平行四边形全章知识点总结 已整理好

合集下载

平行四边形全章知识点

平行四边形全章知识点

平行四边形全章知识点1.定义:平行四边形是一种四边形,其中两组对边是平行的。

2.性质:-对边平行性质:平行四边形的对边是平行的,根据这一性质,平行四边形也可以被定义为具有两组平行对边的四边形。

-对角线性质:平行四边形的对角线相互平分且相互等长。

-同底角性质:平行四边形的同底角相等。

-同顶角性质:平行四边形的同顶角相等。

-对边长度:平行四边形的对边长度相等。

-对角线长度:平行四边形的对角线长度相等。

-对边角:平行四边形的对边角相等。

-对角:平行四边形的对角互补,即两对角和为180度。

3.公式:-周长公式:平行四边形的周长可以通过将所有边的长度相加来计算:周长=边1长+边2长+边3长+边4长。

-面积公式:平行四边形的面积可以通过底边长度与高的乘积来计算:面积=底边长×高。

-对角线长度公式:平行四边形的对角线长度可以通过底边长度和高的关系来计算:对角线长度=√(底边长²+高²)。

4.判定方法:-边长判定:如果平行四边形的对边长度相等,则它们是平行四边形。

-角判定:如果平行四边形的相邻角或对顶角相等,则它们是平行四边形。

-对角线判定:如果平行四边形的对角线互相平分且相等,则它们是平行四边形。

5.具体类型:-矩形:具有相等对边和对角线的平行四边形。

-正方形:具有相等对边、对角线和四个直角的平行四边形。

-长方形:具有相等对边和对角线的平行四边形,但没有直角。

-菱形:具有相等对边和对角线的平行四边形,但没有直角。

-平行四边形:除了上述特殊情况外,其他包含两组平行对边的四边形都可以称为平行四边形。

平行四边形的应用广泛,包括几何学、物理学和工程学等领域。

在几何学中,平行四边形可以用于解决各种几何问题,如计算面积、周长和对角线长度等。

在物理学中,平行四边形的概念可以用于描述力的平衡条件。

在工程学中,平行四边形也被广泛用于设计和建构建筑物和桥梁等结构。

总之,平行四边形是具有两组对边平行的四边形。

(完整版)平行四边形基本知识点总结

(完整版)平行四边形基本知识点总结

(完整版)平行四边形基本知识点总结平行四边形基本知识点总结
平行四边形是一种特殊的四边形,它具有一些独特的性质和特点。

以下是平行四边形的基本知识点总结:
定义
平行四边形是指具有两组对边分别平行的四边形。

性质
1. 对边平行性质:平行四边形的两组对边分别平行。

2. 对角线性质:平行四边形的对角线互相平分,并且长度相等。

3. 内角和性质:平行四边形的内角的和为180度。

4. 外角性质:平行四边形的外角的和为360度。

5. 对边长度性质:平行四边形的对边长度相等。

6. 同底角性质:与平行四边形的一条边相邻,另一条边平行的两个内角相等。

7. 同旁内角性质:与平行四边形的两条边相邻,另一条边平行的两个内角互补。

判定方法
1. 对边平行判定:如果一个四边形中有两组对边分别平行,则它是一个平行四边形。

2. 对角线平分判定:如果一个四边形的对角线互相平分,并且长度相等,则它是一个平行四边形。

特殊类型
1. 矩形:具有四个内角都为90度的平行四边形。

2. 正方形:具有四个内角都为90度,且四条边长度相等的平
行四边形。

相关公式
1. 平行四边形的面积公式:面积 = 底边长度 ×高度。

2. 平行四边形的周长公式:周长= 2 ×(底边长度+ 侧边长度)。

以上是关于平行四边形的基本知识点总结。

通过了解这些性质
和定理,可以更好地理解和解决相关的数学问题。

平行四边形全章复习

平行四边形全章复习

A BC D O一、知识点讲解:1.平行四边形的性质(重点):ABCD 是平行四边形⇒⎪⎪⎪⎩⎪⎪⎪⎨⎧.54321)邻角互补()对角线互相平分;()两组对角分别相等;()两组对边分别相等;()两组对边分别平行;( 2.平行四边形的判定(难点): 是平行四边形)对角线互相平分()一组对边平行且相等()两组对角分别相等()两组对边分别相等()两组对边分别平行(ABCD 54321⎪⎪⎪⎭⎪⎪⎪⎬⎫.3. 矩形的性质:⇒⎪⎩⎪⎨⎧.3;2;1)对角线相等()四个角都是直角(有通性)具有平行四边形的所( 4矩形的判定:⎪⎭⎪⎬⎫+边形)对角线相等的平行四()三个角都是直角(一个直角)平行四边形(321⇒四边形ABCD 是矩形.5. 菱形的性质:⇒⎪⎩⎪⎨⎧.321角)对角线垂直且平分对()四个边都相等;(有通性;)具有平行四边形的所( 6. 菱形的判定:⎪⎭⎪⎬⎫+边形)对角线垂直的平行四()四个边都相等(一组邻边等)平行四边形(321⇒四边形四边形ABCD 是菱形.7.正方形的性质:⇒⎪⎩⎪⎨⎧.321分对角)对角线相等垂直且平(角都是直角;)四个边都相等,四个(有通性;)具有平行四边形的所( 8. 正方形的判定: ⎪⎭⎪⎬⎫++++一组邻边等矩形)(一个直角)菱形(一个直角一组邻边等)平行四边形(321⇒四边形ABCD 是正方形. 二.基础训练:1.边长为 a 的等边三角形面积=______2.(1)已知正方形的对角线长是,则它的边长是_____cm(2)已知正方形的边长是,则它的对角线长是_____cm3.在ABCD 中,若一条对角线平分一个内角,这个平行四边形是 形。

4.已知四边形两对角线:①互相垂直;②相等;③互相平分。

具备条件____可得平行四边形;具备条件_______可得矩形;具备条件___________ 可得是菱形;具备条件_____________可得正方形(填序号)5.下列说法中,不能判定四边形是矩形的是( ) A 对角线相等的平行四边形 B 对角线互相平分的四边形 C 四个角都相等的四边形 D 有一个角等于90°的平行四边形6.下列说法中错误的是( ) A 、对角线相等的菱形是正方形 B 、有一组邻边相等的矩形是正方形 C 、四条边都相等的四边形是正方形D 、有一个角为直角的菱形是正方形7.正方形具有而菱形不一定具有的性质是( )A 对角线互相平分B 内角和为360ºC 对角线相等D 对角线平分内角8.正方形具备而矩形不一定具备的性质是( ) A 四个角都是直角 B 对角线相等C 四条边相等D 对角线互相平分9.如图,在 ABCD 中,∠B=60°.AB=10,BC=8,则ABCD 的面积=___________10.如图,菱形ABCD 的对角线AC 、BD 相交于点O ,DH ⊥AB 于点H.(1).用两种方法表示菱形ABCD面积S=________________=_________________ (2)当AC=8.BD=6. 则AB=__________. DH=_____________三典型题型1.如图,在平行四边形ABCD 中,DF=BE.(1)判断线段AF. EC 的关系,并证明. (2)连AC. 若AC=AD=13. CD=10.且F 是CD 的中点 .则ABCD 的面积=___________四边形AECF 的面积=_______________2.已知:如图,在平行四边形ABCD中,点M,N在对角线AC上,且AM=CN.求证:(1)四边形BMDN是平行四边形. (2)当原四边形的对角线满足什么条件时?BMDN 是菱形.变式:写出图中的全等三角形,并证明.3.如图,在四边形ABCD 中,已知对角线AC 和BD 相交于点O ,AB=12. AO=OC=5. BD=26.∠BAC=90°.求AD.CD 和四边形ABCD 的面积4.如图,四边形ABCD 是平行四边形,AC,BD 相交于点O ,且∠1=∠2.判断四边形ABCD 的形状,并证明.5.如图.ABCD 的对角线AC 、BD 相交于点O ,△AOB是等边三角形,AB =4cm ,求ABCD 的面积.6.已知,△ABC 中,AD 是角平分线,DE ∥AC 交AB 于点E ,DF ∥AB 交AC 于F. (1)证明:四边形AEDF 是菱形. (2)当△ABC 满足___________时,四边形AEDF 是正方形 (3)当AB=AC=5, BC=6时,求菱形AEDF 的面积 7.如图,ABCD 的对角线AC 、BD 相交于点O ,且AB 5=,AC=8,BD=6,DH ⊥AB 于点H ,求DH 的长.8..矩形ABCD 的两条对角线AC 和BD 相交于点O ,DE ∥AC ,CE ∥BD ,DE 和CE 相交于点E ,(1)判断四边形DOCE 的形状,并证明.OE 平分∠DOC 。

平行四边形全章知识点总结

平行四边形全章知识点总结

平行四边形全章知识点总结平行四边形是初中数学中常见的一个概念,它具有多项重要的性质和特点。

本文将对平行四边形的定义、性质以及相关定理进行全面总结。

一、定义平行四边形是指具有两对对边相互平行的四边形。

其中,对边是指相对的两条边,平行是指两条直线在平面上不相交,且永远保持相同的距离。

二、性质1. 对角线性质:平行四边形的对角线互相平分,并且彼此相等。

2. 内角和性质:平行四边形的内角和为180度。

3. 对边性质:平行四边形的对边相等。

三、定理1. 平行四边形的基本性质定理:如果一个四边形的对边互相平行,那么它就是一个平行四边形。

2. 平行四边形的性质定理:一个四边形是平行四边形的充要条件是它的对边相等。

3. 平行四边形的对角线性质定理:如果一个四边形的对角线互相垂直,那么它就是一个平行四边形。

4. 平行四边形的角平分线性质定理:如果一个四边形的对角线互相平分,则它是一个平行四边形。

四、拓展1. 矩形:矩形是一种特殊的平行四边形,它的四个内角都是直角。

2. 正方形:正方形是一种特殊的矩形,它的四条边相等且都垂直。

3. 菱形:菱形是一种特殊的平行四边形,它的四个边都相等,对边互相垂直。

4. 平行四边形的面积计算公式:平行四边形的面积等于底边乘以高。

五、解题技巧1. 判断平行四边形的方法:观察图形中是否存在两对平行的边。

2. 判断平行四边形的性质:使用已知条件推导,例如通过对边相等或对角线垂直等特点判断。

3. 计算平行四边形的面积:根据所给的边长和高的信息,使用面积计算公式进行计算。

总结:平行四边形是一个重要的数学概念,掌握了平行四边形的定义、性质以及相关定理,能够更好地理解和解决与平行四边形相关的问题。

同时,通过解题技巧的运用,能够更加灵活地应用这些知识点。

在学习过程中,多进行练习和思考,不断提高对平行四边形的理解和运用能力。

平行四边形知识点归纳和题型归类

平行四边形知识点归纳和题型归类

平行四边形知识点归纳和题型归类平行四边形知识点归纳和题型归类要点梳理】要点一、平行四边形1.定义:有两组对边分别平行的四边形叫做平行四边形。

2.性质:(1)对边相等;(2)同位角相等;(3)相邻角互补;(4)是中心对称图形。

3.面积:S = 底 ×高。

4.判定:边:(1)有两组对边分别平行的四边形是平行四边形;(2)对边相等的四边形是平行四边形;(3)对角线互相平分的四边形是平行四边形。

角:(4)有一组对边平行,且同位角相等的四边形是平行四边形。

对角线:有一组对边相等,且互相平分的四边形是平行四边形。

要点诠释:平行线的性质:(1)平行线间的距离相等;(2)等底等高的平行四边形面积相等。

要点二、矩形1.定义:有四个角都是直角的平行四边形叫做矩形。

2.性质:(1)对边相等;(2)相邻角互补;(3)对角线相等;(4)是中心对称图形,也是轴对称图形。

3.面积:S = 长 ×宽。

4.判定:有四个角都是直角的平行四边形是矩形。

要点诠释:由矩形得直角三角形的性质:(1)直角三角形斜边上的中线等于斜边的一半;(2)直角三角形中,30度角所对应的直角边等于斜边的一半。

要点三、菱形1.定义:有四个边都相等的平行四边形叫做菱形。

2.性质:(1)对边相等;(2)相邻角互补;(3)对角线相等;(4)是中心对称图形,也是轴对称图形。

3.面积:S = 对角线之积的一半。

4.判定:有一组对边平行且相等的四边形是菱形。

要点四、正方形1.定义:四条边都相等,四个角都是直角的平行四边形叫做正方形。

2.性质:(1)对边相等;(2)相邻角互补;(3)对角线相等;(4)是中心对称图形,也是轴对称图形;(5)两条对角线把正方形分成四个全等的等腰直角三角形。

3.面积:S = 边长的平方,也可以用对角线的平方的一半求解。

4.判定:(1)有一组对边平行且相等的菱形是正方形;(2)有四个角都是直角的矩形是正方形;(3)对角线互相垂直平分且相等的四边形是正方形;(4)四条边都相等,四个角都是直角的四边形是正方形。

平行四边形的知识点整理

平行四边形的知识点整理

平行四边形的知识点整理
1. 平行四边形的定义:四边形的对边两两平行。

2. 平行四边形的性质:
(1)对边平行;
(2)对角线互相平分;
(3)相邻角互补;
(4)对角线交点是平行四边形的中心点,也是它的对称中心点。

3. 平行四边形的判定:
(1)方法一:对边平行。

(2)方法二:对边相等且夹角相等。

(3)方法三:对角线互相平分且相交于一点。

4. 平行四边形的面积公式:S = 底边×高。

5. 平行四边形的周长公式:C = 2 ×(底边+ 左右两边长)。

6. 平行四边形的应用:
(1)在建筑设计中,常常需要用到平行四边形的概念,比如房间或者墙面的四边形形状。

(2)在计算图形面积时,平行四边形也常常会出现,比如计算某个区域的瓷砖数量。

平行四边形全章知识点总结

平行四边形全章知识点总结

平行四边形全章知识点总结平行四边形是初中数学中非常重要的一个几何图形,它具有许多独特的性质和判定方法。

接下来,让我们一起系统地梳理一下平行四边形全章的知识点。

一、平行四边形的定义两组对边分别平行的四边形叫做平行四边形。

这是平行四边形最基本的定义,也是判定一个四边形是否为平行四边形的首要条件。

二、平行四边形的性质1、平行四边形的对边平行且相等这是平行四边形最显著的性质之一。

也就是说,如果一个四边形是平行四边形,那么它的两组对边不仅相互平行,而且长度相等。

2、平行四边形的对角相等平行四边形的两组对角分别相等。

例如,∠A =∠C,∠B =∠D。

3、平行四边形的对角线互相平分平行四边形的两条对角线相交于一点,并且这一点将两条对角线平分。

4、平行四边形是中心对称图形对称中心是两条对角线的交点。

将平行四边形绕着对角线的交点旋转 180 度后,能与原图重合。

三、平行四边形的判定1、两组对边分别平行的四边形是平行四边形这是根据定义进行判定的方法。

2、两组对边分别相等的四边形是平行四边形如果一个四边形的两组对边长度分别相等,那么它就是平行四边形。

3、一组对边平行且相等的四边形是平行四边形这是一种常见的判定方法,只要一组对边既平行又相等,就能判定该四边形为平行四边形。

4、两组对角分别相等的四边形是平行四边形当一个四边形的两组对角分别相等时,它就是平行四边形。

5、对角线互相平分的四边形是平行四边形如果一个四边形的两条对角线相互平分,那么它一定是平行四边形。

四、平行四边形的面积平行四边形的面积=底 ×高需要注意的是,底和高必须是对应的,也就是说底乘以其对应的高才能得到平行四边形的面积。

五、平行四边形的周长平行四边形的周长= 2×(相邻两边之和)六、平行四边形的拓展1、若一条直线过平行四边形对角线的交点,则这条直线平分平行四边形的面积。

2、平行四边形的相邻两边之和等于平行四边形周长的一半。

七、平行四边形在实际生活中的应用平行四边形在建筑设计、机械制造、图案设计等领域都有广泛的应用。

初二数学平行四边形知识点归纳

初二数学平行四边形知识点归纳

初二数学平行四边形知识点归纳一、平行四边形的定义与性质。

1. 定义。

- 两组对边分别平行的四边形叫做平行四边形。

平行四边形用符号“▱”表示,例如平行四边形ABCD记作“▱ABCD”。

2. 性质。

- 边的性质。

- 平行四边形的两组对边分别平行且相等。

即AB∥CD,AD∥BC,AB = CD,AD = BC。

- 角的性质。

- 平行四边形的两组对角分别相等,邻角互补。

即∠A = ∠C,∠B = ∠D,∠A+∠B = 180°,∠B + ∠C=180°等。

- 对角线的性质。

- 平行四边形的对角线互相平分。

即若AC、BD是▱ABCD的对角线,则AO = CO,BO = DO(O为AC、BD交点)。

二、平行四边形的判定。

1. 边的判定。

- 两组对边分别平行的四边形是平行四边形(定义判定)。

- 两组对边分别相等的四边形是平行四边形。

即若AB = CD,AD = BC,则四边形ABCD是平行四边形。

- 一组对边平行且相等的四边形是平行四边形。

例如AB∥CD且AB = CD,则四边形ABCD是平行四边形。

2. 角的判定。

- 两组对角分别相等的四边形是平行四边形。

即若∠A = ∠C,∠B = ∠D,则四边形ABCD是平行四边形。

3. 对角线的判定。

- 对角线互相平分的四边形是平行四边形。

若AO = CO,BO = DO,则四边形ABCD 是平行四边形。

三、平行四边形的面积。

1. 面积公式。

- 平行四边形的面积 = 底×高,即S = ah(a为底边长,h为这条底边对应的高)。

例如在▱ABCD中,若以AB为底,AB边上的高为h,则S▱ABCD=AB×h。

2. 等底等高的平行四边形面积关系。

- 等底等高的平行四边形面积相等。

如果有▱ABCD和▱EFGH,AB = EF,且它们对应的高相等,那么S▱ABCD = S▱EFGH。

四、特殊的平行四边形(矩形、菱形、正方形)与平行四边形的关系。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

平行四边形
【基础知识】 一. 平行四边形 (1)平行四边形性质
1)平行四边形的定义:有两组对边分别平行的四边形叫做平行四边形. 2)平行四边形的性质(包括边、角、对角线三方面) :
A
B
D
O
C
边:①平行四边形的两组对边分别平行;
②平行四边形的两组对边分别相等;
角:③平行四边形的两组对角分别相等,邻角互补; 对角线:④平行四边形的对角线互相平分.
(2)平行四边形判定
1)平行四边形的判定(包括边、角、对角线三方面):
A
B
D
O
C
边:①两组对边分别平行的四边形是平行四边形; ②两组对边分别相等的四边形是平行四边形; ③一组对边平行且相等的四边形是平行四边形; 角:④两组对角分别相等的四边形是平行四边形; 对角线:⑤对角线互相平分的四边形是平行四边形.
2)三角形中位线:连接三角形两边中点的线段叫做三角形的中位线.
3)三角形中位线定理:三角形的中位线平行于三角形的第三边,且等于第三边的一半. 4)平行线间的距离:
两条平行线中,一条直线上的任意一点到另一条直线的距离,叫做这两条平行线间的距离。

两条平行线间的距离处处相等。

二. 矩形 (1)矩形的性质
1)矩形的定义:有一个角是直角的平行四边形叫做矩形.
B
D
2)矩形的性质:
①矩形具有平行四边形的所有性质; ②矩形的四个角都是直角; ③矩形的对角线相等;
3)直角三角形斜边中线定理:(如右图) 直角三角形斜边上的中线等于斜边的一半. .
(2)矩形的判定 1)矩形的判定:
①有一个角是直角的平行四边形是矩形; ②对角线相等的平行四边形是矩形; ③有三个角是直角的四边形是矩形. 2)证明一个四边形是矩形的步骤:
方法一:先证明该四边形是平行四边形,再证一角为直角或对角线相等; 方法二:若一个四边形中的直角较多,则可证三个角为直角.
三. 菱形 (1)菱形的性质
1)菱形的定义:有一组邻边相等的平行四边形叫做菱形. 2)菱形的性质:
①菱形具有平行四边形的所有性质; ②菱形的四条边都相等;
③菱形的两条对角线互相垂直,并且每一条对角线平分一组对角;
④菱形既是轴对称图形,又是中心对称图形,有两条对称轴,对称中心是对角线交点. 3)菱形的面积公式:
菱形的两条对角线的长分别为b a ,,则ab S 2
1
菱形 (2)菱形的判定 1)菱形的判定:
①有一组邻边相等的平行四边形是菱形; ②对角线互相垂直的平行四边形是菱形; ③四条边都相等的四边形是菱形. 2)证明一个四边形是菱形的步骤:
方法一:先证明它是一个平行四边形,然后证明“一组邻边相等”或“对角线互相垂直”; 方法二:直接证明“四条边相等”.
四. 正方形
(1)正方形的性质
1)正方形的定义:有一组邻边相等且有一个角是直角的平行四边形叫做正方形.
2)正方形的性质:
正方形具有平行四边形、矩形、菱形的所有性质,即①正方形的四条边都相等;②四个角都是直角;③对角线互相垂直平分且相等,并且每条对角线平分一组对角.
3)正方形既是轴对称图形,又是中心对称图形,它有四条对称轴,对角线的交点是对称中心.(2)正方形的判定
1)正方形的判定:
①有一组邻边相等且有一个角是直角的平行四边形是正方形;
②有一组邻边相等的矩形是正方形;
③对角线互相垂直的矩形是正方形;
④有一个角是直角的菱形是正方形;
⑤对角线相等的菱形是正方形;
⑥对角线互相垂直平分且相等的四边形是正方形.
平行四边形矩形菱形正方形
图形
性质1.对边
且;
2.对角;
邻角;
3.对角线

1.对边
且;
2.对角
且四个角都是

3.对角线

1.对边
且四条边
都;
2.对角;
3.对角线
且每
条对角线

1.对边
且四条边
都;
2.对角
且四个角都
是;
3.对角线
且每条对角
线;
面积
五.平行四边形,菱形,矩形,和正方形四者之间的关系
一个内角为直角
一组邻边相等
正方形
菱形
平行四边形
矩形
六.
判断对错
(1)在ABCD 中,AC 交BD 于O ,则AO=OB=OC=OD . ( ) (2)平行四边形两条对角线的交点到一组对边的距离相等. ( ) (3)平行四边形的两组对边分别平行且相等. ( ) (4)平行四边形是轴对称图形. ( ) (5).对角线互相垂直的四边形是菱形( )
(6).一条对角线垂直另一条对角线的四边形是菱形( ) (7).对角线互相垂直且平分的四边形是菱形( ) (8).对角线相等的四边形是菱形( )。

相关文档
最新文档