复合材料第5章----陶瓷基复合材料
陶瓷基复合材料

陶瓷基复合材料陶瓷基复合材料是以陶瓷为基体与各种纤维复合的一类复合材料。
陶瓷基体可为氮化硅、碳化硅等高温结构陶瓷。
这些先进陶瓷具有耐高温、高强度和刚度、相对重量较轻、抗腐蚀等优异性能,而其致命的弱点是具有脆性,处于应力状态时,会产生裂纹,甚至断裂导致材料失效。
而采用高强度、高弹性的纤维与基体复合,则是提高陶瓷韧性和可靠性的一个有效的方法。
纤维能阻止裂纹的扩展,从而得到有优良韧性的纤维增强陶瓷基复合材料。
陶瓷基复合材料具有优异的耐高温性能,主要用作高温及耐磨制品。
其最高使用温度主要取决于基体特征。
陶瓷基复合材料已实用化或即将实用化的领域有刀具、滑动构件、发动机制件、能源构件等。
法国已将长纤维增强碳化硅复合材料应用于制造高速列车的制动件,显示出优异的摩擦磨损特性,取得满意的使用效果。
工制备艺浆体浸渍-热压法适用于长纤维。
首先把纤维编织成所需形状,然后用陶瓷泥浆浸渍,干燥后进行烧结。
优点是加热温度较晶体陶瓷低,层板的堆垛次序可任意排列,纤维分布均匀,气孔率低,获得的强度较高。
缺点则是不能制造大尺寸的制品,所得制品的致密度较低,此外零件的形状不宜太复杂,基体材料必须是低熔点或低软化点陶瓷。
晶须与颗粒增韧陶瓷基复合材料的加工与制备晶须与颗粒的尺寸均很小,只是几何形状上有些区别,用它们进行增韧的陶瓷基复合材料的制造工艺是基本相同的。
基本上是采用粉末冶金方法。
制备工艺比长纤维复合材料简便很多。
所用设备也不复杂设备。
过程简单。
混合均匀,热压烧结即可制得高性能的复合材料制造工艺也可大致分为配料-成型-烧结-精加工等步骤。
直接氧化沉积法方法:将纤维预制体置于熔融金属上面,添加有镁、硅添加剂的熔融金属铝,在氧化气氛中,不断地浸渍预制体,在浸渍过程中,熔融金属或其蒸汽与气相氧化剂反应生成氧化物。
随着时间的延长,边浸渍边氧化,最终可制得纤维增强CMC。
优点:纤维几乎无损伤、纤维分布均匀、CMC性能优异,工艺简单、效率高成本低先驱体热解法方法:将单独合成的先驱体,通过加温调节其粘度,在高压-真空联合作用下使其浸入并充满多向纤维编织坯件的空隙,在高温下使先驱体热解。
《复合材料》课程笔记

《复合材料》课程笔记第一章:复合材料概述1.1 材料发展概述复合材料的发展历史可以追溯到古代,人们使用天然纤维(如草、木)与土壤、石灰等天然材料混合制作简单的复合材料,例如草绳、土木结构等。
然而,现代复合材料的真正发展始于20世纪40年代,当时因航空工业的需求,发展了玻璃纤维增强塑料(俗称玻璃钢)。
此后,复合材料技术经历了多个发展阶段,包括碳纤维、石墨纤维和硼纤维等高强度和高模量纤维的研制和应用。
70年代,芳纶纤维和碳化硅纤维的出现进一步推动了复合材料的发展。
这些高强度、高模量纤维能够与合成树脂、碳、石墨、陶瓷、橡胶等非金属基体或铝、镁、钛等金属基体复合,形成了各种具有特色的复合材料。
1.2 复合材料基本概念、特点复合材料是由两种或两种以上不同物质以不同方式组合而成的材料,它可以发挥各种材料的优点,克服单一材料的缺陷,扩大材料的应用范围。
复合材料具有以下特点:- 重量轻:复合材料通常具有较低的密度,比传统材料轻,有利于减轻结构重量。
例如,碳纤维复合材料的密度仅为钢材的1/5左右。
- 强度高:复合材料可以承受较大的力和压力,具有较高的强度和刚度。
例如,碳纤维复合材料的拉伸强度可达到3500MPa以上。
- 加工成型方便:复合材料可以通过各种成型工艺进行加工,如缠绕、喷射、模压等。
这些工艺能够适应不同的产品形状和尺寸要求。
- 弹性优良:复合材料具有良好的弹性和抗冲击性能,能够吸收能量并减少损伤。
例如,橡胶基复合材料在受到冲击时能够吸收大量能量。
- 耐化学腐蚀和耐候性好:复合材料对酸碱、盐雾、紫外线等环境因素具有较好的抵抗能力,适用于恶劣环境下的应用。
例如,聚酯基复合材料在户外长期暴露下仍能保持较好的性能。
1.3 复合材料应用由于复合材料的优异性能,它们在各个领域得到了广泛的应用。
主要应用领域包括:- 航空航天:飞机、卫星、火箭等结构部件。
复合材料的高强度和轻质特性使其成为航空航天领域的重要材料,能够提高飞行器的性能和燃油效率。
陶瓷基复合材料

陶瓷基复合材料论文2015年5月5日摘要:陶瓷基复合材料主要以高性能陶瓷为基体.通过加入颗粒、晶须、连续纤维和层状材料等增强体而形成的复合材料。
如碳化硅、氮化硅、氧化铝等,具有耐高温、耐腐蚀、高强度、重量轻和价格低等优点。
陶瓷基复合材料的研究还处于较初级阶段,我国对陶瓷基复合材料的研究则刚刚起步不久。
关键词:陶瓷基复合材料基体增强体强韧化机理制备技术前言:陶瓷基复合材料是以陶瓷为基体与各种纤维复合的一类复合材料。
陶瓷基体可为氮化硅、碳化硅等高温结构陶瓷。
这些先进陶瓷具有耐高温、高强度和刚度、相对重量较轻、抗腐蚀等优异性能,而其致命的弱点是具有脆性,处于应力状态时,会产生裂纹,甚至断裂导致材料失效。
而采用高强度、高弹性的纤维与基体复合,则是提高陶瓷韧性和可靠性的一个有效的方法。
纤维能阻止裂纹的扩展,从而得到有优良韧性的纤维增强陶瓷基复合材料。
陶瓷基复合材料具有优异的耐高温性能,主要用作高温及耐磨制品。
其最高使用温度主要取决于基体特征。
正文一、陶瓷基复合材料基本概述陶瓷基复合材料的基体为陶瓷。
如碳化硅、氮化硅、氧化铝等,具有耐高温、耐腐蚀、高强度、重量轻和价格低等优点。
化学键往往是介于离子键与共价键之间的混合键。
陶瓷基复合材料中的增强体通常也称为增韧体。
从几何尺寸上可分为纤维(长、短纤维)、晶须和颗粒三类。
碳纤维主要用在把强度、刚度、重量和抗化学性作为设计参数的构件;其它常用纤维是玻璃纤维和硼纤维。
纤维增强陶瓷基复合材料是改善陶瓷材料韧性的重要手段。
目前常用的晶须是SiC和A12O3,常用的基体则为A12O3,ZrO2,SiO2,Si3N4以及莫来石等。
晶须具有长径比,含量较高时,桥架效应使致密化困难,引起了密度的下降导致性能下降。
颗粒代替晶须在原料的混合均匀化及烧结致密化方面均比晶须增强陶瓷基复合材料要容易。
常用的颗粒也是SiC、Si3N4和A12O3等。
陶瓷基复合材料发展迟滞,发展过程中也遇到了比其它复合材料更大的困难。
陶瓷基复合材料

Ceramic-matrix
注意事项 : (1)料浆应能与纤维表面保持良好润湿。料浆中包括:陶瓷基体粉末、 载液(通常是蒸馏水)和有机粘接剂,有时还加入某些促进剂和基体润湿 剂。为使纤维表面均匀粘附料浆,要求陶瓷粉体粒径小于纤维直径,并 能悬浮于载液和粘接剂混合的溶液中。 (2)纤维应选用容易分散的、捻数低的丝束,保持其表面清洁无污染。 在操作过程中尽量避免纤维损伤,并注意排除气泡。 (3)热压烧结应按预定规律(即热压制度)升温和加压。在热压过程中, 将发生基体颗粒重新分布、烧结和在外压作用下的粘性流动等过程,最 终获得致密化的陶瓷基复合材料。很多陶瓷基复合材料体系在热压过程 中往往没有直接发生化学反应,主要通过系统表面能减少的驱动,使疏 松粉体熔结而致密化。 存在的问题: (1)纤维和陶瓷粉末不容易复合成型。 (2)烧结时由于基体收缩或热压烧结时无粘性流动,会使颗粒和纤维 之间的机械作用而损伤纤维。 (3)目前,直径小于0.1微米-1微米的粉末很难买到。并且,其中的夹 杂物不易排除。同时,细的粉末在制造复合材料过程中又不易分散。 (4)在热压时会损伤纤维结构。
Ceramic-matrix
注意事项:
(1)与高聚物先驱体转化法不同的是,溶胶—凝胶工艺的先驱体是在溶液浸 进纤维编织坯件后在原位合成的。 (2)采用溶胶—凝胶法制备复合材料可以先制备复合凝胶体,即将复合的各 相以原子或分子级进行均匀混合形成复合溶胶和凝胶化,得到高纯、超细、均 相、分子级或包裹式的复合陶瓷粉末,再经成型、烧结而形成复合材料的基体 或者通过控制溶剂的蒸发速度将复合的溶胶凝胶化后,直接烧结成陶瓷基复合 材料。 (3)如果第二相是粉末或纤维,则可浸在适当的溶液中,通过形核和成长, 使溶液形成溶胶,均匀包围粉末和纤维,经凝胶化处理和热解后即形成陶瓷基 复合材料的基体。 (4)溶胶—凝胶法制备陶瓷基复合材料的质量保证关键主要有:选择合适的 先驱体反应物,控制溶液的浓度和pH值、气氛、分散剂、选用胶溶剂、去除 团聚以及使各相处于良好的分散状态等。
第5章复合材料界面力学

第5章复合材料界面力学任何两种材料接触在一起,就存在一个界面,即使在同一种材料内部的原子之间、分子之间或晶粒之间也存在界面。
界面可以理解为数学界面和物理界面两种,数学界面只是一个理想化的概念,这种界面没有厚度,没有材料与性能的过渡;而物理界面却是有一定厚度的界面层,可以看作一相材料。
界面随着两种材料的接触而存在,随着两种材料的分离而消失。
在复合材料中,界面有不可缺少的作用。
复合材料中的纤维与基体通过界面粘接在一起,界面的性能可通过粘接方式得到控制。
进一步的研究发现,界面的性能对复合材料的各种性能有显著的影响,但程度是不同的,有正面的,也有负面的。
例如:为了提高复合材料的强度和抗蠕变性能,需要一个较强的界面;但为了提高复合材料的韧度,则希望存在一个较弱的界面,以有利于更多地耗散断裂过程中的能量。
因此,可以设计复合材料的界面,以调控复合材料的宏观力学性能,寻求一种综合性能的平衡或最优化的复合材料。
本章主要介绍复合材料界面性能表征、应力传递理论以及界面性能的分析方法。
§5.1 界面与界面层的形成机理在复合材料中,纤维与基体之间的界面是两种材料物理化学作用或固化反应的产物。
界面从宏观上可以简单地看作是两相材料的分界面,没有厚度,但它有一定的力学性能,界面的强度甚至有可能超过基体材料。
在细观尺度上,界面是具有一定厚度的界面层或界面相,其尺度范围在nm至 m之间,利用电镜可以观察到界面层的结构,但一般难以精确确定界面层的厚度。
复合材料界面(层)的几何与力学特性的表征一直是复合材料领域中的研究热点。
界面的形成机理是很复杂的,包含了许多复杂的物理和化学因素。
界面层的几何与力学特性不仅与两相组分材料有关,而且与复合工艺条件有密切的关系。
在纤维复合材料中,通过对纤维表面进行预处理可以部分控制界面的特性。
目前,对界面的形成机理主要有如下基本理论。
(1)化学键合作用,认为基体表面上的官能团与增强物表面上的官能团发生化学反应,形成由共价键结合而成的界面区。
复合材料的成型工艺聚合物基复合材料的成型工艺

(2)电工领域。主要用于高压电缆保护管、电
缆架、绝缘梯、绝缘杆、灯柱、变压器和电机的零
部件等。
整理课件
55
(3)建筑领域。主要用于门窗结构用型材、 桁架、桥梁、栏杆、支架、天花板吊架等。
(4)运输领域。主要用于卡车构架、冷藏车 箱、汽车笼板、刹车片、行李架、保险杆、船 舶甲板、电气火车轨道护板等。
整理课件
31
5. 连续缠绕成型工艺
将浸过树脂胶液的连续纤维或布带,按照一 定规律缠绕到芯模上,然后固化脱模成为增强塑 料制品的工艺过程,称为缠绕工艺。
缠绕工艺流程图如下图所示:
整理课件
32
胶液配制
纱团 集束 浸 胶
湿
法 缠
张力控制
绕
成
型 纵、环向缠绕 工
艺
烘干
络纱
胶纱纱绽
干
张力控制
法 缠
绕 加热粘流 成
大量使用的基体材料有不饱和聚酯树 脂和环氧树脂等。
整理课件
49
另外,以耐热性较好、熔体粘度较低的 热塑性树脂为基体的拉挤成型工艺也取得了 很大进展。
其拉挤成型的关键在于增强材料的浸渍。
整理课件
50
在拉挤成型工艺中,目前常用的方法如热 熔涂覆法和混编法。
热熔涂覆法是使增强材料通过熔融树脂, 浸渍树脂后在成型模中冷却定型;
②设备简单、投资少、设备折旧费低。
整理课件
11
③工艺简单; ④易于满足产品设计要求,可以在 产品不同部位任意增补增强材料 ⑤制品树脂含量较高,耐腐蚀性好。
整理课件
12
手糊成型工艺缺点
① 生产效率低,劳动强度大,劳动卫生 条件差。
②产品质量不易控制,性能稳定性不高。 ③产品力学性能较低。
复合材料学-陶瓷基复合材料的发展现状和最新进展
陶瓷基复合材料的发展现状和最新进展The Development Status and Recent Research Progress of Ceramic-Matrix Composite Materials学生姓名:学生学号:指导教师:所在院系:所学专业:南京理工大学中国·南京2015年11月摘要综述了陶瓷基复合材料(CMC)在近年来的研究进展,就陶瓷的增强增韧机理、复合材料的制备工艺作了较全面的介绍,综述了先驱体浸渍裂解(PIP)反应熔体浸渗(RMI)化学气相渗透(CVI)泥浆法(SI)等工艺的最新研究进展,并对CMC的应用和未来发展进行了展望。
关键词复合材料;陶瓷基;增强增韧;制备工艺;应用;未来发展Abstract The studying situation of ceramic matrix composites(CMC) in the lately years is reviewed in this paper.The strengthening and toughening mechanism,selection of matrix and reinforced materials and preparation techniques are introduced comprehensively,and then progresses of several preparation processes such as PIP,RMI,CVI,and SI are discussed.Also,the application prospects of future development of CMC are looked forward.Keywords composites; ceramic matrix; strengthening and toughening; preparation technique;application; future development1971年,Avesto首次提出陶瓷基复合材料的概念[1]。
陶瓷基复合材料
图10-4 液态浸渍法制备 陶瓷基复合材料示意图
5、直接氧化法(图10-5)
按部件形状制备增强体预制 体,将隔板放在其表面上以 阻止基体材料的生长。 熔化的金属在氧气的作用下 发生直接氧化反应形成所需 的反应产物。 由于在氧化产物中的空隙管 道的液吸作用 ,熔化金属 会连续不断地供给到生长前 沿。 Al + 空气 → Al2O3 Al + 氮气 → AlN
2)FCVI法
在纤维预制件内施加一个温 度梯度,同时还施加一个反 向的气体压力梯度,迫使反 应气体强行通过预制件。 在低温区,由于温度低而不 发生反应,当反应气体到达 温度较高的区域后发生分解 并沉积,在纤维上和纤维之 间形成基体材料。 在此过程中,沉积界面不断 由预制件的顶部高温区向低 温区推移。由于温度梯度和 压力梯度的存在,避免了沉 积物将空隙过早的封闭,提 高了沉积速率(图10-9)。
图10-5 直接氧化法制备 陶瓷基复合材料示意图
6、溶胶 – 凝胶(Sol – Gel)法(图10- 6)
溶胶(Sol)是由于化学反应沉积而产生的微小颗粒(直径<100nm)的 悬浮液;凝胶(Gel )是水分减少的溶胶,即比溶胶粘度大的胶体。 Sol – Gel法 是指金属有机或无机化合物经溶液、溶胶、凝胶等过程 而固化,再经热处理生成氧化物或其它化合物固体的方法。该方法可控 制材料的微观结构,使均匀性达到微米、纳米甚至分子量级水平。 Sol – Gel法制备SiO2陶瓷原理如下: Si(OR)4 + 4H2O → Si(OH)4+ 4ROH Si(OH)4 → SiO2 + 2H2O 使用这种方法,可将各种增强剂加入 基体溶胶中搅拌均匀,当基体溶胶形成凝 胶后,这些增强组元稳定、均匀分布在基 体中,经过干燥或一定温度热处理,然后 压制烧结形成相应的复合材料。
陶瓷基复合材料的制备方法与工艺
陶瓷基复合材料的制备方法与工艺随着科学技术的不断发展,陶瓷基复合材料在工业生产和科学研究中得到了广泛的应用。
陶瓷基复合材料具有优良的耐磨性、高温稳定性和化学稳定性,因此在航空航天、汽车制造、医疗器械等领域有着重要的地位。
本文将介绍陶瓷基复合材料的制备方法与工艺。
一、陶瓷基复合材料的制备方法1. 热压法:热压法是一种常用的陶瓷基复合材料制备方法。
首先将陶瓷粉末与增强相(如碳纤维、玻璃纤维等)混合均匀,然后将混合物放入模具中,经过一定的温度和压力条件下进行热压,使得陶瓷粉末和增强相充分结合,最终得到陶瓷基复合材料制品。
2. 溶胶-凝胶法:溶胶-凝胶法是一种制备陶瓷基复合材料的新型方法。
首先将陶瓷前驱体(如硅酸酯、铝酸盐等)与增强相混合,在一定的条件下形成溶胶,然后通过凝胶化过程使得溶胶形成凝胶,最终通过热处理制备出陶瓷基复合材料。
3. 拉伸成型法:拉伸成型法是一种制备纤维增强陶瓷基复合材料的方法。
首先将陶瓷粉末与增强相混合,然后通过拉伸成型设备将混合物进行拉伸成型,最终得到纤维增强的陶瓷基复合材料。
二、陶瓷基复合材料的制备工艺1. 原料选择:在制备陶瓷基复合材料时,需要选择优质的陶瓷粉末和增强相。
陶瓷粉末的选择应考虑其颗粒大小、形状和化学成分,而增强相的选择应考虑其强度、刚度和耐热性能。
2. 混合均匀:在制备过程中,陶瓷粉末和增强相需要进行混合均匀,以确保最终制品的性能稳定。
3. 成型工艺:根据不同的制备方法,成型工艺也有所不同。
在热压法中,需要选择合适的温度和压力条件;在溶胶-凝胶法中,需要控制好溶胶和凝胶的形成过程;在拉伸成型法中,需要控制好拉伸成型设备的参数。
4. 烧结工艺:烧结是制备陶瓷基复合材料的重要工艺环节,通过烧结可以使得材料颗粒之间结合更加紧密,提高材料的密度和强度。
5. 表面处理:在制备陶瓷基复合材料的最后一道工艺中,可以对制品进行表面处理,如抛光、涂层等,以提高制品的表面质量和外观。
复合材料第五章(1)金属基复合材料-金属基复合材料的分类
增强相含量, vol % 50 50 35~40 35 50 50 18~20 20 35 45
抗拉强度, MPa
1200~1500 1300~1500 700~900 500~800
650 900 500~620 400~510 1500~1750 1300~1500
拉伸模量, GPa
200~220 210~230 95 ~ 110 100~150
工艺优点: 制品有一定形状(可制备各种型材)
47
(4) 粉末(冶金)法(Slurry Powder Metallurgy) 工艺特点:解决了使用金属箔材成本高问题
工艺优点:成本低
工艺关键:低温真空下聚合物粘接剂必须能够完全挥发
48
工艺概要: 1)制备基体粉末/聚合物粘接剂胶体(可将胶体轧制成薄带) 2)用胶体固定纤维,干燥获得粉末/纤维预制片 3)或按粉末法纤维/基体复合丝方法制备复合丝 4)真空扩散结合制备复合材料
49
图5.16 粉末(冶金)法制备金属基复合料材料示意图 50
2.2.3 液态法 — 非连续增强相金属基复合材料制备工艺
(1) 压铸法(Squeeze Casting) 工艺特点:压力、液态或半液态金属 工艺概要:压力作用下,液态或半液态金属以一定速度 充填增强材料预制体空隙中并快速凝固成型 工艺关键:熔融金属温度、模具预热温度、压力、加压速度
220 130 96 ~138 ~100 210 ~230 220
密度, g/cm3
2.6 2.85~3.0
2.6 2.4 3.3 2.9 2.8 2.8 3.9 3.7
13
(2)高的韧性和冲击性能
相对聚合物、陶瓷基复合材料而言,
金属基复合材料具有较高的韧性和耐冲击性能 !
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
橡皮模成型法:是用静水压从各个方向均匀加压于橡皮模来成
。 型,故不会发生生坯密度不均匀和具有方向性之类的问题
挤压成型法:把料浆放入压滤机内挤出水分,形成块状后, 从安装各种挤形口的真空挤出成型机挤出成型的方法,它适用于
断面形状简单的长条形坯件的成型。
41
轧膜成型
相比之下,多晶的金属纤维和块状金属的拉伸强度只有 0.02E和0.001E。
7
陶瓷材料中的另一种增强体为颗粒。 从几何尺寸上看,颗粒在各个方向上的长度大致相同,一 般为几个微米。 常用的颗粒有SiC、Si3N4等。
8
3纤维增强陶瓷基复合材料
陶瓷材料中,加入第二相纤维制成复合材料 是改善陶瓷材料韧性的重要手段,按纤维排布方 式不同,将其分为单向排布长纤维复合材料和多 向排布纤维复合材料。
始的,现已发展到三向石英/石英等陶瓷复合材料。
16
每束纤维呈直线 伸展,不存在相 互交缠和绕曲, 因而使纤维可以 充分发挥最大的 X
结构强度。
Z Y
三向C/C编织结构示意图
17
4 晶须和颗粒增强陶瓷基复合材料
长纤维增韧陶瓷基复合材料虽然性能优越,但它的制 备工艺复杂,而且纤维在基体中不易分布均匀。
这种方法比较古老,不受制品形状的限制。但 对提高产品性能的效果不显著,成本低,工艺简单, 适合于短纤维增强陶瓷基复合材料的制作。
35
2.热压烧结法
特长纤维切短(<3mm),然后分散并与基体粉末混合,再用热压烧结的方法 即可制得高性能的复合材料,这种方法纤维与基体之间的结合较好,目前
采用较多的方法。
25
强的界面粘结往往导 致脆性破坏,如下图 (a) 所示,裂纹可以在复合材 料的任一部位形成,并迅 速扩展至复合材料的横截 面,导致平面断裂。
纤维 基体
(a)强界面结合
26
若界面结合较弱,当 基体中的裂纹扩展至纤维 时,将导致界面脱粘,其 后裂纹发生偏转、裂纹搭 桥、纤维断裂以致最后纤 维拔出(图 b)。
(b)弱界面结合
27
3、界面性能的改善
1)为获得最佳的界面结合强度,希望完全避免界面间
的化学反应或尽量降低界面间的化学反应程度和范围。
28
莫来石纤维上未涂BN涂层
莫来石纤维上涂有BN涂层
从图中可看出,若纤维未涂BN涂层,则复合材料的断面呈现为脆性的平面 断裂:而经CVD沉积0.2um的BN涂层后,断面上可见到大量的纤维拔出。
38
1.配料
高性能的陶瓷基复合材料应具有均质、孔隙少的微观组织。 为了得到这样品质的材料,必须首先严格挑选原料。几种原料粉 末混合配成坯料的方法可分为干法和湿法两种。 现今新型陶瓷领域混合处理加工的微米级、超微米级粉末方法由
于效率和可靠性的原因大多采用湿法。
39
2.成型
混好后的料浆在成型时有三种不同的情况: (1)经一次干燥制成粉末坯料后供给成型工序; (2)把结合剂添加于料浆中、不干燥坯料,保持浆状供给成型工序; (3)用压滤机将料浆状的粉脱水后成坯料供给成型工序。
维 氏
料
硬
弹 性
的
度
力
模 量
E(GPa)
学
性
能
SiCw含量(vol%)
20
Байду номын сангаас
从上面的作用,且各有利弊。 晶须的增强增韧效果讨论可知,晶须与颗粒对陶瓷材 料的增韧均有一定好,但含量高时会使致密度下降; 颗粒可克服晶须的这一弱点,但其增强增韧效果却不 如晶须。由此很容易想到,若将晶须与颗粒共同使用,则 可取长补短,达到更好的效果。 目前,已有了这方面的研究工作,如使用SiCw与ZrO2 来共同增韧,用SiCw与SiCp来共同增韧等。
4
2)陶瓷复合材料的增强体
陶瓷基复合材料所用增强体,通常亦称为增韧体。 依几何尺寸分类,增强体可分为纤维(长、短纤维)、 晶须、颗粒、层状复合增韧、金属复合增韧及相变增韧。 碳纤维是用来制造陶瓷基复合材料最常用的纤维之一。 碳纤维可用多种方法进行生产。工业上主要采用有机母体 的热氧化和石墨化。
另一类纤维为玻璃纤维。
1
9
1)-单向排布长纤维复合材料
单向排布纤维增韧陶瓷基复合材料的显著特点 是它具有各向异性,即沿纤维长度方向上的纵向性 能要大大高于其横向性能。
在实际构件中,主要是使用其纵向性能。
10
裂纹垂直于纤维方向扩展示意图
实际材料断裂过程中,纤维的断裂并非发生在同一 裂纹平面,这样主裂纹还将沿纤维断裂位置的不同而发 生裂纹转向。这也同样会使裂纹的扩展阻力增加,从而 使韧性进一步提高。
上述的干燥粉料充入模型内,加压后即可成型。通常有金属模成型 法和橡皮模成型法。
金属模成型法具有装置简单,成型成本低廉的优点,仍它的加压方 向是单向的。粉末与金属模壁的摩擦力大,粉末间传递压力不太均匀。 故易造成烧成后的生坯变形或开裂、只能适用于形状比较简单的制件。
40
注射成型法:从成型过程上看,与塑料的注射成型过程相类 似,但在陶瓷中必须从生坯里将粘合剂除去并再烧结,这些工艺均
复
SiCw含量(vol%)
合
材
料 的
维 氏 硬
力
度
学
性
能
E(GPa) HV(GPa)
SiCw含量(vol%) 弹 性 模 量
SiCw含量(vol%)
19
断
弯
裂
曲
韧
强
性
度
KIC(MPa.m1/2)
HV(GPa)
f(MPa)
Al2O3+ SiCw
复
SiCw含量(vol%)
SiCw含量(vol%)
合 材
37
2晶须与颗粒增韧陶瓷基复合材料的加工与制备
与陶瓷材料相似,晶须与颗粒增韧陶瓷基复合材料的制造工 艺也可大致分为以下几个步骤:
配料 成型 烧结 精加工
这一过程看似简单,实则包含着相当复杂的内容。即使坯体 由超细粉(微米级)原料组成,其产品质量也不易控制,所以随着现 代科技对材料提出的要求的不断提高,这方面的研究还必持进一步 深入。
纤维层
基体
多层纤维按不同角度方向层压示意图
后一种复合材料可根据构件形状用纤维浸浆缠绕的方法做成 所需要形状的壳层状构件。
而前一种材料成型板状构件曲率不宜太大。 15
2) 三维多向排布纤维增韧陶瓷基复合材料
三维多向编织纤维增韧陶瓷是为了满足某些情 况的性能要求而设计的。
这种材料最初是从宇航用三向C/C复合材料开
5
另有一常用纤维为硼纤维。它属于多 相的,又是无定形的,因为它是用化学沉积 法将无定形硼沉积在钨丝或者碳纤维上形成 的。
6
陶瓷材料中另一种增强体为晶须。
晶须为具有一定长径比(直径0.3~1um,长30~100um)的小 单晶体。
1952年,Herring和Galt验证了锡的晶须的强度比块状 锡高得多,这促使人们去对纤维状的单晶进行详细的研究。 某些情况下,晶须的拉伸强度可达0.1E(E为杨氏模量),这 已非常接近于理想拉伸强度0.2E。
29
2)陶瓷基复合材料的强韧化机理
以晶须增强陶瓷基复合材料为例,来对其强韧化机理进行探讨。晶须 增强陶瓷基复合材料的强韧化机理与是靠晶须的拔出桥连与裂纹转向, 其对陶瓷基复合材料强度和韧性的提高产生作用。
SiCw/ ZrO2材料的载荷--位移曲线。
载 荷
(位移 um)
从图中知,有明显锯齿效应,这是晶须拔出桥连机制作用的结果。
31
刚性颗粒弥散强化陶瓷增韧机理
裂纹分支、裂纹偏转和钉扎。 颗粒弥散增韧与温度无关,可作为高温增韧机制。颗粒弥散强化是一种
有效的增韧途径, 可使断裂韧性提高50%以上。 增韧机理受到刚性颗粒、陶瓷基体的自身特性(如弹性模量、热膨胀系数
等)以及二者界面结合状态的影响.
延性金属颗粒增韧机理
裂纹桥联机制、延性颗粒塑性变形区域屏蔽机制、金属颗粒拔出、裂纹 偏转及裂纹陷入机理等。桥联机制是主要机制,即等裂纹前沿扩展到延 性金属颗粒时,金属颗粒由于具有较大延性,将不发生破坏而产生塑性 变形,因此扩展裂纹的上下表面在裂纹尖端后方一定距离内被未损伤的 金属颗粒钉扎(桥联)。由于桥联金属颗粒阻止了裂纹的进一步张开而减 小了裂纹尖端的应力强度因子,从而达到增韧效果。
热压铸成型、挤压成型、轧膜成型、注浆成型、流 延成型、注射成型、直接凝固成型、泥浆渗透成型 、模压成型、等静压成型
3. 烧结
从生坯中除去粘合剂组分后的陶瓷素坯烧固成致密制品的过程叫烧结。 为了烧结,必需有专门的窑炉。窑炉的种类繁多,按其功能进行划分可 分为间歇式和连续式。 烧结方法:普通烧结、热致密烧结、反应烧结、微波烧结及放电等离子 体。
陶瓷基复合材料
1
本章主要内容
1 陶瓷基复合材料的种类及基本性能 2 陶瓷基复合材料成型加工技术 3 陶瓷基复合材料的应用
2
一陶瓷基复合材料的种类与性能
现代陶瓷材料:耐高温、耐磨损、耐腐蚀及重量轻等 许多优良的性能。但是,陶瓷材料具有致命缺点,即脆性, 这一缺点为陶瓷材料使用面临的挑战。
因此,陶瓷材料韧性化问题成为陶瓷工作者们研究的 一个重点问题。现在这方面的研究巳取得了初步进展,探 索出若干种韧化陶瓷的途径。
21
5陶瓷基复合材料的界面和强韧化机理 1)陶瓷基复合材料的界面
1、界面的粘结形式 2、界面的作用 3、界面性能的改善
22
1、界面的粘结形式
对于陶瓷基复合材料来讲,界面的粘结形 式主要有两种:
(1)机械粘结 (2)化学粘结
23
此时,增强体与基体之间的界面是具有一定 厚度的界面反应区,它与基体和增强体都能较好 的结合,但通常是脆性的。例如Al2O3f/SiO2系中 会发生反应形成强的化学键结合。