气孔运动与植物的水分调节
A53-植物生理学-7版第1章 水分代谢

茎、枝等器官 皮孔蒸腾 0.1%
二、气孔蒸腾
第四节 植物的蒸腾作用 一、概念、生理意义和方式
通常气孔的面积
(一)气孔的运动
三、根系吸水的动力
通常蒸腾植物的吸水主要是由蒸 腾拉力引起的。只有春季叶片未展开 时,蒸腾速率很低的植株,根压才成 为主要吸水动力。
(三)影响根系吸水的土壤条件
1.土壤通气状况: 通气状况良好,有利于根吸水 通气状况不良:影响呼吸;根系中毒。
2.土壤温度:适宜的温度范围内土三、温根系愈吸水高的动,力 根系吸水愈多
1) 溶质势:由于溶质颗粒的存在而引起体系水势降低 的数值,又称渗透势ψπ 。
ψs =ψπ=-π(渗透压)=-iCRT
i:等渗系数,蔗糖为1 C:质量摩尔浓度,mol/kg R:大气常数,0.008314 T:绝对温度
温带大多数作物叶组织的渗透势在-1~-2MPa, 旱生植物叶片的渗透势很低,达-10MPa。
1、说明原生质层是半透膜 2、判断细胞死活 3、测定细胞的渗透势 4、观察物质通过细胞的速率。
(四)细胞的水势
一、细胞的渗透性吸水
典型植物细胞水势由4个势组成:
ψw = ψs +ψp+ ψm+ ψg
水 渗 压 衬重 透 力 质力
势 势 势 势势
渗透势:(osmotic potential) 压力势:(pressure potential) 重力势:(gravity potential) 衬质势:(matric potential)
• 水分从植物体中散失到外界去的方式有两种:
(1)以液体状态散失到体外的,吐水现象; (2)以气体状态散逸到体外的,蒸腾作用,
第四节 植物的蒸腾作用
一、概念、生理意义和方式:
第一章 植物的水分生理

2. 角质层蒸腾:叶片,5 %~10%左右
3. 气孔蒸腾:叶片,可占蒸腾总量的 80%~90%。 (三)蒸腾作用的指标(3种) 1.蒸腾速率(transpiration rate) 植物在单位时间内,单位叶面积通过蒸腾作用所散失水 分的量称为蒸腾速率,也可称为蒸腾强度。一般用每小时每平方米叶面积蒸腾水量的克数表 示(g.m-2.h-1或 mg.dm-2.h-1 )。现在国际上通用 mmol.m-2.s-1来表示蒸腾速率。 2.蒸腾效率(transpiration ratio TR) 指植物在一定生长期内有光合作用所积累的干物质与 蒸腾失水量之比,也就是每蒸腾1kg水所形成干物质的g数。常用 g.kg-1 表示。
ψw=ψS+ψm+ψP+ψg
第二节 植物细胞对水分的吸收
1、纯水的水势(ψ0w) 所谓纯水是指不以任何物理的或者化学的方式与 任何物质结合的水,完全是自由水,纯水的水势为0。
2、溶质势(ψS) 指由于溶质颗粒的存在而引起体系水势降低的数值。 在标准大气压下,溶液的水势就等于其溶质势,溶液的溶质越多,其溶质势 越低,且任何一种溶液的水势均低于纯水的水势而为负值。在渗透体系中, 溶质势表示了溶液中水分子潜在渗透能力的大小,所以,溶质势又可称为渗 透势。
第二节 植物细胞对水分的吸收
二、水的移动 水的移动方式有3种式:扩散、集流和渗透作用。 (一) 扩散 是物质分子(包括气体分子、水分子、溶质分 子)从高浓度(高化学势)区域向低浓度(低化学势)区域 转移,直到均匀分布的现象。 (二)集流 是指液体中成群的原子或者分子(例如组成 水溶液各种物质的分子)在压力梯度(水势梯度)的作用下 共同移动的现象。 (三)渗透作用 是物质依水势梯度移动。指溶液中的溶 剂分子通过半透膜扩散现象。
植物生长过程中的水力学与水分平衡研究

植物生长过程中的水力学与水分平衡研究植物生长的水力学与水分平衡是植物生理学中关键的研究领域之一。
水是植物生长必不可少的组成部分,它在植物中起着输送养分、维持细胞结构稳定和参与化学反应的重要作用。
通过研究植物水力学和水分平衡的机制,我们可以更好地了解植物在各种环境条件下的适应性和调节能力。
植物的水分平衡是指植物体内水分的输入与输出之间的平衡。
植物通过根系吸收土壤中的水分,将其输送至茎、叶等地方,并通过气孔呼吸释放水分蒸气。
植物水分平衡的维持主要依赖于植物根系吸收水分的能力和茎叶组织的蒸腾作用。
植物根系吸收水分的过程与水分的运动、土壤水分的分布和根发育密切相关。
根系吸水主要依赖于根细胞的渗透调节和质壁分离机制。
根系的渗透调节通过调节根细胞内外溶液的渗透压差来促使水分进入根细胞。
而质壁分离机制则通过根细胞壁的渗透性选择性来防止土壤中过量的盐分进入植物体内,从而维持适宜的水分吸收。
茎叶的蒸腾作用是植物体内水分输出的主要途径。
蒸腾作用通过植物叶片内气孔的开闭调节以及茎叶表面的蒸发来释放水分蒸气。
这个过程中,水分会从根部经由茎韧皮部细胞到达叶片细胞,然后通过气孔排出植物体外。
植物的茎韧皮部细胞具有导管功效,可以有效地输送大量的水分,从而提供给叶片进行蒸腾作用。
水力学研究植物水分运动的规律和机制。
植物体内的水分运动受到多种因素的影响,如温度、光照、湿度、风力等。
水分运动的主要驱动力是渗透压差和毛细作用。
植物体内水分的输送通常是从上部茎部到下部根系的方向,这是因为茎部存在负压,而根系则具有正压力。
同时,植物根系通过根尖的细胞分裂和伸长不断向外延伸,以适应不同土壤环境的水分吸收。
植物的水力学与水分平衡在农业和园艺领域具有重要的实际意义。
农业生产中,合理的灌溉和肥料施用可以提高植物生长的效果,降低资源的浪费。
而在园艺领域,对不同植物的水需求特点进行研究,有助于制定合理的养护措施,提高植物的存活率和观赏效果。
总之,植物生长过程中的水力学与水分平衡是植物生理学中的重要研究内容。
植物的水分生理

第一章植物的水分生理第一节植物对水分的需要一、植物的含水量(几-90以上%)主要影响因素:植物种类:水生植物、肉质植物>90%以上,草本植物为70-85%,在干旱环境中生长的低等植物(地衣、藓类)为6%。
生长环境:生长于阴蔽、潮湿环境中的植物较向阳、干燥环境中的高。
器官、组织种类:幼嫩>衰老。
根尖、茎尖、嫩幼苗、绿叶为60-90%,树干为40%,休眠芽为40%,风干种子为10-14%。
二、植物体内水分的存在状态1、束缚水—植物体内距离亲水物质(蛋白质、核酸等)较近而被之吸咐束缚不易自由移动的水分子。
2、自由水—植物体内距离亲水物质(蛋白质、核酸等)较远而不被吸咐束缚易自由移动的水分子。
自由水/束缚水:高,植物代谢旺,抗逆能力弱;低,植物代谢弱,抗逆能力强。
如:越冬植物和休眠的干燥种子,自由水/束缚水低,仅以极弱的代谢维持生命活动,但抗性却明显增强,能度过不良的逆境条件。
松、竹、梅,被称作“岁寒三友”,抗寒能力极强,也与体内束缚水多有关。
三、水分在植物生命活动中的作用1、水分是细胞质的主要成分2、水分是代谢过程的反应物质3、水分是植物对物质吸收和运输的溶剂4、水分能保持植物的固有姿态第二节植物细胞对水分的吸收吸水方式:扩散集流渗透性吸水(主要方式)三、渗透性吸水(一)概念1、渗透性吸水:细胞通过渗透作用吸水。
2、渗透作用:(广义)—物质由浓度高处向浓度低处扩散移动的现象。
(狭义)—水分子通过半透膜由水势高处向水势低处移动的现象。
3、半透膜:只能让水分子、葡萄糖分子等小分子物质自由通过,而不能让大分子物质自由通过的膜。
种子的种皮、细胞膜、猪膀胱等。
反之称为透性膜,如细胞壁。
4、水势—每偏摩尔体积水的化学势或水的偏摩尔自由能。
符号:ψ国际单位:兆帕(Mpa=106pa),1atm=1.013×103pa重要用途:衡量一个系统中水分子自由扩散能力的强弱,水势高,水分子自由扩散力强,反之则弱。
第二章植物的水分生理复习思考题与答案

第⼆章植物的⽔分⽣理复习思考题与答案第⼀章植物的⽔分⽣理复习思考题与答案(⼀)名词解释1、束缚⽔(bound water)与细胞组分紧密结合不能⾃由移动、不易蒸发散失的⽔。
2、⾃由⽔(free water)与细胞组分之间吸附⼒较弱,可以⾃由移动的⽔。
3、化学势(chemical potential)偏摩尔⾃由能被称为化学势,以希腊字母µ表⽰,组分j的化学势(µj)为:µj=( G/ nj)t.p. ni.ni≠nj,在⼀个庞⼤的体系中,在等温等压以及保持其他各组分浓度不变时,加⼊1摩尔j物质所引起体系⾃由能的增量。
4、⽔势(water potential)每偏摩尔体积的⽔的化学势差称为⽔势,⽤ψw表⽰。
Ψw= (µw-µow)/ Vw,m,即⽔势为体系中⽔的化学势与处于等温、等压条件下纯⽔的化学势之差,再除以⽔的偏摩尔体积的商。
⽤两地间的⽔势差可判别它们间⽔流的⽅向和限度,即⽔分总是从⽔势⾼处流向⽔势低处,直到两处⽔势差为O为⽌。
5、溶质势ψs(solute potential,ψs)由于溶质颗粒的存在⽽引起体系⽔势降低的数值。
溶质势表⽰溶液中⽔分潜在的渗透能⼒的⼤⼩,因此,溶质势⼜可称为渗透势(osmotic potential,ψπ)。
溶质势可⽤ψs=RTlnNw/Vw.m公式计算,也可按范特霍夫公式ψπ=-π=-iCRT计算。
6、衬质势(matrix potential,ψm)由于衬质(表⾯能吸附⽔分的物质,如纤维素、蛋⽩质、淀粉等)的存在⽽使体系⽔势降低的数值。
7、压⼒势(pressure potential,ψp)由于压⼒的存在⽽使体系⽔势改变的数值。
若加正压⼒,使体系⽔势增加,加负压⼒,使体系⽔势下降。
8、重⼒势(gravity potential,ψg)由于重⼒的存在⽽使体系⽔势增加的数值。
集流(mass flow或bulk flow) 指液体中成群的原⼦或分⼦(例如组成⽔溶液的各种物质的分⼦)在压⼒梯度(⽔势梯度)作⽤下共同移动的现象。
气孔的结构及运动

气孔的结构及运动气孔是植物叶表皮组织上的小孔,为气体出入的门户,气孔在叶的上下表皮都有,但一般在下表皮分布较多,花序,果实,尚未木质化的茎,叶柄等也有气孔存在。
气孔的大小随植物的种类和器官而异,一般长约20~40um,宽约5~10um.每平方厘米叶面上约有气孔2000~4000个。
气孔是由两个保卫细胞围绕而成的缝隙,保卫细胞有两种类型:一类存在于大多数植物中,呈肾形;另一类存在于禾本科与莎草科等单子叶植物中,呈哑铃形,与其他表皮细胞不同,保卫细胞中有叶绿体和磷酸化酶,保卫细胞与叶肉细胞也不同,前者叶绿体较小,数目较少,片层结构发育不良,且无基粒存在,但能进行光合作用,保卫细胞内外壁厚度不同,内壁厚,外壁薄,当液泡内溶质增多,细胞水势下降,吸收邻近细胞的水分而膨胀,这时较薄的外壁易于伸长;细胞向外弯曲,气孔就张开。
反之,当溶质减少,保卫细胞水势上升而失水缩小,内壁伸长互相靠拢,导致气孔关闭。
这种自主运动可以根据体内水分的多少自动控制气孔的开闭,以调节气体交换和蒸腾作用。
气孔总面积只占叶面积的1%~2%,但当气孔全部开放时,其失水量可高达与叶面积同样大小的自由水面蒸发量的80%~90%,为什么气孔散失水分有这样高的效率呢?当水分从较大的面积上蒸发时,其蒸发速率与蒸发面积成正比;但从很小的面积上蒸发时,其蒸发速率与周长成正比,而不与小孔的面积成正比。
这是因为气体分子穿过小孔时,边缘的分子比中央的分子扩散速度较大,由于气孔很小,符合小孔扩散原理,所以气孔蒸腾散失的水量比同面积的自由水面蒸发的水量大得多。
如上所述,气孔运动是保卫细胞内膨压改变的结果。
这是通过改变保卫细胞的水是而造成的。
人们早知道气孔的开闭与昼夜交替有关。
在温度合适和水分充足的条件下,把植物从黑暗移到光照下,保卫细胞的水势下降而吸水膨胀,气孔就张开。
日间蒸腾过多,供水不足或在黑夜时,保卫细胞因水势上升而失水缩小,使气孔关闭。
是什么原因引起保卫细胞水势的下降与上升呢?目前存在以下学说:1,淀粉—糖转化学说,光合作用是气孔开放所必需的。
植物生产的水分调控
一棵树周围,筑高15~20cm的土埂,坑深40cm,坑 内土壤疏松,覆盖杂草,以减少蒸腾。
(2)节水灌溉技术
喷灌技技术 喷灌是利用专门的设备将水加压,或利用水的自
然落差将高位水通过压力管道送到田间,再经喷头喷 射到空中散成细小水滴,均匀散布在农田上,达到灌 溉目的。
(5)保墒技术
• 创造团粒结构体 在植物生产活动中,通过增施有机肥料,种植绿肥, 建立合理的轮作套作等措施,提高土壤有机质含量,再结合少耕、免耕 等合理的耕作方法,创造良好的土壤结构和适宜的孔隙状况,增加土壤 的保水和透水能力,从而使土壤保持一定量的有效水。
• 植树种草 植树造林,能涵养水分,保持水土。树冠能截留部分降水, 通过林地的枯枝落叶层大量下渗,使林地土壤涵养大量水分。同时森林 又能减少地表径流,防止土壤冲刷和养分的流失。森林还可以调节小气 候,增加降水量。森林具有强大的蒸腾作用,使林区上空空气湿度增大。 据测定,森林上空空气湿度一般比无林区高12%~15%,因而增加了林 区降水量。
植物 蒸腾作用
植物生产的水分调控
蒸腾作用的指标
①蒸腾速率。又称蒸腾强度,是指植物在单位时 间内,单位叶面积上通过蒸腾作用散失的水量。
②蒸腾效率。是指植物每蒸腾1kg水时所形成的干 物质的克数。
③蒸腾系数。是指植物每制造1g干物质所消耗水 分的克数。
植物 蒸腾作用
植物生产的水分调控
蒸腾作用的调节
①减少蒸腾面积。移栽植物时,可去掉一些枝叶, 减少蒸腾面积,降低蒸腾失水量,有利于成活。
水分与 植物生长
植植物物生生产长的与水水分分调环控境
(1)植物组织含水量
不同植物含水量不同;(草本>木本) 同一植物不同组织含水量不同;
第八章 植物的水分代谢
第八章植物的水分代谢一、内容提要(一)基本知识体系水是地球上所有生命得以生存的一个必不可少的条件。
水分在植物体内主要以束缚水和自由水两种状态存在。
自由水含量越大,代谢越旺盛。
束缚水含量相对较多,植物抵抗不良环境的能力增强,常以束缚水/自由水的比率作为衡量植物抗性强弱的指标之一。
细胞是植物水分代谢的基本单位,植物细胞吸收水分的方式有三种:有液泡的植物细胞主要靠渗透作用吸水;没有液泡或未形成液泡的细胞,靠吸涨作用吸水;此外,细胞还有代谢性吸水。
在这三种吸水方式中,以渗透性吸水为主。
典型的植物细胞水势由三部分组成,即ψW = ψS + ψP + ψm 。
植物细胞水分得失情况决定于细胞与其环境之间的水势梯度,如果细胞水势高于环境水势,细胞失水;反之则细胞吸收水分。
植物细胞之间和组织之间的水分流动同样遵循这样的规律。
根系是陆生植物吸收水分的主要器官。
根的各部分吸水能力并不相同,其中根毛区吸水能力最大。
根系吸水方式主要有主动吸水和被动吸水。
主动吸水是由根代谢活动而引起的吸水过程,根压是植物主动吸收水分的主要动力。
被动吸水是由于植物地上部蒸腾作用而引起的根部吸水,蒸腾拉力是植物被动吸水的主要动力。
植物根系主动吸水和被动吸水所占比重因植物蒸腾强度而不同。
植物根系吸水除了受内部因素(如根系发达程度和根系代谢作用强弱等)影响外,还受周围环境因素的影响,如蒸腾速率、土壤水分、土壤温度、土壤通气状况、土壤溶液浓度等。
植物吸收的水分中,绝大部分水都会通过蒸腾作用排出体外。
植物主要通过叶片进行蒸腾作用。
蒸腾作用有皮孔蒸腾、角质层蒸腾和气孔蒸腾三种,气孔蒸腾是植物蒸腾作用的主要形式。
气孔是由叶表皮组织上的一对保卫细胞构成的一个特殊小孔结构,其扩散完全符合小孔扩散定律。
有关气孔运动的机理主要有:淀粉与糖转化学说、K+泵学说、苹果酸代谢学说、玉米黄素学说。
影响气孔运动的因素有光照、CO2、温度、水分和植物激素。
蒸腾作用的影响因素有气孔频度和大小、气孔下腔体积及叶片内部面积等内部因素及光照、温度、湿度等外部因素。
3-蒸腾作用分析
3.苹果酸代谢学说(malate metabolism theory)
光照下, 保卫细胞内的部分CO2被利用时,pH上升至8.0~8.5,从而 活化了PEP(磷酸烯醇式丙酮酸)羧化酶,它可催化由淀粉降解产 生的PEP与HCO3-结合成草酰乙酸,并进一步被NADPH还原为苹果 酸。
20世纪70年代初以来发现苹果酸在气孔开闭运动中起着某种作用。
禾本科植物的保卫细胞呈哑铃形,中间
部分细胞壁厚,两端薄,吸水膨胀时, 两端薄壁部分膨大,使气孔张开; 双子叶植物和大多数单子叶植物的保卫 细胞呈肾形,靠气孔口一侧的腹壁厚,背气 孔口一侧的背壁薄。 当保卫细胞吸水,膨压加大时,外壁向
外扩展,并通过微纤丝将拉力传递到内
壁,将内壁拉离开来,气孔就张开。
出认为气孔运动是由于保卫细胞中蔗糖和淀粉间的相互转 化而引起渗透势改变而造成的。 保卫细胞的叶绿体中有淀粉粒,淀粉是不溶性的大分子多 聚体,水解为可溶性糖后,保卫细胞的渗透势降低,水进入 细胞,膨压增加,气孔张开; 反之,合成淀粉时蔗糖含量减少,渗透势上升,水离开保 卫细胞,膨压降低,气孔关闭。 蔗糖-淀粉假说曾被广泛接受,但后来由于钾离子作用的 发现使得这一假说被忽视。最近的研究表明蔗糖和淀粉间 的相互转化在调节气孔运动中的某些阶段起着一定的作用。
总之,气孔运动是由保卫细胞水势的变化而引起的。
保卫细胞质膜上存在着H+ - ATP酶,它可被光激活,能水解细 胞中的ATP,产生的能量将H+从保卫细胞分泌到周围细胞中, 建立起H+电化学势梯度。它驱动K+从周围细胞经过位于保卫 细胞质膜上的内向K+通道进入保卫细胞(在H+/K+泵的驱使 下),H+与K+交换K+浓度增加,水势降低,水分进入,气孔张 开。
第二章 水分生理-新
原生质吸水膨胀,对细胞壁产生压力,而细胞 壁对原生质会产生一个反作用力,这就是细胞 的压力势。 细胞压力势一般为正值,质壁分离时,压力 势为零;只有在蒸腾过旺时为负值。
⑤重力势
由于重力的存在使体系水势增加的
数值,称重力势。重力使水向下移动,即处于 较高位置的水比较低位置的水有较高的水势。 当体系中的两个区域高度相差不大时,重力势 可忽略不计。
3、测定细胞的渗透势
4、观察物质通过细胞的速率。
把发生了质壁分离的细胞浸在水势较高的稀 溶液或清水中,外液中的水分又会进入细胞, 液泡变大,整个原生质层很快会恢复原来的 状态,重新与细胞壁相贴,这种现象称为质壁 分离复原。
以水的偏摩尔体积(Vw)所得的商,称为水势。
概念
• 水的化学势差Δμw是体系中水的化学势
μw与同温下纯水的化学势μw°之差值
偏摩尔体积在一定温度、压力和浓度下,1 摩尔某组分在混合物中所体现出来的体积,称 为该组分在该条件下的偏摩尔体积。偏摩尔体 积的单位是m3· -1。 mol
化学势是能量概念, 单位为J/mol [J=N(牛顿)· m], 偏摩尔体积的单位为m3/mol,
第一节
一.水的理化性质
二.植物的含水量
水分与植物细胞
三.植物体内水分存在的状态
四.水分在植物生命活动中的作用
一、水的理化性质
水独特的性质是由它的分子结构造成的。 水分子有很强的极性。2个氢原子和1个氧原子 以共价键结合,使水分子成为极性分子。带正 电何的一端可以和带负电何的一端相互吸引形 成氢键。所以水分子之间有很强的内聚力。
适合于水分短距离的(如细胞间)迁徙。
(二)集流
集流是指液体中成群的原子或分子在压力 梯度下的共同移动 特点:集流与溶质浓度梯度无关; 中、远距离运输; 通过膜上的水孔蛋白形成的水通道实施的。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
气孔运动与植物的水分调节
植物作为生物界的一员,与环境的相互作用是十分密切的。
而水分对于植物的
生长和发育起着至关重要的作用。
然而,植物如何调节水分的吸收和排放却是一个十分复杂的过程。
本文将重点探讨气孔运动与植物的水分调节之间的关系。
气孔是植物叶片上的微小开口,通过气孔,植物能够进行气体交换,并且通过
气孔调节水分的吸收和散发。
气孔的开合是由植物内部的细胞运动控制的,这一过程被称为气孔运动。
气孔运动的调节机制非常复杂,受到多种因素的影响,包括光照、温度、湿度、二氧化碳浓度等。
首先,光照是气孔运动的重要调节因素之一。
在光合作用过程中,植物需要吸
收二氧化碳,并释放氧气。
而气孔的开合程度会影响二氧化碳的吸收和氧气的释放。
当光照较强时,植物会打开气孔,增加二氧化碳的吸收量,促进光合作用的进行。
而在光照较弱或夜晚时,植物会关闭气孔,减少水分的散发,以防止水分的过度流失。
其次,温度也对气孔运动产生着重要影响。
温度的升高会导致植物体内水分的
蒸发加快,因此植物会通过关闭气孔来减少水分的流失。
相反,温度的降低会使植物体内水分的蒸发减缓,植物则会通过打开气孔来增加水分的散发,以保持正常的水分平衡。
此外,湿度也是影响气孔运动的重要因素之一。
当环境湿度较高时,植物会关
闭气孔以减少水分的流失。
这是因为在高湿度环境下,植物周围的空气中含有较多的水分,植物不需要通过气孔来散发水分,因此会选择关闭气孔以减少水分的流失。
而在干燥环境下,植物则会通过打开气孔来增加水分的散发,以保持水分的平衡。
最后,二氧化碳浓度也对气孔运动产生影响。
在光合作用中,植物需要吸收二
氧化碳来进行光合作用,而气孔则是二氧化碳进入植物体内的通道。
当二氧化碳浓度较低时,植物会通过打开气孔来增加二氧化碳的吸收量,以促进光合作用的进行。
而当二氧化碳浓度较高时,植物则会通过关闭气孔来减少二氧化碳的吸收,以避免过量的二氧化碳进入植物体内。
综上所述,气孔运动是植物水分调节的重要机制之一。
通过调节气孔的开合程度,植物能够控制水分的吸收和散发,以保持水分的平衡。
而气孔运动受到光照、温度、湿度和二氧化碳浓度等多种因素的调节。
了解气孔运动与植物的水分调节之间的关系,对于研究植物生长和发育具有重要意义,也有助于我们更好地理解植物与环境的相互作用。