电镜检测项目有哪些

合集下载

透射电镜样品检测标准

透射电镜样品检测标准

透射电镜(TEM)样品的检测标准主要包括以下几个方面:
样品制备:透射电镜样品需要经过精细的制备过程,以确保样品的表面平整、无划痕、无污染。

制备过程中需要使用专业的工具和设备,如切割机、抛光机等,以确保样品的表面质量和完整性。

样品厚度:透射电镜样品需要具有一定的厚度,以便在电镜下观察到样品的内部结构。

样品的厚度需要根据实验目的和样品类型来确定,一般要求在几十纳米到几百纳米之间。

样品纯度:透射电镜样品需要具有较高的纯度,以避免杂质对实验结果的影响。

样品的纯度可以通过化学分析、光谱分析等方法进行检测。

样品稳定性:透射电镜样品需要具有一定的稳定性,以避免在电镜下观察过程中发生变形或破裂。

样品的稳定性可以通过对样品的热稳定性、机械稳定性等方面的测试来评估。

图像质量:透射电镜样品的图像质量是评价样品质量的重要指标之一。

图像质量包括分辨率、对比度、清晰度等方面,需要满足实验要求和标准。

总之,透射电镜样品的检测标准需要综合考虑多个方面,以确保实验结果的准确性和可靠性。

同时,在进行透射电镜样品制备和检测过程中,需要严格遵守实验室安全规范,确保实验人员的安全和健康。

透射电镜金属检测方法

透射电镜金属检测方法

透射电镜金属检测方法透射电镜(Transmission Electron Microscope,简称TEM)是一种通过电子束照射样品,利用电子的透射来观察和分析材料的显微镜技术。

TEM广泛应用于材料科学、生物学、纳米技术等领域,其高分辨率和高放大倍数使其成为金属检测的重要工具之一。

透射电镜金属检测方法主要基于电子束与金属样品的相互作用。

当电子束通过金属样品时,会与金属中的原子和晶体结构发生作用,产生一系列的物理和化学效应。

通过对这些效应的观察和分析,可以获取金属样品的详细信息,如晶体结构、原子排列、晶体缺陷、晶界等。

在透射电镜金属检测中,最常用的方法是透射电子显微镜(Transmission Electron Microscopy,简称TEM)和扫描透射电子显微镜(Scanning Transmission Electron Microscopy,简称STEM)。

这两种方法都利用了电子束的透射性质,但在观察样品的方式上有所不同。

TEM是通过透射电子显微镜来观察金属样品的微观结构。

在TEM 中,电子束通过样品后,会被透射到投影屏或CCD相机上形成透射电子图像。

通过对透射电子图像的分析,可以得到金属样品的晶体结构、晶体缺陷、原子排列等信息。

此外,TEM还可以进行能谱分析,得到元素分布和化学组成等信息。

STEM是通过扫描透射电子显微镜来观察金属样品的微观结构。

在STEM中,电子束被聚焦成很小的尺寸,然后扫描在样品上,通过测量透射电子的强度和散射电子的能量来获得样品的信息。

STEM 具有高分辨率和成像速度快的优点,适用于观察金属样品的纳米结构和界面。

透射电镜金属检测方法可以通过以下几个方面来实现。

首先,通过调节透射电镜的电子束参数,如加速电压、聚焦、透镜和光阑等,可以控制电子束的特性,从而优化金属样品的成像效果。

其次,通过透射电子显微镜和扫描透射电子显微镜的成像模式,可以观察到金属样品的微观结构和形貌。

扫描电子显微镜(SEM)简介

扫描电子显微镜(SEM)简介
关机与清理
完成观察后,关闭扫描电子显微镜主机和计 算机,清理样品台,保持仪器整洁。
注意事项
样品求
确保样品无金属屑、尘埃等杂质,以 免损坏镜体或影响成像质量。
避免过载
避免长时间连续使用仪器,以免造成 仪器过载。
保持清洁
定期清洁扫描电子显微镜的镜头和样 品台,以保持成像清晰。
操作人员要求
操作人员需经过专业培训,了解仪器 原理和操作方法,避免误操作导致仪 器损坏或人员伤害。
操作方式
有些SEM需要手动操作,而有 些型号则具有自动扫描和调整 功能。
适用领域
不同型号的SEM适用于不同的领 域,如材料科学、生物学等,选
择时应考虑实际应用需求。
04
SEM的操作与注意事项
操作步骤
01
02
03
开机与预热
首先打开电源,启动计算 机,并打开扫描电子显微 镜主机。预热约30分钟, 确保仪器稳定。
场发射电子源利用强电场作用下的金属尖端产生电子,具有高亮度、低束流的优点, 但需要保持清洁和稳定的尖端环境。
聚光镜
聚光镜是扫描电子显微镜中的重 要组成部分,它的作用是将电子 束汇聚成细束,并传递到样品表
面。
聚光镜通常由两级组成,第一级 聚光镜将电子束汇聚成较大直径 的束流,第二级聚光镜进一步缩
小束流直径,提高成像质量。
生态研究
环境SEM技术可以应用于生态研究中, 例如观察生物膜、土壤结构等,为环 境保护和治理提供有力支持。
THANKS
感谢观看
样品放置
将样品放置在样品台上, 确保样品稳定且无遮挡物。
调整工作距离
根据样品特性,调整工作 距离(WD)至适当位置, 以确保最佳成像效果。
操作步骤

扫描电镜原理及测试范围-详细

扫描电镜原理及测试范围-详细

材料的显微结构包含:化学组成、元素分布和组成相的形貌(尺寸、分布和形状)显微结构:在各种显微镜下看到所有相区(phase region)及所包含的缺陷。

通常包括晶粒和气孔的尺寸、大小和分布、相组成和分布、晶界特性、缺陷及裂纹,包括组成的均匀性。

显微结构表征的主要任务:根据不同类型显微镜下观察的显微机构的特征,对他们的形成原因做出合理的分析和判断。

微束分析(Microbeam Analysis):利用一束细电子束、离子束、光束或粒子束作用于试样产生的各种信息,进行成分、形貌、结构及其他物理和化学特性的分析。

束斑大小:微米-纳米主要功能:成分分析、结构分析、图像分析。

主要指标:束斑大小、分辨率、空间分辨率、灵敏度、准确度定量分析:微束分析是物理方法,由于物理过程的复杂性,成分定量基本都用标样比较法并进行修正计算。

俄歇电子谱仪(AES:Auger Electron Spectroscope)称为扫描俄歇显微镜。

表面分析仪器,进行元素定量分析(三维元素分析)、形貌观察、价态分析等。

分析深度为1nm-2nm。

分析H和He以外元素,对轻元素灵敏度高。

1.扫描电镜电子探针:(1)图像分辨率高、放大倍率大。

分辨率为3nm-0.6nm,相对应最大有效放大倍率为100000-1600000倍;电子探针图像分辨率为3nm-6nm。

(2)景深大。

扫描电镜的景深是透射电镜的10倍,是光学显微镜的100倍,特别适合观察一些粗糙不平的断口。

(3)无损分析。

对大部分材料,只要尺寸能放入样品室,采用合适条件无需对试样进行任何处理即可再进行观察分析。

(4)试样制备简单。

可以是自然表面、断口、块体、反光和透光光片。

EPMA和SEM的区别EPMA:价格贵2-3倍(1)成分分析,形貌观察,以成分分析为主。

主要用WDS进行元素成分分析,出射角大、有OM,电流大,有较成熟的定量方法,所以定量结果的准确度较高。

(2)真空腔体大,成分分析束流大,所以电子光路、光阑等易污染,图像质量下降速度快,EPMA二次像分辨率3-6nm。

扫描电镜检测国际标准

扫描电镜检测国际标准

扫描电镜检测国际标准扫描电镜(Scanning Electron Microscope,SEM)是一种常用的表面形貌和成分分析仪器,广泛应用于材料科学、生物科学、化学科学等领域。

扫描电镜检测国际标准是指对扫描电镜的性能、操作规范以及检测结果的要求和规定。

本文将介绍扫描电镜检测国际标准的相关内容。

首先,扫描电镜检测国际标准主要包括以下几个方面的内容:仪器性能指标、操作规范、样品制备要求以及结果评定等。

一、仪器性能指标扫描电镜的性能指标主要包括分辨率、放大倍数、加速电压、探针电流、成像方式等。

分辨率是指扫描电镜对样品表面微细结构的分辨能力,一般以纳米级别为标准。

放大倍数是指扫描电镜对样品进行放大的倍数,一般要求在数千倍至数十万倍之间。

加速电压和探针电流是指扫描电镜的工作电压和探针束的电流大小,不同的样品和分析目的需要选择不同的参数。

成像方式是指扫描电镜的成像模式,常见的有二次电子成像(SEI)和反射电子成像(BEI)等。

二、操作规范扫描电镜的操作规范主要包括仪器的开机与关机步骤、样品的安装与卸载方法、参数设置与调整等。

在使用扫描电镜之前,需要确保仪器处于正常工作状态,并进行相关的预热和真空泵抽气等操作。

样品安装时需要注意避免污染和损坏,同时要根据不同的样品类型和分析目的进行参数设置和调整,以获得最佳的成像效果。

三、样品制备要求样品制备是扫描电镜检测中非常重要的一步,对于不同类型的样品需要采取不同的制备方法。

常见的样品制备方法包括金属涂覆、冷冻切片、离子切割等。

金属涂覆是为了提高样品的导电性和减少电荷积累而进行的处理,冷冻切片是为了观察生物样品内部结构而进行的处理,离子切割则是为了获得样品横截面而进行的处理。

在样品制备过程中需要注意避免污染和损坏,并根据不同的制备方法进行相应的操作。

四、结果评定扫描电镜检测结果的评定主要包括图像质量评价和成分分析评价两个方面。

图像质量评价是指对扫描电镜图像的清晰度、对比度、噪声等进行评估,以确定图像是否满足分析要求。

材料检测表征方法之扫描电镜

材料检测表征方法之扫描电镜

材料检测表征方法之扫描电镜自从1965年第一台商品扫描电镜问世以来,经过40多年的不断改进,扫描电镜的分辨率从第一台的25nm提高到现在的0.01nm,而且大多数扫描电镜都能与X射线波谱仪、X射线能谱仪等组合,成为一种对表面微观世界能够经行全面分析的多功能电子显微仪器。

在材料领域中,扫描电镜技术发挥着极其重要的作用,被广泛应用于各种材料的形态结构、界面状况、损伤机制及材料性能预测等方面的研究。

利用扫描电镜可以直接研究晶体缺陷及其产生过程,可以观察金属材料内部原子的集结方式和它们的真实边界,也可以观察在不同条件下边界移动的方式,还可以检查晶体在表面机械加工中引起的损伤和辐射损伤等。

1、扫描电镜的结构及主要性能扫描电镜可粗略分为镜体和电源电路系统两部分。

镜体部分由电子光学系统、信号收集和显示系统以及真空抽气系统组成。

1.1 电子光学系统由电子枪,电磁透镜,扫描线圈和样品室等部件组成。

其作用是用来获得扫描电子束,作为信号的激发源。

为了获得较高的信号强度和图像分辨率,扫描电子束应具有较高的亮度和尽可能小的束斑直径。

1.2 信号收集及显示系统检测样品在入射电子作用下产生的物理信号,然后经视频放大作为显像系统的调制信号。

现在普遍使用的是电子检测器,它由闪烁体,光导管和光电倍增器所组成。

1.3 真空系统真空系统的作用是为保证电子光学系统正常工作,防止样品污染,一般情况下要求保持10-4~10-5Torr的真空度。

1.4 电源系统电源系统由稳压,稳流及相应的安全保护电路所组成,其作用是提供扫描电镜各部分所需的电源。

2、扫描电镜工作原理扫描电镜由电子枪发射出来的电子束,在加速电压的作用下,经过磁透镜系统汇聚,形成直径为5nm,经过二至三个电磁透镜所组成的电子光学系统,电子束会聚成一个细的电子束聚焦在样品表面。

在末级透镜上边装有扫描线圈,在它的作用下使电子束在样品表面扫描。

由于高能电子束与样品物质的交互作用,结果产生了各种信息:二次电子、背反射电子、吸收电子、X射线、俄歇电子、阴极发光和透射电子等。

扫描电镜在金属材料检测中的应用

扫描电镜在金属材料检测中的应用

扫描电镜在金属材料检测中的应用
扫描电镜在金属材料检测中有广泛的应用。

它可以提供高分辨率的显
微镜图像和表面形貌分析,以及相关的元素分析和晶体结构分析。

以下是
扫描电镜在金属材料检测中的几个主要应用:
1.表面缺陷分析:扫描电镜可以检测金属材料表面的微小缺陷和裂纹,以帮助了解表面破坏的机制和处理方法。

2.颗粒分析:扫描电镜可以用于确定金属材料中粒子的形态、大小、
分布和成分,以评估其性能和质量。

3.材料组织分析:扫描电镜可以检测金属材料的晶粒尺寸、晶界、位
错和相分布,以帮助了解材料的性能和制备方法。

4.化学成分分析:扫描电镜可以用于确定金属材料中元素的分布和含量,提供有关材料组成的信息。

总之,扫描电镜在金属材料检测中是一种非常有用的工具,可以提供
有关材料性能和结构的详细信息,帮助制定改进和优化的制备和加工方法。

利用扫描电镜全面了解样品

利用扫描电镜全面了解样品
2
图 3.a 背散射成像下裂痕位置 500 X 图 3.b 背散射成像下裂痕位置 1,000 X
3
图 3.c 背散射成像下裂痕位置 2,000 X
图 3.d 背散射成像下裂痕位置 5,000 X 更高倍数下对样品进行观察,展示出镀层表面的形貌,图 4。样品表面存在黑色斑点。由于 背散射成像性质,可以推断此处成分元素较轻,也有可能为陡直的坑。分别使用背散射 Top 模式,3D 粗糙度重建系统,二次电子模式,以及能谱对此处进行深入分析。
利用扫描电镜全面了解样品
样品名称 铅电池极片框架 样品类型 金属,固体 是否喷金 未喷金 设备型号 飞纳台式扫描电镜 Phenom Pure+ 测试项目 • 扫描电镜:
背散射探头 Full 模式 Topo 模式 3D 粗糙度重建 二次电子探头 • 能谱: EDS mapping 测试目的 表面镀层质量观察 光学导航介绍 借助光学导航显微镜,可以定位到不同位置。操作人员始终明白当前样品所处的位置。对于 想观察的区域,也只需要在光学导航图上点击鼠标左键即可移动至此位置。图 1. 右上小图 中黄框代表当前照片成像位置。 借助右下方电子导航,可以在高倍数下进行更精准的位置导航。
EDS 能谱测试 EDS 能谱为了对黑斑位置进行进一步分析,我们进行 EDS 能谱 mapping 面扫。面扫显示 出黑斑位置存在 Al 元素的聚集。
总结
一些位置存在裂纹缺陷,另外一些位置镀层存在孔洞缺陷。使用不同探头成像模式对样品进 行分析。不同探头分别可以获得不同的信息。
8
图 7. 3D 粗糙度重建 二次电子成像 二次电子成像获得样品表面更为敏感的形貌信息。
6三种不同成像模式对比图 8. 样品表面图 9. 三种成像模式对比,左:BSD Full 模式;中,BSD Top 模式;右:二次电子模式
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

扫描电镜是用于检验和分析固体微观结构特征的最有用的仪器之一,可以获得高的图像分辨率。

场发射电子枪是具有很高的亮度和很小的电子源。

扫描电镜的图像反映了样品三维的形貌特征,通过电子和样品的互作用可以研究样品的结晶学、磁学和电学特性。

要想了解扫描电镜的测试项目我们先来了解一下它的工作原理。

扫描电子显微镜是以能量为1—30kV间的电子束,以光栅状扫描方式照射到被分析试样的表面上,利用入射电子和试样表面物质相互作用所产生的二次电子和背散射电子成像,获得试样表面微观组织结构和形貌信息。

配置波谱仪和能谱仪,利用所产生的X射线对试样进行定性和定量化学成分分析。

当电子束轰击样品表面时,一部分的能量转变成热能,这可能造
成样品的辐照损伤,还有部分的能量由于电子与样品原子的相互作用而发射出各种有用的信息。

所以扫描电镜的测试项目主要各类电子、射线和电流等,包括:
(1)二次电子:入射电子使样品原子激发所产生的电子,它们的能量很低,一般小于50eV,只有10nm左右的深度范围的二次电子才能逸出样品表面而被检测。

(2)背散射电子:一部分入射电子因与样品原子碰撞而改变运动方向,经多次碰撞又由样品表面散射出来,称之为背散射电子,其能量接近入射电子的能量。

(3)特征X射线:样品原子的内层电子被激发后所产生的X射线。

(4)俄歇电子:样品原子的内层电子被激发后所产生的电子。

(5)吸收电子:一部分入射电子在与样品原子碰撞过程中将能量全部释放给样品,而成为样品中的自由电子,称之为吸收电子。

(6)荧光:样品原子的外层电子被激发后所产生的可见光或红外光。

(7)感生电动势:入射电子照射样品的pn结时产生的电动势(或电流)。

上海博焱检测技术服务有限公司专业经营各种材料的环保检测,卫生检测,老化检测,防火检测以及各种大型仪器分析检测。

为客户提供方便、快捷、灵活的一站式服务,因为自身的专业与专注,截止目前,已经1万多家客户进行合作,并得到了广泛的赞誉和认可。

经过长期快速的发展,公司在环保、卫生、老化、防火等检测领域形成明显优势。

相关文档
最新文档