纳米技术在药剂学中的应用
药物制剂中纳米技术的应用

药物制剂中纳米技术的应用在现代医学领域,药物制剂的发展日新月异,其中纳米技术的应用为药物的研发和治疗带来了革命性的变化。
纳米技术,简单来说,就是在纳米尺度(1 到 100 纳米)上对物质进行研究和操作的技术。
当应用于药物制剂时,它能够显著改善药物的性能,提高治疗效果,降低副作用,为患者带来更好的医疗体验。
一、纳米技术在药物制剂中的优势纳米技术在药物制剂中的应用具有诸多显著优势。
首先,纳米粒子能够增加药物的溶解度。
许多药物由于其化学结构和物理性质,在水中的溶解度较低,这限制了它们在体内的吸收和生物利用度。
通过将药物制成纳米粒子,可以增大药物与溶剂的接触面积,从而提高溶解度,使药物更容易被人体吸收。
其次,纳米技术能够实现药物的靶向输送。
传统的药物制剂在进入人体后,往往会分布到全身各个部位,只有一小部分能够到达病变部位,这不仅降低了药物的治疗效果,还可能导致全身性的副作用。
而纳米粒子可以通过表面修饰,使其具有特定的靶向性,能够识别并结合病变细胞或组织表面的受体,从而将药物精准地输送到病变部位,提高药物的治疗指数。
此外,纳米粒子还能够延长药物的作用时间。
药物在体内的代谢和排泄速度较快,导致其疗效持续时间较短。
纳米粒子可以通过控制药物的释放速度,实现药物的缓慢释放,从而延长药物的作用时间,减少给药次数,提高患者的依从性。
二、纳米技术在药物制剂中的应用形式纳米脂质体纳米脂质体是由磷脂双分子层组成的封闭囊泡,内部可以包裹水溶性或脂溶性药物。
它具有良好的生物相容性和生物可降解性,能够有效地保护药物免受体内环境的影响,提高药物的稳定性。
纳米脂质体还可以通过修饰表面的配体,实现对肿瘤细胞等特定细胞的靶向输送。
纳米胶束纳米胶束是由两亲性聚合物在水溶液中自组装形成的纳米粒子。
它的疏水内核可以包裹脂溶性药物,亲水外壳能够增加纳米粒子在水溶液中的稳定性和溶解性。
纳米胶束同样可以进行表面修饰,实现药物的靶向输送。
纳米混悬剂纳米混悬剂是将药物颗粒分散在稳定剂中形成的纳米级分散体系。
磁性纳米颗粒在药剂学中的应用研究

磁性纳米颗粒在药剂学中的应用研究磁性纳米颗粒是一种具有磁性能的微小颗粒,其直径通常在1到100纳米之间。
由于其独特的性质,磁性纳米颗粒被广泛应用于药剂学领域。
本文将探讨磁性纳米颗粒在药剂学中的应用,包括药物传输、靶向治疗和磁共振成像等方面。
一、磁性纳米颗粒在药物传输中的应用磁性纳米颗粒可以作为药物的载体,实现药物的有效输送。
常见的方法是将药物吸附或包裹在磁性纳米颗粒表面,通过外加磁场的作用,将颗粒定向输送到病灶部位。
这种方法可以提高药物的局部浓度,减少药物在体内的分布,从而增强药物的疗效。
例如,在癌症治疗领域,磁性纳米颗粒被广泛应用于肿瘤的局部治疗。
研究表明,将化疗药物包裹在磁性纳米颗粒上,并结合外加磁场的导向作用,可以将药物准确输送到肿瘤部位,避免对正常细胞的损伤,提高治疗效果。
二、磁性纳米颗粒在靶向治疗中的应用通过修饰磁性纳米颗粒表面的功能性分子,可以实现对特定细胞或组织的靶向治疗。
例如,利用特异性抗体修饰磁性纳米颗粒表面,可以实现对癌症细胞的选择性杀伤,从而提高治疗效果。
磁性纳米颗粒的靶向治疗还可以应用于神经系统疾病的治疗。
研究表明,修饰磁性纳米颗粒表面的神经生长因子可以促进神经细胞的再生,减轻神经退行性疾病的症状。
三、磁性纳米颗粒在磁共振成像中的应用磁性纳米颗粒具有良好的磁性能,可以被用作磁共振成像的对比剂。
通过调节磁性纳米颗粒的性质,可以实现对不同组织的选择性成像。
磁共振成像是一种无创的医学影像技术,常用于疾病的诊断和监测。
磁性纳米颗粒作为磁共振成像的对比剂,可以提高影像的对比度,增强疾病的检测能力。
四、磁性纳米颗粒的生物安全性和应用前景磁性纳米颗粒在药剂学中的应用虽然带来了许多潜在的优势,但是其生物安全性也需要引起我们的关注。
研究表明,磁性纳米颗粒对人体组织和细胞具有一定的毒性。
因此,磁性纳米颗粒的生物相容性和毒性评估至关重要。
随着对磁性纳米颗粒的研究不断深入,我们对其应用前景充满期待。
纳米技术在药物制剂中的应用研究

纳米技术在药物制剂中的应用研究近年来,纳米技术在药物制剂中的应用越来越受到关注和重视。
由于纳米颗粒的小巧,药物分子可以更容易地被吸收和传递到病灶部位,同时药物的作用时间也可以得到相应的延长和提高,因此纳米技术在药物制剂中的应用具有广泛的前景和应用空间。
一、纳米颗粒的制备方式纳米颗粒的制备方式主要有两种,一种是自组装法,另一种是物理–化学法。
自组装法是通过某些分子间的非共价相互作用将分子有序地排列成为纳米结构,利用分子之间的自组装原理形成纳米颗粒。
而物理–化学法则是将设计好的药物分子通过一定的物理和化学手段制造成为纳米颗粒。
二、纳米技术在药物分子传输方面的应用纳米技术在药物分子传输方面的应用是目前最为广泛和有效的一种手段。
由于纳米颗粒的小巧,药物分子可以更加容易地进入到细胞内部和基因组中,从而发挥出更加有效的治疗作用。
纳米技术能够精确地将药物分子传递到病灶部位,能够使药物分子更加有效地发挥作用,并且能够有效避免药物分子在传递过程中的损失。
三、纳米技术在药物制剂中的应用纳米技术在药物制剂中的应用是一种新兴的研究领域,由于纳米颗粒的小巧,纳米技术能够将药物分子精确地传递到病灶部位,并且能够大大提高药物分子的作用效果。
纳米技术在药物制剂中的应用主要有以下几个方面:一是纳米微粒的药物传递系统,二是纳米胶粒药物传递系统,三是纳米乳液药物传递系统,四是纳米凝胶药物传递系统,五是纳米磁性药物传递系统。
四、纳米技术在肿瘤治疗中的应用纳米技术在肿瘤治疗中的应用主要体现在两个方面。
一是通过纳米技术制造出纳米颗粒,将药物直接传递到肿瘤部位,从而使药物分子更加有效地发挥治疗作用。
另外一种是利用纳米技术制造出有针对性的靶向纳米颗粒,将药物分子直接传递到靶部位,从而有效地杀死肿瘤细胞,达到治疗的目的。
五、纳米技术在神经系统疾病治疗中的应用纳米技术在神经系统疾病治疗中的应用主要体现在三个方面。
首先,通过纳米技术制造出纳米颗粒,可以将药物分子更加精确地传递到神经系统病变部位,从而达到更好、更快的治疗效果。
现代药剂学的研究进展及其应用

现代药剂学的研究进展及其应用随着科学技术的不断发展,药剂学也在不断地推陈出新。
如今的药剂学已经不再是简单地将药物与载体混合便可得到药物制剂的时代了,而是更注重药物制剂的研发和制备技术,以及其产生的效果。
下面将结合最近几年的研究成果,来探讨现代药剂学的研究进展及其应用。
一、纳米技术在药剂学中的应用从2000年代初开始,随着纳米技术的不断发展,人们开始将纳米技术与药剂学相结合,开展了一系列关于纳米药物制剂研究的工作。
纳米技术可以将药物分子转化为纳米级别的微粒,使药物更易于吸收、分散和输送,从而提高药物的生物利用度,减少药品的副作用。
近年来,人们已经成功地应用纳米技术在临床治疗中,如使用纳米粒子包裹着化疗药物,能够减轻化疗药物对正常细胞的毒副作用,同时还能针对癌细胞实现精准攻击。
二、智能药剂学在药剂学中的应用随着智能技术的发展,人们又将其引入到药剂学中,开展智能药剂学的研究。
智能药剂学可以根据患者的病情自动调节药物的用量、频率和时间,从而更好地对患者进行治疗,效果更佳。
在智能药剂学中,还有一种药剂学技术叫做“目标导向正向核酸药物”,它通过控制注射的RNA和DNA的质量和纯度,针对病毒启动的MRI、PET等医学影像技术的断层成像,使药物直接作用于肿瘤细胞、干细胞等,达到更好的治疗效果。
三、口腔黏膜药物制剂技术在药剂学中的应用近几年来,口腔黏膜药物制剂技术也开始受到人们的广泛关注。
口腔黏膜药物制剂可以减轻药物的毒副作用,加速药物的吸收和分解,并且更加适合儿童和老年人使用。
口腔黏膜药物制剂经常用于治疗头痛、口腔溃疡、口干等常见病症,如口腔樟脑油口腔液、托吡酯口腔崩解片、舒颜宝舒化口腔喷雾等,都是非常好的口腔黏膜制剂。
四、基因工程药物在药剂学中的应用基因工程技术的发展,也为药剂学提供了更多的发展空间。
基因工程药物可以精准地靶向某一种疾病,并且具有较高的生物活性和细胞内透过性,达到药物的高度分子量的物质是难以实现的目标。
纳米技术在药物制剂中的应用研究

纳米技术在药物制剂中的应用研究一、引言纳米技术作为一种在微观尺度下制备、控制和操作物质的方法,近年来得到了广泛的应用。
药物制剂是纳米技术最早应用的领域之一。
本文将探讨纳米技术在药物制剂中的应用研究。
二、纳米技术在药物制剂中的应用1. 纳米粒子药物制剂纳米粒子药物制剂是指将药物包裹在纳米级别的颗粒中,以提高药物的生物利用度、改善药物的溶解性和稳定性。
纳米粒子药物制剂包括纳米乳液、纳米乳剂、纳米微球、纳米胶囊等。
由于纳米粒子药物制剂具有较小的粒径,因此可以在体内穿过细胞膜,实现靶向输送,具有很好的治疗效果。
2. 脂质体药物制剂脂质体药物制剂是指将药物包裹在脂质体内,以改善药物的生物利用度和稳定性。
脂质体药物制剂具有较好的药物包裹效率和释放效果,能够提高药物的反应速度和作用时间。
3. 纳米磁性粒子药物制剂纳米磁性粒子药物制剂是指将药物包裹在纳米磁性粒子内,以达到靶向输送和定位治疗的目的。
纳米磁性粒子药物制剂可以通过磁场作用,实现对药物的控制释放和定向输送。
4. 纳米胶束药物制剂纳米胶束药物制剂是指将药物包裹在多聚物分子中,形成纳米级别的胶束,以达到提高药物的生物利用度和稳定性的目的。
纳米胶束药物制剂具有较好的负载能力和控制释放效果,能够提高药物的反应速度和作用时间。
三、纳米技术在药物制剂中的优势与挑战1. 优势(1)提高药物的生物利用度和稳定性,降低药物副作用。
(2)实现药物的靶向输送和定位治疗,提高治疗效果。
(3)能够制备多种形态的药物制剂,满足不同疾病治疗的需求。
2. 挑战(1)纳米制剂的制备比较复杂,成本较高。
(2)药物包裹率和释放效果不稳定,制剂的质量难以保证。
(3)纳米制剂在体内代谢和排泄过程中的安全性和毒性问题需要进一步研究。
四、结论纳米技术在药物制剂中的应用有着广泛的前景,但也面临着一定的挑战。
我们需要进一步加强研究,提高制剂的稳定性和质量,确保纳米制剂的临床应用安全可靠。
纳米技术在药物中的应用

纳米技术在药物中的应用纳米技术是一种应用于纳米尺度的技术,通过控制和操作物质在纳米尺度上的结构和性能,可以创造出新颖的材料和产品。
在医药领域,纳米技术的应用已经取得了许多突破,尤其是在药物研发和治疗方面。
本文将探讨纳米技术在药物中的应用,以及其带来的益处和挑战。
一、纳米药物的定义和特点纳米药物是指利用纳米技术制备的药物,其粒径通常在1-100纳米之间。
相比传统药物,纳米药物具有以下特点:1. **增强药物的溶解度和稳定性**:纳米药物可以提高药物的溶解度,增加药物在水溶液中的稳定性,有利于药物的吸收和利用。
2. **提高药物的靶向性**:纳米药物可以通过改变其表面性质或结构,实现对药物的靶向输送,减少对健康组织的损伤,提高药物的疗效。
3. **延长药物的半衰期**:纳米药物可以延长药物在体内的循环时间,减少药物的代谢和排泄,提高药物的生物利用度。
4. **降低药物的毒副作用**:纳米药物可以减少药物对正常细胞的损伤,降低药物的毒副作用,提高药物的安全性。
二、纳米技术在药物传递中的应用1. **纳米载体药物传递系统**:纳米技术可以将药物载入纳米载体中,如纳米粒子、纳米胶囊等,通过靶向输送的方式将药物传递到病灶部位。
这种系统可以提高药物的稳定性和靶向性,减少药物的剂量和频次,降低药物的毒副作用。
2. **纳米脂质体药物传递系统**:纳米脂质体是一种由磷脂和胆固醇等成分组成的纳米粒子,可以用来包裹水溶性和脂溶性药物。
纳米脂质体药物传递系统可以提高药物的生物利用度,延长药物在体内的循环时间,增强药物的靶向性。
3. **纳米乳液药物传递系统**:纳米乳液是一种由水相和油相组成的胶束结构,可以用来包裹水溶性和脂溶性药物。
纳米乳液药物传递系统可以提高药物的稳定性和溶解度,增加药物在体内的吸收率,减少药物的代谢和排泄。
三、纳米技术在药物研发中的应用1. **药物纳米化**:纳米技术可以将传统药物进行纳米化处理,使药物的粒径缩小到纳米尺度,从而提高药物的生物利用度和靶向性,降低药物的毒副作用。
纳米技术在药物制剂研究中的应用

临床医药文献电子杂志Electronic Journal of Clinical Medical Literature2019 年 第 6 卷第 40 期2019 Vol.6 No.40189纳米技术在药物制剂研究中的应用姜怀利(江苏润邦药业有限公司,江苏 淮安 223005)【摘要】纳米技术作为新兴科技相比其他技术来说,已在药物制剂研究中成熟应用,并且已在不同领域及医药卫生行业中得到广泛应用。
已有研究证实,较大多数物质在得到纳米尺度后,在性能上都可能出现突变。
这些特点应用到新型药物的研发中,也代表着药物研发进入一个新的时代。
在现代药物制剂研究中,不再是过去药物的束缚,而是运用新型的科室手段研发新型药物,使得新型药物具备更多的优点,帮助人们更好地治疗和战胜疾病。
本文重点探讨纳米技术在药物制剂研究中的应用。
【关键词】纳米技术;药物制剂;研究;应用【中图分类号】R943 【文献标识码】A 【文章编号】ISSN.2095-8242.2019.40.189.02目前,在传统的药物制剂中绝大部分的药物遇水很难溶解,药物进入患者体内后药物成分较难吸收,这一点在药物制剂研究中成为一个难题。
而随着科学技术的发展,不同的新兴的技术被不断应用到药物制剂研究中,系统的药物研究也在不断改变,也使得药物难溶于水的问题的得到了很好解决。
纳米技术就是其中的一个新技术,已有研究证实,纳米技术在医学研究中占有越来越重要的地位,也推动了药物研究的不断进展并为其发展提供了可能[1]。
1 纳米技术与药物制剂1.1 关于纳米技术的概念纳米技术作为一种新型的药物研究技术,是一种长度单位,一米的十分之一(范围在10-9~10-7 m ),其提出是在上个世纪的八十年代。
它是一种在纳米尺寸范围内重新认识物质和改造物质,通过直接的一般电子、原子、分子的运动规律和特性来直接操作和安排,来创新物质。
随着物理空间的改变,物质的理化与生物学特性会发生较大的变化,令人感到惊奇,目前纳米技术在药学领域中已得到广泛的应用且成为前沿科学。
最新纳米技术在药剂学中的应用

纳米技术在药剂学中的应用纳米技术在药剂学中的应用摘要: 综述纳米技术在药剂学领域的主要应用,主要介绍了与纳米技术相关的新技术与剂型。
查阅大量近年来国内外的相关文献并进行归纳、总结。
结果证明,纳米技术具有能提高难溶性药物的溶解度和生物利用度,药物的稳定性及降低药物的毒性等特点,在药剂学领域有广阔的应用前景。
关键词:纳米技术;药剂学;难溶性;生物利用度一、前言随着社会发展和科学技术的进步,药物发现领域的研究也大大加快了步伐。
特别是近二三十年来,随着高通量筛选,组合化学和计算机辅助药物设计广泛应用于药物研发领域,越来越多的化合物成为候选药物。
但是这些药物大多分子量大,脂溶性强,普遍存在溶解度差得缺陷,属于生物药剂学分类系统(Biopharmaceutics Classification System, BCS)中的Ⅱ类药物。
据相关文献报道,大约40%的候选药物水中溶解度差,导致其生物利用度极低,使得他们别排斥于新药行列之外。
由于生物利用度低,病患只能服用较大剂量才能达到有效的治疗效果。
而较大的给药剂量则会大大降低患者用药的依从性。
如果给药剂量过大则会产生毒副作用,给患者身心带来极大的危害。
因此,研制新的有效的处方和给药系统以解决药物水溶性低以及由药物水溶性低带来的生物利用率低的问题,一直都是药学工作者的挑战。
药剂工作者尝试很多方法解决药物难溶性问题,如在溶液中添加使用有机溶剂以增加药物溶解度、应用环糊精包合技术制备药物的环糊精包合物、制备固体分散体和将难溶性药物制备成相应的盐以增加溶解度等。
尽管这些方法在一定程度上解决了难溶性药物的水溶性问题,但是这些技术往往存在这样那样的缺陷,如使用有机溶剂增溶时,有机溶剂存在毒性而且在与其他辅料配伍时有使药物析出的可能;使用包合物是环糊精对客体药物分子大小有特殊要求;药物的固体分散体存在长期放置物理稳定性差的问题等。
因此,药物工作者亟需开发应用更广泛的制剂手段来解决难溶性药物溶解度低以及生物利用度低的问题。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
纳米技术在药剂学中的应用摘要: 综述纳米技术在药剂学领域的主要应用,主要介绍了与纳米技术相关的新技术与剂型。
查阅大量近年来国内外的相关文献并进行归纳、总结。
结果证明,纳米技术具有能提高难溶性药物的溶解度和生物利用度,药物的稳定性及降低药物的毒性等特点,在药剂学领域有广阔的应用前景。
关键词:纳米技术;药剂学;难溶性;生物利用度一、前言随着社会发展和科学技术的进步,药物发现领域的研究也大大加快了步伐。
特别是近二三十年来,随着高通量筛选,组合化学和计算机辅助药物设计广泛应用于药物研发领域,越来越多的化合物成为候选药物。
但是这些药物大多分子量大,脂溶性强,普遍存在溶解度差得缺陷,属于生物药剂学分类系统(Biopharmaceutics Classification System, BCS)中的Ⅱ类药物。
据相关文献报道,大约40%的候选药物水中溶解度差,导致其生物利用度极低,使得他们别排斥于新药行列之外。
由于生物利用度低,病患只能服用较大剂量才能达到有效的治疗效果。
而较大的给药剂量则会大大降低患者用药的依从性。
如果给药剂量过大则会产生毒副作用,给患者身心带来极大的危害。
因此,研制新的有效的处方和给药系统以解决药物水溶性低以及由药物水溶性低带来的生物利用率低的问题,一直都是药学工作者的挑战。
药剂工作者尝试很多方法解决药物难溶性问题,如在溶液中添加使用有机溶剂以增加药物溶解度、应用环糊精包合技术制备药物的环糊精包合物、制备固体分散体和将难溶性药物制备成相应的盐以增加溶解度等。
尽管这些方法在一定程度上解决了难溶性药物的水溶性问题,但是这些技术往往存在这样那样的缺陷,如使用有机溶剂增溶时,有机溶剂存在毒性而且在与其他辅料配伍时有使药物析出的可能;使用包合物是环糊精对客体药物分子大小有特殊要求;药物的固体分散体存在长期放置物理稳定性差的问题等。
因此,药物工作者亟需开发应用更广泛的制剂手段来解决难溶性药物溶解度低以及生物利用度低的问题。
近二十年来,纳米技术作为一种新兴的技术异军突起,吸引了广大科学工作者的眼球。
纳米技术是一门以许多现代先进科学技术为基础的科学技术,是现代科学(量子力学、分子生物学等)和现代技术(微电子技术、计算机技术、高分辨显微技术、核分析技术等)结合的产物。
自二十世纪八十年代诞生以来纳米技术迅速崛起,其采用原子和分子创制新物质,研究尺寸在1-100nm之间的物质的组成。
这个极其微小的空间,正好是原子和分子的尺寸范围,也是它们相互作用的空间。
在这样的空间内,由于量子效应、物质的局域性及巨大的表面和界面效应,使物质的很多性质发生改变,这些变化渗透到整个工业领域后,将带来新一轮的工业革命。
纳米技术所追求的最终目标,正像物理学家Feynmam在1959年所作的题为《在底部还是有很大空间》的演讲所描述的那样,就是要使人类按照自己的意愿任意操纵单个原子和分子,并在对自然界的本质进行深入探讨和研究的基础之上,按照人们的愿望,在原子和分子的水平上设计和制造全新的物质。
纳米技术在不断渗透到现代科学技术的各个领域的同时,形成了许多的与纳米技术相关的新兴学科,如纳米医学、纳米药物、纳米机械学、纳米化学、纳米电子学、纳米材料学、纳米生物学等,并在全世界范围内得到广泛的重视和发展。
在此背景下,纳米技术在制剂领域的应用受到了国内外专家学者的关注。
随着纳米药物制备理论、技术和设备的迅猛发展,推动了纳米药物产业化的发展。
二、药剂学中的应用在药剂学研究领域,纳米药物被定义为尺寸在1-1000纳米的载药粒子或药物纳米晶体。
现主要介绍纳米技术在药剂学领域的主要应用。
1 固体分散技术和固体分散体这是应用纳米技术分散水难溶性药物在载体中,以增大药物溶出-吸收,提高药物生物利用度比较典型的新技术、新剂型,近年来已被大力研究推广。
还被应用于水溶性或水难溶性药物制成缓、控释的固体分散体。
固体分散体中的水难溶性药物是以微粒、微晶或分子状态分散在易溶于水的固体载体中。
若选择载体、制备方法得当,药物与载体的比例合理,制得的固体分散体中的药物分散的粒径均可小于100nm。
其中溶液型固体分散体中的药物呈分子状态分散,这样的固体分散体中的药物,大大改变了药物在化学性质和物理学性质之间已无明确的界限。
其他分散系统类型的固体分散体若载体选择、制备方法或药与载体比例不当则制得的固体分散体中药物粒径一般在微米(μm)范围。
因此,不能说,固体分散体的药物分散技术一定属于纳米技术的范围。
今后的研究中,还得按照纳米技术的要求不断深入提高。
固体分散体用于水难溶性药物提高生物利用度的基本制备方当主要有:熔融法、溶剂法、溶剂-熔融法。
还可结合喷雾干燥技术等,制成固体分散体的粉末。
例如:王维贤等应用聚乙烯吡咯烷酮(PVP)为载体,用溶剂法结合喷雾干燥法制备了丹参酮(Tanshinone, TAN)的固体分散体粉末。
通过测定表明:固体分散TAN在30min时累积溶出百分率接近85%;与载体PVP的机械混合物中TAN累积溶出百分率约6%;TAN原料药约2%。
当TAN与PVP 和乙基纤维素(EC)的联合载体制备固体分散全时,PVP增加TAN的溶出度,而EC由于水不溶性的影响而起到缓释的效果。
该例子中,可见TAN为水难溶性药物,原粉30min的溶出累积百分率仅为2%;而制成PVP与TAN的固体分散体后,却达到了85%;完全改变了它的水难溶性的性质。
该固体分散体中TAN的高度分散(分子状态)是增大溶出度的主要因素。
同时,纳米态的药物粒子处于极高的能量状态,分子扩散能量高,药物溶出快,从而大大提高溶出度和生物利用度。
2 包含技术和包合物包合技术应该完全属于纳米技术的范围,也是一种纳米药物粒子的制备方法。
包合技术所采用的载体材料,本身就是一种纳米尺度的分子材料。
已被选用的主要是环糊精类,有α、β和γ三种,目前还有它们的衍生物。
这三种环糊精分别、由6、7、8个葡萄糖分子组成,都具有筒状结构。
其中β型结构,7个葡萄糖分子环合而成筒状,内径与深度均为0.7~0.8nm,可容纳几个药物分子,形成不到2nm的药物超微粒。
这样的包合物又称为分子型包囊。
由于该载体是多羟基物质,且羟基排列于筒状结构的外壁,极易分散于水中,筒内则可包裹水难溶性的药物分子,从而大大提高水难溶性药物在水中的溶出和体内的吸收,从而提高生物利用度;还可降低药物的刺激性和增加药物的稳定性,以及用于一些液体药物的粉末化。
中药的挥发油应用包含技术制备包合物的研究报道较多,是包合技术在药学上应用的最好例子。
随着环湖精衍生物的出现,包含技术在制剂中的研究、应用的范围更加广阔。
包裹药物的包含技术主要有:研磨法、重结晶法和喷雾干燥法等。
举例:储茂泉等采用饱和水溶液法,制备了吲哚美辛β环糊精包合物,即IMC-β-CYD包合物。
在pH6.8缓冲液中,转篮法,100r/min,45min时的溶出度为99.7%,而原药的溶出度为71.8%。
溶出速度相差更为显著,2min时,前者溶出为76.1%,而原药仅为7.2%。
3 微乳化技术与微乳剂微乳化技术是指将油、水乳剂和助乳化剂按一定比例,在一定温度下,通过适当方法混合成外观透明的胶体分解系统的技术。
它的乳粒的粒径在10~~100nm范围内。
一般乳剂的乳粒在1~100μm。
乳剂外观呈乳白色,不透明。
微乳用作药物的胶体性载体。
它的特点是增大水难溶性药物溶解性;提高易水解药物的稳定性;也可作为缓释或靶向给药的制剂。
市场供应的环孢菌素微乳浓缩液胶囊剂,其生物利用度较口服溶液剂高,并使肾移植的排斥作用发生率降低。
微乳由于乳化剂的用量比例高(20~30%),且有助乳化剂的存在,再加上扩散剂丙二醇、可成为自乳化系统。
上述环孢菌素微乳浓缩胶囊剂,口服后在消化道内与体液相遇,可自动乳化成O/W型微乳。
4 成囊、成球技术和纳米囊、纳米球纳米囊(Nanocapsule)和纳米球(Nanosphere)的粒径以纳米计,一般均在1~100nm,也有大至200nm左右。
而一般的微囊和微球的粒径是以微米计。
纳米囊和纳米球也统称为纳米粒(nanoparticle)。
载药的纳米粒通过非胃肠道给药时,被器官或组织吸收能显著延长药效、降低毒性、提高活性和生物利用度。
纳米粒可以靠细胞吞噬而将药物带入细胞内。
磁性纳米粒可将药物引导到体内特定部位即靶部位而成为靶向制剂。
目前已研制成功的纳米粒,常作为抗癌药物或抗菌素药物的载体。
如米托蒽醌聚氰基丙烯酸正丁酯(Polybutylcyanoacrylate, PB-CA)纳米球表面带负电荷,平均粒径55nm,载药44.8%,具有良好的肝靶向性,又如Radwen MA等,研制出茶碱聚异丁基氰丙烯酸酯(Polyisobutyl-cyanoacrylate, PIBCA)的纳米粒,经大鼠腹腔分别注射茶碱溶液(4mg•kg-1)及茶碱纳米粒混悬液(8mg•kg-1),后者可维持较高浓度达11h,给药20h仅降低43.5%。
实验表明茶碱PIBCA纳米粒,能有效地控制药物释放。
纳米粒的制备方法有乳化聚合法、天然高分子法、液中干燥法等,其中,以水作连续相的乳化聚合法是目前制备纳米粒的最重要的方法。
将单体分散在含乳化剂水相的胶囊蔌乳滴中,再经高能辐射等条件下聚合成纳米粒,经相分离形成固态,即成固态纳米粒,约有103~105个聚合物分子组成。
5 小单室脂质体和脂质体制备技术脂质体是由磷脂分散在水中形成的具有双分子层结构的囊泡。
一般脂质体的粒径在1~100μm之间。
其中小单室脂质体的粒径一般在20~50nm。
纳米尺度的脂质体具有很高的稳定性。
它具有布朗运动可以克服脂质体的聚沉。
研究表明20~50nm的单层脂质体能增加药物在靶区组织的浓集,能明显提高脂质体的靶向治疗作用,并能延长其在血液中的半衰期。
纳米脂质体的制备方法主要有超声分散法、French压力法,乙醚注射法和逆相蒸发法等。
6纳米混悬技术和纳米混悬剂纳米混悬剂由药物的纳米晶体、稳定剂和液体分散介质组成。
该剂型是加入适宜表面活性剂的纳米级“纯药物”的稳定胶状分散体系。
与其他制剂相比,纳米混悬剂有自己的特点:首先纳米混悬剂的纳米晶体是纳米级尺寸的粒子;另外,纳米混悬体是由纯药物的纳米晶体分散在分散介质中形成的,不存在载体材料。
此外要说明的是,在药物混悬剂的制备过程中,由于制备方法的不同,可能会产生出无定型的药物纳米混悬剂。
严格意义上讲,无定型的药物纳米颗粒并不是药物的纳米晶体,因此,无定型的药物纳米颗粒也称为纳米晶体的无定型态。
主要有碾磨法、高压匀质法、乳化法等。
上述药物粒径呈纳米尺度下分散在载体中的新剂型和制备的新技术,对提高药物溶出-吸收、药物的稳定性、降低药物的毒性等,都展示了优越的研究成果,并在临床应用中对提高生物利用度(疗效)和患者的顺应性作出显著的贡献。