缘线,某公司准备在GH 上的一点B 的正北方向的A 处建一仓库,设AB = y km ,并在公路同侧建造边长为x km 的正方形无顶中转站CDEF (其中边EF 在GH 上),现从仓库A 向GH 和中转站分别修两条道路AB ,AC ,已知AB = AC + 1,且∠ABC = 60o . (1)求y 关于x 的函数解析式;(2)如果中转站四周围墙造价为1万元/km ,两条道路造价为3万元/km ,问:x 取何值时,该公司建中转站围墙和两条道路总造价M 最低?18. 如图6,椭圆22221x y a b +=(0)a b >>过点3(1,)2P ,其左、右焦点分别为12,F F ,离心率12e =,,M N 是椭圆右准线上的两个动点,且120F M F N ⋅=. (1)求椭圆的方程; (2)求MN 的最小值;(3)以MN 为直径的圆C 是否过定点?请证明你的结论.ABCMPD图4 公 路H G F E D C B A 图519.已知函数).1,0(ln )(2≠>-+=a a a x x a x f x (1)求曲线()y f x =在点))0(,0(f 处的切线方程; (2)求函数)(x f 的单调增区间;(3)若存在]1,1[,21-∈x x ,使得e e x f x f (1)()(21-≥-是自然对数的底数),求实数a 的取值范围.20. 已知数列{a n }中,a 2=a(a 为非零常数),其前n 项和S n 满足S n =n(a n -a 1)2(n ∈N*). (1)求数列{a n }的通项公式;(2)若a=2,且21114m n a S -=,求m 、n 的值;(3)是否存在实数a 、b ,使得对任意正整数p ,数列{a n }中满足n a b p +≤的最大项恰为第23-p 项?若存在,分别求出a 与b 的取值范围;若不存在,请说明理由.数学Ⅱ(附加题)21A .[选修4-1:几何证明选讲](本小题满分10分)如图,从圆O 外一点P 引圆的切线PC 及割线PAB ,C 为切点. 求证:AP BC AC CP ⋅=⋅.21B .已知矩阵213,125M β ⎡⎤⎡⎤==⎢⎥⎢⎥⎣⎦⎣⎦,计算2M β.21C .已知圆C 的极坐标方程是4sin ρθ=,以极点为平面直角坐标系的原点,极轴为x 轴的正半轴,建立平面直角坐标系,直线l的参数方程是(12x t y t m ⎧=⎪⎪⎨⎪=+⎪⎩是参数).若直线l 与圆C 相切,求正数m 的值.21D .(本小题满分10分,不等式选讲)已知不等式2|1|a b x +-≤对于满足条件1222=++c b a 的任意实数c b a ,,恒成立,求实数x 的取值范围.【必做题】第22、23题,每小题10分,共计20分.请在答题卡指定区域.......内作答,解答时应写出 文字说明、证明过程或演算步骤. 22.(本小题满分10分)22. 如图,在四棱锥P -ABCD 中,PA ⊥底面ABCD ,底面ABCD 是边长为2的菱形,60ABC ∠=︒,PA M 为PC 的中点.(1)求异面直线PB 与MD 所成的角的大小;(2)求平面PCD 与平面PAD 所成的二面角的正弦值.P(第21 - A 题)23.(本小题满分10分)袋中共有8个球,其中有3个白球,5个黑球,这些球除颜色外完全相同.从袋中随机取出一球,如果取出白球,则把它放回袋中;如果取出黑球,则该黑球不再放回,并且另补一个白球放入袋中.重复上述过程n 次后,袋中白球的个数记为X n . (1)求随机变量X 2的概率分布及数学期望E (X 2);(2)求随机变量X n 的数学期望E (X n )关于n 的表达式.2015江苏高考压轴卷数学答案一、填空题1.52..{}0,1-3.24.),2()2,1(+∞5.7.26. ①③7.8.149.4 10. ),1(4481,+∞⎪⎪⎭⎫ ⎝⎛-∞- 11. []0,π 12.)1,31()21,1( -- 13.2047 14. []1,0- 提示:1.i z +-=2,则i z --=2,则5)1()2(22=-+-=z .2.{}{}{}2022≤=≥-=-==x x x x x y x B ,又{}3,,0,1-=A ,所以{}0,1-=B A .3. 当4-=x 时,34>-,则7=x ;当7=x 时,37>,4=x ;当4=x 时,34>,1=x ;当1=x 时,31>不成立,则输出221==y .4.要使原式有意义,则⎩⎨⎧≠->-1101x x ,即1>x 且2≠x .5.2出现44.010=⨯次,5出现22.010=⨯次,8出现44.010=⨯次,所以[]2.7)55(4)55(2)52(41012222=-⨯+-⨯+-⨯=s . 6. 逐个判断。

15年高考真题——理科数学(江苏卷)

2015年普通高等学校招生全国统一考试(江苏)卷一.填空题(本大题共14小题,每小题5分,共70分。

请把答案填写在答题卡相应位置上)1.已知集合{}3,2,1=A ,{}5,4,2=B ,则集合B A 中元素的个数为 。

2.已知一组数据4,6,5,8,7,6,那么这组数据的平均数为 。

3.设复数z 满足234z i =+(i 是虚数单位),则z 的模为 。

4.根据如图所示的伪代码,可知输出的结果S 为 。

5.袋中有形状、大小都相同的4只球,其中1只白球,1只红球,2只黄球,从中一次随机摸出2只球,则这2只球颜色不同的概率为 。

6.已知向量()2,1a =,()1,2b =-,若()9,8ma nb +=-,其中,m n R ∈,则n m -的值为 。

7.不等式224x x -<的解集为 。

8.已知tan 2α=-,()1tan 7αβ+=,则tan β的值为 。

9.现有橡皮泥制作的底面半径为5,高为4的圆锥和底面半径为2,高为8的圆柱各一个。

若将它们重新制作成总体积与高均保持不变,但底面半径相同的新的圆锥与圆柱各一个,则新的底面半径为 。

10.在平面直角坐标系xOy 中,以点()1,0为圆心且与直线()210mx y m m R ---=∈相切的所有圆中,半径最大的圆的标准方程为 。

11.数列{}n a 满足11=a ,且()11n n a a n n N ++-=+∈,则数列1n a ⎧⎫⎨⎬⎩⎭的前10项和为 。

12.在平面直角坐标系xOy 中,P 为双曲线122=-y x 右支上的一个动点。

若点P 到直线01=+-y x 的距离大于c 恒成立,则是实数c 的最大值为 。

13.已知函数()|ln |f x x =,()()()2001|4|21x g x x x <≤⎧⎪=⎨-->⎪⎩,则方程()()||1f x g x +=实根的个数为 。

14.设向量()cos ,sin cos 0,1,2,,12666k k k k a k πππ⎛⎫=+= ⎪⎝⎭,则()1110k k k a a +=⋅∑的值为 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

压轴填空题研究(江苏版) 第一季(教师)
题1设m ∈N ,
若函数()210f x x m =-+存在整数零点,则m 的取值集合为 ▲ . {0,3,14,30}.
题2已知数列{a n },{b n }满足a 1=1,a 2=2,b 1=2,且对任意的正整数i ,j ,k ,l ,当i +j =k +l
时都有a i +b j =a k +b l ,则2011
1
1()2011i i i a b =+∑的值是 ▲ .2013
题3若对任意的x ∈D ,均有f 1(x )≤f (x )≤f 2(x )成立,则称函数f (x )为函数f 1(x )到函数f 2(x )在区间D 上的“折中函数”.已知函数f (x )=(k -1)x -1,g (x )=0,h (x )=(x +1)ln x ,且f (x )是g (x )到h (x )在区间[1,2e]上的“折中函数”,则实数k 的取值范围为 ▲ .2
题4(泰州市一模)已知O 是锐角△ABC 的外接圆的圆心,且∠A =θ,若cos cos 2sin sin B C AB AC mAO C B
+=,则m = ▲ .(用θ表示) sin θ
题5若直角坐标平面内两点P ,Q 满足条件:①P ,Q 都在函数f (x )的图象上;②P ,Q 关于原点对称,则称点对(P ,Q )是函数()f x 的一个“友好点对”(点对(P ,Q )与点对(Q ,P )为同
一个“友好点对”).已知函数22410()20e
x x x x f x x ⎧++<⎪=⎨⎪⎩≥, , , , 则()f x 的“友好点对”有 ▲ 个.2
题6直线l 与函数sin y x =([0]x ∈π,
)的图象相切于点A ,且l ∥OP ,O 为坐标原点,P 为图象的极值点,l 与x 轴交于点B ,过切点A 作x 轴的垂线,垂足为C ,则BA BC ⋅= ▲ . 2
14
π- 题7若函数f (x )=x 3-ax 2(a >0)在区间20(
,)3
+∞上是单调递增函数,则使方程f (x )=1000有整数解的实数a 的个数是 ▲ .4个
题8在平面直角坐标系xOy中,点P是第一象限内曲线31
y x
=-+上的一个动点,过P作切
线与两个坐标轴交于A,B两点,则△AOB的面积的最小值是▲.
题9(已知函数
2342011
()1
2342011
x x x x
f x x
=+-+-+⋅⋅⋅+,
2342011
()1
2342011
x x x x
g x x
=-+-+-⋅⋅⋅-,
设()(3)(3)
F x f x g x
=+⋅-,且函数F(x)的零点均在区间[,](,,)
a b a b a b
<∈Z内,则b a
-的最小值为▲.9
题10,则该三角形的面积的最大值是▲.(系列变题)2
题11(已知函数f(x)=|x2-2|,若f(a)≥f(b),且0≤a≤b,则满足条件的点(a,b)所围成
区域的面积为▲.
2
π
题12若函数f(x)=|sin x|(x≥0)的图象与过原点的直线有且只有三个交点,交点中横坐标
的最大值为α,则
2
(1)sin2
αα
α
+
= ▲.2
题13已知函数
()|1||2||2011||1||2||2011|
f x x x x x x x
=+++++++-+-++-()
x∈R,且2
(32)(1)
f a a f a
-+=-,则满足条件的所有整数a的和是▲.6
题14已知函数f(x)=
211
1
x ax
x
++
+
(a∈R),若对于任意的x∈N*,f(x)≥3恒成立,则a的取
图12 值范围是 ▲ .a ≥83
-.
题15已知函数f (x )=cos x ,g (x )=sin x ,记
S n =2211(1)1(1)2(
)(
)222n n n k k k k n f g n n
==-π--π-∑∑,T m =S 1+S 2+…+S m .若T m <11,则m 的最大值为 ▲ .5
题16已知m ,n ∈R ,且m +2n =2,则2122m n m n +⋅+⋅的最小值为 ▲ .(系列变题)4
题17在平面直角坐标系xOy 中,设A ,B ,C 是圆x 2+y 2=1上相异三点,若存在正实数λ,μ,使得OC OA OB λμ=+,则λ2+(μ-3)2的取值范围是 ▲ .(2,)+∞.
题18如图11是一个数表,第1行依次写着从小到大的正整数,然后把每行相邻的两个数的和写在这两数正中间的下方,得到下一行,数表从上到下与从左到右均为无限项,则这个数表中的第13行第10个数为 ▲ .111216142922⨯+⨯=
题19 如图12,已知正方形ABCD 的边长为1,过正方形中心O 的直线MN 分别交正方形的边AB ,CD 于点M
,N ,则当MN BN 取最小值时,CN = ▲ .
题20定义在[1,)+∞上的函数f (x )满足:①f (2x )=cf (x )(c 为正常数);②当2≤x ≤4时,f (x )=1-|x -3|.若函数图象上所有取极大值的点均落在同一条直线上,则c = ▲ .c =2或c =1
题21设函数f (x )的定义域为D ,如果存在正实数k ,使对任意x ∈D ,都有x +k ∈D ,且f (x +k )>f (x )恒成立,则称函数f (x )为D 上的“k 型增函数”.已知f (x )是定义在R 上的奇函数,且当x >0时,f (x )=|x -a |-2a ,若f (x )为R 上的“2011型增函数”,则实数a 的取值范围是 ▲ .a <
20116
题22(徐州市三模) 若关于x 的方程x 4+ax 3+ax 2+ax +1=0有实数根,则实数a 的取值范围为
▲.
2
(,][2,)
3
-∞-+∞
题23函数f(x)=
3
24
12
x x
x x
-
++
的最大值与最小值的乘积是▲.
1
16
-
题24已知函数f(x)=|x-1|+|2x-1|+|3x-1|+…+|100x-1|,则当x= ▲时,f(x)取得最小
值.1 71
题252008年江苏高考数学题:满足条件AB=2,AC的△ABC的面积的最大值为▲略
(注意:阿波罗尼斯圆类题)。

相关文档
最新文档