二次函数考点分析培优
二次函数培优专题

二次函数培优专题一、二次函数的基本概念1. 二次函数的定义- 一般地,形如y = ax^2+bx + c(a,b,c是常数,a≠0)的函数,叫做二次函数。
- 例如y = 2x^2+3x - 1,这里a = 2,b = 3,c=-1。
- 题目解析:判断一个函数是否为二次函数,关键看其是否符合y = ax^2+bx + c(a≠0)的形式。
比如y=3x + 2就不是二次函数,因为它不符合二次函数的定义形式,其中x的最高次数是1;而y=(1)/(x^2)也不是二次函数,因为它不是整式函数。
2. 二次函数的图象- 二次函数y = ax^2+bx + c(a≠0)的图象是一条抛物线。
- 当a>0时,抛物线开口向上;当a < 0时,抛物线开口向下。
- 例如,对于二次函数y = x^2,a = 1>0,其图象开口向上;对于y=-2x^2,a=-2 < 0,其图象开口向下。
- 题目解析:给定二次函数,判断其图象开口方向是常见题型。
如y = 3x^2-2x + 1,因为a = 3>0,所以图象开口向上。
对于二次函数图象开口方向的理解,可以从二次函数的增减性角度来看,当a>0时,在对称轴左侧y随x的增大而减小,在对称轴右侧y随x的增大而增大;当a < 0时,在对称轴左侧y随x的增大而增大,在对称轴右侧y随x的增大而减小。
3. 二次函数的对称轴和顶点坐标- 对于二次函数y = ax^2+bx + c(a≠0),其对称轴公式为x =-(b)/(2a),顶点坐标公式为(-(b)/(2a),frac{4ac - b^2}{4a})。
- 例如,对于二次函数y = 2x^2-4x + 3,a = 2,b=-4,c = 3。
对称轴x=-(-4)/(2×2)=1,顶点纵坐标y=frac{4×2×3-(-4)^2}{4×2}=(24 - 16)/(8)=1,所以顶点坐标为(1,1)。
成都市实验外国语学校九年级数学上册第二十二章《二次函数》知识点复习(培优)

一、选择题1.设A(﹣2,y 1),B(1,y 2),C(2,y 3)是抛物线y =﹣(x +1)2+a 上的三点,则y 1,y 2,y 3的大小关系为( )A .y 1>y 2>y 3B .y 1>y 3>y 2C .y 3>y 2>y 1D .y 3>y 1>y 2A 解析:A【分析】根据二次函数的性质解答.【详解】由抛物线y =﹣(x +1)2+a 可知:抛物线开口向下,对称轴为直线x=-1,∴点离对称轴越近该点的函数值越大, ∵2(1)1(1)2(1)---<--<--,∴y 1>y 2>y 3,故选:A .【点睛】此题考查二次函数的增减性:当a>0时,对称轴左减右增;当a<0时,对称轴左增右减.2.()11,y -()20,y ()34,y 是抛物线22y x x c =-++上三点的坐标,则1y ,2y ,3y 之间的大小关系为( ) A .123y y y <<B .213y y y <<C .312y y y <<D .321y y y <<C 解析:C【分析】先判断函数的开口向下,对称轴为x=1,从而得出距离对称轴越远,函数值越小,再结合三点坐标即可判断1y ,2y ,3y 之间的大小关系.【详解】解:∵在22y x x c =-++中,21,122b a a =--=-=-, ∴该函数开口向下,对称轴为x=1,且距离对称轴越远,函数值越小,∵()11,y -、()20,y 、()34,y 三点距离对称轴的距离为:2,1,3,∴312y y y <<,故选:C .【点睛】本题考查比较二次函数值的大小.理解二次函数当a<0时距离对称轴越远的点,函数值越小是解题关键.3.如图是抛物线y =ax 2+bx+c (a≠0)的部分图象,其顶点坐标为(1,n ),且与x 轴的一个交点在点(3,0)和(4,0)之间.则下列结论:①a ﹣b+c >0;②3a+b =0;③b 2=4a (c ﹣n );④一元二次方程ax 2+bx+c =n ﹣1有两个不相等的实数根.其中正确结论的个数是( )A .1个B .2个C .3个D .4个C解析:C【分析】 由抛物线的开口方向判断a 与0的关系,由抛物线与y 轴的交点判断c 与0的关系,然后根据对称轴及抛物线与x 轴交点情况进行推理,进而对所得结论进行判断.【详解】解:∵抛物线顶点坐标为(1,n ),∴抛物线的对称轴为直线x=1,∵与x 轴的一个交点在点(3,0)和(4,0)之间,∴当x=-1时,y >0,即a-b+c >0,故①正确;∵抛物线的对称轴为直线x=1,即-2b a=1, ∴2a+b=0,∵a≠0,∴3a+b≠0,故②错误;∵抛物线顶点坐标为(1,n ),∴抛物线y=ax 2+bx+c (a≠0)与直线y=n 有唯一一个交点,即方程ax 2+bx+c=n 有两个相等的实数根,∴△=b 2-4a (c-n )=0,∴b 2=4a (c-n ),故③正确;∵抛物线的开口向下,∴y 最大=n ,∴直线y=n-1与抛物线有两个交点,∴一元二次方程ax 2+bx+c=n-1有两个不相等的实数根,故④正确;故选:C .【点睛】主要考查图象与二次函数系数之间的关系,会利用对称轴的范围求2a 与b 的关系,以及二次函数与方程之间的转换,根的判别式的熟练运用.4.已知关于x 的二次函数y=(x-h )2+3,当1≤x≤3时,函数有最小值2h ,则h 的值为( )A .32B .32或2C .32或6D .32或2或6C 解析:C【分析】依据二次函数的增减性分1≤h≤3、h <1、h >3三种情况,由函数的最小值列出关于h 的方程,解之可得.【详解】∵()2=+3y x h -中a=1>0, ∴当x <h 时,y 随x 的增大而减小;当x >h 时,y 随x 的增大而增大;①若1≤h≤3,则当x=h 时,函数取得最小值2h ,即3=2h ,解得:h= 32; ②若h <1,则在1≤x≤3范围内,x=1时,函数取得最小值2h ,即()2132h h -+=,解得:h=2>1(舍去);③若h >3,则在1≤x≤3范围内,x=3时,函数取得最小值2h ,即()2332h h -+=,解得:h=2(舍)或h=6,综上,h 的值为32或6, 故选C .【点睛】本题主要考查二次函数的最值,熟练掌握分类讨论思想和二次函数的增减性是解题的关键.5.已知二次函数22236y x ax a a =-+-+(其中x 是自变量)的图象与x 轴没有公共点,且当1x <-时,y 随x 的增大而减小,则实数a 的取值范围是( )A .2a <B .1a >-C .12a -<≤D .12a -≤<D解析:D【分析】根据判别式的意义得到△=(-2a )2-4(a 2-3a+6)<0,解得a <2,再求出抛物线的对称轴为直线x=a ,根据二次函数的性质得到a≥-1,从而得到实数a 的取值范围是-1≤a <2.【详解】解∵抛物线22236y x ax a a =-+-+与x 轴没有公共点, ∴△=(-2a )2-4(a 2-3a+6)<0,解得a <2,∵抛物线的对称轴为直线x=-22a -=a ,抛物线开口向上, 而当x <-1时,y 随x 的增大而减小,∴a≥-1,∴实数a 的取值范围是-1≤a <2.故选:D .【点睛】 本题考查了抛物线与x 轴的交点:把求二次函数y=ax 2+bx+c (a ,b ,c 是常数,a≠0)与x 轴的交点坐标问题转化为解关于x 的一元二次方程.也考查了二次函数的性质. 6.已知抛物线y=-x 2+bx+c 与x 轴交于A,B 两点(A 在原点O 左侧,B 在原点O 右侧),与y 轴交于C 点,且OC=OB,令CO AO=m ,则下列m 与b 的关系式正确的是( )A .m=2bB .m=b+1C .m=6bD . m=2b +1B 解析:B【分析】利用数形结合得思想,先表示出A 、B 的横坐标,再代入到解析式建立方程,进而分别求解即可.【详解】由题意:OC c =,则OB c =,即B 的横坐标为c ,代入解析式有:20c bc c -++=, 则可解得:1c b =+,根据CO m AO =,可得c OA m =,即A 的横坐标为c m-,代入解析式有:20c c b c m m ⎛⎫⎛⎫-+-+= ⎪ ⎪⎝⎭⎝⎭,整理得:210c b m m --+=, 将1c b =+代入可得;2110b b m m +--+=,即2210m b bm m ---=, 210m b bm ∴---=,整理得:()210m bm b --+=,对其因式分解可得:()()110m b m -++=⎡⎤⎣⎦,解得:1m b =+,或1m =-(舍去),故选:B .【点睛】本题考查了二次函数与一元二次方程的关系,能够利用数形结合的思想,准确将图中的信息转化为解方程是解决问题的关键.7.如图所示的抛物线形构件为某工业园区的新厂房骨架,为了牢固起见,构件需要每隔0.4m 加设一根不锈钢的支柱,构件的最高点距底部0.5m ,则该抛物线形构件所需不锈钢支柱的总长度为( )A .0.8mB .1.6mC .2mD .2.2m B解析:B【分析】根据题意建立平面直角坐标系,得出B 、C 的坐标,然后根据待定系数法求出抛物线解析式,然后求出当当0.2x =和0.6x =时y 的值,然后即可求解.【详解】如图,由题意得()0,0.5B ,()1,0C .设抛物线的解析式为2y ax c =+, 代入得12a =-,12c =, ∴抛物线的解析式为21122y x =-+. 当0.2x =时,0.48y =,当0.6x =时,0.32y =.∴()1122334420.480.32 1.6BC B C B C B C m +++=⨯+=,故选B .【点睛】本题考查了二次函数的拱桥问题,关键是要根据题意作出平面直角坐标系,并根据所建立的平面直角坐标系求出函数解析式.8.如图所示,一段抛物线:()233044y x x x =-+≤≤记为1C ,它与x 轴交于两点O ,1A ;将1C 绕1A 旋转180°得到2C ,交x 轴于2A ;将2C 绕2A 旋转180°得到3C ,交x 轴于3A ;⋅⋅⋅如此进行下去,直至得到506C ,则抛物线506C 的顶点坐标是( )A .()2020,3B .()2020,3-C .()2022,3D .()2022,3-D 解析:D【分析】解方程2334x x -+=0得A 1(4,0),再利用旋转的性质得A 2(4×2,0),A 3(4×3,0),依此规律得到A 505(4×505,0),A 506(4×506,0),且抛物线C 506的开口向上,利用交点式,设抛物线C 506的解析式为y =34(x−2020)(x−2024),然后确定此抛物线顶点坐标即可.【详解】当y =0时,2334x x -+=0,解得x 1=0,x 2=4, ∴A 1(4,0), ∵将C 1绕A 1旋转180°得到C 2,交x 轴于A 2,将C 2绕A 2旋转180得到C 3,∴A 2(4×2,0),A 3(4×3,0),∴A 505(4×505,0),A 506(4×506,0),即A 505(2020,0),A 506(2024,0), ∵抛物线C 506的开口向上,∴抛物线C 506的解析式为y =34(x−2020)(x−2024), ∵抛物线的对称轴为直线x =2022, 当x =2022时,y =34(2022−2020)(2022−2024)=−3, ∴抛物线C 506的顶点坐标是(2022,−3).故选:D .【点睛】 本题考查了抛物线与x 轴的交点:把求二次函数y =ax 2+bx +c (a ,b ,c 是常数,a≠0)与x 轴的交点坐标问题转化为解关于x 的一元二次方程.也考查了二次函数的几何变换和二次函数的性质.9.如果将抛物线23y x =+先向下平移2个单位,再向左平移1个单位,那么所得新抛物线的表达式是( )A .2(1)2y x =-+B .2(1)1y x =++C .21y x =+D .2(1)1y x =-+B 解析:B【分析】先求出平移后的抛物线的顶点坐标,再利用顶点式抛物线解析式写出即可.【详解】解:抛物线y=x 2+3的顶点坐标为(0,3),向下平移2个单位,再向左平移1个单位后的抛物线的顶点坐标为(-1,1), 所以,平移后的抛物线的解析式为y=(x+1)²+1.故选:B .【点睛】本题考查了二次函数图象与几何变换,熟练掌握平移的规律:左加右减,上加下减.并用根据规律利用点的变化确定函数解析式.10.二次函数2y ax bx c =++的图象如图所示,下列结论中:①20a b +>;②()a b m am b +≠+(1m ≠的实数);③2a c +>;④在10x -<<中存在一个实数0x 、使得0a b x a+=-其中正确的有( )A .1个B .2个C .3个D .4个B 解析:B【分析】根据二次函数的图象与性质逐项判定即可求出答案.【详解】解:①由抛物线的对称轴可知:12b a-< 由抛物线的图象可知:a >0,∴-b <2a ,∴2a+b >0,故①正确;②当x=1时,y=a+b+c=0,当y=ax 2+bx+c=0,∴x=1或x=m ,∴当m≠1时,a+b=am 2+bm ,故②错误;③由图象可知:x=-1,y=2,即a-b+c=2,∵a+b+c=0,∴b=-1,∴c=1-a∴a+c=a+1-a=1<2,故③错误;④由于a+b=-c=a-1,∵c <0,∴a-1>0,∴a >1,∴0<11a< ∵x 0=111,a a a--=-+ ∴-1<-1+1a <0 ∴-1<x 0<0,故④正确;故选:B .【点睛】本题考查二次函数的图象与性质,解题的关键是应用数形结合思想解题.二、填空题11.如图,在平面直角坐标系中,抛物线2y x x 2=--分别交y 轴,x 轴于点A ,B ,动点E 在抛物线上,EF x ⊥轴,交直线AB 于点F .则EF 的长为______(用含字母x 的式子来表示).【分析】先分别令y=0x=0求出AB 点的坐标求出直线AB 的解析式在用字母分别表示出EF 点的纵坐标相减即可【详解】令y=0得解得:B (20)令x=0得y=-2A (0-2)设AB 所在直线解析式为:代入A 解析:22x x -【分析】先分别令y =0,x =0,求出A 、B 点的坐标,求出直线AB 的解析式,在用字母分别表示出E 、F 点的纵坐标,相减即可.【详解】令y =0,得220x x --=解得:121,2x x =-=∴ B (2,0)令x =0,得y =-2,∴A (0,-2)设AB 所在直线解析式为:y kx b =+代入A 、B 解得:2y x =-设动点E 的横坐标为x ,∴ F 点的横坐标为x ,E 点的纵坐标为:22x x -- 又F 点在直线AB 之上, ∴F 点的纵坐标为:2x - 又EF x ⊥∴EF 的长度为:22(2)x x x ---- 化简得:22x x - 故答案为:22x x -【点睛】本题主要考查了二次函数与坐标轴的交点问题,二次函数与一次函数的综合问题以及线段长度的计算,分别用字母表示出E 、F 点的纵坐标是解决本题的关键.12.已知二次函数2(,,y ax bx c a b c =++为常数,0,0a c ≠>)上有五点()()1,01,(),p t n -、、()()2,3,0t 、;有下列结论:①0b >;②关于x 的方程20ax bx c ++=的两个根是1-和3;③20p t +<;④()(4m am b a c m +≤--为任意实数).其中正确的结论_______________(填序号即可).【分析】由抛物线的对称性可知对称轴为可得即是方程的两个根再根据题目当中给出的条件代入解析式判断求解即可;【详解】当和时∴对称轴为∴当时y 的值相等∴∴是方程的两个根故②正确;∵当时且c >0∴>0∴>0解析:①②④【分析】 由抛物线的对称性可知对称轴为0212x +==,可得0p =,即1x =-,3x =是方程20ax bx c ++=的两个根,再根据题目当中给出的条件,代入解析式判断求解即可;【详解】当0x =和2x =时,y t =,∴对称轴为0212x +==, ∴当1x =-,3x =时,y 的值相等,∴0p =,∴1x =-,3x =是方程20ax bx c ++=的两个根,故②正确;∵当0x =时,y t =,且c >0,∴t c =>0,∴202p t t +=+>0,故③错误;∵2x =,y t =>0,3x =,0y =,∴在对称轴的右边,y 随x 的增大而减小,∴a <0, ∵12b x a=-=, ∴2b a =->0,故①正确;∵当3x =时,0y =, ∴930a b c ++=,∴30a c +=,∴3c a =-,∴443a c a a a --=-+=-,∵顶点坐标为()1,n ,a <0,∴2am bm c a b c ++≤++, ∴2am bm a b +≤+,∴2am bm a +≤-,∴24am bm a c+≤--,故④正确;综上所述:结论正确的是①②④;故答案是:①②④.【点睛】本题主要考查了二次函数图象性质,熟练掌握二次函数图像上点的特征是解题的关键.13.如图,在喷水池的中心A处竖直安装一个水管AB,水管的顶端B处有一个喷水孔,喷出的抛物线形水柱在与池中心A的水平距离为1m处达到最高点C,高度为3m,水柱落地点D离池中心A处3m,则水管AB的长为_____m.【分析】以喷水池中心A为原点竖直安装的水管AB所在直线为y轴与水管垂直的AD所在直线为x轴建立直角坐标系设抛物线的解析式为y=a(x﹣1)2+3(0≤x≤3)将(30)代入求得a值则x=0时得的y值解析:9 4【分析】以喷水池中心A为原点,竖直安装的水管AB所在直线为y轴,与水管垂直的AD所在直线为x轴建立直角坐标系,设抛物线的解析式为y=a(x﹣1)2+3(0≤x≤3),将(3,0)代入求得a值,则x=0时得的y值即为水管的长.【详解】以喷水池中心A为原点,竖直安装的水管AB所在直线为y轴,与水管垂直的AD所在直线为x轴建立直角坐标系,由于喷出的抛物线形水柱在与池中心A的水平距离为1m处达到最高点C,高度为3m,所以设抛物线的解析式为:y=a(x﹣1)2+3(0≤x≤3),代入(3,0),得:0=a(3-1)2+3,解得:a=34 -.将a值代入得到抛物线的解析式为:y=34-(x﹣1)2+3(0≤x≤3),令x=0,则y=94.即水管AB的长为94 m,故答案为:94.【点睛】本题考查了二次函数在实际生活中的运用,重点是二次函数解析式的求法,利用顶点式求出解析式是解题关键.14.公园广场前有一喷水池,喷水头位于水池中央,从喷头喷出水珠的路径可近似看作抛物线.如图是根据实际情境抽象出的图象,水珠在空中划出的曲线恰好是抛物线26y x x =-+(单位:m )的一部分,则水珠落地点(点P )到喷水口(点O )的距离为________m .6【分析】根据题意可以得到水珠落地点(点P )到喷水口(点O )的距离就是OP 的长度利用配方法或公式法求得其顶点坐标的横坐标的2倍即为本题的答案【详解】解:∵水在空中划出的曲线是抛物线y=-x2+6x ∴解析:6 【分析】根据题意可以得到水珠落地点(点P )到喷水口(点O )的距离就是OP 的长度,利用配方法或公式法求得其顶点坐标的横坐标的2倍即为本题的答案. 【详解】解:∵水在空中划出的曲线是抛物线y=-x 2+6x , ∴y=-x 2+6x=-(x-3)2+9, ∴顶点坐标为:(3,9),∴水珠落地点(点P )到喷水口(点O )的距离为OP=3×2=6(米), 故答案为:6. 【点睛】本题考查了二次函数的应用,解决此类问题的关键是从实际问题中整理出函数模型,利用函数的知识解决实际问题. 15.二次函数223y x =的图象如图所示,点0A 位于坐标原点,点1A ,2A ,3A , (2013)在y 轴的正半轴上,点1B ,2B ,3B ,…,2013B 在二次函数223y x =位于第一象限的图象上,若011A B A △,122A B A △,233A B A △,…,201220132013A B A △都为等边三角形,则201220132013A B A △的边长=________.2013【分析】分别过B1B2B3作y 轴的垂线垂足分别为ABC 设A0A1=aA1A2=bA2A3=c 则AB1=aBB2=bCB3=c 再根据所求正三角形的边长分别表示B1B2B3的纵坐标逐步代入抛物线解析:2013 【分析】分别过B 1,B 2,B 3作y 轴的垂线,垂足分别为A 、B 、C ,设A 0A 1=a ,A 1A 2=b ,A 2A 3=c ,则AB 1=32a ,BB 2=32b ,CB 3=32c ,再根据所求正三角形的边长,分别表示B 1,B 2,B 3的纵坐标,逐步代入抛物线y=23x 2中,求a 、b 、c 的值,得出规律. 【详解】分别过1B ,2B ,3B 作y 轴的垂线,垂足分别为A 、B 、C , 设01A A a =,12A A b =,23A A c =,由勾股定理则22101032AB A B AA a =-=,232BB b =,332CB c =, 1111312233AA AB a a ==⨯=,则13,22a B a ⎛⎫ ⎪ ⎪⎝⎭, 22312233BA b b ===,则23,22b B b a ⎛⎫+ ⎪ ⎪⎝⎭,3311312233CA CB c c ==⨯=,则33,22c B c a b ⎛⎫++ ⎪ ⎪⎝⎭, 在正011A B A △中,13,22a B a ⎛⎫⎪ ⎪⎝⎭,代入223y x =中,得223234a a =⨯,解得1a =,即011A A =,在正122A B A △中,23,122b B b ⎛⎫+ ⎪ ⎪⎝⎭,代入223y x =中,得2231234b b +=⨯,解得2b =,即122A A =,在正233A B A △中,33,322c B c ⎛⎫+ ⎪ ⎪⎝⎭,代入223y x =中,得2233234c c ⎛⎫+=⨯ ⎪⎝⎭,解得3c =,即233A A =,…,依此类推由此可得201220132013A B A △的边长2013=. 故答案为:2013.【点睛】本题考查了二次函数的综合运用.勾股定理应用,掌握探究规律题的解题方法,关键是根据正三角形的性质用边长表示抛物线上点的坐标,利用抛物线解析式求正三角形的边长,得到规律.16.若抛物线256y x x =--与x 轴分别交于A 、B 两点,则AB 的长为_______________.7【分析】根据抛物线y=x2-5x-6与x 轴分别交于AB 两点可以令y=0求得点AB 的坐标从而可以求得AB 的长【详解】解:∵y=x2-5x-6∴y=0时x2-5x-6=0解得x1=-1x2=6∵抛物线解析:7 【分析】根据抛物线y=x 2-5x-6与x 轴分别交于A 、B 两点,可以令y=0求得点A 、B 的坐标,从而可以求得AB 的长. 【详解】 解:∵y=x 2-5x-6, ∴y=0时,x 2-5x-6=0, 解得,x 1=-1,x 2=6.∵抛物线y=x 2-5x-6与x 轴分别交于A 、B 两点, ∴点A 的坐标为(-1,0),点B 的坐标为(6,0), ∴AB 的长为:6-(-1)=7. 故答案为:7. 【点睛】本题考查抛物线与x 轴的交点,以及数轴上两点间的距离,解题的关键是明确抛物线与x 轴相交时,y=0.17.已知二次函数2(0)y ax bx c a =++≠,其函数y 与自变量x 之间的部分对应值如下表所示,则42a b c ++=___________.函数值可得从而可得由此即可得【详解】和的函数值相同此二次函数的对称轴为即当时则故答案为:【点睛】本题考查了二次函数的性质正确求出二解析:152【分析】先根据0x =和1x =的函数值相同可得二次函数的对称轴为12x =,从而可得=-b a ,再根据1x =-时的函数值可得152a b c ,从而可得1522a c ,由此即可得. 【详解】0x =和1x =的函数值相同,∴此二次函数的对称轴为12x =,122b a ∴-=,即=-b a , 当1x =-时,152ya b c, 1522a c, 则4242a b c a a c ,2a c , 152=, 故答案为:152. 【点睛】本题考查了二次函数的性质,正确求出二次函数的对称轴是解题关键.18.2251=-+-y x x 的图象不经过__________象限;第二【分析】可得知该函数的图象开口向下再分别求出该函数的对称轴和与y 轴的交点利用函数的增减性即可做出判断【详解】解:对于∵a=﹣2﹤0b=5∴该函数的图象开口向下对称轴为直线x=∴当x ﹤时函数y 随x解析:第二 【分析】可得知该函数的图象开口向下,再分别求出该函数的对称轴和与y 轴的交点,利用函数的增减性即可做出判断. 【详解】解:对于2251=-+-y x x , ∵a=﹣2﹤0,b=5,∴该函数的图象开口向下,对称轴为直线x=54, ∴当x ﹤54时,函数y 随x 的增大而增大, 又∵当x=0时,y=﹣1,∴当x ﹤0时,y ﹤﹣1,即y ﹤0, ∴函数图象不经过第二象限, 故答案为:第二. 【点睛】本题考查二次函数的图象与性质,属于二次函数的基础题,解答的关键是掌握二次函数的性质,利用二次函数的增减性解决问题.19.如图,点A ,B 的坐标分别为(1,4)和(4,4),抛物线y=a (x ﹣m )2+n 的顶点在线段AB 上运动,与x 轴交于C 、D 两点(C 在D 的左侧),点C 的横坐标最小值为﹣3,则点D的横坐标最大值为_____.8【分析】根据题意当点C的横坐标取最小值时抛物线的顶点与点A重合进而可得抛物线的对称轴则可求出此时点D的最小值然后根据抛物线的平移可求解【详解】解:∵点AB的坐标分别为(14)和(44)∴AB=3由解析:8【分析】根据题意当点C的横坐标取最小值时,抛物线的顶点与点A重合,进而可得抛物线的对称轴,则可求出此时点D的最小值,然后根据抛物线的平移可求解.【详解】解:∵点A,B的坐标分别为(1,4)和(4,4),∴AB=3,由抛物线y=a(x﹣m)2+n的顶点在线段AB上运动,与x轴交于C、D两点(C在D的左侧),可得:当点C的横坐标取最小值时,抛物线的顶点与点A重合,x=,∴抛物线的对称轴为:直线1C-,∵点()3,0∴点D的坐标为()5,0,∵顶点在线段AB上移动,∴点D的横坐标的最大值为:5+3=8;故答案为8.【点睛】本题主要考查二次函数的平移及性质,熟练掌握二次函数的性质是解题的关键.20.在平面直角坐标系xOy中,函数y=x2的图象经过点M(x1,y1),N(x2,y2)两点,若﹣4<x1<﹣2,0<x2<2,则y1 ______y2 .(用“<”,“=”或“>”号连接)>【分析】根据二次函数的性质即可求解【详解】解:由y=x2可知∵a=1>0∴抛物线的开口向上∵抛物线的对称轴为y轴∴当x>0时y随x的增大而增大∵-4<x1<-20<x2<2∴2<-x1<4∴y1>解析:>【分析】根据二次函数的性质即可求解.【详解】解:由y=x2可知,∵a=1>0,∴抛物线的开口向上,∵抛物线的对称轴为y 轴, ∴当x >0时,y 随x 的增大而增大, ∵-4<x 1<-2,0<x 2<2, ∴2<-x 1<4, ∴y 1>y 2. 故答案为:>. 【点睛】本题考查了二次函数图象上的点的坐标特征及二次函数的性质.当a >0时,开口向上,在对称轴的左侧y 随x 的增大而减小,在对称轴的右侧,y 随x 的增大而增大;当a <0,开口向下,在对称轴的左侧y 随x 的增大而增大,在对称轴的右侧,y 随x 的增大而减小;三、解答题21.已知:直线2l y x =+:与过点(0,2)-且平行于x 轴的直线交于点A ,点A 关于直线1x =- 的对称点为点B . (1)求A B 、两点的坐标;(2)若抛物线2y x bx c =-++的顶点(,)m n 在直线l 上移动.①当抛物线2y x bx c =-++与坐标轴仅有两个公共点,求抛物线解析式;②若抛物线2y x bx c =-++与线段AB 有交点,当抛物线的顶点(,)m n 向上运动时,抛物线与y 轴的交点也向上运动,求m 的取值范围.解析:(1)()4,2A --;()2,2B -;(2)①244y x x =---;②43m -≤≤-或0<5m ≤【分析】(1)根据已知直线和对称点的性质即可求出A 、B .(2)①根据抛物线的顶点为直线2l y x =+:与x 轴的交点()2,0-求解即可;②根据已知条件判断出二次函数顶点的位置,计算即可; 【详解】(1)直线2l y x =+:与2y =-的交点为A ,则可得到:22x -=+,∴4x =-,∴点A 的坐标是()4,2--,设(),2B b -,点A 与点B 关于1x =-对称, 则()()141b ---=--,∴2b =, ∴()2,2B -;(2)①当抛物线2y x bx c =-++与坐标轴仅有两个公共点,此时抛物线的顶点为直线2l y x =+:与x 轴的交点()2,0-,则222b b x a =-==-, ∴4b =-,代入顶点可得4c =-,∴抛物线的解析式为244y x x =---; ②抛物线2y x bx c =-++与线段AB 有交点, ∴顶点坐标为(),2m m +,∴抛物线的解析式可化为()22y x m m =--++,把点()4,2A --代入解析式可得,()2242m m -=---++, 13m =-,24m =-,∴43m -≤≤-,把点()2.2B -代入解析式得,()2222m m ---++=-,30m =,45m =,∴0<5m ≤;综上所述:43m -≤≤-或0<5m ≤. 【点睛】本题主要考查了二次函数与一次函数的综合,准确分析计算是解题的关键.22.某商场销售一批名牌衬衫,平均每天可售出10件,每件赢利40元,为了扩大销售,增加盈利,尽快减少库存,商场决定采取适当降价措施,经调查发现,如果每件衬衫每降价1元,商场平均每天可多售出1件.(1)若商场平均每天赢利600元,每件衬衫应降价多少元? (2)每件衬衫降价多少元时,商场平均每天赢利最多?解析:(1)每件衬衫应降价20元;(2)每件衬衫降价15元时,商场平均每天赢利最多 . 【分析】(1)设每件衬衫应降价x 元,由题意可以得到关于x 的一元二次方程,解方程即可得到问题解答;(2)把每件衬衫的降价看成自变量x ,商场平均每天赢利看成因变量y ,由题意可以得到y 与x 之间的函数关系式,然后根据函数的性质可以得到问题解答 . 【详解】解:(1)设每件衬衫应降价x 元,由题意可以得到: (10+x )(40-x )=600,解之得:x=10或x=20, 因为尽快减少库存,∴每件衬衫降价20元时,商场平均每天赢利600元;(2)把每件衬衫的降价看成自变量x ,商场平均每天赢利看成因变量y ,由题意可以得到y 与x 之间的函数关系式为:y=(10+x )(40-x ), 配方得:()215625y x =--+, ∴当x=15时,y 取得最大值625,即当每件衬衫降价15元时,商场平均每天赢利最多,且赢利为625元. 【点睛】本题考查一元二次方程与二次函数的综合运用,根据题意列出一元二次方程或函数关系式,并根据方程的解或函数的性质作答是解题关键.23.已知抛物线 ()21y x m x m =-+-+经过点()23,(1)求m 的值及抛物线的顶点坐标;(2)当x 取什么值时,y 随着x 的增大而减小?解析:(1)m=3,(1,4);(2)当x >1时,y 随x 的增大而减小. 【分析】(1)将已知点的坐标代入函数解析式,建立关于m 的方程,解方程求出m 的值,再将函数解析式转化为顶点式,可得到抛物线的顶点坐标.(2)利用函数解析式可知a=-1<0,结合对称轴可得到y 随x 的增大而减小时自变量x 的取值范围. 【详解】 (1)解:由题意得 -4+2(m-1)+m=3 解之:m=3,∴抛物线的解析式为y=-x 2+2x+3 ∴y= -(x-1)2+4∴抛物线的顶点坐标为(1,4); (2)解:∵a=-1<0,∴当x >1时,y 随x 的增大而减小. 【点睛】本题考查了二次函数的性质以及求二次函数的顶点坐标、二次函数的增减性,熟练掌握二次函数的性质是解题的关键.24.如图,抛物线2123y x x =-++与直线24y x =交于A 、B 两点.(1)求A 、B 两点的坐标;(2)直接写出当x 取何值时,12y y >;(3)利用图象法直接写出不等式2230x x -++≥的解集.解析:(1)A (1,4),B (-3,-12);(2)-3<x <1;(3)-1≤x≤3.【分析】(1)根据函数的图象与性质可得2234x x x -++=,则可求出交点的横坐标,再由24y x =可得纵坐标,即可得出结论;(2)观察图象可得结果;(3)求出抛物线与x 轴的交点坐标,即可得解.【详解】解:(1)根据题意得:2234x x x -++=,解得:11x =,23x =-当11x =时,24y =.当23x =-时,212y =-.∴A (1,4),B (-3,-12).(2)观察图象得:当-3<x <1时,12y y >.(3)由2230x x -++=得:11x =-,23x =.∴抛物线与x 轴的交点坐标为(-1,0),(3,0).由图象可得,2230x x -++≥的解集为:-1≤x≤3.【点睛】本题主要考查了二次函数的图象与性质,掌握二次函数的图象与性质并能运用数形结合的思想是解题的关键.25.已知抛物线2(0)y ax bx a =+≠经过点(4,8)A -和点(,0)(0)P m m ≠.(1)若点A 是抛物线的顶点,则m =______.(2)如图,若2m =,设此时抛物线的顶点为B ,求OAB 的面积.解析:(1)8;(2)6.【分析】(1)先将点(4,8)A -代入抛物线的解析式可得1648a b +=-,再根据点A 是抛物线的顶点可得其对称轴42b x a=-=,从而可得8b a =-,求出a 、b 的值,然后将点P 的坐标代入抛物线的解析式即可得; (2)如图(见解析),先利用待定系数法求出抛物线的解析式,从而可得顶点B 的坐标,再利用待定系数法求出直线AB 的函数解析式,从而可得点C 的坐标,然后根据OAB 的面积等于OAC 与OBC 的面积之和即可得.【详解】(1)由题意,将点(4,8)A -代入抛物线的解析式得:1648a b +=-,点A 是抛物线的顶点,∴抛物线的对称轴为42b x a=-=,即8b a =-, 联立16488a b b a +=-⎧⎨=-⎩,解得124a b ⎧=⎪⎨⎪=-⎩, 则抛物线的解析式为2142y x x =-, 将(,0)(0)P m m ≠代入2142y x x =-得:21402m m -=, 解得8m =或0m =(不符题意,舍去),故答案为:8;(2)2m =,(2,0)P ∴, 将点(4,8),(2,0)A P -代入抛物线的解析式得:1648420a b a b +=-⎧⎨+=⎩, 解得12a b =-⎧⎨=⎩, 则此时抛物线的解析式为222(1)1y x x x =-+=--+, ∴顶点B 的坐标为(1,1)B ,设直线AB 的函数解析式为y kx c =+,将点(4,8),(1,1)A B -代入得:481k c k c +=-⎧⎨+=⎩,解得34k c =-⎧⎨=⎩, 则直线AB 的函数解析式为34y x =-+,当0y =时,340x -+=,解得43x =,即4(,0)3C , 43OC ∴=, (4,8)(1),1,B A -,OAC ∴的OC 边上的高为8,OBC 的OC 边上的高为1, OAC OB B COA S S S ∴=+, 1414812323=⨯⨯+⨯⨯, 6=,即OAB 的面积为6.【点睛】本题考查了利用待定系数法求二次函数和一次函数的解析式、二次函数的性质等知识点,熟练掌握待定系数法是解题关键.26.如图,直线:33l y x =-+与x 轴,y 轴分别相交于A,B 两点,抛物线224(0)y ax ax a a =-++<经过点B .(1)求该抛物线的解析式及顶点坐标;(2)连结BD,以AB,BD 为一组邻边的平行四边形ABDE,顶点E 是否在抛物线上?(3)已知点M 是抛物线上的一个动点,并且点M 在第一象限内,连接AM 、BM ,设点M 横坐标为m,△ABM 的面积为S ,求S 与m 的函数表达式,并求出S 的最大值.解析:(1) 2y x 2x 3=-++,顶点坐标为(1,4);(2)不在,理由见解析;(3)S=21522m m +,S 的最大值为:258. 【分析】(1)求出A 、B 两点坐标,把B 点坐标代入抛物线的解析式即可解决问题. (2)首先求出BD 和BD 所在直线解析式,再过A 作//AE BD 交抛物线于点F ,联立方程组2123y x y x x =-⎧⎨=-++⎩求出点F 的坐标,进而得出AF 的长,从而可判断出AF 和BD 的关系,故可得结;(3)如图2中,连接OM ,设M (m ,-m 2+2m+3),根据S=S △BOM +S △AOM -S △AOB 计算即可.再利用二次函数的性质求出最大值.【详解】解:(1)∵直线l :y=-3x+3与x 轴、y 轴分别相交于A 、B 两点,∴A (1,0),B (0,3),把点B (0,3)代入y=ax 2-2ax+a+4得a=-1,∴抛物线的解析式为y=-x 2+2x+3.顶点D 的坐标为(1,4)(2)不在,如图1,∵(0,3),(1,4)B D∴BD 的解析式为3y x ,22(01)(34)2,BD =-+-=过A 作//AE BD 交抛物线于点F设AE 的解析式为y x b =+将(1,0)A 代入得1b =-,∴AE 的解析式为1y x =-,∵直线AE 与抛物线相交,联立方程组得,2123y x y x x =-⎧⎨=-++⎩ ∴在第一象限的交点坐标为F 117117(,)22+-+ ∴34222AF -=≠ ∴点E 不在抛物线上; (3)如图2中,连接OM ,设M (m ,-m 2+2m+3),∴BOM AOM AOB S S S S ∆∆∆=+-211331(23)222m m m =⨯⨯+⨯⨯-++- 215,(03)22m m m =-+<<. ∵22151525()22228S m m m =-+=--+, ∵-12<0, ∴m=52时,S 有最大值为258. 【点睛】 本题考查二次函数的综合题,三角形的面积、二元二次方程组、平行四边形的性质和判定等知识,解题的关键是灵活运用所学知识解决问题,学会构建二次函数,解决最值问题,属于中考常考题型.27.如图,已知抛物线2y ax c =+过点()2,2-,()4,5,过定点()0,2F 的直线y kx b =+与抛物线交于A 、B 两点,点B 在点A 的右侧,过点B 作x 轴的垂线,垂足为C .(1)直接写出抛物线的解析式.(2)求证:BF BC =.(3)若1k =,在直线y kx b =+下方抛物线上是否存在点Q ,使得QBF 的面积最大?若存在,求出点Q 的坐标及QBF 的最大面积;若不存在,请说明理由.解析:(1)2114y x =+;(2)见解析;(3)存在,最大值为222+,此时Q 点坐标为()2,2.【分析】 (1)利用待定系数法求抛物线解析式;(2)设B(x ,2114x +),而F (0,2),利用两点间的距离公式得到BF=2114x +,而BC=2114x +,所以BF=BC ; (3)作//QE y 轴交AB 于点E ,设2114Q t t ⎛⎫+ ⎪⎝⎭,,利用QBF EQF EQB S S S =+△△△和二次函数的性质即可求解.【详解】(1)把点(-2,2),(4,5)代入2y ax c =+得:42165a c a c +=⎧⎨+=⎩, 解得:141a c ⎧=⎪⎨⎪=⎩, 所以抛物线解析式为2114y x =+; (2)设B(x ,2114x +),已知F (0,2), ∴2222222221111211444BF x x x x x ⎛⎫⎛⎫⎛⎫=++-=+-=+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭, ∴2114BF x =+,∵BC x ⊥轴, ∴2114BC x =+, ∴BF BC =;(3)作//QE y 轴交AB 于点E .经过点F (0,2),且1k =时,∴一次函数解析式为2y x =+, 解方程组22114y x y x =+⎧⎪⎨=+⎪⎩, 得22242x y ⎧=+⎪⎨=+⎪⎩2242x y ⎧=-⎪⎨=-⎪⎩ 则(22222B ++,, 设2114Q t t ⎛⎫+ ⎪⎝⎭,,则()2E t t +,, ∴221121144EQ t t t t ⎛⎫=+-+=-++ ⎪⎝⎭, ∴QBF EQF EQB S S S =+△△△((21112222221224EQ t t ⎛⎫=⋅+⋅=⋅+-++ ⎪⎝⎭ )2122222t +=-++当2t =时,QBF S △有最大值,最大值为222+,此时Q 点坐标为()22,. 【点睛】本题考查了二次函数的综合题:熟练掌握二次函数图象上点的坐标特征、二次函数的性质;会利用待定系数法求函数解析式;要会利用数形结合的思想把代数和几何图形结合起来,利用点的坐标的意义表示线段的长度,从而求出线段之间的关系.。
高一年段数学培优教材第一讲二次函数

高一年段数学培优教材第一讲 二次函数一、基础知识:1. 二次函数的解析式(1)一般式:2()(0)f x ax bx c a =++≠ (2)顶点式:2()()f x a x h k =-+,顶点为(,)h k (3)两根式:12()()()f x a x x x x =-- 2.二次函数的图像和性质(1)2()(0)f x ax bx c a =++≠的图像是一条抛物线,顶点坐标是24(,)24b ac b a a--,对称轴方程为2bx a=-,开口与a 有关。
(2)单调性:当0a >时,()f x 在(,]2b a -∞-上为减函数,在[,)2ba-+∞上为增函数;0a <时相反。
(3)奇偶性:当0b =时,()f x 为偶函数。
延伸:若()()f a x f a x +=-对x R ∈恒成立,则x a =为()f x 的对称轴。
(4)最值:当x R ∈时,()f x 的最值为244ac b a -,当[,],[,]2b x m n m n a ∈-∈时,()f x 的最值可从(),(),()2b f m f n f a -中选取;当[,],[,]2bx m n m n a∈-∉时,()f x 的最值可从(),()f m f n 中选取。
常依对称轴与区间[,]m n 的位置分类讨论。
3.三个二次之间的关联及根的分布理论:二次方程2()0(0)f x ax bx c a =++=≠的区间根问题,一般情况需要从三个方面考虑:判别式、区间端点函数值的符号;对称轴与区间端点的关系。
二、综合应用:例1:已知二次函数()f x 的图像经过三点(1,6),(1,0),(2.5,0)A B C --,求()f x 的解析式。
例2:设2()(0)f x ax bx c a =++≠满足条件:(1)当x R ∈时,(4)(2)()f x f x f x x -=-≥且,(2)当21(0,2),()2x x f x +⎛⎫∈≤ ⎪⎝⎭时, (3)()f x 在R 上的最小值为0。
成都列五中学九年级数学上册第二十二章《二次函数》知识点总结(培优)

一、选择题1.函数y=ax2与y=ax+a,在第一象限内y随x的减小而减小,则它们在同一直角坐标系中的图象大致位置是()A.B.C.D.B解析:B【分析】先根据二次函数y=ax2的增减性确定出 a >0,然后判断出二次函数的开口方向,再根据一次函数的性质确定出一次函数图象经过的象限与 y 轴的交点,然后判断即可.【详解】解:∵函数y=ax2在第一象限内y随x的减小而减小,∴a>0,∴y=ax2的图象经过原点且开口方向向上,y=ax+a经过第一三象限,且与y轴的正半轴相交.A.二次函数开口向上,一次函数与y轴的负半轴相交,不符合题意B.二次函数开口向上,一次函数与y轴的正半轴相交,符合题意C.二次函数开口向下,一次函数与y轴的负半轴相交,不符合题意D.二次函数开口向下,一次函数与y轴的正半轴相交,不符合题意故选:B.【点睛】本题考查了二次函数的图象,一次函数的图象,是基础题,根据二次函数的增减性确定出a 是正数是解题的关键.2.二次函数y=ax2+bx+c的部分图象如图,图象过点A(3,0),对称轴为直线x=1,下列结论:①a﹣b+c=0;②2a+b=0;③4ac﹣b2>0;④a+b≥am2+bm(m为实数);⑤3a+c>0.则其中正确的结论有()A.2个B.3个C.4个D.5个B解析:B由抛物线过点A(3,0)及对称轴为直线x=1,可得抛物线与x 轴的另一个交点,则可判断①②是否正确;由抛物线与x 轴有两个交点,可得△>0,据此可判断③是否正确;由x=1时,函数取得最大值,可判断④是否正确;把b=-2a 代入a-b+c=0得3a+c=0,则可判断⑤是否正确.【详解】解:∵二次函数y =ax 2+bx +c 的图象过点A (3,0),对称轴为直线x =1,∴点A (3,0)关于直线x =1对称点为(﹣1,0),∴当x =﹣1时,y =0,即a ﹣b +c =0.故①正确;∵对称轴为直线x =1,∴﹣2b a=1,∴b =﹣2a ,∴2a +b =0,故②正确; ∵抛物线与x 轴有两个交点,∴△=b 2﹣4ac >0,∴4ac ﹣b 2<0,故③错误;∵当x =1时,函数有最大值,∴a +b +c ≥am 2+bm +c ,∴a +b ≥am 2+bm ,故④正确; ∵b =﹣2a ,a ﹣b +c =0,∴a +2a +c =0,即3a +c =0,故⑤错误;综上,正确的有①②④.故选:B .【点睛】本题考查了二次函数图象与系数的关系,二次函数图象上点的坐标特征,数形结合并明确二次函数的相关性质是解题的关键.3.若整数a 使得关于x 的分式方程12322ax x x x -+=--有整数解,且使得二次函数y =(a ﹣2)x 2+2(a ﹣1)x +a +1的值恒为非负数,则所有满足条件的整数a 的值之和是( ) A .12B .15C .17D .20B解析:B【分析】由抛物线的性质得到20a ->,2=4(1)4(2)(1)0a a a ∆---+≤然后通过解分式方程求得a 的取值,然后求和.【详解】解:∵二次函数y =(a -2)x 2+2(a -1)x +a +1的值恒为非负数,∴20a ->,2=4(1)4(2)(1)0a a a ∆---+≤解得3a ≥ 解分式方程12322ax x x x -+=--解得:62x a =- 由x ≠2得,a ≠5,由于a 、x 是整数,所以a =3,x =6,a =4,x =3,a =8,x =1,同理符合a ≥3的a 值共有3,4,8,故所有满足条件的整数a 的值之和=3+4+8=15,故选:B .本题考查的是抛物线和x 轴交点,涉及到解分式方程,正确理解二次函数的值恒为非负数是解题的关键.4.二次函数y =ax 2+bx +c (a ≠0)的图象如图所示,下列结论:①ac <0;②b <0;③4ac ﹣b 2<0;④当x >﹣1时,y 随x 的增大而减小.其中正确的有( )A .4个B .3个C .2个D .1个B解析:B【分析】 由抛物线的开口方向判定a 与0的关系,由抛物线与y 轴的交点判断c 与0的关系,然后根据对称轴及抛物线与x 交点情况进行推理,进而对所得结论进行判断.【详解】解:①∵由二次函数的图象可知:抛物线的开口向上,∴a >0;又∵二次函数的图象与y 轴的交点在负半轴,∴c <0;∴ac <0,即①正确;②由图象知,对称轴x =2b a-=1,则b =﹣2a <0.故②正确; ③由图象知,抛物线与x 轴有2个交点,则b 2﹣4ac >0,故③正确;④由图象可知当x >1时,y 随x 的增大而增大;故④错误.综上所述,正确的结论是:①②③.故选:B .【点睛】此题考查学生掌握二次函数的图像与性质,考查了数形结合的数学思想,解本题的关键是根据图像找出抛物线的对称轴.5.已知二次函数2(0)y ax bx c a =++≠的图象如图,有下列5个结论:①0abc <;②420a b c ++>;③b a c <+;④230c b -<;⑤2(1)a b an bn n +>+≠,其中正确的个数有( )A .1个B .2个C .3个D .4个D 解析:D【分析】根据抛物线的开口方向、对称轴、顶点坐标、最值、以及不等式的性质进行判断即可.【详解】抛物线开口向下,因此a <0,对称轴为x =−b 2a =1>0,a 、b 异号,因此b >0,且2a +b =0,抛物线与y 轴的交点在正半轴,因此c >0,所以:abc <0,因此①正确;当x =2时,y =4a +2b +c >0,因此②正确;当x =−1时,y =a−b +c <0,即,a +c <b ,因此③不正确;∵a−b +c <0,2a +b =0,∴−12b−b +c <0,即2c−3b <0,因此④正确; 当x =1时,y 最大值=a +b +c ,当x =n (n≠1)时,y =an 2+bn +c <y 最大值,即:a +b+c >an 2+b +c ,也就是2a+b an +bn(n 1)>≠,因此⑤正确,正确的结论有:①②④⑤,故选:D .【点睛】考查二次函数y =ax 2+bx +c 系数符号由抛物线开口方向、对称轴和、抛物线与y 轴的交点、抛物线与x 轴交点的个数确定.6.根据下列表格中的对应值: x 1.981.992.00 2.01 2y ax bx c =++-0.06 -0.05 -0.03 0.01判断方程20ax bx c ++=(0a ≠,a ,b ,c 为常数)一个根x 的范围是( ) A .1.00 1.98x <<B .1.98 1.99x <<C .1.99 2.00x <<D .2.00 2.01x <<D解析:D【分析】根据二次函数的性质、二次函数与一元二次方程的联系即可得.【详解】由表格可知,在1.98 2.01x ≤≤内,y 随x 的增大而增大,当 2.00x =时,0.030y =-<,当 2.01x =时,0.010y =>, ∴在2.00 2.01x <<内,必有一个x 的值对应的函数值0y =,∴方程20ax bx c ++=(0a ≠,,,a b c 为常数)一个根x 的范围是2.00 2.01x <<, 故选:D .【点睛】本题考查了二次函数的性质、二次函数与一元二次方程的联系,熟练掌握二次函数的性质是解题关键.7.将抛物线22y x =平移,得到抛物线22(4)1y x =-+,下列平移方法正确的是( ) A .先向左平移4个单位,在向上平移1个单位B .先向左平移4个单位,在向下平移1个单位C .先向右平移4个单位,在向上平移1个单位D .先向右平移4个单位,在向下平移1个单位C解析:C【分析】先利用顶点式得到两抛物线的顶点式,然后通过点平移的规律得到抛物线平移的情况.【详解】解:抛物线y=2x 2的顶点坐标为(0,0),抛物线y=2(x-4)2+1的顶点坐标为(4,1),而点(0,0)先向右平移4个单位,再向上平移1个单位可得到点(4,1),所以抛物线y=2x 2先向右平移4个单位,再向上平移1个单位得到抛物线y=2(x+4)2+1. 故选:C .【点睛】本题考查了二次函数与几何变换:由于抛物线平移后的形状不变,故a 不变,所以求平移后的抛物线解析式通常可利用两种方法:一是求出原抛物线上任意两点平移后的坐标,利用待定系数法求出解析式;二是只考虑平移后的顶点坐标,即可求出解析式.8.已知二次函数y =ax 2+bx +c 的y 与x 的部分对应值如表:A .抛物线的开口向下B .抛物线的对称轴为直线x =2C .当0≤x ≤4时,y ≥0D .若A (x 1,2),B (x 2,3)是抛物线上两点,则x 1<x 2B解析:B【分析】根据表格中的数据和二次函数的性质,可以判断各个选项中的说法是否正确,从而可以解答本题.【详解】解:由表格可得,该抛物线的对称轴为直线x =042=2,故选项B 正确; 当x <2 时,y 随x 的增大而减小,当x >2时,y 随x 的增大而增大,所以该抛物线的开口向上,故选项A 错误;当0≤x ≤4时,y ≤0,故选项C 错误;由二次函数图象具有对称性可知,若A (x 1,2),B (x 2,3)是抛物线上两点,则x 1<x 2或x 2<x 1,故选项D 错误;故选:B .【点睛】本题考查二次函数的性质,解答本题的关键是明确题意,利用二次函数的性质解答. 9.已知点1(1,)y -,(,)23y ,31(,)2y 在函数22y x x m =++的图象上,则1y ,2y ,3y 的大小关系是( )A .123y y y >>B .213y y y >>C .231y y y >>D .312y y y >>C解析:C【分析】由抛物线222(1)1y x x m x m =++=++-,可知抛物线对称轴为x =-1,开口向上,然后根据各点到对称轴的结论可判断y 1,y 2,y 3的大小.【详解】∵222(1)1y x x m x m =++=++-,∴抛物线对称轴为x =-1,开口向上,又∵点((,)23y 离对称轴最远,点1(1,)y -在对称轴上,∴231y y y >>.故选:C .【点睛】本题考查了二次函数图象上点的坐标特征,熟练掌握二次函数的性质是解题的关键. 10.抛物线y=2(x -1)2-3向左平移3个单位长度,此时抛物线的对称轴是直线( ) A .x =-3B .x =-1C .x =-2D .x =4C 解析:C【分析】根据二次函数图象的平移规律得出平移后的抛物线的解析式,由此即可得出答案.【详解】由题意,平移后的抛物线的解析式为2213()3y x =-+-,即22(2)3y x =+-, 则此时抛物线的对称轴是直线2x =-,故选:C .【点睛】本题考查了二次函数图象的平移、二次函数的对称轴,熟练掌握二次函数图象的平移规律是解题关键. 二、填空题11.一条抛物线与x 轴相交于A ,B 两点(点A 在点B 的左侧),若点M ,N 的坐标分别为(-1,-2),(1,-2),抛物线顶点P 在线段MN 上移动.点B 的横坐标的最大值为3,则点A 的横坐标的最小值为__________.-3【分析】根据顶点P 在线段MN 上移动又知点MN 的坐标分别为(-1-2)(1-2)分别求出对称轴过点M 和N 时的情况即可判断出A 点横坐标的最小值【详解】根据题意知点B 的横坐标的最大值为3即可知当对称轴解析:-3【分析】根据顶点P 在线段MN 上移动,又知点M 、N 的坐标分别为(-1,-2)、(1,-2),分别求出对称轴过点M 和N 时的情况,即可判断出A 点横坐标的最小值.【详解】根据题意知,点B 的横坐标的最大值为3,即可知当对称轴过N 点时,点B 的横坐标最大,此时的A 点坐标为(-1,0),当对称轴过M 点时,点A 的横坐标最小,此时B 点坐标为(1,0),此时A 点的坐标最小为(-3,0),故点A 的横坐标的最小值为-3,故答案为:-3.【点睛】本题主要考査二次函数的综合,解答本题的关键是熟练掌握二次函数的图象对称轴的特点.12.抛物线y =﹣12(x +1)2+3的顶点坐标是_____.(﹣13)【分析】根据y =a (x ﹣h )2+k 的顶点是(hk )可得答案【详解】y =﹣(x+1)2+3的顶点坐标是(﹣13)故答案为:(﹣13)【点睛】本题考查了二次函数的性质熟记抛物线解析式的顶点式:解析:(﹣1,3)【分析】根据y =a (x ﹣h )2+k 的顶点是(h ,k ),可得答案.【详解】y =﹣12(x+1)2+3的顶点坐标是(﹣1,3), 故答案为:(﹣1,3).【点睛】本题考查了二次函数的性质.熟记抛物线解析式的顶点式:y =a (x−h )2+k ,顶点坐标为(h ,k )是解答此题的关键.13.已知二次函数2(,,y ax bx c a b c =++为常数,0,0a c ≠>)上有五点()()1,01,(),p t n -、、()()2,3,0t 、;有下列结论:①0b >;②关于x 的方程20ax bx c ++=的两个根是1-和3;③20p t +<;④()(4m am b a c m +≤--为任意实数).其中正确的结论_______________(填序号即可).【分析】由抛物线的对称性可知对称轴为可得即是方程的两个根再根据题目当中给出的条件代入解析式判断求解即可;【详解】当和时∴对称轴为∴当时y 的值相等∴∴是方程的两个根故②正确;∵当时且c >0∴>0∴>0解析:①②④【分析】 由抛物线的对称性可知对称轴为0212x +==,可得0p =,即1x =-,3x =是方程20ax bx c ++=的两个根,再根据题目当中给出的条件,代入解析式判断求解即可;【详解】当0x =和2x =时,y t =,∴对称轴为0212x +==, ∴当1x =-,3x =时,y 的值相等,∴0p =,∴1x =-,3x =是方程20ax bx c ++=的两个根,故②正确;∵当0x =时,y t =,且c >0,∴t c =>0,∴202p t t +=+>0,故③错误;∵2x =,y t =>0,3x =,0y =,∴在对称轴的右边,y 随x 的增大而减小,∴a <0, ∵12b x a=-=, ∴2b a =->0,故①正确;∵当3x =时,0y =, ∴930a b c ++=,∴30a c +=,∴3c a =-,∴443a c a a a --=-+=-,∵顶点坐标为()1,n ,a <0,∴2am bm c a b c ++≤++,∴2am bm a b +≤+,∴2am bm a +≤-, ∴24am bm a c +≤--,故④正确;综上所述:结论正确的是①②④;故答案是:①②④.【点睛】本题主要考查了二次函数图象性质,熟练掌握二次函数图像上点的特征是解题的关键. 14.如图,正方形OABC 的边长为2,OA 与x 负半轴的夹角为15°,点B 在抛物线()20y ax a =<的图象上,则a 的值为_.【分析】连接OB 过点B 作BD ⊥x 轴于D 根据正方形的性质求得∠BOA=45°OB=根据三角函数和勾股定理可得点B 的坐标为()代入抛物线即可求解【详解】如图连接OB 过点B 作BD ⊥x 轴于D ∵四边形OABC解析:26-【分析】连接OB ,过点B 作BD ⊥x 轴于D ,根据正方形的性质求得∠BOA=45°,OB=22,根据三角函数和勾股定理可得点B 的坐标为(6-,2-),代入抛物线()20y axa =<即可求解.【详解】如图,连接OB ,过点B 作BD ⊥x 轴于D ,∵四边形OABC 是边长为2的正方形,∴∠BOA=45°,OB=22,∵AC 与x 轴负半轴的夹角为15°,∴∠AOD=45°﹣15°=30°,∴BD= 12OB= 2,OD= 22OB BD -= 82-= 6, ∴点B 的坐标为(6-,2-), ∵点B 在抛物线()20y axa =<的图象上, 则:()262a -=-,解得:26a =-, 故答案为26a =-故答案为:26-.【点睛】本题主要考查根据坐标求解析式,涉及到正方形的性质、勾股定理、三角函数值,解题的关键是熟练掌握所学知识求得点B 的坐标.15.将抛物线2y x 向上平移1个单位,再向左平移2个单位后,得到的抛物线的顶点坐标是__________.【分析】根据二次函数图象左加右减上加下减的平移规律进行求解【详解】解:将抛物线y=x2向上平移1个单位再向左平移2个单位后得到的抛物线y=(x+2)2+1此时抛物线顶点坐标是(-21)故答案为:(- 解析:()2,1-【分析】根据二次函数图象左加右减,上加下减的平移规律进行求解.【详解】解:将抛物线y=x 2向上平移1个单位,再向左平移2个单位后,得到的抛物线y=(x+2)2+1.此时抛物线顶点坐标是(-2,1).故答案为:(-2,1).【点睛】本题考查了二次函数图象与几何变换,要求熟练掌握平移的规律:左加右减,上加下减.并用规律求函数解析式.16.抛物线2(3)y a x m =-+与x 轴的一个交点为(1,0),则关于x 的一元二次方程2(3)0a x m -+=的根为__________.【分析】先根据二次函数的对称性求出抛物线与x 轴的另一个交点坐标再根据二次函数与一元二次方程的联系即可得【详解】抛物线的对称轴为此抛物线与x 轴的一个交点为它与x 轴的另一个交点为即则关于x 的一元二次方程解析:121,5x x ==【分析】先根据二次函数的对称性求出抛物线与x 轴的另一个交点坐标,再根据二次函数与一元二次方程的联系即可得.【详解】抛物线2(3)y a x m =-+的对称轴为3x =,此抛物线与x 轴的一个交点为(1,0), ∴它与x 轴的另一个交点为(231,0)⨯-,即(5,0),则关于x 的一元二次方程2(3)0a x m -+=的根为121,5x x ==,故答案为:121,5x x ==.【点睛】本题考查了二次函数与x 轴的交点问题、二次函数与一元二次方程的联系,熟练掌握二次函数的图象和性质是解题关键.17.学校公益伞深受师生欢迎,如图为公益伞骨架结构,点A 为伞开关位置,图1完全收拢状态,图2中间状态,图3完全打开状态,撑伞整个过程中,63AB cm =,10CE cm =,2EF DE =,5BF DF =+,DF 长度保持不变,滑动环扣C 、D 相对距离会变化.(1)图1中,A 、G 重合,此时8AC cm =,则DF =______cm .(2)图3中,90EDC ∠=︒,因支架、伞布等作用,弹性钢丝BG 近似变形为抛物线2164y x bx c =-++一部分,则AC =______cm .【分析】(1)设结合可得:由线段的和差可得:列方程解方程可得答案;(2)如图以为原点建立平面直角坐标系可得函数的解析式为:利用求解的长度再利用勾股定理求解从而可得答案【详解】解:(1)设故答案为:(解析:2448【分析】(1)设,DE x = 结合2EF DE =,5BF DF =+,可得:2,3,35,EF x DF x BF x ===+ =55,BE x + 由线段的和差可得:45BE =, 列方程解方程可得答案;(2)如图,以B 为原点建立平面直角坐标系,可得函数的解析式为:21,64y x =-利用24DF =,求解BD 的长度,再利用勾股定理求解,CD 从而可得答案. 【详解】解:(1)设,DE x =2EF DE =,5BF DF =+,2,3,35,EF x DF DE EF x BF x ∴==+==+35255,BE BF EF x x x ∴=+=++=+63AB cm =,10CE cm =,8AC cm =45BE AB AC CE ∴=--=,5545,x ∴+=8,x ∴=324,DF x cm ∴==故答案为:24.(2)如图,以B 为原点建立平面直角坐标系, 则函数的解析式为:21,64y x =-24DF =, ∴ 当24x =时,21249,64y =-⨯=- 9BD ∴=,108CE DE ==,, 22221086CD CE DE ∴=-=-=,636948,AC cm ∴=--=故答案为:48.【点睛】本题考查的是线段的和差,一元一次方程的应用,勾股定理的应用,二次函数的图像与性质,掌握以上知识是解题的关键.18.已知二次函数2(0)y ax bx c a =++≠,其函数y 与自变量x 之间的部分对应值如下表所示,则42a b c ++=___________. x 3-1- 0 1 3 y 552 152 72 72 312函数值可得从而可得由此即可得【详解】和的函数值相同此二次函数的对称轴为即当时则故答案为:【点睛】本题考查了二次函数的性质正确求出二 解析:152 【分析】 先根据0x =和1x =的函数值相同可得二次函数的对称轴为12x =,从而可得=-b a ,再根据1x =-时的函数值可得152a b c,从而可得1522a c ,由此即可得. 【详解】 0x =和1x =的函数值相同,∴此二次函数的对称轴为12x =, 122b a ∴-=,即=-b a , 当1x =-时,152ya b c , 1522a c , 则4242abc a a c ,2a c ,152=, 故答案为:152. 【点睛】本题考查了二次函数的性质,正确求出二次函数的对称轴是解题关键.19.如图,是一座拱形桥的竖直截面图,水面与截面交于AB 两点,拱顶C 到AB 的距离为4m ,AB=12m ,DE 为拱桥底部的两点,且DE ∥AB ,点E 到AB 的距离为5cm ,则DE 的长度为______________ m . 18【分析】先建立平面直角坐标系以直线DE 为x 轴y 轴为经过点C 且垂直于AB 的直线设AB 与y 轴交于H 求出OC 的长然后设该抛物线的解析式为:根据条件求出解析式再令y=0求出x 的值即可得到DE 的长度【详解解析:18【分析】先建立平面直角坐标系,以直线DE 为x 轴,y 轴为经过点C 且垂直于AB 的直线,设AB 与y 轴交于H ,求出OC 的长,然后设该抛物线的解析式为:2y ax k =+,根据条件求出解析式,再令y =0,求出x 的值,即可得到DE 的长度.【详解】解:如图所示,建立平面直角坐标系,以直线DE 为x 轴,y 轴为经过点C 且垂直于AB 的直线,设AB 与y 轴交于点H ,∵AB=12,∴AH=BH=6,由题可知:OH=5,CH=4,∴OC=5+4=9,∴B (6,5),C (0,9)设该抛物线的解析式为:2y ax k =+,∵顶点C (0,9),∴抛物线29y ax =+,代入B (6,5)得5=36a +9,解得19a =-, ∴抛物线解析式为2199y x =-+, 当y=0时,21099x =-+, 解得x =±9, ∴E (9,0),D (-9,0),∴OE=OD=9,∴DE=OD+OE=9+9=18,故答案为:18.【点睛】本题主要考查二次函数的综合应用问题,解答本题的关键是正确地建立平面直角坐标系,是一道非常典型的试题.20.如图,抛物线 y =ax 2+bx +c (a ≠0)的对称轴为直线x =1,与x 轴的一个交点坐标为(-1,0),其部分图象如图所示,下列结论:①2a +b =0;②b 2-4ac <0;③当y >0时,x 的取值范围是 -1<x <3;④当 x >0时,y 随x 增大而增大;⑤若t 为任意实数,则有a+b≥at 2+bt .其中结论正确的是_________.①③⑤【分析】根据二次函数的图象及性质即可判断【详解】解:由图象可知:该抛物线的对称轴为x=1∴抛物线与x 轴的另外一个交点为:(30)∵对称轴为x=−=1从而可知:2a+b=0故①正确;∵抛物线与x解析:①③⑤【分析】根据二次函数的图象及性质即可判断.【详解】解:由图象可知:该抛物线的对称轴为x=1,∴抛物线与x 轴的另外一个交点为:(3,0)∵对称轴为x=−2b a=1, 从而可知:2a+b=0,故①正确;∵抛物线与x 轴有两个交点(-1,0),(3,0)∴△=b 2-4ac >0,而②b 2-4ac <0,故②错误;由图象可知:当y >0时,x 的取值范围是-1<x <3,故③正确;由图象可知:当x <1时,y 随x 增大而增大,故④错误;若t 为任意实数,x=1时,函数取得最大值,故a+b+c≥at 2+bt+c ,∴a+b≥at 2+bt ,故⑤正确,所以,结论正确的是①③⑤.故答案为:①③⑤.【点睛】本题考查二次函数图象与系数的关系,解题的关键是熟练正确理解二次函数图象与系数的关系,本题属于中等题型.三、解答题21.“新冠肺炎”疫情期间某工厂为支持国家抗击疫情每天连夜生产急缺的消毒液,已知每瓶消毒液的生产成本为20元,为了合理定价,根据市场调查发现,当销售单价为30元时,每天的销售量为6000瓶,若销售单价每降低1元,则每天能多销售1000瓶,但要求销售单价不能低于成本且不高于30元.(1)求每天的销售量y (瓶)与销售单价x (元)之间的函数关系式;(2)求每天的利润w (元)与销售单价x (元)之间的函数关系式;(3)该工厂负责人决定将每天的利润全部捐献出来进一步支持国家抗击“新冠肺炎”疫情,则当销售单价为多少元时,每天的销售利润最大?最大利润是多少?解析:(1)函数关系式为y =-1000x +36000;(2)函数关系式为w =-1000x 2+56000x -720000;(3)当销售单价为28元时,最大利润是64000元.【分析】(1)抓住关键的已知条件:当销售单价为30元时,每天的销售量为6000瓶,若销售单价每降低1元,则每天能多销售1000瓶,由此可得到y 与x 之间的函数解析式. (2)利用根据每天的利润=每一件的利润×销售量,列出w 与x 之间的函数解析式. (3)将(2)中的函数解析式转化为顶点式,利用二次函数的性质,可得结果.【详解】(1)解:由题意得y =(30-x )×1×1000+6000=-1000x +36000.∴每天的销售量y (瓶)与销售单价x (元)之间的函数关系式为y =-1000x +36000. (2)解:由题意得w =(x -20)(-1000x +36000)=-1000x 2+56000x -720000.∴每天的利润w (元)与销售单价x (元)之间的函数关系式为w =-1000x 2+56000x -720000. (3)解:w =-1000x 2+56000x -720000=-1000(x -28)2+64000.∵a =-1000<0∴当x =28时,w 有最大值为64000.答:当销售单价为28元时,最大利润是64000元.【点睛】本题考查一次函数和二次函数的实际应用-销售问题;二次函数顶点式的转化也是本题求最值问题的关键.22.平面直角坐标系xOy 中,二次函数2y x bx c =++的图象与x 轴交于点()4,0A 和()1,0B -,交y 轴于点C .(1)求二次函数的解析式;(2)将点C 向右平移n 个单位,再次落在二次函数图象上,求n 的值;(3)对于这个二次函数,若自变量x 的值增加4时,对应的函数值y 增大,求满足题意的自变量x 的取值范围.解析:(1)234y x x =--;(2)3n =;(3)12x >- 【分析】(1)把A,B 代入解析式求出b,c ,即可得到抛物线解析式;(2)根据抛物线的对称性即可求得;(3)分三种情况讨论,即可求得满足题意的自变量x 的取值范围.【详解】解:(1)∵二次函数2+y x bx c =+的图象与x 轴交于点()4,0A 和()1,0B -,∴164010b c b c ++=⎧⎨-+=⎩, 解得34b c =-⎧⎨=-⎩, ∴234y x x =--.(2)依题意,点C 的坐标为()0,4-, 该二次函数图象的对称轴为322b x =-=, 设点C 向右平移n 个单位后,所得到的点为D ,由于点D 在抛物线上,∴C ,D 两点关于二次函数的对称轴32x =对称. ∴点D 的坐标为()3,4-.∴3n CD ==.(3)依题意,即当自变量取4x +时的函数值,大于自变量为x 时的函数值. 结合函数图象,由于对称轴为32x =,分为以下三种情况: ①当342x x <+≤时,函数值y 随x 的增大而减小,与题意不符; ② 当342x x <<+时,需使得33422x x -<+-,方可满足题意,联立解得1322x -<<; ③342x x ≤<+时,函数值y 随x 的增大而增大,符合题意,此时32x ≥. 综上所述,自变量x 的取值范围是12x >-. 【点睛】 本题考查了抛物线与x 轴的交点,待定系数法求二次函数的解析式,坐标与图形的变换−平移,二次函数的性质,分类讨论是解题的关键.23.如图,Rt △OAB 中,∠OAB=90°,O 为坐标原点,边OA 在x 轴上,OA=AB=2个单位长度,把Rt △OAB 沿x 轴正方向平移2个单位长度后得△11AA B .(1)求以A 为顶点,且经过点1B 的抛物线的解析式;(2)若(1)中的抛物线与OB 交于点C ,与y 轴交于点D ,求点D 、 C 的坐标.解析:(1)()2122y x =-;(2)()0,2D ,(35,35C 【分析】 (1)根据三角形的边长求出点A 和点1B 的坐标,设抛物线解析式为()22y a x =-,代入点1B 坐标求出解析式;(2)令0x =,求出y 的值,得到点D 的坐标,再求出直线OB 的解析式和抛物线联立求出点C 的坐标.【详解】解:∵2OA =,∴()2,0A ,∵14OA =,112A B =,∴()14,2B ,设抛物线解析式为()22y a x =-,把点()14,2B 代入,得42a =,解得12a =, ∴()2122y x =-; (2)令0x =,得1422y =⨯=, ∴()0,2D ,设直线OB 解析式为y kx =,把点()2,2B 代入,得到22k =,解得1k =,∴直线OB 解析式为y x =,联立直线和抛物线的解析式,得()2122x x -=,解得35x =±, 根据点C 的位置,取35x =-,∴()35,35C --.【点睛】本题考查二次函数,解题的关键是掌握求二次函数的解析式的方法,求抛物线和直线交点的方法.24.如图,Rt ABC △中,90C ∠=︒,6cm AC =,8cm BC =,点P 由A 出发向点C 移动,点Q 由C 出发向点B 移动,两点同时出发,速度均为1cm/s ,运动时间为t 秒.(1)几秒时PCQ △的面积为4?(2)是否存在t 的值,使PCQ △的面积为5?若存在,求这个t 值,若不存在,说明理由. (3)几秒时PCQ △的面积最大,最大面积是多少?解析:(1)2s 或4s ;(2)不存在,证明见解析;(3)3秒,92 【分析】(1)根据题意,利用t 表示个线段长度,根据面积为4可列出方程求解.(2)利用第一问中PCQ △的面积的表示方法,使其等于5,根据判别式判断方程是否有解.(3)利用求得的PCQ △的面积的表示的二次函数解析式,求出二次函数的最大值,符合题意即为所求最大面积.【详解】解:(1)由题意得:AP CQ t ==,6PC AC AP t ∴=-=-,11(6)422PCQ S PC CQ t t ∴=⋅=-⋅=, 2680t t ∴-+=,(2)(4)0t t --=,12t =,24t =,∴2s 或4s 后PCQ △的面积为4.(2)1(6)52PCQ S t t =-=,26100t t -+=, 2(6)41040∆=--⨯=-<,方程无解,故PCQ △的面积不能为5.(3)1(6)2PCQ S t t =-()216992t t =--+-219(3)22t =--+,, ∴当3t =时,max 92PCQ S =. 【点睛】 本题考查的是一元二次方程以及二次函数的应用,三角形的面积公式的求法和一元二次方程的解的情况.25.已知关于x 的方程(k-1)x 2+(2k-1)x+2=0.(1)求证:无论k 取任何实数时,方程总有实数根;(2)当抛物线y =(k-1)x 2+(2k-1)x+2图象与x 轴两个交点的横坐标均为整数,且k 为正整数时,若P (a ,y 1),Q (1,y 2)是此抛物线上的两点,且y 1>y 2,请结合函数图象确定实数a 的取值范围.(3)已知抛物线y =(k-1)x 2+(2k-1)x+2恒过定点,求出定点坐标解析:(1)证明见解析;(2)a >1或a <﹣4;(3)(0,2)、(﹣2,0).【分析】(1)分类讨论:该方程是一元一次方程和一元二次方程两种情况.当该方程为一元二次方程时,根的判别式△≥0,方程总有实数根;(2)通过解(k-1)x 2+(2k-1)x+2=0得到k =2,由此得到该抛物线解析式为y =x 2+3x+2,结合图象回答问题.(3)根据题意得到(k-1)x 2+(2k-1)x+2﹣y =0恒成立,由此列出关于x 、y 的方程组,通过解方程组求得该定点坐标.【详解】(1)证明:①当k =1时,方程为x+2=0,所以x =﹣2,方程有实数根,②当k≠1时,∵△=(2k-1)2﹣4x(k-1)×2=4k 2-12k+9=(2k-3)2≥0,即△≥0,∴无论k 取任何实数时,方程总有实数根(2)解:令y =0,则(k-1)x 2+(2k-1)x+2=0,(x-2)[(k-1)x+1]=0解关于x 的一元二次方程,得x 1=﹣2,x 2=11-k, ∵二次函数的图象与x 轴两个交点的横坐标均为整数,且k 为正整数,∴1-k =-1,k=2.∴该抛物线解析式为y =x 2+3x+2,由图象得到:当y 1>y 2时,a >1或a <﹣4.(3)依题意得(k-1)x 2+(2k-1)x+2﹣y =0恒成立,即k (x 2+2x )-x 2-x ﹣y+2=0恒成立,得:x 2+2x=0;x 1=0,y 1=2;x 2=-2,y 2=0所以该抛物线恒过定点(0,2)、(﹣2,0).【点睛】本题考查了抛物线与x 轴的交点与判别式的关系及二次函数图象上点的坐标特征,解答(1)题时要注意分类讨论.26.如图,二次函数2y x bx c =-++与x 轴交于点B 和点()1,0A -,与y 轴交于点()0,4C ,与一次函数y x a =+交于点A 和点D .(1)求出a 、b 、c 的值;(2)若直线AD 上方的抛物线存在点E ,可使得EAD 面积最大,求点E 的坐标; (3)点F 为线段AD 上的一个动点,点F 到(2)中的点E 的距离与到y 轴的距离之和记为d ,求d 的最小值及此时点F 的坐标.解析:(1)1a =,3b =,4c =;(2)()1,6;(3)最小值为5,F 点的坐标为()1,2【分析】(1)将()1,0A -与()0,4C 分别代入二次函数2y x bx c =-++和一次函数y x a =+求解即可;(2)过点E 作x 轴的垂线1,交x 轴于点G ,交AD 于点H ,过点D 作l 的垂线,垂足为T ,由(1)可设点()2,34E m m m -++,则点H 的坐标为(),1m m +,然后根据割补法进行求解面积即可;(3)过A 作y 轴的平行线AS ,过F 作FG y ⊥轴交AS 于点M ,过F 作FN x ⊥轴于N ,由题意易得45DAB ∠=︒,则可证FM FN =,进而可得当N 、F 、E 所在直线与x 轴垂直时,1d FE FN =+-最小,然后问题可求解.【详解】(1)解:将()1,0A -与()0,4C分别代入二次函数2y x bx c =-++,得()2104b c c ⎧---+=⎪⎨=⎪⎩ , 解得34b c =⎧⎨=⎩; 将点()1,0A -代入一次函数y x a =+,得10a -+=,解得1a =,∴1a =,3b =,4c =;(2)解:由(1)所求的a ,b ,c 的值可得一次函数的解析式为:1y x =+,抛物线的解析式为:234y x x =-++,联立1y x =+与234y x x =-++得2134y x y x x =+⎧⎨=-++⎩,解得34x y =⎧⎨=⎩ ∴点D 的坐标为:()3,4,设点()2,34E m m m -++, 过点E 作x 轴的垂线1,交x 轴于点G ,交AD 于点H ,则点H 的坐标为(),1m m +,过点D 作l 的垂线,垂足为T ;∴223EH m m =-++,4=AD , ∴()11112222AED AEH HED S S S EH AG EH DT EH AG DT =+=⨯+⨯=+=△△△ ()()223414218m m m m -++--⨯=--+,当1m =时,最大值为8,此时点E 的坐标为()1,6;。
二次函数图像与性质培优题及答案

2016/11/24 14:57:23一.选择题(共10小题)1.一次函数y=ax +b (a ≠0)与二次函数y=ax 2+bx +c (a ≠0)在同一平面直角坐标系中的图象可能是( )A .B .C .D .2.二次函数y=ax 2+bx +c (a ≠0)图象上部分点的坐标(x ,y )对应值列表如下:x … ﹣3 ﹣2 ﹣1 0 1 … y … ﹣3 ﹣2 ﹣3 ﹣6 ﹣11… 则该函数图象的对称轴是( )A .直线x=﹣3B .直线x=﹣2C .直线x=﹣1D .直线x=03.二次函数y=ax 2+bx +c 的图象如图所示,那么一次函数y=ax +b 的图象大致是( )A .B .C .D .4.已知函数y=ax 2﹣2ax ﹣1(a 是常数,a ≠0),下列结论正确的是( )A .当a=1时,函数图象过点(﹣1,1)B .当a=﹣2时,函数图象与x 轴没有交点C .若a >0,则当x ≥1时,y 随x 的增大而减小D .若a <0,则当x ≤1时,y 随x 的增大而增大5.如图,已知二次函数y=ax 2+bx +c (a ≠0)的图象与x 轴交于点A (﹣1,0),与y 轴的交点B 在(0,﹣2)和(0,﹣1)之间(不包括这两点),对称轴为直线x=1.下列结论:①abc >0 ②4a +2b +c >0 ③4ac ﹣b 2<8a ④<a <⑤b >c .其中含所有正确结论的选项是( )A .①③B .①③④C .②④⑤D .①③④⑤ 6.抛物线y=x 2+bx +c (其中b ,c 是常数)过点A (2,6),且抛物线的对称轴与线段y=0(1≤x ≤3)有交点,则c 的值不可能是( ) A .4 B .6 C .8 D .107.如图是抛物线y=ax 2+bx +c (a ≠0)的部分图象,其顶点坐标为(1,n ),且与x 轴的一个交点在点(3,0)和(4,0)之间.则下列结论:①a ﹣b +c >0;②3a +b=0;③b 2=4a (c ﹣n );④一元二次方程ax 2+bx +c=n ﹣1有两个不相等的实数根.其中正确结论的个数是( )A .1B .2C .3D .48.二次函数y=ax 2+bx +c (a ≠0)的部分图象如图所示,图象过点(﹣1,0),对称轴为直线x=2,下列结论:(1)4a +b=0;(2)9a +c >3b ;(3)8a +7b +2c >0;(4)若点A (﹣3,y 1)、点B (﹣,y 2)、点C (,y 3)在该函数图象上,则y 1<y 3<y 2;(5)若方程a (x +1)(x ﹣5)=﹣3的两根为x1和x2,且x1<x2,则x1<﹣1<5<x2.其中正确的结论有()A.2个B.3个C.4个D.5个9.点P1(﹣1,y1),P2(3,y2),P3(5,y3)均在二次函数y=﹣x2+2x+c的图象上,则y1,y2,y3的大小关系是()A.y3>y2>y1B.y3>y1=y2C.y1>y2>y3D.y1=y2>y310.二次函数y=﹣(x﹣1)2+5,当m≤x≤n且mn<0时,y的最小值为2m,最大值为2n,则m+n的值为()A .B.2 C .D .二.选择题(共10小题)11.如图,在平面直角坐标系中,菱形OABC的顶点A 在x轴正半轴上,顶点C的坐标为(4,3),D是抛物线y=﹣x2+6x上一点,且在x轴上方,则△BCD面积的最大值为.12.二次函数y=x2﹣2x﹣3的图象如图所示,若线段AB在x轴上,且AB为2个单位长度,以AB为边作等边△ABC,使点C落在该函数y轴右侧的图象上,则点C的坐标为.13.二次函数y=ax2+bx+c的图象如图所示,且P=|2a+b|+|3b﹣2c|,Q=|2a﹣b|﹣|3b+2c|,则P,Q的大小关系是.14.如图,抛物线y=﹣x2+2x+3与y轴交于点C,点D (0,1),点P是抛物线上的动点.若△PCD是以CD 为底的等腰三角形,则点P的坐标为.15.a、b、c是实数,点A(a+1、b)、B(a+2,c)在二次函数y=x2﹣2ax+3的图象上,则b、c的大小关系是b c(用“>”或“<”号填空)16.如图,二次函数y=ax2+mc(a≠0)的图象经过正方形ABOC的三个顶点,且ac=﹣2,则m的值为.17.已知二次函数y=x2+(m﹣1)x+1,当x>1时,y 随x的增大而增大,则m的取值范围是.18.抛物线y=x2﹣x+p与x轴相交,其中一个交点坐标是(p,0).那么该抛物线的顶点坐标是.19.如图,在平面直角坐标系中,抛物线y=x2﹣2x+2交y轴于点A,直线AB交x轴正半轴于点B,交抛物线的对称轴于点C,若OB=2OA,则点C的坐标为.20.二次函数y=x2﹣2x+b的对称轴是直线x=.三.选择题(共6小题)21.如图,已知抛物线y=﹣x2+mx+3与x轴交于A,B 两点,与y轴交于点C,点B的坐标为(3,0)(1)求m的值及抛物线的顶点坐标.(2)点P是抛物线对称轴l上的一个动点,当PA+PC 的值最小时,求点P的坐标.22.已知平面直角坐标系xOy中,抛物线y=ax2﹣(a+1)x与直线y=kx的一个公共点为A(4,8).(1)求此抛物线和直线的解析式;(2)若点P在线段OA上,过点P作y轴的平行线交(1)中抛物线于点Q,求线段PQ长度的最大值.23.如图,二次函数y=ax2+bx的图象经过点A(2,4)与B(6,0).(1)求a,b的值;(2)点C是该二次函数图象上A,B两点之间的一动点,横坐标为x(2<x<6),写出四边形OACB的面积S关于点C的横坐标x的函数表达式,并求S的最大值.24.如图,直线y=kx+2k﹣1与抛物线y=kx2﹣2kx﹣4(k>0)相交于A、B两点,抛物线的顶点为P.(1)抛物线的对称轴为,顶点坐标为(用含k 的代数式表示).(2)无论k 取何值,抛物线总经过定点,这样的定点有几个?试写出所有定点的坐标,是否存在这样一个定点C,使直线PC与直线y=kx+2k﹣1平行?如果不存在,请说明理由;如果存在,求当直线y=kx+2k﹣1与抛物线的对称轴的交点Q与点P关于x轴对称时,直线PC 的解析式.25.已知二次函y=x2+px+q图象的顶点M为直线y=x+与y=﹣x+m﹣1的交点.(1)用含m的代数式来表示顶点M的坐标(直接写出答案);(2)当x≥2时,二次函数y=x2+px+q与y=x+的值均随x的增大而增大,求m的取值范围(3)若m=6,当x取值为t﹣1≤x≤t+3时,二次函数y 最小值=2,求t的取值范围.26.如图,已知抛物线y=ax2+x+c经过A(4,0),B (1,0)两点,(1)求该抛物线的解析式;(2)在直线AC上方的该抛物线上是否存在一点D,使得△DCA的面积最大?若存在,求出点D的坐标及△DCA面积的最大值;若不存在,请说明理由.四.选择题(共3小题)27.在二次函数y=ax2+bx+c(a≠0)中,函数y与自变量x的部分对应值如表:x …﹣1 0 1 2 3 …y …8 3 0 ﹣1 0 …求这个二次函数的解析式.28.如图,一次函数y1=kx+b与二次函数y2=ax2的图象交于A、B两点.(1)利用图中条件,求两个函数的解析式;(2)根据图象写出使y1>y2的x的取值范围.29.如图,抛物线y=ax2+bx﹣4a的对称轴为直线x=,与x轴交于A,B两点,与y轴交于点C(0,4).(1)求抛物线的解析式,结合图象直接写出当0≤x≤4时y的取值范围;(2)已知点D(m,m+1)在第一象限的抛物线上,点D关于直线BC的对称点为点E,求点E的坐标.五.解答题(共1小题)30.已知二次函数y=ax2+bx+c过点A(1,0),B(﹣3,0),C(0,﹣3)(1)求此二次函数的解析式;(2)在抛物线上存在一点P使△ABP的面积为6,求点P的坐标.(写出详细的解题过程)参考答案与试题解析一.选择题(共10小题) 1.(2016•毕节市)一次函数y=ax +b (a ≠0)与二次函数y=ax 2+bx +c (a ≠0)在同一平面直角坐标系中的图象可能是( )A .B .C .D .【解答】解:A 、由抛物线可知,a <0,由直线可知,故本选项错误;B 、由抛物线可知,a >0,x=﹣>0,得b <0,由直线可知,a >0,b >0,故本选项错误; C 、由抛物线可知,a <0,x=﹣<0,得b <0,由直线可知,a <0,b <0,故本选项正确; D 、由抛物线可知,a <0,x=﹣<0,得b <0,由直线可知,a <0,b >0故本选项错误.故选C .2.(2016•衢州)二次函数y=ax 2+bx +c (a ≠0)图象上部分点的坐标(x ,y )对应值列表如下:x … ﹣3 ﹣2 ﹣1 0 1 … y … ﹣3 ﹣2 ﹣3 ﹣6 ﹣11… 则该函数图象的对称轴是( )A .直线x=﹣3B .直线x=﹣2C .直线x=﹣1D .直线x=0【解答】解:∵x=﹣3和﹣1时的函数值都是﹣3相等, ∴二次函数的对称轴为直线x=﹣2. 故选:B . 3.(2016•泰安)二次函数y=ax 2+bx +c 的图象如图所示,那么一次函数y=ax +b 的图象大致是( )A .B .C .D .【解答】解:∵y=ax 2+bx +c 的图象的开口向上, ∴a >0,∵对称轴在y 轴的左侧, ∴b >0,∴一次函数y=ax +b 的图象经过一,二,三象限. 故选A .4.(2016•宁波)已知函数y=ax 2﹣2ax ﹣1(a 是常数,a ≠0),下列结论正确的是( )A .当a=1时,函数图象过点(﹣1,1)B .当a=﹣2时,函数图象与x 轴没有交点C .若a >0,则当x ≥1时,y 随x 的增大而减小D .若a <0,则当x ≤1时,y 随x 的增大而增大 【解答】解:A 、∵当a=1,x=﹣1时,y=1+2﹣1=2,∴函数图象不经过点(﹣1,1),故错误;B 、当a=﹣2时,∵△=42﹣4×(﹣2)×(﹣1)=8>0,∴函数图象与x 轴有两个交点,故错误;C 、∵抛物线的对称轴为直线x=﹣=1,∴若a >0,则当x ≥1时,y 随x 的增大而增大,故错误; D 、∵抛物线的对称轴为直线x=﹣=1,∴若a <0,则当x ≤1时,y 随x 的增大而增大,故正确; 故选D . 5.(2016•达州)如图,已知二次函数y=ax 2+bx +c (a ≠0)的图象与x 轴交于点A (﹣1,0),与y 轴的交点B 在(0,﹣2)和(0,﹣1)之间(不包括这两点),对称轴为直线x=1.下列结论:①abc >0 ②4a +2b +c >0 ③4ac ﹣b 2<8a ④<a <⑤b >c .其中含所有正确结论的选项是( )A .①③B .①③④C .②④⑤D .①③④⑤【解答】解:①∵函数开口方向向上, ∴a >0;∵对称轴在y 轴右侧 ∴ab 异号,∵抛物线与y 轴交点在y 轴负半轴, ∴c <0,∴abc>0,故①正确;②∵图象与x轴交于点A(﹣1,0),对称轴为直线x=1,∴图象与x轴的另一个交点为(3,0),∴当x=2时,y<0,∴4a+2b+c<0,故②错误;③∵图象与x轴交于点A(﹣1,0),∴当x=﹣1时,y=(﹣1)2a+b×(﹣1)+c=0,∴a﹣b+c=0,即a=b﹣c,c=b﹣a,∵对称轴为直线x=1∴=1,即b=﹣2a,∴c=b﹣a=(﹣2a)﹣a=﹣3a,∴4ac﹣b2=4•a•(﹣3a)﹣(﹣2a)2=﹣16a2<0∵8a>0∴4ac﹣b2<8a故③正确④∵图象与y轴的交点B在(0,﹣2)和(0,﹣1)之间,∴﹣2<c<﹣1∴﹣2<﹣3a<﹣1,∴>a >;故④正确⑤∵a>0,∴b﹣c>0,即b>c;故⑤正确;故选:D.6.(2016•绍兴)抛物线y=x2+bx+c(其中b,c是常数)过点A(2,6),且抛物线的对称轴与线段y=0(1≤x≤3)有交点,则c的值不可能是()A.4 B.6 C.8 D.10【解答】解:∵抛物线y=x2+bx+c(其中b,c是常数)过点A(2,6),且抛物线的对称轴与线段y=0(1≤x≤3)有交点,∴解得6≤c≤14,故选A.7.(2016•孝感)如图是抛物线y=ax2+bx+c(a≠0)的部分图象,其顶点坐标为(1,n),且与x轴的一个交点在点(3,0)和(4,0)之间.则下列结论:①a﹣b+c>0;②3a+b=0;③b2=4a(c﹣n);④一元二次方程ax2+bx+c=n﹣1有两个不相等的实数根.其中正确结论的个数是()A.1 B.2 C.3 D.4【解答】解:∵抛物线与x轴的一个交点在点(3,0)和(4,0)之间,而抛物线的对称轴为直线x=1,∴抛物线与x轴的另一个交点在点(﹣2,0)和(﹣1,0)之间.∴当x=﹣1时,y>0,即a﹣b+c>0,所以①正确;∵抛物线的对称轴为直线x=﹣=1,即b=﹣2a,∴3a+b=3a﹣2a=a,所以②错误;∵抛物线的顶点坐标为(1,n),∴=n,∴b2=4ac﹣4an=4a(c﹣n),所以③正确;∵抛物线与直线y=n有一个公共点,∴抛物线与直线y=n﹣1有2个公共点,∴一元二次方程ax2+bx+c=n﹣1有两个不相等的实数根,所以④正确.故选C.8.(2016•随州)二次函数y=ax2+bx+c(a≠0)的部分图象如图所示,图象过点(﹣1,0),对称轴为直线x=2,下列结论:(1)4a+b=0;(2)9a+c>3b;(3)8a+7b+2c>0;(4)若点A(﹣3,y1)、点B (﹣,y2)、点C (,y3)在该函数图象上,则y1<y3<y2;(5)若方程a(x+1)(x﹣5)=﹣3的两根为x1和x2,且x1<x2,则x1<﹣1<5<x2.其中正确的结论有()A.2个B.3个C.4个D.5个【解答】解:(1)正确.∵﹣=2,∴4a+b=0.故正确.(2)错误.∵x=﹣3时,y<0,∴9a﹣3b+c<0,∴9a+c<3b,故(2)错误.(3)正确.由图象可知抛物线经过(﹣1,0)和(5,0),∴解得,∴8a+7b+2c=8a﹣28a﹣10a=﹣30a,∵a<0,∴8a+7b=2c>0,故(3)正确.(4)错误,∵点A(﹣3,y1)、点B (﹣,y2)、点C (,y3),∵﹣2=,2﹣(﹣)=,∴<∴点C离对称轴的距离近,∴y3>y2,∵a<0,﹣3<﹣<2,∴y1<y2∴y1<y2<y3,故(4)错误.(5)正确.∵a<0,∴(x+1)(x﹣5)=﹣3/a>0,即(x+1)(x﹣5)>0,故x<﹣1或x>5,故(5)正确.∴正确的有三个,故选B.9.(2016•兰州)点P1(﹣1,y1),P2(3,y2),P3(5,y3)均在二次函数y=﹣x2+2x+c的图象上,则y1,y2,y3的大小关系是()A.y3>y2>y1B.y3>y1=y2C.y1>y2>y3D.y1=y2>y3【解答】解:∵y=﹣x2+2x+c,∴对称轴为x=1,P2(3,y2),P3(5,y3)在对称轴的右侧,y随x的增大而减小,∵3<5,∴y2>y3,根据二次函数图象的对称性可知,P1(﹣1,y1)与(3,y1)关于对称轴对称,故y1=y2>y3,故选D.10.(2016•舟山)二次函数y=﹣(x﹣1)2+5,当m≤x ≤n且mn<0时,y的最小值为2m,最大值为2n,则m+n的值为()A .B.2 C .D .【解答】解:二次函数y=﹣(x﹣1)2+5的大致图象如下:.①当m≤0≤x≤n<1时,当x=m时y取最小值,即2m=﹣(m﹣1)2+5,解得:m=﹣2.当x=n时y取最大值,即2n=﹣(n﹣1)2+5,解得:n=2或n=﹣2(均不合题意,舍去);②当m≤0≤x≤1≤n时,当x=m时y取最小值,即2m=﹣(m﹣1)2+5,解得:m=﹣2.当x=1时y取最大值,即2n=﹣(1﹣1)2+5,解得:n=,所以m+n=﹣2+=.故选:D.二.选择题(共10小题)11.(2016•长春)如图,在平面直角坐标系中,菱形OABC的顶点A在x轴正半轴上,顶点C的坐标为(4,3),D是抛物线y=﹣x2+6x上一点,且在x轴上方,则△BCD面积的最大值为15.【解答】解:∵D是抛物线y=﹣x2+6x上一点,∴设D(x,﹣x2+6x),∵顶点C的坐标为(4,3),∴OC==5,∵四边形OABC是菱形,∴BC=OC=5,BC∥x轴,∴S△BCD=×5×(﹣x 2+6x﹣3)=﹣(x﹣3)2+15,∵﹣<0,∴S△BCD有最大值,最大值为15,故答案为15.12.(2016•泰州)二次函数y=x2﹣2x﹣3的图象如图所示,若线段AB在x轴上,且AB为2个单位长度,以AB为边作等边△ABC,使点C落在该函数y轴右侧的图象上,则点C的坐标为(1+,3)或(2,﹣3).【解答】解:∵△ABC是等边三角形,且AB=2,∴AB边上的高为3,又∵点C在二次函数图象上,∴C的纵坐标为±3,令y=±3代入y=x2﹣2x﹣3,∴x=1或0或2∵使点C落在该函数y轴右侧的图象上,∴x>0,∴x=1+或x=2∴C(1+,3)或(2,﹣3)故答案为:(1+,3)或(2,﹣3)13.(2016•内江)二次函数y=ax2+bx+c的图象如图所示,且P=|2a+b|+|3b﹣2c|,Q=|2a﹣b|﹣|3b+2c|,则P,Q的大小关系是P>Q.【解答】解:∵抛物线的开口向下,∴a<0,∵﹣>0,∴b>0,∴2a﹣b<0,∵﹣=1,∴b+2a=0,x=﹣1时,y=a﹣b+c<0.∴﹣b﹣b+c<0,∴3b﹣2c>0,∵抛物线与y轴的正半轴相交,∴c>0,∴3b+2c>0,∴p=3b﹣2c,Q=b﹣2a﹣3b﹣2c=﹣2a﹣2b﹣2c,∴Q﹣P=﹣2a﹣2b﹣2c﹣3b+2c=﹣2a﹣5b=﹣4b<0∴P>Q,故答案为:P>Q.14.(2016•梅州)如图,抛物线y=﹣x2+2x+3与y轴交于点C,点D(0,1),点P是抛物线上的动点.若△PCD是以CD为底的等腰三角形,则点P的坐标为(1+,2)或(1﹣,2).【解答】解:∵△PCD是以CD为底的等腰三角形,∴点P在线段CD的垂直平分线上,如图,过P作PE⊥y轴于点E,则E为线段CD的中点,∵抛物线y=﹣x2+2x+3与y轴交于点C,∴C(0,3),且D(0,1),∴E点坐标为(0,2),∴P点纵坐标为2,在y=﹣x2+2x+3中,令y=2,可得﹣x2+2x+3=2,解得x=1±,∴P点坐标为(1+,2)或(1﹣,2),故答案为:(1+,2)或(1﹣,2).15.(2016•镇江)a、b、c是实数,点A(a+1、b)、B (a+2,c)在二次函数y=x2﹣2ax+3的图象上,则b、c 的大小关系是b<c(用“>”或“<”号填空)【解答】解:∵二次函数y=x2﹣2ax+3的图象的对称轴为x=a,二次项系数1>0,∴抛物线的开口向上,在对称轴的右边,y随x的增大而增大,∵a+1<a+2,点A(a+1、b)、B(a+2,c)在二次函数y=x2﹣2ax+3的图象上,∴b<c,故答案为:<.16.(2016•绵阳校级自主招生)如图,二次函数y=ax2+mc (a≠0)的图象经过正方形ABOC的三个顶点,且ac=﹣2,则m的值为1.【解答】解:连接BC,如图,根据题意得A(0,mc),即OA=mc,∵四边形ABCD为正方形,∴OA=BC,OA与BC互相垂直平分,∴C 点坐标为(,),把C (,)代入y=ax2+mc得a•()2+mc=,整理得amc=﹣2,∵ac=﹣2,∴m=1.故答案为1.17.(2016•新县校级模拟)已知二次函数y=x2+(m﹣1)x+1,当x>1时,y随x的增大而增大,则m的取值范围是m≥﹣1.【解答】解:抛物线的对称轴为直线x=﹣=,∵当x>1时,y的值随x值的增大而增大,∴≤1,解得:m≥﹣1.故答案为:m≥﹣1.18.(2016•同安区一模)抛物线y=x2﹣x+p与x轴相交,其中一个交点坐标是(p,0).那么该抛物线的顶点坐标是(,﹣).【解答】解:将(p,0)代入得:p2﹣p+p=0,p2=0,p=0,则y=x2﹣x=x2﹣x+﹣=(x﹣)2﹣,∴顶点坐标为(,﹣).19.(2016•宽城区一模)如图,在平面直角坐标系中,抛物线y=x2﹣2x+2交y轴于点A,直线AB交x轴正半轴于点B,交抛物线的对称轴于点C,若OB=2OA,则点C的坐标为(1,).【解答】解:由抛物线y=x2﹣2x+2=(x﹣1)2+1可知A (0,2),对称轴为x=1,∴OA=2,∵OB=2OA,∴B(4,0),设直线AB的解析式为y=kx+b,∴,解得,∴直线AB为y=﹣x+2,当x=1时,y=,∴C(1,).20.(2016•闸北区二模)二次函数y=x2﹣2x+b的对称轴是直线x=1.【解答】解:∵y=x2﹣2x+b=x2﹣2x+1+b﹣1=(x+1)2+b﹣1故对称轴是直线x=1.故答案为:1.三.选择题(共6小题)21.(2016•宁波)如图,已知抛物线y=﹣x2+mx+3与x 轴交于A,B两点,与y轴交于点C,点B的坐标为(3,0)(1)求m的值及抛物线的顶点坐标.(2)点P是抛物线对称轴l上的一个动点,当PA+PC 的值最小时,求点P的坐标.【解答】解:(1)把点B的坐标为(3,0)代入抛物线y=﹣x2+mx+3得:0=﹣32+3m+3,解得:m=2,∴y=﹣x2+2x+3=﹣(x﹣1)2+4,∴顶点坐标为:(1,4).(2)连接BC交抛物线对称轴l于点P,则此时PA+PC 的值最小,设直线BC的解析式为:y=kx+b,∵点C(0,3),点B(3,0),∴,解得:,∴直线BC的解析式为:y=﹣x+3,当x=1时,y=﹣1+3=2,∴当PA+PC的值最小时,点P的坐标为:(1,2).22.(2016•封开县二模)已知平面直角坐标系xOy中,抛物线y=ax2﹣(a+1)x与直线y=kx的一个公共点为A (4,8).(1)求此抛物线和直线的解析式;(2)若点P在线段OA上,过点P作y轴的平行线交(1)中抛物线于点Q,求线段PQ长度的最大值.【解答】解:(1)由题意,可得8=16a﹣4(a+1)及8=4k,解得a=1,k=2,所以,抛物线的解析式为y=x2﹣2x,直线的解析式为y=2x.(2)设点P的坐标为(t,2t)(0≤t≤4),可得点Q的坐标为(t,t2﹣2t),则PQ=2t﹣(t2﹣2t)=4t﹣t2=﹣(t﹣2)2+4,所以,当t=2时,PQ的长度取得最大值为4.23.(2016•安徽)如图,二次函数y=ax2+bx的图象经过点A(2,4)与B(6,0).(1)求a,b的值;(2)点C是该二次函数图象上A,B两点之间的一动点,横坐标为x(2<x<6),写出四边形OACB的面积S关于点C的横坐标x的函数表达式,并求S的最大值.【解答】解:(1)将A(2,4)与B(6,0)代入y=ax2+bx,得,解得:;(2)如图,过A作x轴的垂直,垂足为D(2,0),连接CD,过C作CE⊥AD,CF⊥x轴,垂足分别为E,F,S△OAD =OD•AD=×2×4=4;S△ACD =AD•CE=×4×(x﹣2)=2x﹣4;S△BCD =BD•CF=×4×(﹣x2+3x)=﹣x2+6x,则S=S△OAD+S△ACD+S△BCD=4+2x﹣4﹣x2+6x=﹣x2+8x,∴S关于x的函数表达式为S=﹣x2+8x(2<x<6),∵S=﹣x2+8x=﹣(x﹣4)2+16,∴当x=4时,四边形OACB的面积S有最大值,最大值为16.24.(2016•江西模拟)如图,直线y=kx+2k﹣1与抛物线y=kx2﹣2kx﹣4(k>0)相交于A、B两点,抛物线的顶点为P.(1)抛物线的对称轴为直线x=1,顶点坐标为(1,﹣k﹣4)(用含k的代数式表示).(2)无论k取何值,抛物线总经过定点,这样的定点有几个?试写出所有定点的坐标,是否存在这样一个定点C,使直线PC与直线y=kx+2k﹣1平行?如果不存在,请说明理由;如果存在,求当直线y=kx+2k﹣1与抛物线的对称轴的交点Q与点P关于x轴对称时,直线PC 的解析式.【解答】解:(1)∵抛物线y=kx2﹣2kx﹣4(k>0),∴对称轴为直线x=﹣=1,当x=1时,y=k﹣2k﹣4=﹣k﹣4,∴顶点P为(1,﹣k﹣4),故答案为直线x=1,(1,﹣k﹣4);(2)由y=kx2﹣2kx﹣4=k(x﹣2)x﹣4可知,无论k取何值,抛物线总经过定点(0,﹣4)和(2,﹣4)两个点,∵交点Q与点P 关于x轴对称,∴Q(1,k+4),∵直线y=kx+2k﹣1与抛物线的对称轴的交点为Q,∴k+4=k+2k ﹣1,解得k=,∴P(1,﹣),∵线PC与直线y=kx+2k ﹣1平行,∴设直线PC的解析式为y=x+b,代入P(1,﹣)得﹣=+b,解得b=﹣9,∴直线PC的解析式为y=x﹣9.故存在定点C,使直线PC与直线y=kx+2k﹣1平行,直线PC的解析式为y=x﹣9.25.(2016•萧山区模拟)已知二次函y=x2+px+q图象的顶点M为直线y=x +与y=﹣x+m﹣1的交点.(1)用含m的代数式来表示顶点M的坐标(直接写出答案);(2)当x≥2时,二次函数y=x2+px+q与y=x +的值均随x的增大而增大,求m的取值范围(3)若m=6,当x取值为t﹣1≤x≤t+3时,二次函数y 最小值=2,求t的取值范围.【解答】解:(1)由,解得,即交点M 坐标为;(2)∵二次函y=x2+px+q图象的顶点M为直线y=x +与y=﹣x+m﹣1的交点为,且当x≥2时,二次函数y=x2+px+q与y=x +的值均随x的增大而增大,∴≤2,解得m ≤,∴m的取值范围为m ≤;(3)∵m=6,∴顶点为(3,2),∴抛物线为y=(x﹣3)2+2,∴函数y有最小值为2,∵当x取值为t﹣1≤x≤t+3时,二次函数y最小值=2,∴t﹣1≤3,t+3≥3,解得0≤t≤4.26.(2016•湘潭一模)如图,已知抛物线y=ax2+x+c 经过A(4,0),B(1,0)两点,(1)求该抛物线的解析式;(2)在直线AC上方的该抛物线上是否存在一点D,使得△DCA的面积最大?若存在,求出点D的坐标及△DCA面积的最大值;若不存在,请说明理由.【解答】解:(1)把A(4,0),B(1,0)代入抛物线的解析式得:,解得:,则抛物线解析式为y=﹣x2+x﹣2;(2)存在,理由如下:设D的横坐标为t(0<t<4),则D 点的纵坐标为﹣t2+t﹣2,过D作y轴的平行线交AC于E,连接CD,AD,如图所示,由题意可求得直线AC的解析式为y=x﹣2,∴E点的坐标为(t ,t﹣2),∴DE=﹣t2+t﹣2﹣(t﹣2)=﹣t2+2t,∴△DAC的面积S=×(﹣t2+2t)×4=﹣t2+4t=﹣(t﹣2)2+4,当t=2时,S最大=4,∴此时D(2,1),△DAC面积的最大值为4.四.选择题(共3小题)27.(2016秋•宁县校级期中)在二次函数y=ax2+bx+c (a≠0)中,函数y与自变量x的部分对应值如表:x …﹣1 0 1 2 3 …y …8 3 0 ﹣1 0 …求这个二次函数的解析式.【解答】解:根据题意得,解得:,则二次函数的解析式是y=x2﹣4x+3.28.(2016秋•丹江口市校级月考)如图,一次函数y1=kx+b与二次函数y2=ax2的图象交于A、B两点.(1)利用图中条件,求两个函数的解析式;(2)根据图象写出使y1>y2的x的取值范围.【解答】解:(1)由图象可知:B(2,4)在二次函数y2=ax2上,∴4=a×22,∴a=1,则二次函数y2=x2,又A(﹣1,n)在二次函数y2=x2上,∴n=(﹣1)2,∴n=1,则A(﹣1,1),又A、B两点在一次函数y1=kx+b上,∴,解得:,则一次函数y1=x+2,答:一次函数y1=x+2,二次函数y2=x2;(2)根据图象可知:当﹣1<x<2时,y1>y2.29.(2016春•江阴市校级月考)如图,抛物线y=ax2+bx﹣4a的对称轴为直线x=,与x轴交于A,B两点,与y轴交于点C(0,4).(1)求抛物线的解析式,结合图象直接写出当0≤x≤4时y的取值范围;(2)已知点D(m,m+1)在第一象限的抛物线上,点D关于直线BC的对称点为点E,求点E的坐标.【解答】解:(1)将C(0,4)代入y=ax2+bx﹣4a中得a=﹣1又∵对称轴为直线x=,∴,得b=3.∴抛物线的解析式为y=﹣x2+3x+4,∵y=﹣x2+3x+4=﹣(x ﹣)2+.∴顶点坐标为:(,),∴当0≤x≤4时y的取值范围是0≤y ≤.(2)∵点D(m,m+1)在抛物线上,∴m+1=﹣m2+3m+4,解得:m=﹣1,或m=3;∵点D在第一象限,∴点D的坐标为(3,4).又∵C(0,4),∴CD∥AB,且CD=3.当y=﹣x2+3x+4=0时,解得:x=﹣1,或x=4,∴B(4,0);当x=0时,y=4,∴C(0,4),∴OB=OC=4,∴∠OCB=∠DCB=45°,∴点E在y轴上,且CE=CD=3,∴OE=1.即点E的坐标为(0,1).五.解答题(共1小题)30.(2016秋•临沭县校级月考)已知二次函数y=ax2+bx+c过点A(1,0),B(﹣3,0),C(0,﹣3)(1)求此二次函数的解析式;(2)在抛物线上存在一点P使△ABP的面积为6,求点P的坐标.(写出详细的解题过程)【解答】解:(1)设抛物线的解析式为y=a(x﹣1)(x+3),把C(0,﹣3)代入得a×(﹣1)×3=﹣3,解得a=1,所以这个二次函数的解析式为y=(x﹣1)(x+3)=x2+2x ﹣3.(2)∵A(1,0),B(﹣3,0),∴AB=4,设P(m,n),∵△ABP的面积为6,∴AB•|n|=6,解得:n=±3,当n=3时,m2+2m﹣3=3,解得:m=﹣1+或﹣1﹣,∴P(﹣1+,3)或P(﹣1﹣,3);当n=﹣3时,m2+2m﹣3=﹣5,解得m=0或m=﹣2,∴P(0,﹣3)或P(﹣2,﹣3);故P(﹣1+,3)或P(﹣1﹣,3)或(0,﹣3)或P(﹣2,﹣3).。
二次函数复习总结归纳

y xO二次函数复习归纳(培优)1. 二次函数2()y a x h k =-+的图像和性质a >0a <0图 象 开 口 对 称 轴 顶点坐标最 值 当x = 时,y 有最 值 当x = 时,y 有最 值 增减性在对称轴左侧 y 随x 的增大而 y 随x 的增大而 在对称轴右侧y 随x 的增大而y 随x 的增大而2. 二次函数c bx ax y ++=2用配方法可化成()k h x a y +-=2的形式,其中h = , k= .3. 二次函数2()y a x h k =-+的图像和2ax y =图像的关系:; 4.用待定系数法求二次函数的解析式(1)一般式:c bx ax y ++=2.已知图像上三点或三对x 、y 的值,通常选择一般式. (2)顶点式:()k h x a y +-=2.已知图像的顶点或对称轴或最值,通常选择顶点式.求抛物线的顶点、对称轴的方法:a b ac a b x a c bx ax y 442222-+⎪⎭⎫ ⎝⎛+=++=, ∴顶点是),(a b ac a b 4422--,对称轴是直线abx 2-=.(3)交点式:已知图像与x 轴交点的横坐标1x 、2x ,通常选用交点式:()()21x x x x a y --=(4)抛物线与x 轴两交点之间的距离:若抛物线c bx ax y ++=2与x 轴两交点为()()0021,,,x B x A ,由于1x 、知识要点2x 是方程02=++c bx ax 的两个根,故acx x a b x x =⋅-=+2121,()()aa acb a ca b x x x xx xx x AB ∆=-=-⎪⎪⎭⎫ ⎝⎛-=-+=-=-=4442221221221215.抛物线c bx ax y ++=2中,c b a ,,的作用(1)a 决定开口方向及开口大小:a >0,开口向上;a <0,开口向下;α越大,开口越小 (2)b 和a 决定抛物线对称轴(左同右异)①0=b 时,对称轴为y 轴;②0>ab(即a 、b 同号)时,对称轴在y 轴左侧; ③0<ab(即a 、b 异号)时,对称轴在y 轴右侧. (3)c 决定抛物线与y 轴交点的位置.c >0时,与y 轴正半轴相交;c <0时,与y 轴负半轴相交。
二次函数考点分析培优

二次函数考点分析培优★★★二次函数的图像抛物线的时候应抓住以下五点:开口方向,对称轴,顶点,与x 轴的交点,与y 轴的交点.★★二次函数y=ax 2+bx+c (a ,b ,c 是常数,a ≠0)一般式:y=ax 2+bx+c ,三个点顶点式:y=a (x -h )2+k ,顶点坐标对称轴顶点坐标(-,).顶点坐标(h ,k ) ★★★a b c 作用分析│a │的大小决定了开口的宽窄,│a │越大,开口越小,│a │越小,开口越大,a ,b 的符号共同决定了对称轴的位置,当b=0时,对称轴x=0,即对称轴为y 轴,当a ,b轴x=-<0,即对称轴在y 轴左侧,当a ,b•异号时,对称轴x=->0,即对称轴在yy 轴交点的位置,c=0时,抛物线经过原点,c>0时,与y 轴交于正半轴;c<0时,与y•轴交于负半轴,以上a ,b ,c 的符号与图像的位置是共同作用的,也可以互相推出.交点式:y=a(x- x 1)(x- x 2),(有交点的情况)与x 轴的两个交点坐标x 1,x 2对称轴为21x x h +=1.把二次函数的图象向左平移2个单位,再向上平移1个单位,所得到的图象对应的二次函数关系式是2)1(2-+=x y 则原二次函数的解析式为2.二次函数的图象顶点坐标为(2,1),形状开品与抛物线y= - 2x 2相同,这个函数解析式为________。
3.如果函数1)3(232++-=+-kx x k y k k 是二次函数,则k 的值是______4.(08绍兴)已知点11()x y ,,均在抛物线上,下列说法中正确的是( )A .若,则B .若,则C .若,则D .若,则5.(兰州10) 抛物线图像向右平移2个单位再向下平移3个单位,所得图像的解析式为,则b 、c 的值为 A . b=2, c=2 B. b=2,c=0C . b= -2,c=-1 D. b= -3, c=26.抛物线5)43()1(22+--++=x m m x m y 以Y 轴为对称轴则。
九年级数学上册 二次函数(培优篇)(Word版 含解析)

九年级数学上册二次函数(培优篇)(Word版含解析)一、初三数学二次函数易错题压轴题(难)1.如图,抛物线y=﹣x2+bx+c与x轴交于A,B两点,其中A(3,0),B(﹣1,0),与y轴交于点C,抛物线的对称轴交x轴于点D,直线y=kx+b1经过点A,C,连接CD.(1)求抛物线和直线AC的解析式:(2)若抛物线上存在一点P,使△ACP的面积是△ACD面积的2倍,求点P的坐标;(3)在抛物线的对称轴上是否存在一点Q,使线段AQ绕Q点顺时针旋转90°得到线段QA1,且A1好落在抛物线上?若存在,求出点Q的坐标;若不存在,请说明理由.【答案】(1)2y x2x3=-++;3y x=-+;(2)(﹣1,0)或(4,﹣5);(3)存在;(1,2)和(1,﹣3)【解析】【分析】(1)将点A,B坐标代入抛物线解析式中,求出b,c得出抛物线的解析式,进而求出点C 的坐标,再将点A,C坐标代入直线AC的解析式中,即可得出结论;(2)利用抛物线的对称性得出BD=AD,进而判断出△ABC的面积和△ACP的面积相等,即可得出结论;(3)分点Q在x轴上方和在x轴下方,构造全等三角形即可得出结论.【详解】解:(1)把A(3,0),B(﹣1,0)代入y=﹣x2+bc+c中,得93010b cb c-++=⎧⎨--+=⎩,∴23bc=⎧⎨=⎩,∴抛物线的解析式为y=﹣x2+2x+3,当x=0时,y=3,∴点C的坐标是(0,3),把A(3,0)和C(0,3)代入y=kx+b1中,得11303k bb+=⎧⎨=⎩,∴113kb=-⎧⎨=⎩∴直线AC的解析式为y=﹣x+3;(2)如图,连接BC,∵点D是抛物线与x轴的交点,∴AD=BD,∴S△ABC=2S△ACD,∵S△ACP=2S△ACD,∴S△ACP=S△ABC,此时,点P与点B重合,即:P(﹣1,0),过B点作PB∥AC交抛物线于点P,则直线BP的解析式为y=﹣x﹣1①,∵抛物线的解析式为y=﹣x2+2x+3②,联立①②解得,1xy=-⎧⎨=⎩或45xy=⎧⎨=-⎩,∴P(4,﹣5),∴即点P的坐标为(﹣1,0)或(4,﹣5);(3)如图,①当点Q在x轴上方时,设AC与对称轴交点为Q',由(1)知,直线AC的解析式为y=﹣x+3,当x=1时,y=2,∴Q'坐标为(1,2),∵Q'D=AD=BD=2,∴∠Q'AB=∠Q'BA=45°,∴∠AQ'B=90°,∴点Q'为所求,②当点Q在x轴下方时,设点Q(1,m),过点A1'作A1'E⊥DQ于E,∴∠A1'EQ=∠QDA=90°,∴∠DAQ+∠AQD=90°,由旋转知,AQ=A1'Q,∠AQA1'=90°,∴∠AQD+∠A1'QE=90°,∴∠DAQ=∠A1'QE,∴△ADQ≌△QEA1'(AAS),∴AD =QE =2,DQ =A 1'E =﹣m , ∴点A 1'的坐标为(﹣m +1,m ﹣2), 代入y =﹣x 2+2x +3中, 解得,m =﹣3或m =2(舍), ∴Q 的坐标为(1,﹣3),∴点Q 的坐标为(1,2)和(1,﹣3).【点睛】本题考查的是二次函数的综合题,涉及解析式的求解,与三角形面积有关的问题,三角形“k ”字型全等,解题的关键是利用数形结合的思想,设点坐标并结合几何图形的性质列式求解.2.在平面直角坐标系中,O 为坐标原点,抛物线L :y =ax 2﹣4ax (a >0)与x 轴正半轴交于点A .抛物线L 的顶点为M ,对称轴与x 轴交于点D . (1)求抛物线L 的对称轴.(2)抛物线L :y =ax 2﹣4ax 关于x 轴对称的抛物线记为L ',抛物线L '的顶点为M ',若以O 、M 、A 、M '为顶点的四边形是正方形,求L '的表达式.(3)在(2)的条件下,点P 在抛物线L 上,且位于第四象限,点Q 在抛物线L '上,是否存在点P 、点Q 使得以O 、D 、P 、Q 为顶点的四边形是平行四边形,若存在,求出点P 坐标,若不存在,请说明理由.【答案】(1)2x =;(2)2122y x x =-+ ;(3)存在,P 点的坐标为(33,3或()33,3--或()13,3-或()13,3+-或31,2⎛⎫- ⎪⎝⎭【解析】 【分析】(1)根据抛物线的对称轴公式计算即可.(2)利用正方形的性质求出点M ,M ′的坐标即可解决问题. (3)分OD 是平行四边形的边或对角线两种情形求解即可. 【详解】解:(1)∵抛物线L :y =ax 2﹣4ax (a >0), ∴抛物线的对称轴x =﹣42aa-=2. (2)如图1中,对于抛物线y =ax 2﹣4ax ,令y =0,得到ax 2﹣4ax =0, 解得x =0或4, ∴A (4,0),∵四边形OMAM ′是正方形, ∴OD =DA =DM =DM ′=2, ∴M ((2,﹣2),M ′(2,2) 把M (2,﹣2)代入y =ax 2﹣4ax , 可得﹣2=4a ﹣8a , ∴a =12, ∴抛物线L ′的解析式为y =﹣12(x ﹣2)2+2=﹣12x 2+2x . (3)如图3中,由题意OD =2.当OD 为平行四边形的边时,PQ =OD =2,设P (m ,12m 2﹣2m ),则Q [m ﹣2,﹣12(m ﹣2)2+2(m ﹣2)]或[m +2,﹣12(m +2)2+2(m +2)], ∵PQ ∥OD , ∴12m 2﹣2m =﹣12(m ﹣2)2+2(m ﹣2)或12m 2﹣2m =﹣12(m +2)2+2(m +2), 解得m =33,∴P 33或(333或(133和33, 当OD 是平行四边形的对角线时,点P 的横坐标为1,此时P (1,﹣32), 综上所述,满足条件的点P 的坐标为33或(333或(133)和33)或(1,﹣32). 【点睛】本题属于二次函数综合题,考查了二次函数的性质,正方形的性质,平行四边形的判定和性质等知识,解题的关键是理解题意,学会利用参数构建方程解决问题,学会用分类讨论的思想思考问题,属于中考压轴题学会利用参数构建方程解决问题,学会用分类讨论的思想思考问题,属于中考压轴题3.如图,抛物线()250y ax bx a =+-≠经过x 轴上的点1,0A 和点B 及y 轴上的点C ,经过B C 、两点的直线为y x n =+.(1)求抛物线的解析式.(2)点P 从A 出发,在线段AB 上以每秒1个单位的速度向B 运动,同时点E 从B 出发,在线段BC 上以每秒2个单位的速度向C 运动.当其中一个点到达终点时,另一点也停止运动.设运动时间为t 秒,求t 为何值时,PBE △的面积最大并求出最大值. (3)过点A 作AM BC ⊥于点M ,过抛物线上一动点N (不与点B C 、重合)作直线AM 的平行线交直线BC 于点Q .若点A M N Q 、、、为顶点的四边形是平行四边形,求点N 的横坐标.【答案】(1)265y x x =-+- (2)2t =;2(3)5412或4或5412【解析】 【分析】(1)先确定A 、B 、C 三点的坐标,然后用待定系数法解答即可;(2)先求出AB 、BC 的长并说明△BOC 是等腰直角三角形,再求出点P 到BC 的高d 为()24542d BP sin t =⋅︒=-,则12PBESBE d =⨯⨯)()122244222t t t =⨯⨯-=-,再根据二次函数的性质即可确定最大值;(3)先求出2454222AM AB sin =⋅︒=⨯=N 作直线AM 的平行线交直线BC 于点,Q 则,再说明四边形AMNQ 是平行四边形,得到22NQ AM ==;再过点N 作NH x ⊥轴,交x 轴于点,G 交BC 于点,H 结合题意说明NQH 为等腰直角三角形,求得22884NH NQ HQ =+=+=;设()2,65N m m m -+-,则(),0G m ,(),5H m m -,最后分点N 在x 轴上方时、点N 在x 轴下方且5m >时和1m <三种情况解答即可.【详解】解:()1因为直线y x n =+经过B C 、两点,且点B 在x 轴上,点C 在y 轴上, ∵()(),,00,B n C n -∴抛物线25y ax bx =+-经过点1,0A ,点(),0B n -,点()0,C n ,∴250505a b an bn n +-=⎧⎪--=⎨⎪-=⎩,解得51,6n a b =-⎧⎪=-⎨⎪=⎩所以抛物线的解析式为265y x x =-+-.()2∵()()()1,05,0,0,,5,A B C -∴4,AB BC BOC ==为等腰直角三角形, ∴45,ABC ∠=由题意得4,2,02BP t BE t t =-=<≤点P 到BE的距离()4542d BP sin t =⋅︒=- 所以12PBESBE d =⨯⨯)()1244222t t t t =⨯⨯-=-; ∵二次函数()()42f t t =-的函数图象开口向下,零点为0和4, ∴0422t +==时, ∴()()()22422max f t f ==⨯⨯-=即2t =时,PBE △的面积最大,且最大值为()3由题意得454AM AB sin =⋅︒== 过点N 作直线AM 的平行线交直线BC 于点,Q 则,NQ BC ⊥ ∵点,A M N Q 、、为顶点的四边形是平行四边形,∴NQ AM ==过点N 作NH x ⊥轴,交x 轴于点,G 交BC 于点,H ∵:5BC l y x =-,∴NQH 为等腰直角三角形,∴22884,NH NQ HQ =+=+=设()2,65N m m m -+-, 则(),0G m ,(),5H m m -,①点N 在x 轴上方时,此时()()2655,NH m m m =-+---∴()()26554m m m -+---=,即()()140,m m --=解得1m =(舍,因为此时点N 与点A 重合)或4m =;②点N 在x 轴下方且5m >时,此时()()2565,NH m m m =---+- ∴()()25654m m m ---+-=,即2540,m m --=解得54152m -=<(舍)或5412m +=③点N 在x 轴下方且1m <时,此时()()2565,NH m m m =---+- ∴()()25654m m m ---+-=,即2540,m m --=解得5412m -=或5412m +=(舍)综上所述,5414,2m m +==,5412m -=符合题意, 即若点,A M N Q 、、为顶点的四边形是平行四边形, 点N 的横坐标为541-或4或541+.【点睛】本题主要考查了二次函数的性质、平行四边形的判定与性质,掌握二次函数的性质以及分类讨论思想是解答本题的关键4.如图1,抛物线2:C y x =经过变换可得到抛物线()1111:C y a x x b =-,1C 与x 轴的正半轴交于点1A ,且其对称轴分别交抛物线C 、1C 于点1B 、1D ,此时四边形111D OB A 恰为正方形;按上述类似方法,如图2,抛物线()1111:C y a x x b =-经过变换可得到抛物线()2222:C y a x x b =-,2C 与x 轴的正半轴交于点2A ,且对称轴分别交抛物线1C 、2C 于点2B 、2D ,此时四边形222OB A D 也恰为正方形;按上述类似方法,如图3,可得到抛物线()3333:C y a x x b =-与正方形333OB A D ,请探究以下问题: (1)填空:1a = ,1b = ; (2)求出2C 与3C 的解析式;(3)按上述类似方法,可得到抛物线():n n n n C y a x x b =-与正方形n n n OB A D (1n ≥). ①请用含n 的代数式直接表示出n C 的解析式;②当x 取任意不为0的实数时,试比较2018y 与2019y 的函数值的大小关系,并说明理由.【答案】(1)11a =,12b =;(2)22132y x x =-,23126y x x =-;(3)①()2212123n n y x x n -=-≥⨯,②20182019y y >. 【解析】 【分析】(1)求与x 轴交点A 1坐标,根据正方形对角线性质表示出B 1的坐标,代入对应的解析式即可求出对应的b 1的值,写出D 1的坐标,代入y 1的解析式中可求得a 1的值; (2)求与x 轴交点A 2坐标,根据正方形对角线性质表示出B 2的坐标,代入对应的解析式即可求出对应的b 2的值,写出D 2的坐标,代入y 2的解析式中可求得a 2的值,写出抛物线C 2的解析式;再利用相同的方法求抛物线C 3的解析式;(3)①根据图形变换后二次项系数不变得出a n =a 1=1,由B 1坐标(1,1)、B 2坐标(3,3)、B 3坐标(7,7)得B n 坐标(2n -1,2n -1),则b n =2(2n -1)=2n +1-2(n ≥1),写出抛物线C n 解析式.②根据规律得到抛物线C 2015和抛物线C 2016的解析式,用求差法比较出y 2015与y 2016的函数值的大小. 【详解】解:(1)y 1=0时,a 1x (x -b 1)=0, x 1=0,x 2=b 1, ∴A 1(b 1,0),由正方形OB 1A 1D 1得:OA 1=B 1D 1=b 1, ∴B 1(12b ,12b ),D 1(12b ,12b-), ∵B 1在抛物线c 上,则12b =(12b )2, 解得:b 1=0(不符合题意),b 1=2, ∴D 1(1,-1),把D 1(1,-1)代入y 1=a 1x (x -b 1)中得:-1=-a 1, ∴a 1=1, 故答案为1,2;(2)当20y =时,有()220a x x b -=, 解得2x b =或0x =,()22,0A b ∴. 由正方形222OB A D ,得2222B D OA b ==,222,22b b B ⎛⎫∴ ⎪⎝⎭,222,22bb D ⎛⎫- ⎪⎝⎭. 2B 在抛物线1C 上,2222222b b b ⎛⎫∴=- ⎪⎝⎭. 解得24b =或20b =(不合舍去),()22,2D ∴-2D 在抛物线2C 上,()22224a ∴-=-.解得212a =. 2C ∴的解析式是()2142y x x =-,即22122y x x =-. 同理,当30y =时,有()330a x x b -=, 解得3x b =,或0x =.()33,0A b ∴.由正方形333OB A D ,得3333B D OA b ==,333,22b b B ⎛⎫∴ ⎪⎝⎭,333,22b b D ⎛⎫- ⎪⎝⎭. 3B 在抛物线2C 上,2333122222b b b ⎛⎫∴=-⋅ ⎪⎝⎭. 解得312b =或30b =(不合舍去), ()36,6D ∴-3D 在抛物线3C 上,()366612a ∴-=-.解得316a =. 3C ∴的解析式是()31126y x x =-,即23126y x x =-. (3)解:①n C 的解析式是()2212123n n y x x n -=-≥⨯. ②由①可得2201820161223y x x =-⨯,2201920171223y x x =-⨯. 当0x ≠时,220182019201620171110233y y x >⎛⎫-=- ⎪⎝⎭, 20182019y y ∴>.【点睛】本题是二次函数与方程、正方形的综合应用,将函数知识与方程、正方形有机地结合在一起.这类试题一般难度较大.解这类问题关键是善于将函数问题转化为方程问题,善于利用正方形的有关性质、定理和二次函数的知识,并注意挖掘题目中的一些隐含条件.就此题而言:①求出抛物线与x 轴交点坐标⇔把y =0代入计算,把函数问题转化为方程问题;②利用正方形对角线相等且垂直平分表示出对应B 1、B 2、B 3、B n 的坐标;③根据规律之间得到解析式是关键.5.二次函数22(0)63m m y x x m m =-+>的图象交y 轴于点A ,顶点为P ,直线PA 与x 轴交于点B .(1)当m =1时,求顶点P 的坐标;(2)若点Q (a ,b )在二次函数22(0)63m m y x x m m =-+>的图象上,且0b m ->,试求a 的取值范围;(3)在第一象限内,以AB 为边作正方形ABCD .①求点D 的坐标(用含m 的代数式表示);②若该二次函数的图象与正方形ABCD 的边CD 有公共点,请直接写出符合条件的整数m 的值.【答案】(1)P (2,13);(2)a 的取值范围为:a <0或a >4;(3)①D (m ,m +3); ②2,3,4. 【解析】【分析】(1)把m =1代入二次函数22(0)63m m y x x m m =-+>解析式中,进而求顶点P 的坐标即可;(2)把点Q (a ,b )代入二次函数22(0)63m m y x x m m =-+>解析式中,根据0b m ->得到关于a 的一元二次不等式即一元一次不等式组,解出a 的取值范围即可; (3)①过点D 作DE ⊥x 轴于点E ,过点A 作AF ⊥DE 于点F ,求出二次函数与y 轴的交点A 的坐标,得到OA 的长,再根据待定系数法求出直线AP 的解析式,进而求出与x 轴的交点B 的坐标,得到OB 的长;通过证明△ADF ≌△ABO ,得到AF=OA=m ,DF=OB=3,DE=DF+EF= DF+OA=m+3,求出点D 的坐标;②因为二次函数的图象与正方形ABCD 的边CD 有公共点,由①同理可得:C (m+3,3),分当x 等于点D 的横坐标时与当x 等于点C 的横坐标两种情况,进行讨论m 可能取的整数值即可.【详解】解:(1)当m =1时,二次函数为212163y x x =-+, ∴顶点P 的坐标为(2,13); (2)∵点Q (a ,b )在二次函数22(0)63m m y x x m m =-+>的图象上, ∴2263m m b a a m =-+,即:2263m m b m a a -=- ∵0b m ->,∴2263m m a a ->0, ∵m >0, ∴2263a a ->0, 解得:a <0或a >4, ∴a 的取值范围为:a <0或a >4;(3)①如下图,过点D 作DE ⊥x 轴于点E ,过点A 作AF ⊥DE 于点F ,∵二次函数的解析式为2263m m y x x m =-+, ∴顶点P (2,3m ), 当x=0时,y=m ,∴点A (0,m ),∴OA=m ;设直线AP 的解析式为y=kx+b(k≠0),把点A (0,m ),点P (2,3m )代入,得: 23m b m k b =⎧⎪⎨=+⎪⎩, 解得:3m k b m⎧=-⎪⎨⎪=⎩,∴直线AP 的解析式为y=3m -x+m , 当y=0时,x=3,∴点B (3,0);∴OB=3;∵四边形ABCD 是正方形,∴AD=AB ,∠DAF+∠FAB=90°,且∠OAB+∠FAB =90°,∴∠DAF=∠OAB ,在△ADF 和△ABO 中,DAF OAB AFD AOB AD AB ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△ADF ≌△ABO (AAS ),∴AF=OA=m ,DF=OB=3,DE=DF+EF= DF+OA=m+3,∴点D 的坐标为:(m ,m+3);②由①同理可得:C (m+3,3),∵二次函数的图象与正方形ABCD 的边CD 有公共点,∴当x =m 时,3y m ≤+,可得322363m m m m -+≤+,化简得:32418m m -≤. ∵0m >,∴2184m m m -≤,∴218(2)4m m--≤, 显然:m =1,2,3,4是上述不等式的解,当5m ≥时,2(2)45m --≥,18 3.6m ≤,此时,218(2)4m m-->, ∴符合条件的正整数m =1,2,3,4; 当x = m +3时,y ≥3,可得2(3)2(3)363m m m m m ++-+≥, ∵0m >,∴21823m m m ++≥,即218(1)2m m++≥, 显然:m =1不是上述不等式的解,当2m ≥时,2(1)211m ++≥,189m ≤,此时,218(1)2m m++>恒成立, ∴符合条件的正整数m =2,3,4;综上:符合条件的整数m 的值为2,3,4.【点睛】本题考查二次函数与几何问题的综合运用,熟练掌握二次函数的图象和性质、一次函数的图象和性质、正方形的性质是解题的关键.6.已知抛物线2(0)y ax bx c a =++≠过点(0,2)A -.(1)若点(2,0)-也在该抛物线上,请用含a 的关系式表示b ;(2)若该抛物线上任意不同两点()11,M x y 、()22,N x y 都满足:当120x x <<时,()()12120x x y y --<;当120x x <<时,()()12120x x y y -->;若以原点O 为圆心,OA 为半径的圆与抛物线的另两个交点为B 、C (点B 在点C 左侧),且ABC ∆有一个内角为60,求抛物线的解析式;(3)在(2)的条件下,若点P 与点O 关于点A 对称,且O 、M 、N 三点共线,求证:PA 平分MPN ∠.【答案】(1)21b a =-;(2)22y x =-;(3)见解析.【解析】【分析】(1)把点()0,2-、()2,0-代入抛物线解析式,然后整理函数式即可得到答案.(2)根据二次函数的性质可得出抛物线的对称轴为y 轴、开口向上,进而可得出0b =,由抛物线的对称性可得出ABC ∆为等腰三角形,结合其有一个60︒的内角可得出ABC ∆为等边三角形,设线段BC 与y 轴交于点D ,根据等边三角形的性质可得出点C 的坐标,再利用待定系数法可求出a 值,此题得解;(3)由(1)的结论可得出点M 的坐标为1(x ,212)x -+、点N 的坐标为2(x ,222)x -+,由O 、M 、N 三点共线可得出212x x =-,进而可得出点N 及点'N 的坐标,由点A 、M 的坐标利用待定系数法可求出直线AM 的解析式,利用一次函数图象上点的坐标特征可得出点'N 在直线PM 上,进而即可证出PA 平分MPN ∠.【详解】解:(1)把点()0,2-、()2,0-分别代入,得2420c a b c =-⎧⎨-+=⎩. 所以21b a =-.(2),如图1,当120x x <<时,()()12120x x y y --<,120x x ∴-<,120y y ->,∴当0x <时,y 随x 的增大而减小;同理:当0x >时,y 随x 的增大而增大,∴抛物线的对称轴为y 轴,开口向上,0b ∴=.OA 为半径的圆与拋物线的另两个交点为B 、C ,ABC ∴∆为等腰三角形,又ABC ∆有一个内角为60︒,ABC ∴∆为等边三角形.设线段BC 与y 轴交于点D ,则BD CD =,且30OCD ∠=︒,又2OB OC OA ===,·303CD OC cos ∴=︒=,·301OD OC sin =︒=. 不妨设点C 在y 轴右侧,则点C 的坐标为31).点C 在抛物线上,且2c =-,0b =,321a ∴-=,1a ∴=,∴抛物线的解析式为22y x =-.(3)证明:由(1)可知,点M 的坐标为1(x ,212)x -,点N 的坐标为2(x ,222)x -.如图2,直线OM 的解析式为()110y k x k =≠.O 、M 、N 三点共线,10x ∴≠,20x ≠,且22121222x x x x --=, 121222x x x x ∴-=-, ()1212122x x x x x x -∴-=-,122x x ∴=-,即212x x =-, ∴点N 的坐标为12(x -,2142)x -. 设点N 关于y 轴的对称点为点'N ,则点'N 的坐标为12(x ,2142)x -. 点P 是点O 关于点A 的对称点,24OP OA ∴==,∴点P 的坐标为()0,4-.设直线PM 的解析式为24y k x =-,点M 的坐标为1(x ,212)x -,212124x k x ∴-=-,21212x k x +∴=, ∴直线PM 的解析式为21124x y x x +=-. ()222111221111224224·42x x x x x x x +-+-==-,∴点'N在直线PM上,PA∴平分MPN∠.【点睛】本题考查了待定系数法求一次(二次)函数解析式、二次函数的性质、等边三角形的性质以及一次(二次)函数图象上点的坐标特征,解题的关键是:(1)利用二次函数图象上点的坐标特征求出a、b满足的关系式;(2)①利用等边三角形的性质找出点C的坐标;②利用一次函数图象上点的坐标特征找出点'N在直线PM上.7.如图,顶点为M的抛物线y=ax2+bx+3与x轴交于A(﹣1,0),B两点,与y轴交于点C,过点C作CD⊥y轴交抛物线于另一点D,作DE⊥x轴,垂足为点E,双曲线y=6x(x>0)经过点D,连接MD,BD.(1)求抛物线的表达式;(2)点N,F分别是x轴,y轴上的两点,当以M,D,N,F为顶点的四边形周长最小时,求出点N,F的坐标;(3)动点P从点O出发,以每秒1个单位长度的速度沿OC方向运动,运动时间为t秒,当t为何值时,∠BPD的度数最大?【答案】(1)y=﹣x2+2x+3;(2)N(57,0),F(0,53);(3)t=9﹣15【解析】【分析】(1)由已知求出D点坐标,将点A(-1,0)和D(2,3)代入y=ax2+bx+3即可;(2)作M关于y轴的对称点M',作D关于x轴的对称点D',连接M'D'与x轴、y轴分别交于点N、F,则以M,D,N,F为顶点的四边形周长最小即为M'D'+MD的长;(3)设P(0,t),作△PBD的外接圆N,当⊙N与y轴相切时,∠BPD的度数最大;【详解】解;(1)C(0,3)∵CD⊥y,∴D点纵坐标是3.∵D在y=6x上,∴D(2,3),将点A(﹣1,0)和D(2,3)代入y=ax2+bx+3,∴a=﹣1,b=2,∴y=﹣x2+2x+3;(2)M(1,4),B(3,0),作M关于y轴的对称点M',作D关于x轴的对称点D',连接M'D'与x轴、y轴分别交于点N、F,则以M,D,N,F为顶点的四边形周长最小即为M'D'+MD的长;∴M'(﹣1,4),D'(2,﹣3),∴M'D'直线的解析式为y=﹣73x+53,∴N(57,0),F(0,53);(3)设P(0,t).∵△PBO和△CDP都是直角三角形,tan∠CDP=32t,tan∠PBO=3t,令y =tan ∠BPD =3233123t t t t -+--, ∴yt 2+t ﹣3yt +6y ﹣9=0,△=﹣15y 2+30y +1=0时,y =1515-+-舍)或y =1515+, ∴t =32﹣12×1y ,∴t =9﹣∴P (0,9﹣.【点睛】本题考查二次函数的图象及性质;熟练掌握二次函数的图象及性质,利用轴对称求最短距离,学会利用辅助圆解决问题,属于中考压轴题.8.定义:对于已知的两个函数,任取自变量x 的一个值,当0x ≥时,它们对应的函数值相等;当0x <时,它们对应的函数值互为相反数,我们称这样的两个函数互为相关函数.例如:正比例函数y x =,它的相关函数为(0)(0)x x y x x ≥⎧=⎨-<⎩. (1)已知点()5,10A -在一次函数5y ax =-的相关函数的图像上,求a 的值; (2)已知二次函数2142y x x =-+-. ①当点3,2B m ⎛⎫ ⎪⎝⎭在这个函数的相关函数的图像上时,求m 的值;②当33x -≤≤时,求函数2142y x x =-+-的相关函数的最大值和最小值. (3)在平面直角坐标系中,点M 、N 的坐标分别为1,12⎛⎫-⎪⎝⎭、9,12⎛⎫ ⎪⎝⎭,连结MN .直接写出线段MN 与二次函数24y x x n =-++的相关函数的图像有两个公共点时n 的取值范围.【答案】(1)1;(2)①22- ;②max 432y =,min 12y =-;(3)31n -<≤-,514n <≤【解析】【分析】(1)先求出5y ax =-的相关函数,然后代入求解,即可得到答案;(2)先求出二次函数的相关函数,①分为m <0和m ≥0两种情况将点B 的坐标代入对应的关系式求解即可;②当-3≤x <0时,y=x 2-4x+12,然后可 此时的最大值和最小值,当0≤x≤3时,函数y=-x 2+4x-12,求得此时的最大值和最小值,从而可得到当-3≤x≤3时的最大值和最小值; (3)首先确定出二次函数y=-x 2+4x+n 的相关函数与线段MN 恰好有1个交点、2个交点、3个交点时n 的值,然后结合函数图象可确定出n 的取值范围.【详解】解:(1)根据题意,一次函数5y ax =-的相关函数为5,(0)5,(0)ax x y ax x -≥⎧=⎨-+<⎩, ∴把点()5,10A -代入5y ax =-+,则(5)510a -⨯-+=,∴1a =;(2)根据题意,二次函数2142y x x =-+-的相关函数为2214,(0)214,(0)2x x x y x x x ⎧-+-≥⎪⎪=⎨⎪-+<⎪⎩, ①当m <0时,将B (m ,32)代入y=x 2-4x+12得m 2-4m+1322=, 解得:m=2当m≥0时,将B (m ,32)代入y=-x 2+4x-12得:-m 2+4m-12=32, 解得:或m=2.综上所述:m=2-或m=2+或m=2-②当-3≤x <0时,y=x 2-4x+12,抛物线的对称轴为x=2,此时y 随x 的增大而减小, ∴当3x =-时,有最大值,即2143(3)4(3)22y =--⨯-+=, ∴此时y 的最大值为432. 当0≤x≤3时,函数y=-x 2+4x 12-,抛物线的对称轴为x=2, 当x=0有最小值,最小值为12-,当x=2时,有最大值,最大值y=72.综上所述,当-3≤x≤3时,函数y=-x2+4x12-的相关函数的最大值为432,最小值为12-;(3)如图1所示:线段MN与二次函数y=-x2+4x+n的相关函数的图象恰有1个公共点.∴当x=2时,y=1,即-4+8+n=1,解得n=-3.如图2所示:线段MN与二次函数y=-x2+4x+n的相关函数的图象恰有3个公共点.∵抛物线y=x2-4x-n与y轴交点纵坐标为1,∴-n=1,解得:n=-1.∴当-3<n≤-1时,线段MN与二次函数y=-x2+4x+n的相关函数的图象恰有2个公共点.如图3所示:线段MN与二次函数y=-x2+4x+n的相关函数的图象恰有3个公共点.∵抛物线y=-x2+4x+n经过点(0,1),∴n=1.如图4所示:线段MN与二次函数y=-x2+4x+n的相关函数的图象恰有2个公共点.∵抛物线y=x2-4x-n经过点M(12,1),∴14+2-n=1,解得:n=54.∴1<n≤54时,线段MN与二次函数y=-x2+4x+n的相关函数的图象恰有2个公共点.综上所述,n的取值范围是-3<n≤-1或1<n≤54.【点睛】本题主要考查的是二次函数的综合应用,解答本题主要应用了二次函数的图象和性质、函数图象上点的坐标与函数解析式的关系,求得二次函数y=-x2+4x+n的相关函数与线段MN 恰好有1个交点、2个交点、3个交点时n的值是解题的关键.9.在平面直角坐标系中,抛物线y=x2+(k﹣1)x﹣k与直线y=kx+1交于A,B两点,点A 在点B的左侧.(1)如图1,当k=1时,直接写出A,B两点的坐标;(2)在(1)的条件下,点P为抛物线上的一个动点,且在直线AB下方,试求出△ABP面积的最大值及此时点P的坐标;(3)如图2,抛物线y=x2+(k﹣1)x﹣k(k>0)与x轴交于点C、D两点(点C在点D的左侧),在直线y=kx+1上是否存在唯一一点Q,使得∠OQC=90°?若存在,请求出此时k 的值;若不存在,请说明理由.【答案】(1)A(-1,0) ,B(2,3)(2)△ABP 最大面积s=1927322288⨯⨯=; P (12,﹣34) (3)存在;k=25 【解析】【分析】 (1) 当k=1时,抛物线解析式为y=x 2﹣1,直线解析式为y=x+1,然后解方程组211y x y x ⎧=⎨=+⎩﹣即可; (2) 设P (x ,x 2﹣1).过点P 作PF ∥y 轴,交直线AB 于点F ,则F (x ,x+1),所以利用S △ABP =S △PFA +S △PFB ,,用含x 的代数式表示为S △ABP=﹣x 2+x+2,配方或用公式确定顶点坐标即可.(3) 设直线AB :y=kx+1与x 轴、y 轴分别交于点E 、F ,用k 分别表示点E 的坐标,点F 的坐标,以及点C 的坐标,然后在Rt △EOF 中,由勾股定理表示出EF 的长,假设存在唯一一点Q ,使得∠OQC=90°,则以OC 为直径的圆与直线AB 相切于点Q ,设点N 为OC 中点,连接NQ ,根据条件证明△EQN ∽△EOF ,然后根据性质对应边成比例,可得关于k 的方程,解方程即可.【详解】解:(1)当k=1时,抛物线解析式为y=x 2﹣1,直线解析式为y=x+1.联立两个解析式,得:x 2﹣1=x+1,解得:x=﹣1或x=2,当x=﹣1时,y=x+1=0;当x=2时,y=x+1=3,∴A (﹣1,0),B (2,3).(2)设P (x ,x 2﹣1).如答图2所示,过点P 作PF ∥y 轴,交直线AB 于点F ,则F (x ,x+1).∴PF=y F ﹣y P =(x+1)﹣(x 2﹣1)=﹣x 2+x+2.S △ABP =S △PFA +S △PFB =PF (xF ﹣xA )+PF (xB ﹣xF )=PF (xB ﹣xA )=PF∴S △ABP=(﹣x 2+x+2)=﹣(x ﹣12)2+278 当x=12时,yP=x 2﹣1=﹣34.∴△ABP 面积最大值为,此时点P 坐标为(12,﹣34). (3)设直线AB :y=kx+1与x 轴、y 轴分别交于点E 、F ,则E (﹣1k ,0),F (0,1),OE=1k,OF=1. 在Rt △EOF 中,由勾股定理得:EF=22111=k k +⎛⎫+ ⎪⎝⎭.令y=x 2+(k ﹣1)x ﹣k=0,即(x+k )(x ﹣1)=0,解得:x=﹣k 或x=1.∴C (﹣k ,0),OC=k .假设存在唯一一点Q ,使得∠OQC=90°,如答图3所示,则以OC 为直径的圆与直线AB 相切于点Q ,根据圆周角定理,此时∠OQC=90°. 设点N 为OC 中点,连接NQ ,则NQ ⊥EF ,NQ=CN=ON=2k . ∴EN=OE ﹣ON=1k ﹣2k . ∵∠NEQ=∠FEO ,∠EQN=∠EOF=90°,∴△EQN ∽△EOF ,∴NQ EN OF EF =,即:1221k k k k-=, 解得:25, ∵k >0,∴25. ∴存在唯一一点Q ,使得∠OQC=90°,此时25. 考点:1.二次函数的性质及其应用;2.圆的性质;3.相似三角形的判定与性质.10.定义:在平面直角坐标系中,O 为坐标原点,设点P 的坐标为(x ,y ),当x <0时,点P 的变换点P′的坐标为(﹣x ,y );当x≥0时,点P 的变换点P′的坐标为(﹣y ,x ).(1)若点A (2,1)的变换点A′在反比例函数y=k x的图象上,则k= ; (2)若点B (2,4)和它的变换点B'在直线y=ax+b 上,则这条直线对应的函数关系式为 ,∠BOB′的大小是 度.(3)点P 在抛物线y=x 2﹣2x ﹣3的图象上,以线段PP′为对角线作正方形PMP'N ,设点P 的横坐标为m ,当正方形PMP′N 的对角线垂直于x 轴时,求m 的取值范围.(4)抛物线y=(x ﹣2)2+n 与x 轴交于点C ,D (点C 在点D 的左侧),顶点为E ,点P 在该抛物线上.若点P 的变换点P′在抛物线的对称轴上,且四边形ECP′D 是菱形,求n 的值.【答案】(1) -2;(2) y=13x+103,90;(3) m <0,m=12+或m=32;(4) n=﹣8,n=﹣2,n=﹣3.【解析】【分析】(1)先求出A 的变换点A ′,然后把A ′代入反比例函数即可得到结论;(2)确定点B ′的坐标,把问题转化为方程组解决;(3)分三种情形讨论:①当m <0时;②当m ≥0,PP '⊥x 轴时;③当m ≥0,MN ⊥x 轴时.(4)利用菱形的性质,得到点E 与点P '关于x 轴对称,从而得到点P '的坐标为(2,﹣n ).分两种情况讨论:①当点P 在y 轴左侧时,点P 的坐标为(﹣2,﹣n ),代入抛物线解析式,求解即可;②当点P 在y 轴右侧时,点P 的坐标为(﹣n ,﹣2).代入抛物线解析式,求解即可.【详解】(1)∵A (2,1)的变换点为A ′(-1,2),把A ′(-1,2)代入y =k x中,得到k =-2. 故答案为:-2.(2)点B (2,4)的变换点B ′(﹣4,2),把(2,4),(﹣4,2)代入y =ax +b 中. 得到:2442a b a b +=⎧⎨-+=⎩,解得:13103a b ⎧=⎪⎪⎨⎪=⎪⎩,∴11033y x =+. ∵OB 2=2224+=20,OB ′2=2224+=20,BB ′2=22(42)(24)--+-=40,∴OB 2+OB ′2=BB ′2,∴∠BOB ′=90°.故答案为:y =13x +103,90. (3)①当m <0时,点P 与点P '关于y 轴对称,此时MN 垂直于x 轴,所以m <0. ②当m ≥0,PP '⊥x 轴时,则点P '的坐标为(m ,m ),点P 的坐标为(m ,﹣m ). 将点P (m ,﹣m )代入y =x 2﹣2x ﹣3,得:﹣m =m 2﹣2m ﹣3.解得:121122m m ==(不合题意,舍去).所以m = ③当m ≥0,MN ⊥x 轴时,则PP '∥x 轴,点P 的坐标为(m ,m ).将点P (m ,m )代入y =x 2﹣2x ﹣3,得:m =m 2﹣2m ﹣3.解得:12m m ==所以32m +=.综上所述:m 的取值范围是m <0,m =12+或m =32. (4)∵四边形ECP 'D 是菱形,∴点E 与点P '关于x 轴对称.∵点E 的坐标为(2,n ),∴点P '的坐标为(2,﹣n ).①当点P 在y 轴左侧时,点P 的坐标为(﹣2,﹣n ).代入y =(x ﹣2)2+n ,得:﹣n =(﹣2﹣2)2+n ,解得:n =﹣8.②当点P 在y 轴右侧时,点P 的坐标为(﹣n ,﹣2).代入y =(x ﹣2)2+n ,得:﹣2=(﹣n ﹣2)2+n .解得:n 1=﹣2,n 2=﹣3.综上所述:n 的值是n =﹣8,n =﹣2,n =﹣3.【点睛】本题是二次函数综合题、一次函数的应用、待定系数法、变换点的定义等知识,解题的关键是理解题意,学会用分类讨论的射线思考问题,学会用方程的思想思考问题,属于中考压轴题.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
28.若二次函数3622+-=x x y 当X 取两个不同的值X1和X2时,函数值相等,则X1+X2=29.若抛物线22y x x a =++的顶点在x 轴的下方,则a 的取值范围是( )A.1a > B.1a < C.1a ≥ D.1a ≤30.抛物线y= (k 2-2)x 2+m-4kx 的对称轴是直线x=2,且它的最低点在直线y= -21+2上,求函数解析式。
31.已知二次函数图象与x 轴交点(2,0)(-1,0)与y 轴交点是(0,-1)求解析式及顶点坐标。
32.y= ax 2+bx+c 图象与x 轴交于A 、B 与y 轴交于C ,OA=2,OB=1 ,OC=1,求函数解析式32. ★★★★★抛物线562-+-=x x y 与x 轴交点为A ,B ,(A 在B 左侧)顶点为C.与Y 轴交于点D (1)求△ABC 的面积。
33(2)若在抛物线上有一点M ,使△ABM 的面积是△ABC 的面积的2倍。
求M 点坐标(得分点的把握)34(3)在该抛物线的对称轴上是否存在点Q ,使得△QAC 的周长最小?若存在,求出Q 点的坐标;若不存在,请说明理由.35(4)在抛物线上是否存在一点P ,使四边形PBAC 是等腰梯形,若存在,求出P 点的坐标;若不存在,请说明理由二次函数图象与系数关系+增减性 36.二次函数c bx ax y +-=2图象如下,则a,b,c 取值范围是37已知y=ax 2+bx+c 的图象如下, 则:a____0 b___0 c___0a+b+c____0,a-b+c__0。
2a+b____0 b 2-4ac___0 4a+2b+c 038.二次函数c bx ax y ++=2的图象如图所示. 有下列结论: ①240b ac -<; ②0ab >; ③0a b c -+=; ④40a b +=;⑤当2y =时,x 等于0.⑥02=++c bx ax 有两个不相等的实数根 ⑦22=++c bx ax 有两个不相等的实数根 ⑧0102=-++c bx ax 有两个不相等的实数根 ⑨42-=++c bx ax 有两个不相等的实数根 其中正确的是( )39.(天津市)已知二次函数c bx ax y ++=2的图象如图所示,下列结论:① 0>abc ;② c a b +<;③024>++c b a ;④ b c 32<;⑤ )(b am m b a +>+,(1≠m 的实数)其中正确的结论有( )。
A. 2个B. 3个C. 4个D. 5个Oxy0 2 3-x yC A yx O40.小明从右边的二次函数c bx ax y ++=2图象中,观察得出了下面的五条信息:①0a <,②0c =,③函数的最小值为3-,④当0x <时,0y >,⑤当1202x x <<<时,12y y >.你认为其中正确的个数为( )A.2 B.3 C.4 D.541.已知二次函数c bx ax y ++=2,其中a b c ,,满足0a b c ++=和930a b c -+=,则该二次函数图象的对称轴是直线 .42.直已知y=ax 2+bx+c 中a<0,b>0,c<0 ,△<0,函数的图象过 象限。
43.若),41(),,45(),,413(321y C y B y A --为二次函数245y x x =+-的图象上的三点,则1y ,2y ,3y 的大小关系是( )A .123y y y << B .213y y y <<C .312y y y<< D .132y y y<< 44.在同一平面直角坐标系中,一次函数y ax b =+和二次函数2y ax bx =+的图象可能为( )45.二次函数c bx ax y ++=2的图象如图所示,则直线y bx c =+的图象不经过( )A.第一象限 B.第二象限 C.第三象限D.第四象限46.抛物线y=ax 2+bx+c 的图象如图,OA=OC ,则( )(A ) ac+1=b (B ) ab+1=c (C )bc+1=a (D )以上都不是47.已知二次函数y=a 2x +bx+c,且a <0,a-b+c >0,则一定有( )A 24b ac - >0 B24b ac -=0 C24b ac -<0 D24b ac -≤048.若二次函数y=ax 2+bx+c 的顶点在第一象限,且经过点(0,1),(-1,0),则S=a+b+c 的变化范围是 ( )(A )0<S<2 (B) S>1 (C) 1<S<2 (D)-1<S<149.(10包头)已知二次函数2y ax bx c =++的图象与x 轴交于点(20)-,、1(0)x ,,且112x <<,与y 轴的正半轴的交点在(02),的下方.下列结论:①420a b c -+=;②0a b <<;③20a c +>;④210a b -+>.其中正确结论的个数是 个.50.(10 四川自贡)y=x 2+(1-a )x +1是关于x 的二次函数,当x 的取值范围是1≤x ≤3时,y 在x =1时取得最大值,则实数a 的取值范围是( )。
A .a=5 B .a ≥5 C .a =3 D .a ≥3二次函数与方程不等式51.y=ax 2+bx+c 中,a<0,抛物线与x 轴有两个交点A (2,0)B (-1,0),则ax 2+bx+c>0的解是____________; ax 2+bx+c<0的解是____________52.已知二次函数y=x 2+mx+m-5,求证①不论m 取何值时,抛物线总与x 轴有两个交点;②当m 取何值时,抛物线与x 轴两交点之间的距离最短。
53.如果抛物线y=21x 2-mx+5m 2与x 轴有交点,则m______54.(大连)右图是二次函数 y 1=ax 2+bx+c 和一次函数y 2=mx+n 的图像,•观察图像写出y 2≥y 1时,x 的取值范围_______.y O x y O x y O x y O xABCD55. (10山东潍坊)已知函数y 1=x 2与函数y 2=-12x +3的图象大致如图,若y 1<y 2,则自变量x 的取值范围是( ).A.-32<x <2 B .x >2或x <-32C .-2<x <32D . x <-2或x >3256. (10江苏 镇江)实数X,Y 满足0332=-++y x x 则X+Y 的最大值为 .57.(10山东日照)如图,是二次函数y=ax 2+bx+c 图象的一部分,其对称轴为直线x =1,若其与x 轴一交点为A (3,0),则由图象可知,不等式ax 2+bx+c <0的解集是 .形积专题1.58.(中考变式)如图,抛物线c bx x y ++-=2与x 轴交与A(1,0),B(-3,0)两点,顶点为D 。
交Y 轴于C (1)求该抛物线的解析式与△ABC 的面积。
59.(2)在抛物线第二象限图象上是否存在一点M ,使△MBC 是以∠BCM 为直角的直角三角形,若存在,求出点P 的坐标。
若没有,请说明理由60.(3)若E 为抛物线B 、C 两点间图象上的一个动点(不与A 、B 重合),过E 作EF 与X 轴垂直,交BC 于F ,设E 点横坐标为x.EF 的长度为L ,求L 关于X 的函数关系式?关写出X 的取值范围? 当E 点运动到什么位置时,线段EF 的值最大,并求此时E 点的坐标?61.(4)在(5)的情况下直线BC 与抛物线的对称轴交于点H 。
当E 点运动到什么位置时,以点E 、F 、H 、D 为顶点的四边形为平行四边形?62.(5)在(5)的情况下点E 运动到什么位置时,使三角形BCE 的面积最大?63.(6)若圆P 过点ABD 。
求圆心P 的坐标?64.(09武汉)如图,抛物线24y ax bx a =+-经过(10)A -,、(04)C ,两点,与x 轴交于另一点B .(1)求抛物线的解析式; (2)已知点(1)D m m +,在第一象限的抛物线上,求点D 关于直线BC 对称的点的坐标;65. 已知二次函数y=x 2-(m 2+8)x+2(m 2+6),设抛物线顶点为A ,与x 轴交于B 、C 两点,问是否存在实数m,使△ABC 为等腰直角三角形,如果存在求m;若不存在说明理由。
66.(08湛江)如图所示,已知抛物线21y x=-与x轴交于A、B两点,与y轴交于点C.求A、B、C三点的坐标.过A作AP∥CB交抛物线于点P,求四边形ACBP的面积.67.在x轴上方的抛物线上是否存在一点M,过M作MG⊥x轴点G,使以A、M、G三点为顶点的三角形与∆PCA相似.若存在,请求出M点的坐标;否则,请说明理由.二次函数极值问题68.二次函数2y ax bx c=++中,2b ac=,且0x=时4y=-,则()A.4y=-最大 B.4y=-最小 C.3y=-最大 D.3y=-最小69.已知二次函数22)3()1(-+-=xxy,当x=_________时,函数达到最小值。
70.(2008年潍坊市)若一次函数的图像过第一、三、四象限,则函数()A.最大值B..最大值图11CPByA o xC.最小值D.有最小值71.若二次函数2()y a x h k =-+的值恒为正值, 则 _____.A. 0,0a k <>B. 0,0a h >>C. 0,0a k >>D. 0,0a k <<72.函数92+-=x y 。
当-2<X<4时函数的最大值为73.若函数322-+=x x y ,当24-≤≤-x 函数值有最 值为 二次函数应用利润问题 74.(2007年贵阳市)某水果批发商销售每箱进价为40元的苹果,物价部门规定每箱售价不得高于55元,市场调查发现,若每箱以50元的价格调查,平均每天销售90箱,价格每提高1元,平均每天少销售3箱. (1)求平均每天销售量y (箱)与销售价x (元/箱)之间的函数关系式.(3分)(2)求该批发商平均每天的销售利润w (元)与销售价x (元/箱)之间的函数关系式.(3分) (3)当每箱苹果的销售价为多少元时,可以获得最大利润?最大利润是多少?(4分)75随着绿城南宁近几年城市建设的快速发展,对花木的需求量逐年提高。
某园林专业户计划投资种植花卉及树木,根据市场调查与预测,种植树木的利润1y 与投资量x 成正比例关系,如图12-①所示;种植花卉的利润2y 与投资量x 成二次函数关系,如图12-②所示(注:利润与投资量的 单位:万元)(1)分别求出利润1y 与2y 关于投资量x 的函数关系式; (2)如果这位专业户以8万元资金投入种植花卉和树木,他至少获得多少利润?他能获取的最大利润是多少?76.(09洛江)我区某工艺厂为迎接建国60周年,设计了一款成本为20元 ∕ 件的工艺品投放市场进行试销.经过调查,其中工艺品的销售单价x (元 ∕ 件)与每天销售量y (件)之间满足如图3-4-14所示关系. (1)请根据图象直接写出当销售单价定为30元和40元时相应的日销售量;(2)①试求出y 与x 之间的函数关系式;②若物价部门规定,该工艺品销售单价最高不能超过45元/件,那么销售单价定为多少时,工艺厂试销该工艺品每天获得的利润最大?最大利润是多少?(利润=销售总价-成本总价)。