康复机器人的系统设计
下肢外骨骼康复行走机器人控制系统设计

1、高度智能化:通过机器学习算法的不断训练和优化,控制系统的控制精度 得到了显著提高。
2、良好的适应性:系统能够根据不同患者的实际情况自动调整参数,满足个 性化的康复需求。
3、高度安全性:在系统中引入了多重安全保护措施,确保了患者在使用过程 中的安全。实验验证结果表明,该控制系统在帮助患者进行站立、行走等运动 方面具有显著效果,能够有效改善患者的运动功能。然而,仍存在一些不足之 处,如对患者的身体状态和运动数据的实时监测尚不完善,部分传感器数据的 准确性和稳定性有待提高等。
方法
为了实现上述目标,本次演示采用以下步骤和方法进行控制系统设计:
1、需求分析:首先对下肢外骨骼康复行走机器人的应用场景、患者需求、现 有产品的优缺点等进行深入调研和分析。
2、系统架构设计:根据需求分析结果,设计下肢外骨骼康复行走机器人的整 体架构,包括机械结构、控制器、传感器、执行器等组成部分。
下肢外骨骼康复机器人控制系统的主要设计原理基于人体运动学和动力学原理, 同时结合了机械设计、电子控制、传感器技术等多学科知识。具体实现方法和 步骤如下:
1、硬件设备选择:控制系统硬件设备包括机械结构、电机、传感器、电路板 等。根据使用者的身体状况和康复需求,选择轻便、耐用且符合人体工程学原 理的硬件设备。
3、设备性能方面,下肢外骨骼行走康复机器人具备良好的稳定性和耐用性, 但仍然存在一些可以改进的空间,如提高设备的自适应性、降低能耗等方面的 研究。
讨论:
根据研究结果,我们对下肢外骨骼行走康复机器人的研究现状进行了讨论。虽 然该领域已经取得了一定的进展,但仍存在一些问题需要进一步解决。例如, 设备重量和穿戴舒适度是影响用户体验的关键因素之一,如何通过优化设计和 材料选择等方式减轻设备重量、提高穿戴舒适度是未来的研究方向之一。
基于物联网智能康复训练机器人系统设计

基于物联网智能康复训练机器人系统设计摘要:针对脑卒中患者,设计了一款基于物联网、大数据的智能康复训练机器人系统,系统由三菱FX5U系列PLC、变频器、人机界面、检测装置、执行机构、远程数据服务器、上位机和手机等终端通讯设备等构成。
医生通过上位机将医嘱上传到远程数据服务器,患者在智能康复训练机器人系统上对照医嘱完成相关训练任务,并可选择自主训练模式。
医生和患者家属可以通过上位机或手机调阅系统上传到数据服务器的数据,实时了解患者的训练状况。
积累的数据可用于医学研究,为制定治疗方案提供必要的技术数据,也为今后本系统智能化升级提供必要的技术支持。
关键词:康复训练;智能控制;大数据;PLC1产品背景根据“中国心血管病报告2018”报告,我国心血管病现有患者人数2.9亿,其中脑卒中1300万。
脑卒中存活患者中有接近80%的人留有不同形式和程度的残疾,而且还有不少患者因身体残疾引发了诸多心理和生理上的疾病。
脑卒中患者后期的康复训练和治疗是一个相对漫长的过程。
康复训练器械与场地的匮乏是造成康复训练困难的主要因素之一。
患者失去劳动能力的同时,还需要占用一个家庭成员完成患者康复训练的接送与陪护,使得家庭经济陷入困境,是造成患者康复训练困难的另外一个主要因素。
因此,有相当数量的患者为此放弃康复训练和治疗,这已经成为一个社会问题。
国家出台相关法规、政策,加快发展先进制造业,推动互联网、大数据、人工智能和实体经济深度融合。
本项目基于“互联网+医疗健康”的理念,设计推出一款用于家庭康复训练的智能康复训练机器人系统,解决了脑卒中患者家庭康复训练的难题,同时,也为相似产品的设计提供借鉴。
2系统简介基于物联网智能康复训练机器人系统总体结构如图1所示。
图1 基于物联网智能康复训练机器人系统结构框图医生通过对患者身体进行检查或训练历史数据分析的基础上,制定训练方案,并通过上位机将医嘱上传到远程数据服务器。
患者在本地训练系统上读取医嘱,并按照医嘱完成相关任务量,并可选择自主训练,相关数据同样被实时传送到远程数据服务器。
《下肢外骨骼康复机器人的人机交互控制系统设计与实现》

《下肢外骨骼康复机器人的人机交互控制系统设计与实现》一、引言随着医疗科技和机器人技术的飞速发展,下肢外骨骼康复机器人成为了康复医学领域的研究热点。
该类机器人通过模拟正常人体运动模式,协助患者进行康复训练,从而改善其行动能力。
其中,人机交互控制系统的设计与实现是影响康复效果和用户体验的关键因素。
本文将探讨下肢外骨骼康复机器人的人机交互控制系统的设计思路与实现方法。
二、系统设计目标1. 提供精确的力矩控制,以模拟人体自然运动;2. 增强患者与机器之间的交互体验,确保安全与舒适;3. 具备可定制的康复训练模式,满足不同患者的需求;4. 实时监测患者状态,并根据反馈调整康复策略。
三、系统设计原则1. 安全性:确保系统运行过程中患者安全无虞;2. 舒适性:系统应贴合人体工学设计,确保患者使用舒适;3. 智能化:通过算法优化,实现智能化的运动模式调整和康复策略制定;4. 可扩展性:系统设计应具备可扩展性,方便未来功能的增加和升级。
四、硬件结构设计硬件结构包括外骨骼机械结构、传感器系统和驱动系统。
外骨骼机械结构应与人体下肢紧密贴合,保证运动的一致性。
传感器系统包括力矩传感器、位置传感器和压力传感器等,用于实时监测患者的生理数据和机器的运动状态。
驱动系统则负责驱动外骨骼机械结构进行运动。
五、软件控制系统设计软件控制系统是整个系统的核心,包括控制算法、交互界面和数据处理模块。
控制算法负责根据传感器数据调整机器的运动模式,实现人机协同。
交互界面则提供友好的操作体验,方便患者和医护人员操作。
数据处理模块负责收集和分析患者数据,为康复策略的制定提供依据。
六、人机交互实现人机交互实现主要依赖于传感器数据的获取和处理、控制算法的优化以及交互界面的设计。
通过力矩传感器、位置传感器等获取患者的生理数据和机器的运动状态,经过数据处理模块的分析和处理,得出控制指令,通过控制算法调整机器的运动模式,实现人机协同。
同时,交互界面的设计应考虑患者的使用习惯和需求,提供友好的操作体验。
机器人辅助康复系统设计与实现

机器人辅助康复系统设计与实现近年来,随着人口老龄化程度的加剧,康复需求也越来越大。
为了更好地满足康复患者的需求,机器人辅助康复系统应运而生。
本文将重点探讨机器人辅助康复系统的设计与实现,以提供更好的康复服务。
1. 系统设计与功能需求机器人辅助康复系统应具备以下功能需求:1.1 运动辅助功能:机器人能够模拟人类的运动,通过可编程控制器设定运动轨迹和力量。
康复患者可以在机器人的帮助下进行运动训练,提高肢体协调性和力量。
1.2 功能创新:机器人辅助康复系统应该具备创新的康复功能,如虚拟现实技术和游戏化康复训练等。
通过虚拟现实技术,患者可以沉浸在不同的康复环境中,增加训练的趣味性和参与度。
1.3 数据收集与分析:机器人辅助康复系统应该能够收集康复过程中的数据,包括患者的运动数据、心率数据等。
通过数据分析,康复师和医生可以获得更多关于患者康复进展的信息,以便进行个性化的康复计划。
2. 系统实现的技术要求为了满足以上功能需求,机器人辅助康复系统需要采用一些先进的技术:2.1 传感器技术:通过使用传感器,机器人可以感知康复患者的运动状况和身体反馈。
传感器可以测量肌肉收缩情况、关节运动范围等数据,从而实现实时的反馈和调整。
2.2 人机交互技术:机器人辅助康复系统还需要采用先进的人机交互技术,以提供用户友好的操作界面。
用户可以通过触摸屏幕、语音识别等方式与机器人进行交互,完成康复训练的设置和进度跟踪。
2.3 数据处理与机器学习技术:机器人辅助康复系统需要具备数据处理和机器学习的能力,以支持康复数据的收集和分析。
通过机器学习算法的应用,系统可以根据患者的康复数据进行自适应的调整,达到个性化康复的效果。
3. 系统实施与效果评估在实施机器人辅助康复系统时,需要注意以下几点:3.1 专业团队的参与:系统的设计与实现需要涉及医生、康复师、工程师等多个领域的专业知识。
在实施过程中,需要建立跨学科的团队合作,共同解决康复系统的技术、操作和管理问题。
机器人辅助康复治疗与训练系统设计

机器人辅助康复治疗与训练系统设计近年来,康复治疗与训练在医学领域中得到了广泛应用。
为了提高治疗效果和提供更好的康复训练资源,研发一套机器人辅助康复治疗与训练系统成为了大家关注的焦点。
本文将从系统设计的角度探讨该系统的目标、功能、设计原则,并介绍其中涉及的核心技术和关键组件。
1. 系统目标机器人辅助康复治疗与训练系统的目标是帮助康复患者恢复和改善受损的身体功能,提高生活质量。
系统应该能够为患者提供个性化、全面的康复治疗和训练方案,并通过记录和分析数据来评估治疗进展。
2. 功能需求(1)运动辅助功能:系统应该能够通过机器人运动装置辅助患者进行康复运动,提供适当的力量支持和运动轨迹控制。
同时,系统还应该能够记录患者运动数据,以便后续的分析和评估。
(2)交互界面:系统应该提供友好的交互界面,使患者能够轻松使用。
交互界面应该包括简洁明了的操作指南和反馈信息。
(3)个性化康复方案:系统应该根据患者的特定康复需求和身体状况,为其制定个性化的康复治疗和训练计划。
该计划应该包括具体的运动目标、频率、持续时间和难度等信息,并能根据患者的进展进行调整。
(4)进展评估与反馈:系统应该能够通过数据分析和算法,对患者的运动进展进行评估,并提供及时的反馈。
评估结果应该能够量化患者的康复程度,并据此调整康复方案。
3. 设计原则(1)安全性:系统设计应该注重患者的安全。
机器人运动装置需要具备安全保护措施,避免对患者造成伤害。
此外,交互界面和操作流程也应该简单明了,避免患者因误操作而导致意外伤害。
(2)可定制性:系统应该具备一定的可定制性,以适应不同患者的康复需求。
康复方案应该根据患者的病情、病史和身体状况进行个性化调整,并能根据患者的康复进展进行动态调整。
(3)数据存储与分析:系统应该能够记录和存储患者的运动数据,并结合数据分析算法,对患者的康复进展进行评估。
这样可以根据评估结果调整康复方案,提高治疗效果。
4. 核心技术和关键组件(1)机器人运动装置:机器人运动装置是系统的核心组件之一,它可以为患者提供力量支持和运动轨迹控制。
机器人辅助康复系统的设计与开发

机器人辅助康复系统的设计与开发随着科技的不断发展,机器人技术在医疗领域的应用逐渐扩大。
机器人辅助康复系统作为一个新兴技术,为康复治疗带来了很多新的可能性。
本文将探讨机器人辅助康复系统的设计与开发。
首先,机器人辅助康复系统的设计需要考虑患者的需求和病情特点。
不同类型的康复机器人可适用于不同的康复治疗领域,例如运动神经系统康复、神经系统康复、肌肉骨骼系统康复等。
因此,在设计时需要充分了解患者的病情和康复需求,并选择合适的机器人进行辅助康复。
其次,机器人辅助康复系统的开发需要核心技术的支持。
康复机器人需要具备多种功能和特点,如精准定位、力控制、灵活性和可扩展性等。
为了实现这些功能,开发团队需要掌握机器人技术、传感器技术、机械设计等相关领域的知识,并进行合理的整合和应用。
同时,对于机器人辅助康复系统的开发,还需要考虑人机交互设计、运动学分析和控制算法等方面的内容。
在机器人辅助康复系统的设计与开发中,关键的一点是确保系统的安全性与稳定性。
康复机器人是用来帮助患者进行康复训练的,因此必须确保机器人的稳定性,以防止意外情况的发生。
同时,机器人辅助康复系统还需要具备安全保护机制,如应急停止按钮、防错设计等,以确保患者在康复过程中的安全。
此外,机器人辅助康复系统的设计还应该注重用户体验。
一个好的康复系统应该能够提供舒适的康复环境,并能与患者进行良好的互动。
因此,在设计机器人辅助康复系统时,可以考虑使用生物反馈技术、虚拟现实技术等,以提高患者的参与度和康复效果。
最后,机器人辅助康复系统的设计与开发还需要考虑成本和可行性。
康复机器人是一种新兴技术,其研发和生产的成本较高。
因此,设计团队需要进行充分的成本评估,并确保机器人辅助康复系统的完成符合可行性要求。
此外,还需要考虑康复机器人的维护和服务等方面的问题,以确保系统的稳定运行。
综上所述,机器人辅助康复系统的设计与开发是一个综合性的工程,需要考虑患者需求、核心技术、安全性与稳定性、用户体验以及成本与可行性等方面。
下肢外骨骼康复机器人控制系统软件设计

下肢外骨骼康复机器人控制系统软件设计下肢外骨骼康复机器人控制系统软件设计1. 引言下肢外骨骼康复机器人是一种应用于康复医学领域的新型辅助设备。
它通过机器人结构和控制系统,帮助患者进行下肢康复训练,恢复肌肉力量和运动功能。
在这样的机器人系统中,控制系统软件设计起着至关重要的作用。
2. 下肢外骨骼康复机器人的功能需求下肢外骨骼康复机器人的主要功能是辅助患者进行下肢运动。
因此,控制系统软件设计需要满足以下需求:a. 运动控制:能够根据医生或康复师的指令,控制机器人完成特定的下肢运动,如行走、上下楼梯等。
b. 力量支持:能够根据患者的需要,通过机器人的力量支持,帮助患者完成康复训练。
c. 感知调整:能够通过传感器监测患者的运动状态、肌肉力量等信息,并根据实时数据对机器人的运动进行调整。
d. 安全保障:能够确保患者在康复训练过程中的安全,如及时停止机器人运动、报警等。
3. 下肢外骨骼康复机器人控制系统软件设计流程下肢外骨骼康复机器人控制系统软件的设计流程主要包括以下几个步骤:a. 界面设计:设计机器人控制系统的用户界面,包括显示患者的运动状态、机器人的控制参数等。
b. 运动规划:根据患者的康复需求,设计机器人的运动规划算法,确定机器人的运动轨迹以及关节角度的控制。
c. 力量控制:设计机器人的力量控制算法,实现对机器人的力量输出的控制,以满足患者的康复需求。
d. 传感器数据处理:通过传感器获取患者的运动状态、肌肉力量等信息,并进行数据处理,提取有效指标。
e. 控制策略设计:设计机器人的控制策略,通过数据处理结果和运动规划算法,实现对机器人的运动控制。
f. 安全保障设计:设计机器人的安全保护策略,包括患者紧急停止机制、机器人异常报警等。
4. 下肢外骨骼康复机器人控制系统软件的关键技术下肢外骨骼康复机器人控制系统软件的设计中,涉及到以下关键技术:a. 运动规划算法:根据医生或康复师的指令,设计机器人的运动规划算法,确定机器人的动作轨迹和关节角度。
老年人康复辅助机器人系统设计与实现

老年人康复辅助机器人系统设计与实现一、简介老年人康复辅助机器人系统(Robotic Rehabilitation System for Elderly People)是一种基于现代科技与康复治疗技术相结合的健康辅助系统。
该系统在康复治疗中,根据患者的病情,自动发送指令,控制机器人的动作并监控患者的身体反应,以帮助老年人恢复身体功能与代谢平衡。
本文将对老年人康复辅助机器人系统的设计及实现进行探讨。
二、功能需求1. 运动康复功能——用于康复患者的运动恢复与锻炼。
2. 动作指导及数据分析——根据康复医生提供的康复方案,为康复者提供动作指导和数据分析。
3. 健康监测——对患者的身体状况进行实时监测,记录患者身体数据变化。
三、系统设计老年人康复辅助机器人系统设计从功能性和可操作性两个方面出发:1. 功能性设计以康复患者为中心,针对患者在康复过程中所需的功能,设计功能模块,保证机器人系统实现以下功能:(1)电动滑轨——电动驱动的机器人底部,患者坐在电动滑轨上,可以在规定的区域内游动,方便患者运动。
(2)可调节臂支架——支撑患者的两臂,可以根据患者的身体状况和康复方案进行调整,保证患者康复运动的有效性。
(3)传感器组件——通过传感器组件,实时记录患者的身体运动状况,实现全方位监测。
(4)智能控制系统——依据患者康复方案,控制机器人动作,提供动作引导,以避免患者在运动时受伤。
(5)数据处理与分析模块——对患者进行身体数据的分析,以更好地了解患者的运动情况,提高康复效率。
2. 可操作性设计为保证老年人能够顺利操作机器人系统,我们要充分考虑到老年人的生理和心理状况,保证系统的易用性和稳定性:(1)机器人人性化设计——机器人外形符合人体工程学,让患者在操作中更加自然舒适。
(2)简单易用的操作界面——为了降低操作难度,我们将开发一套直观、易操作的界面,让年迈的患者能够快速上手,并享受操作带来的乐趣。
(3)人性化提示与帮助——凭借机器人中心智能控制系统与数据分析模块,我们将对用户的使用情况进行实时监测,为用户提供友好的提示和帮助,让他们在使用中得到最好的体验。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
康复机器人的系统设计第1章绪论1.1概述据报道,我国60岁以上的老年人已有1.43亿,占全国人口的11%,到2050年将达到4.37亿。
在老龄人群众中有大量的脑血管疾病或神经系统疾病患者,这类患者多数伴有偏瘫症状[1]。
近年由于患心脑血管疾病使中老年患者出现偏瘫的人数不断增多,而且在年龄上呈现年轻化趋势。
同时,由于交通运输工具的迅速增长,因交通事故而造成神经心痛损伤或者肢体损伤的人数也越来越多。
在美国数以百万计的有神经科疾病病史和受到过意外伤害的患者需要进行康复治疗,仅以中风为例,每年大约有600,000中风幸存者,其中的二百万病人在中风后存在长期的运动障碍。
随着国民经济的发展,这个特殊群体已得到了更多人的关注,为了提高他们的生活质量,治疗、康复和服务于他们的产品的技术和质量也在相应地提高。
随着机器人技术和康复医学的发展,在欧洲、美国和日本等国家,医疗康复机器人的市场占有率呈逐年上升的趋势,仅预测日本未来机器人市场,2005年医疗、护理、康复机器人的市场份额约为250,000美元,而到2010年将上升到1,050,000美元,其增长率在机器人的所有应用领域中占据首位。
因此,服务于四肢的康复设备的研究和应用有着广阔的发展前景[2]。
康复机器人是康复设备的一种类型。
康复机器人技术早已广受世界各国科研工作者和医疗机构的普遍重视,其中以欧美和日本的成果最为显著。
在我国康复医学工程虽然得到了普遍的重视,而康复机器人研究仍处于起步阶段,一些简单康复器械远远不能满足市场对智能化、人机工程化的康复机器人的需求,有待进一步的研究和发展。
由于康复训练机器人要与人体直接相连,来带动肢体进行康复训练,所以对驱动器的安全性、柔性的要求较高。
近年来,以气动元件柔性驱动器逐渐引起人们的重视,在医疗康复器械领域中得到越来越多的应用。
本课题的研究目的是设计一种用于脑损伤、中风等病人的步态康复训练海量机械毕业设计,请联系Q99872184系统,帮助病人更好地进行康复训练,减轻他人的帮助,挺高效果。
1.2康复机器人的国内外研究现状在对有运动障碍的老人或残疾人进行治疗和康复的过程中,使用康复机器人可以解决好多问题:机器人的使用可以解决专业护理人员缺乏和医疗费用昂贵的问题,可以避免由于训练方法不科学和专业护理人员个人疏忽等主观原因引起的对病人的伤害,可供病人在家或工作场所使用,使病人获得更多的独立生活能力,提高了病人的生活质量等。
康复机器人是一种自动化医疗康复设备,它以医学理论为依据,帮助患者进行科学而有效的康复训练,使患者的运动机能得到更快更好的恢复。
目前,康复机器人已经广泛地应用到康复护理、假肢和康复治疗等方面,这不仅促进了康复医学的发展,也带动了相关领域的新技术和新理论的发展。
康复机器人有两种:辅助型康复机器人和康复训练机器人。
辅助型康复机器人主要是帮助肢体运动有困难的患者完成各种动作,该类产品有机器人轮椅、机器人护士、机器人假肢、机械外骨骼等。
康复训练机器人的主要功能是帮助患者完成各种运动功能的恢复训练,该类产品有行走训练、手臂运动训练、脊椎运动训练等。
康复机器人是康复医学和机器人技术的完美结合,康复机器人技术在欧美等国家得到了科研工作者和医疗机构的普遍重视,许多研究机构都开展了有关的研究工作,近年来取得了一些有价值的成果。
对于中风、偏瘫、下肢运动机能损伤等患者来说,下肢康复训练机器人有着很好的治疗效果。
国内外许多研究机构都在这方面取得了不错的研究结果。
下肢康复训练机器人发展主要经历了几个阶段。
由早期的简单步行训练机发展到现在功能丰富、符合人体运动机理的下肢康复训练机器人。
早期发展的下肢康复训练系统是借助于跑步机、悬吊系统等帮助患者进行运动训练,此种产品结构简单、价格便宜,但训练过程中必须有专业人员的帮助,而且并不符合人体运动机理,还不能称为康复训练机器人,只能是一种半自动的康复训练机械,如图1.1、2海量机械毕业设计,请联系Q99872184图1.2所示。
图1.1、图1.2中的步行训练机,它的功能单一、价格便宜,而且需要在专业护理人员的帮助下进行康复训练,这种机械对下肢病情比较轻的病人较合适。
图1.1步行训练机[3]图1.2悬挂式步行训练机[4]随着机器人技术和康复医学的发展,人们对人的行走步态有了比较清楚的认识,开发出了一些符合人体康复需要的产品。
德国柏林自由大学(Free University of Berlin)开展了腿部康复机器人的研究[5],并研制了MGT型康复机器人样机(图1.3)。
瑞士苏黎士联邦工业大学(ETH)在腿部康复机构、走步状态分析方面也取得了一些成果,在汉诺威2001年世界工业展览会上展出了名为LOKOMAT(图1.4)的康复机器人模型。
LOKOMAT机器人主要由步态矫正器、先进的体重支持系统和跑台组成。
LOKOMAT机器人以使用者为根本,通过对机器人的行为、耐心、合作及运动功能进行评估,建立了一种更为有效3海量机械毕业设计,请联系Q99872184的治疗方式,即:机器人先侦测使用者的运动,并且跟随使用者的运行轨迹而不是强制使用者按照预定的轨迹运动,通过机器人的自适应功能,来满足使用者的不同需求,它可以调整训练参数以适合不同患者的需要[6]。
图1.3MGT型康复机器人图1.4LOKOMAT机器人德国柏林的IPK研究所研制的Robotic Gait Rehabilitation,通过一个可编程控制的脚踏板来带动患者实现步态的轨迹模拟,这个脚踏板由直线电机带动实现往复直线运动,脚踏板支撑部分类似于二自由度机械臂,由两个伺服电机驱动[7](图1.5)。
4图1.6BLEEX日本筑波大学Cybernics实验室的科学家和工程师们,研制出了世界上第一种商业外骨骼机器人(Hybrid Assistive Leg,HAL)[9](图1.7),准确地说,是自动化机器人腿:“混合辅助腿”。
这种装置能帮助残疾人以每小时4公里的速度行走,毫不费力地爬楼梯。
除HAL“混合辅助腿”外,日本还研制成功了一种全身性外骨骼机器人。
神奈川理工学院研制的“动力辅助服”[9](Power Assist Suit)(图1.8)可使人的力量增加0.5-1倍,使用肌肉压力传感器分析佩戴者的运动状况,通过复杂的气压传动装置增加人的力量。
这种装置最初是为护士研制的,用来帮助她们照料体重较大或根本无法行走的病人。
现在已经有残疾人在这种机器人的帮助下实现了登山运动。
海量机械毕业设计,请联系Q99872184图1.7HAL机器人图1.8Power Assist Sui t美国NPH研究中心开创了机器人系统量化步行能力和步态失调的研究领域,根据活动依赖神经系统的可塑性,量化和评估模式肌电图在步态等方面2海量机械毕业设计,请联系Q99872184的作用,建立数学模型模拟的感觉运动障碍。
图1.9为NPH的机器人在实验中。
图1.9NPH的机器人在进行试验在我国,康复医疗工程已经得到了普遍重视,康复训练机器人广阔的应用前景将推动康复机器人技术的进一步发展。
我国对康复机器人的研究起步比较晚,辅助型康复机器人的研究成果相对较多,康复训练机器人方面的研究成果则比较少。
清华大学在国内率先研制了卧式下肢康复训练机器人样机在这项成果中他们采用了虚拟现实技术[10]。
哈尔滨工程大学在康复机器人方面也取得了不错的成果。
哈尔滨工程大学研制的下肢康复机器人可以模拟正常人行走的步态、踝关节的运动姿态以及重心的运动规律,带动下肢做行走运动,实现对下肢各个关节的运动训练、肌肉的锻炼以及神经功能的恢复训练。
通过获取脚的受力状态、腿部肌肉状态和下肢关节状态等人体的生物信息,协调重心控制系统和步态系统的运动关系,使之与人体运动状态相协调,获得最佳训练效果。
图1.10 、图1.11 所示分别为哈尔滨工程大学研制的卧式3海量机械毕业设计,请联系Q99872184下肢康复机器人和基于步态姿态控制的下肢康复机器人系统[11]。
图1.9卧式下肢康复机器人图1.10下肢康复训练机器人1.3本课题主要研究内容本文“基于姿态控制步态康复训练系统的设计”的研究目的是设计出一种可以辅助下肢有运动功能障碍的老人或残疾人进行功能恢复训练的康复机器人,工作重点是机器人机械本体的结构设计,要考虑安全性、可靠性、柔顺性,同时进行了气动控制系统的设计。
课题内容主要包括:1.步态康复训练系统的结构方案设计及运动学分析,包括人体行走的步态、自由度的设计、基本参数的选取、整体结构设计等。
2.机器人机械本体结构的设计与计算,包括姿态控制结构设计和减重结构设计。
3.机器人驱动器的供气控制系统的设计。
4海量机械毕业设计,请联系Q99872184第2章总体方案设计与选择的论证2.1步态分析下肢康复机器人是对有脑损伤、中风等病人进行主动康复训练的自动化机械装置。
它可以帮助患者进行运动机能恢复性训练,进行主动式步态训练。
正常人在行走时脚在一个步态周期内的运动情况如图2.1所示[12]。
图2.1步态周期1个步行周期分为两个时期,支撑期和摆动期。
支撑期是当脚和地面接触的时间,它占了一个步行周期的62%。
摆动期是脚在空中的时间,它占了一个步行周期的38%。
足跟接地即进入支撑期,足趾离地进入摆动期。
支撑5海量机械毕业设计,请联系Q99872184期占步行周期62%(其中单侧肢体支撑期占37%,双侧肢体支撑期占25%),摆动期占步行周期的38%。
双侧肢体支撑期中包括预承重期和摆动前期,各占步行周期12%。
各时期划分及有关具体内容如下:(l)双侧肢体支撑期。
为双足着地、由双侧肢体支撑体重的时期,又分为被测下肢在前的“前足着地双足支撑期”(预承重期)和被测下肢在后的“后足蹬地双足支撑期”(摆动前期)2个时期。
预承重期是从被侧足足跟着地至对侧足趾离地的时期;摆动前期是从对侧足足跟着地至被侧足足趾离地的时期。
一侧足的预承重期即为对侧足的摆动前期。
(2)单侧肢体支撑期。
仅由被测足承担体重的时期,即从对侧足足趾离地至对侧足足跟着地的时期,也是对侧肢体摆动期。
(3)摆动期。
被测足不接触地面的时期,即从被测足足趾离地至同侧足跟着地的时期,也是对单侧肢体支撑期。
步态各重要阶段动作:(1)脚后跟受:一般的步态历程,最开始的动作为右脚接触到地面的瞬间,也就是后脚跟刚与地面接触的动作;(2)前脚完全承载:在脚后跟受力后,脚掌渐渐贴附地面,直到脚掌完全贴合地面,此刻即为前脚完全承载;(3)支撑段中期:当右脚完全程载后,左脚开始摆动,摆动后右脚瞬间的动作即为支撑段中期;(4)脚后跟离地:左脚摆动过右脚后,右脚后跟离开地面的动作成为脚后跟离地;(5)脚指离地:右脚后跟离地后,紧接着脚尖离地,此时即为右脚离开地面的瞬简,我们称之为脚指离地,由于它是右脚摆动前的动作,所以也称为预先摆动;(6)摆动中期:右腿摆动过左腿的瞬间动作,此时的动作为支撑段中期。