初中数学精题收集

合集下载

初中数学精品试题:《数与代数》综合测试卷

初中数学精品试题:《数与代数》综合测试卷

《数与代数》综合测试卷一、选择题(每小题3分,共30分)1.1008亿用科学记数法表示为(D ) A .1008×108 B .1.008×109 C .1.008×1010 D .1.008×10112.已知m ,n 互为相反数,则下列结论错误的是(C ) A .2m +2n =0 B .mn =-m 2 C.m n=-1 D.3m =-3n 【解析】 ∵当m ,n 均为0时,mn 无意义,∴C 选项错误.3.下列运算正确的是(D ) A .(-2a 3)2=2a 6 B.9=±3C .m 2·m 3=m 6D .x 3+2x 3=3x 3【解析】 A .(-2a 3)2=4a 6,故本选项错误. B.9=3,故本选项错误. C .m 2·m 3=m 5,故本选项错误. D .x 3+2x 3=3x 3,故本选项正确.4.定义一种新运算ʃb a n ·x n -1dx =a n -b n ,例如,ʃh k 2xdx =k 2-h 2.若ʃ5m m -x -2dx =-2,则m =(B )A .-2B .-25C .2 D.25【解析】 由题意,得m -1-(5m )-1=-2, ∴1m -15m =-2,解得m =-25. 经检验,m =-25是原分式方程的解.5.如果▲、●、■分别表示三种不同的物体,现用天平称两次,情况如图所示,那么▲、●、■这三种物体按质量从大到小排列应为(C ),(第5题))A .■、●、▲B .▲、■、●C .■、▲、●D .●、▲、■【解析】 设▲、●、■的质量分别为a ,b ,c .易得⎩⎪⎨⎪⎧c +a >2a ,a +b =3b ,∴⎩⎨⎧c >a ,a =2b ,∴c >a >b .6.将y =1x 的图象向右平移1个单位,再向上平移1个单位所得的图象如图所示,则所得的图象的函数表达式为(C )(第6题)A .y =1x +1+1B .y =1x +1-1C .y =1x -1+1D .y =1x -1-1【解析】 由“左加右减”的原则可知,y =1x的图象向右平移1个单位所得图象的函数表达式为y =1x -1;由“上加下减”的原则可知,函数y =1x -1的图象向上平移1个单位所得图象的函数表达式为y =1x -1+1.(第7题)7.如图,直线y =2x +4与x 轴、y 轴分别相交于点A ,B ,C ,D 分别为线段AB ,OB 的中点,P 为OA 上一动点,则当PC +PD 的值最小时,点P 的坐标为(C )A .(-1,0) B.⎝⎛⎭⎫-32,0 C.⎝⎛⎭⎫-12,0 D .(-2,0) 【解析】 易知点A (-2,0),B (0,4),∴点C (-1,2),D (0,2).作点D 关于x 轴的对称点D ′(0,-2),连结D ′C ,则PC +PD 的最小值即为D ′C 的长.易得直线D ′C 的函数表达式为y =-4x -2.令y =0,得-4x -2=0,∴x =-12,∴点P ⎝⎛⎭⎫-12,0. 8.对于实数x ,我们规定[x ]表示不大于x 的最大整数,例如,[1.2]=1,[3]=3,[-2.5]=-3.若⎣⎡⎦⎤x +410=5,则x 的取值可以是(C )A .40B .45C .51D .56【解析】由题意,得⎩⎪⎨⎪⎧x +410<6,x +410≥5,解得46≤x <56.9.将二次函数y =x 2-5x -6在x 轴上方的图象沿x 轴翻折到x 轴下方,图象的其余部分不变,得到一个新图象,若直线y =2x +b 与这个新图象有3个公共点,则b 的值为(A )A .-734或-12B .-734或2C .-12或2D .-694或-12(第9题解)【解析】 如解图,过点B 的直线y =2x +b 与新图象有三个公共点,将直线向下平移到恰在点C 处相切,此时与新抛物线也有三个公共点.令y =x 2-5x -6=0, 解得x 1=-1,x 2=6, ∴点B 的坐标为(6,0).当直线过点B 时,将点B 的坐标代入y =2x +b ,得 0=12+b ,解得b =-12.将一次函数与二次函数的表达式联立,得x2-5x-6=2x+b,整理,得x2-7x-6-b=0,Δ=49-4(-6-b)=0,解得b =-734.综上所述,b的值为-12或-734.10.在每个小正方形的边长为1的网格图形中,每个小正方形的顶点称为格点.从一个格点移动到与之相距5的另一个格点的运动称为一次跳马变换.例如,在4×4的正方形网格图形中(如图①),从点A经过一次跳马变换可以到达点B,C,D,E等处.现有20×20的正方形网格图形(如图②),则从该正方形的顶点M经过跳马变换到达与其相对的顶点N,最少需要跳马变换的次数是(B),(第10题)) A.13B.14 C.15D.16【解析】如解图①,连结AC,CF,则AF=32,∴两次变换相当于向右移动3格,向上移动3格.(第10题解)又∵MN=202,∴202÷32=203(不是整数),∴按A-C-F的方向连续变换10次后,相当于向右移动了10÷2×3=15(格),向上移动了10÷2×3=15(格),此时点M位于如解图②所示的5×5的正方形网格的点G处,再按如解图②所示的方式变换4次即可到达点N处,∴从该正方形的顶点M经过跳马变换到达与其相对的顶点N,最少需要跳马变换的次数是14,故选B.二、填空题(每小题4分,共24分)11.若点A 在数轴上的位置如图所示,则点A 表示的数的倒数是__12__.(第11题)12.把多项式a 3-6a 2b +9ab 2分解因式的结果是__a(a -3b)2__. 【解析】 a 3-6a 2b +9ab 2=a(a 2-6ab +9b 2)=a(a -3b)2. 13.若7-2×7-1×70=7p ,则p 的值为__-3__. 【解析】 ∵7-2×7-1×70=7p , ∴-2-1+0=p ,解得p =-3.14.已知关于x 的一元一次方程x2019+5=2019x +m 的解为x =2020,那么关于y 的一元一次方程5-y2019-5=2019(5-y)-m 的解为__y =2025__.【解析】 整理方程x 2019+5=2019x +m ,得x 2019-2019x =m -5,该方程的解为x =2020,整理方程5-y 2019-5=2019(5-y)-m ,得5-y2019-2019(5-y)=5-m.令n =5-y ,则整理原方程,得n2019-2019n =5-m ,则n =-2020,即5-y =-2020,解得y =2025.(第15题)15.定义[x]表示不超过实数x 的最大整数,如[1.8]=1,[-1.4]=-2,[-3]=-3.函数y =[x]的图象如图所示(-2≤x <2),则方程[x]=12x 2的解为x =0或2.【解析】 当1≤x<2时,12x 2=1,解得x 1=2,x 2=-2(不合题意,舍去).当0≤x<1时,12x 2=0,解得x 1=x 2=0.当-1≤x <0时,12x 2=-1,方程没有实数解.当-2≤x <-1时,12x 2=-2,方程没有实数解.∴方程[x]=12x 2的解为x =0或 2.16.如图,点A ,B 在坐标轴的正半轴上移动,且AB =10,反比例函数y =kx (x >0)的图象与AB 有唯一公共点P ,点M 在x 轴上,△OPM 为直角三角形,当点M 从点(52,0)移动到点(10,0)时,动点P 所经过的路程为__512π__.(第16题)(第16题解)【解析】 如解图,设点A(a ,0),B(0,b),则直线AB 的函数表达式为y =-bax +b.联立⎩⎨⎧y =-ba x +b ,y =k x ,消去y ,得bx 2-abx +ak =0.∵反比例函数y =kx 的图象与AB 有唯一公共点P ,∴点P 的横坐标x P =--ab 2b =a2,∴P 是AB 的中点,∴OP =12AB =5.∵点P 在第一象限,点M 在x 轴上,△OPM 为直角三角形,52≤OM ≤10,∴∠OPM =90°.①当OM =52时,cos ∠POM =OP OM =22, ∴∠POM =45°.②当OM′=10时,cos ∠P ′OM ′=OP′OM′=12,∴∠P ′OM ′=60°,∴∠POP ′=15°,∴l PP′︵=15×π×5180=512π,即动点P 所经过的路程为512π.三、解答题(共66分)17.(6分)(1)计算:-42+38-(π-3.14)0+2cos 245°.【解析】 原式=-16+2-1+2×⎝⎛⎭⎫222=-16+1+1=-14.(2)先化简,再求值:2(a +3)(a -3)-(a -6)+6,其中a =5-1. 【解析】 原式=2(a 2-3)-a +6+6 =2a 2-6-a +12 =2a 2-a +6.当a =5-1时,原式=2a 2-a +6=2×(5-1)2-(5-1)+6=2×(6-25)-5+1+6=19-5 5.18.(6分)(1)解方程:4x 2-8x +1=0. 【解析】 x 2-2x +14=0,x 2-2x +1=34,(x -1)2=34,x -1=±32,x =2±32,∴x 1=2+32,x 2=2-32.(2)解不等式组:⎩⎪⎨⎪⎧2x +5≤3(x +2),2x -1+3x2<1.【解析】⎩⎨⎧2x +5≤3(x +2),①2x -1+3x2<1.②解①,得x ≥-1; 解②,得x <3,∴不等式组的解为-1≤x <3.19.(6分)先化简:⎝⎛⎭⎫3x -1-x -1·x -1x 2-4x +4,再从1,2,3中选取一个适当的数代入求值.【解析】 原式=⎣⎢⎡⎦⎥⎤3x -1-x (x -1)x -1-x -1x -1·x -1(x -2)2 =(2-x )(2+x )x -1·x -1(x -2)2=2+x 2-x.当x =1,2时分式无意义,∴将x =3代入原式,得原式=5-1=-5.20.(8分)已知关于x 的方程x 2-2x +2m -1=0有实数根,且m 为正整数,求m 的值及此时方程的根.【解析】 ∵关于x 的方程x 2-2x +2m -1=0有实数根, ∴b 2-4ac =4-4(2m -1)≥0,解得m ≤1. ∵m 为正整数,∴m =1,∴x 2-2x +1=0, 则(x -1)2=0,解得x 1=x 2=1. 21.(8分)阅读理解:如图,点A ,B 在反比例函数y =1x 的图象上,连结AB ,取线段AB 的中点C .分别过点A ,C ,B 作x 轴的垂线,垂足分别为E ,F ,G ,CF 交反比例函数y =1x 的图象于点D .点E ,F ,G 的横坐标分别为n -1,n ,n +1(n >1).(1)小红通过观察反比例函数y =1x 的图象,并运用几何知识得出结论:AE +BG =2CF ,CF >DF ,由此得出一个关于1n -1,1n +1,2n 之间的数量关系的命题:若n >1,则__1n -1+1n +1>2n__.(第21题)(2)证明命题:小东认为:可以通过“若a -b ≥0,则a ≥b ”的思路证明上述命题. 小晴认为:可以通过“若a >0,b >0,且a÷b ≥1,则a ≥b ”的思路证明上述命题. 请你选择一种方法证明(1)中的命题.【解析】 (1)∵AE +BG =2CF ,CF >DF ,AE =1n -1,BG =1n +1,DF =1n ,∴1n -1+1n +1>2n. (2)方法一: ∵n >1,∴n(n -1)(n +1)>0.∵1n -1+1n +1-2n =n 2+n +n 2-n -2n 2+2n (n -1)(n +1)=2n (n -1)(n +1), ∴1n -1+1n +1-2n >0,∴1n -1+1n +1>2n . 方法二:∵1n -1+1n +12n=n 2n 2-1>1,∴1n -1+1n +1>2n. 22.(10分)某企业安排65名工人生产甲、乙两种产品,每人每天生产2件甲或1件乙,甲产品每件可获利15元.根据市场需求和生产经验,乙产品每天产量不少于5件,当每天生产5件时,每件可获利120元,每增加1件,当天平均每件利润减少2元.设每天安排x 人生产乙产品.(1)根据信息填表: 产品种类,每天工人 数(人),每天产 量(件),每件产品可获利润(元)甲,65-x,2(65-x ),15乙,x,x,130-2x (2)若每天生产甲产品可获得的利润比生产乙产品可获得的利润多550元,求每件乙产品可获得的利润.(3)该企业在不增加工人的情况下,增加生产丙产品,要求每天甲、丙两种产品的产量相等.已知每人每天可生产1件丙(每人每天只能生产一种产品),丙产品每件可获利30元,求每天生产三种产品可获得的总利润W(元)的最大值及相应的x 值.【解析】 (2)由题意,得15×2(65-x)=x(130-2x)+550, ∴x 2-80x +700=0,解得x 1=10,x 2=70(不合题意,舍去), ∴130-2x =110(元).答:每件乙产品可获得的利润是110元. (3)设安排m 人生产甲产品,则W =x(130-2x)+15×2m +30(65-x -m) =-2(x -25)2+3200.∵2m =65-x -m ,∴m =65-x3.∵x ,m 都是非负整数,∴取x =26,此时m =13,65-x -m =26, 即当x =26时,W 最大=3198.答:每天生产三种产品可获得的最大总利润为3198元,此时x =26.23.(10分)对任意一个三位数n ,如果n 满足各个数位上的数字互不相同,且都不为零,那么称这个数为“相异数”.将一个“相异数”任意两个数位上的数字对调后可以得到三个不同的新三位数,把这三个新三位数的和与111的商记为F(n).例如n =123,对调百位与十位上的数字得到213,对调百位与个位上的数字得到321,对调十位与个位上的数字得到132,这三个新三位数的和为213+321+132=666,666÷111=6,所以F(123)=6.(1)计算:F(243),F(617).(2)若s ,t 都是“相异数”,其中s =100x +32,t =150+y(1≤x ≤9,1≤y ≤9,x ,y 都是正整数),规定:k =F (s )F (t ),当F(s)+F(t)=18时,求k 的最大值.【解析】 (1)F(243)=(423+342+234)÷111=9; F(617)=(167+716+671)÷111=14.(2)∵s ,t 都是“相异数”,s =100x +32,t =150+y ,∴F(s)=(302+10x +230+x +100x +23)÷111=x +5,F(t)=(510+y +100y +51+105+10y)÷111=y +6.∵F(s)+F(t)=18,∴x +5+y +6=x +y +11=18,∴x +y =7.∵1≤x ≤9,1≤y ≤9,且x ,y 都是正整数,∴⎩⎪⎨⎪⎧x =1,y =6或⎩⎪⎨⎪⎧x =2,y =5或⎩⎪⎨⎪⎧x =3,y =4或⎩⎪⎨⎪⎧x =4,y =3或⎩⎪⎨⎪⎧x =5,y =2或⎩⎪⎨⎪⎧x =6,y =1.∵s 是“相异数”,∴x ≠2,x ≠3.∵t 是“相异数”,∴y ≠1,y ≠5,∴⎩⎪⎨⎪⎧x =1,y =6或⎩⎪⎨⎪⎧x =4,y =3或⎩⎪⎨⎪⎧x =5,y =2.∴⎩⎪⎨⎪⎧F (s )=6,F (t )=12或⎩⎪⎨⎪⎧F (s )=9,F (t )=9或⎩⎪⎨⎪⎧F (s )=10,F (t )=8. ∴k =F (s )F (t )=612=12或k =F (s )F (t )=99=1或k =F (s )F (t )=108=54, ∴k 的最大值为54. 24.(12分)已知抛物线y =ax 2+bx +3经过点A(1,0)和点B(5,0).(1)求该抛物线所对应的函数表达式.(2)该抛物线与直线y =35x +3相交于C ,D 两点,P 是抛物线上的动点且位于x 轴下方,直线PM ∥y 轴,分别与x 轴和直线CD 相交于点M ,N.①连结PC ,PD ,如图①,在点P 运动的过程中,△PCD 的面积是否存在最大值?若存在,求出这个最大值;若不存在,请说明理由.②连结PB ,过点C 作CQ ⊥PM ,垂足为Q ,如图②,是否存在点P ,使得△CNQ 与△PBM 相似?若存在,求出满足条件的点P 的坐标;若不存在,请说明理由.(第24题)【解析】 (1)∵抛物线y =ax 2+bx +3经过点A(1,0)和点B(5,0),∴⎩⎪⎨⎪⎧a +b +3=0,25a +5b +3=0,解得⎩⎨⎧a =35,b =-185,∴该抛物线对应的函数表达式为y =35x 2-185x +3. (2)①存在.∵P 是抛物线上的动点且位于x 轴下方,∴可设点P ⎝⎛⎭⎫t ,35t 2-185t +3(1<t <5). ∵直线PM ∥y 轴,分别与x 轴和直线CD 相交于点M ,N ,∴点M(t ,0),N ⎝⎛⎭⎫t ,35t +3, ∴PN =35t +3-⎝⎛⎭⎫35t 2-185t +3=-35⎝⎛⎭⎫t -722+14720. 联立⎩⎨⎧y =35x +3,y =35x 2-185x +3,解得⎩⎪⎨⎪⎧x 1=0,y 1=3,⎩⎪⎨⎪⎧x 2=7,y 2=365. ∴点C(0,3),D ⎝⎛⎭⎫7,365. 如解图,分别过点C ,D 作直线PN 的垂线,垂足分别为E ,F ,,(第24题解))则CE =t ,DF =7-t ,∴S △PCD =S △PCN +S △PDN =12PN·CE +12PN·DF =72PN =72⎣⎡⎦⎤-35⎝⎛⎭⎫t -722+14720=-2110⎝⎛⎭⎫t -722+102940, ∴当t =72时,△PCD 的面积有最大值,最大值为102940. ②存在.∵∠CQN =∠PMB =90°,∴当△CNQ 与△PBM 相似时,有NQ CQ =PM BM 或NQ CQ =BM PM这两种情况. ∵CQ ⊥PM ,∴点Q(t ,3),N ⎝⎛⎭⎫t ,35t +3, ∴CQ =t ,NQ =35t +3-3=35t ,∴NQ CQ =35. ∵点P ⎝⎛⎭⎫t ,35t 2-185t +3,M(t ,0),B(5,0), ∴BM =5-t ,PM =0-⎝⎛⎭⎫35t 2-185t +3=-35t 2+185t -3. 当NQ CQ =PM BM 时,有PM =35BM ,即-35t 2+185t -3=35(5-t), 解得t 1=2,t 2=5(不合题意,舍去),此时点P ⎝⎛⎭⎫2,-95. 当NQ CQ =BM PM 时,有BM =35PM ,即5-t =35⎝⎛⎭⎫-35t 2+185t -3, 解得t 1=349,t 2=5(不合题意,舍去),此时点P(349,-5527). 综上所述,存在点P(2,-95)或(349,-5527),使得△CNQ 与△PBM 相似.。

初中数学精品试题:一元二次方程利润问题

初中数学精品试题:一元二次方程利润问题

专题06一元二次方程利润问题这类问题在考试中是必考内容,需要掌握的知识点也比较多,是一类非常重要的考题,需要掌握以下知识点:①总利润=单件利润×数量(销售量);②单件利润=售价-进价;③总利润与x是二次函数关系;④数量与x是一次函数关系;【1】降价问题(问题为降价多少元)①设应降价x元;②公式中“单利”为未降价前的单件利润,即单利=售价-进价;③公式中“基础数量”为降价前的销售量,题目中给出;④公式中“件数”为题目中说明的,降价“1元”,增加的数量;(注意必须是降价1元,不是1元的,转化为1元)⑤列出方程;(注意降价的范围)⑥解出方程;【2②公式中“单利”为未涨价前的单件利润,即单利=售价-进价;③公式中“基础数量”为涨价前的销售量,题目中给出;④公式中“件数”为题目中说明的,涨价“1元”,减少的数量;(注意必须是涨价1元,不是1元的,转化为1元)⑤列出方程;(注意涨价的范围)⑥解出方程;①设应定价x元;②公式中“进利”为题目中给出的进价;③公式中“基础数量”为价格改变前的销售量,题目中给出;④公式中“件数”为题目中说明的,涨价(或者降价)“1元”,增加(或者减少)的数量;(注意必须是涨价或降价1元,不是1元的,转化为1元)⑤公式中“售价”为题目中给出价格为改变前的销售价格;⑥列出方程;(注意x的范围)⑦解出方程;【4】数量为一次函数类型我们已经知道,数量与x(涨价,降价或者定价)是一次函数关系,因此我们可以用一次函数的待定系数法求出数量的表达式,再将一次函数表达式代入方程中即可;①设数量y=kx+b(k≠0);②在给出的函数图像上找两个已知坐标的点代入;③求出y的解析式;④总利润=单利×数量中,“数量”用求出的“kx+b”代替,列出方程;⑤注意x的取值范围;1.水果店张阿姨以每千克4元的价格购进某种水果若干千克,然后以每千克6元的价格出售,每天售出100千克.通过调查发现,这种水果每千克的售价每降低0.1元,每天可多售出20千克,为了保证每天至少售出240千克,张阿姨决定降价销售.(1)若售价降低0.8元,则每天的销售量为千克、销售利润为元;(2)若将这种水果每千克降价x元,则每天的销售量是千克(用含x的代数式表示);(3)销售这种水果要想每天盈利300元,张阿姨应将每千克的销售价降至多少元?2.合肥百货大楼服装柜在销售发现:某童装平均每天可售出20件,每件盈利40元.为了迎接“六•一”儿童节,商场决定采取适当的降价措施,扩大销售量,增加盈利,尽快减少库存.经市场调查发现:如果每件童装降价2元,那么平均每天就可多售出4件.要想平均每天销售这种童装盈利1200元,那么每件童装应降价多少元?3.某商场销售一批衬衫,平均每天可以售出20件,每件盈利40元.为回馈顾客,商场决定采取适当的降价措施.经调查发现,每件衬衫降价1元,商场平均每天可多售出2件.(1)若每件衬衫降价5元,商场可售出多少件?(2)若商场每天的盈利要达到1200元,每件衬衫应降价多少元?4.某汽车销售公司去年12月份销售新上市的一种新型低能耗汽车200辆,由于该型汽车的优越的经济适用性,销量快速上升,若该型汽车每辆的盈利为5万元,则平均每天可售8辆,为了尽量减少库存,汽车销售公司决定采取适当的降价措施,经调查发现,每辆汽车每降5000元,公司平均每天可多售出2辆,若汽车销售公司每天要获利48万元,每辆车需降价多少?5.商场某种商品平均每天可销售30件,每件盈利50元,为了尽快减少库存,商场决定采取适当的降价措施.经调査发现,该商品每降价1元,商场平均每天可多售出2件.(1) 设每件商品降价x元,则商场日销售量增加件,每件商品盈利_________元(用含x的代数式表示);(2) 每件商品降价多少元时,商场日盈利可达到2000元?6.商场某种商品平均每天可销售30件,每件赢利50元,为了尽快减少库存,商场决定采取适当的降价措施.经调查发现,每件商品每降价1元,商场平均每天可多销售出2件.(1)若某天,该商品每天降价4元,当天可获利多少元?(2)每件商品降多少元,商场日利润可达2100元?1.某商店将进价为30 元的商品按售价50 元出售时,能卖500 件.已知该商品每涨价1 元,销售量就会减少10 件,为获得12000 元的利润,且尽量减少库存,售价应为多少元?2.某商店销售一款口罩,每袋的进价为12元,计划售价大于12元但不超过22元,通过试场调查发现,这种口罩每袋售价提高1元,日均销售量降低5袋,当售价为18元时,日均销售量为50袋.(1)在售价为18元的基础上,将这种口罩的售价每袋提高x元,则日均销售量是袋;(用含x的代数式表示)(2)要想销售这种口罩每天赢利275元,该商场每袋口罩的售价要定为多少元?3.某商品的进价为每件10元,现在的售价为每件15元,每周可卖出100件,市场调查反映:如果每件的售价每涨1元(售价每件不能高于20元),那么每周少卖10件.设每件涨价x元(x为非负整数),每周的销量为y件.(1)求y与x的函数关系式及自变量x的取值范围;(2)如果经营该商品每周的利润是560元,求每件商品的售价是多少元?1.春节前夕,便民超市把一批进价为每件12元的商品,以每件定价20元销售,每天能售出240件.销售一段时间后发现:如果每件涨价0.5元,那么每天就少售10件;如果每件降价0.5元,那么每天能多售出20件.为了使该商品每天销售盈利为1980元,每件定价多少元?2.某商店经销的某种商品,每件成本为30元.经市场调查,当售价为每件70元时,可销售20件.假设在一定范围内,售价每降低2元,销售量平均增加4件.如果降价后商店销售这批商品获利1200元,问这种商品每件售价是多少元?3.平安超市准备进一批书包,每个进价为40元.经市场调查发现,售价为50元时可售出400个;售价每增加1元,销售量将减少10个.超市若准备获得利润6000元,并且使进货量较少,则每个应定价为多少4.某水果商店销售一种进价为40元/千克的优质水果,若售价为50元/千克,则一个月可售出500千克;若售价在50元/千克的基础上每涨价1元,则月销售量就减少10千克.(1)当售价为55元/千克时,每月销售水果多少千克?(2)当月利润为8750元时,每千克水果售价为多少元?(3)当每千克水果售价为多少元时,获得的月利润最大?5.某商场计划购进一批书包,市场调查发现:当某种进货价格为30元的书包以40元的价格出售时,平均每月售出600个,并且书包的售价每提高1元,每月销售量就减少10个.(1)当售价定为42元时,每月可售出多少个?(2)若书包的月销售量为300个,则每个书包的定价为多少元?(3)当商场每月获得10000元的销售利润时,为体现“薄利多销”的销售原则,你认为销售价格应定为多少元?6.某商店的一种服装,每件成本为50元.经市场调研,售价为60元时,可销售200件,售价每提高1元,销售量将减少10件.那么,该服装每件售价是多少元时,商店销售这批服装获利能达到2240元?7.疫情结束后,某广场推出促销活动,已知商品每件的进货价为30元,经市场调研发现,当该商品的销售单价为40元时,每天可销售280件;当销售单价每增加1元,每天的销售数量将减少10件.(销售利润=销售总额﹣进货成本).(1)若该商品的的件单价为43元时,则当天的售商品是件,当天销售利润是元;(2)当该商品的销售单价为多少元时,该商品的当天销售利润是3450元.1.某超市经销一种商品,每千克成本为50元,经试销发现,该种商品的每天销售量y(千克)与销售单价x(元/千克)满足一次函数关系,其每天销售单价,销售量的四组对应值如下表所示:(1)求y(千克)与x(元/千克)之间的函数表达式;(2)为保证某天获得600元的销售利润,则该天的销售单价应定为多少?(3)当销售单价定为多少时,才能使当天的销售利润最大?最大利润是多少?2.某网店销售某款童装,每件售价60元,每星期可卖300件,为尽快减少库存,该网店决定降价销售.市场调查反映:每降价1元,每星期可多卖30件.已知该款童装每件成本价40元,设该款童装每件售价x元,每星期的销售量为y件.(1)求y与x之间的函数关系式;(2)当每件售价定为多少元时,该商店每天的销售利润为6480元?3.某商店销售一款口罩,每袋的进价为12元.经市场调查发现,每袋售价每增加1元,日均销售量减少5袋.当售价为每袋18元时,日均销售量为100袋.设口罩每袋的售价为x元,日均销售量为y袋.(1)用含x的代数式表示y;(2)物价部门规定,该款口罩的每袋售价不得高于22元.当每袋售价定为多少元时,商店销售该款口罩所得的日均毛利润为720元?4.某商店购进一批成本为每件40元的商品,经调查发现,该商品每天的销售量y(件)与销售单价x(元)之间满足一次函数关系,其图象如图所示.(1)求该商品每天的销售量y与销售单价x之间的函数关系式;(2)若商店要使销售该商品每天获得的利润等于1000元,每天的销售量应为多少件?(3)若商店按单价不低于成本价,且不高于65元销售,则销售单价定为多少元时,才能使销售该商品每天获得的利润最大?最大利润是多少元?5.某科技公司为提高经济效益,近期研发一种新型设备,每台设备成本价为2万元.经过市场调研发现,该设备的月销售量y(台)和销售单价x(万元)对应的点(x,y)在函数y=kx+ b的图象上,如图:(1)求y与x的函数关系式;(2)根据相关规定,此设备的销售单价不高于5万元,若该公司要获得80万元的月利润,则该设备的销售单价是多少万元?6.某商店代销一种智能学习机,促销广告显示“若购买不超过40台学习机,则每台售价800元,若超出40台,则每超过1台,每台售价将均减少5元”,该学习机的进价与进货数量关系如图所示:x 时,用含x的代数式表示每台学习机的售价;(1)当40(2)当该商店一次性购进并销售学习机60台时,每台学习机可以获利多少元?(3)若该商店在一次销售中获利4800元,则该商店可能购进并销售学习机多少台?7.某公司购进一批新产品进行销售,已知该产品的进货单价为8元/件,该公司对这批新产品上市后的销售情况进行了跟踪调查.销售过程中发现,该产品每月的销售量y(万件)与销售单价x(元)之间的关系满足下表.(1)请你从所学过的一次函数、二次函数和反比例函数三个模型中确定哪种函数能比较恰当地表示y与x的变化规律,并求出y与x之间的函数关系式;(2)当销售单价为多少元时,该产品每月获得的利润为240万元?(3)如果该产品每月的进货成本不超过160万元,那么当销售单价为多少元时,该产品每月获得的利润最大?最大利润为多少万元?8.吴江区某桶装水经营部每天的房租、人员工资等固定成本为150元,每桶水的进价是5元,规定销售单价不得高于12元/桶,也不得低于7元/桶,调查发现日均销售量p(桶)与销售单价x(元)的函数图象如图所示.(1)求日均销售量p(桶)与销售单价x(元)的函数关系;(2)若该经营部希望日均获利1200元,求该桶装水的销售单价.9.为提高农民收入,某区一水果公园引进一种新型蟠桃,蟠桃进价为每公斤40元.上市后通过一段时间的试营销发现:当蟠桃销售单价在每公斤40元至90元之间(含40元和90元)时,每月的销售量y(公斤)与销售单价x(元/公斤)之间的关系可近似地看作一次函数,其图像如图所示.(1)求y与x的函数解析式,并写出定义域;(2)如果想要每月获得2400元的利润,那么销售单价应定为每公斤多少元?。

初中数学精品试题:初一数学基础满分卷(1)

初中数学精品试题:初一数学基础满分卷(1)

中学初一数学基础满分卷(1)1.在0,1,-2,-3.5四个数中,是负整数的为( )A .0B .1C .-2D .-3.52.如果收入80 元记做+80 元,那么支出20 元记做( )A .+20 元B .-20 元C .+100 元D .-100 元3. 12的相反数是( )A.12 B .-12 C .2 D .-24.如图,数轴上有A ,B ,C ,D 四个点,其中表示互为相反数据的点是( )A .点A 与点DB .点A 与点CC .点B 与点D D .点B 与点C5.[2014·嘉兴]-3的绝对值是( )A .-3B .3C .-13 D.136.一个数的绝对值等于3,这个数是( )A .3B .-3C .±3 D.137.[2014·丽水]在数23,1,-3,0中,最大的数是( )A.23 B .1 C .-3 D .08.[2014·绍兴]比较-3,1,-2的大小,结果正确的是( )A .-3<-2<1B .-2<-3<1C .1<-2<-3D .1<-3<-29.[2014·安顺]若一个数的相反数是3,则这个数是( )A .-13 B.13 C .-3 D .310.在数轴上到原点距离等于2的点所表示的数是( )A .-2B .2C .±2D .不能确定11.数a 的相反数等于数a ,则下列说法正确的是( D )A .数a 一定是正数B .数a 一定是负数C .数a 一定不是整数D .数a 一定是012.[2014·嘉兴]-3的绝对值是( ) A .-3 B .3 C .-13 D.1313.[2014·南充]⎪⎪⎪⎪⎪⎪-13的值是( ) A .3 B .-3 C.13 D .-1314.如果|a|=-a,那么()A.a是一个正数B.a是一个负数C.a是一个非正数D.a是一个非负数15.如图,O是数轴的原点,A,B,C三点所表示的数分别为a,b,c.根据数轴中各点的位置,下列正确的是()A.|b|<|c| B.|b|>|c| C.|a|<|b| D.|a|>|c|16.一个数的绝对值等于3,这个数是()A.3 B.-3 C.±3 D.1 317.绝对值大于1而小于5的所有整数是__±2,±3,±4__.18.把下列各数填在相应的大括号里+79,-3.8,0,-112,-19,0.04,+56.正整数:{ } 负数:{ } 非负数:{ } 小数:{ } 19.写出下列各数的相反数,并在数轴上表示出来.-2,1.5,0,12,-32,1.20.比较下列各数的大小,并用“<”连接起来:-2,4,-312,0,1.5,212.21.邮递员骑车从邮局出发,先向南骑行2 km到达A村,继续向南骑行3 km到达B 村,然后向北骑行9 km到达C村,最后回到邮局.(1)以邮局为原点,以向北方向为正方向,用一个单位长度表示1 km,画出数轴,并在该数轴上表示出A,B,C三个村庄的位置;(2)C村离A村有多远?(3)邮递员一共骑了多少千米?。

初中数学精品试题:九年级数学培优拓展练习一

初中数学精品试题:九年级数学培优拓展练习一

数学培优拓展练习(一)班级:姓名:【思维入门】1.二次函数y=﹣x2+4x+1有()A.最大值5B.最小值5C.最大值﹣3D.最小值﹣32.在抛物线y=2(x﹣1)2经过(m,n)和(m+3,n)两点,则m的值为()A.B.C.1D.3.如图是二次函数y=ax2+bx+c(a≠0)的图象,下列结论正确的个数是()①对称轴为直线x=﹣1;②b2﹣4ac>0;③方程ax2+bx+c=0的解是x1=﹣3,x2=1;④不等式ax2+bx+c>3的解为﹣2<x<0.A.4B.3 C.2 D.14.已知关于x的二次函数y=(x+m)2﹣3,当x>2时,y随着x的增大而增大,则m的取值范围是()A.m≤2B.m≥﹣2C.m<﹣2D.m≤﹣25.已知A(0,y1),B(1,y2),C(4,y3)是抛物线y=x2﹣3x上的三点,则y1,y2,y3的大小关系为()A.y1>y2>y3B.y3>y1>y2C.y3>y2>y1D.y2>y1>y36.二次函数y=(x﹣a)(x﹣b)﹣2(a<b)与x轴的两个交点的横坐标分别为m和n,且m<n,下列结论正确的是()A.m<a<n<b B.a<m<b<n C.m<a<b<n D.a<m<n<b【思维拓展】例1.当a≤x≤a+1时,函数y=x2﹣2x+1的最小值为1,则a值为.变式1:当﹣1≤x≤2时,二次函数y=(x﹣m)2﹣m2+1有最小值﹣1,则m值为 . 变式2:已知二次函数y=ax2+2ax+3a2+3(其中x是自变量),当x≥2时,y随x的增大而减小,且﹣4≤x≤1时,y的最大值为7,则a的值为.例2.在平面直角坐标系xOy中,已知抛物线y=x2﹣mx+n.(1)当m=2时,①求抛物线的对称轴,并用含n的式子表示顶点的纵坐标;②若点A(﹣2,y1),B(x2,y2)都在抛物线上,且y2>y1,则x2的取值范围是;(2)已知点P(﹣1,2),将点P向右平移4个单位长度,得到点Q.当n=3时,若抛物线与线段PQ恰有一个公共点,结合函数图象,求m的取值范围.变式1:已知点A(﹣1,0),点B(1,1)都在y=x+上,抛物线y=ax2﹣x+1(a≠0)与线段AB有两个不同的交点,则a的取值范围是()A.a≤﹣2 B.a<C.1≤a<或a≤﹣2 D.﹣2≤a<变式2:在平面直角坐标系xOy中,抛物线y=ax2﹣4ax与x轴交于A,B两点(A在B左侧).(1)求点A,B的坐标;(2)已知点C(2,1),P(1,﹣a),点Q在直线PC上,且Q点的横坐标为4.①求Q点的纵坐标(用含a的式子表示);②若抛物线与线段PQ恰有一个公共点,结合函数图象,求a的取值范围.例3.在平面直角坐标系中四边形OABC是边长为6的正方形,平行于对角线AC的直线l从O出发,沿x轴正方向以每秒一个单位长度的速度运动,运动到直线l与正方形没有交点为止,设直线l扫过正方形OABC的面积为S,直线l的运动时间为t(秒),下列能反映S与t之间的函数图象的是( )A B C D变式1:如图,在△ABC中,∠C=90°,AC=BC=3cm,动点P从点A出发,以cm/s的速度沿AB方向运动到点B,动点Q同时从点A出发,以1cm/s的速度沿折线AC→CB方向运动到点B.设△APQ的面积为y(cm2),运动时间为x(s),则下列图象能反映y与x之间关系的是()A B C D变式2:如图,在Rt△ABC中,∠ACB=90°,AC=BC=2,CD⊥AB于点D.点P从点A出发,沿A→D→C的路径运动,运动到点C停止,过点P作PE⊥AC于点E,作PF⊥BC于点F.设点P运动的路程为x,四边形CEPF的面积为y,则能反映y与x之间函数关系的图象是()A B C D【思维升华】1.如图,点A在抛物线y=x2﹣4x+6上运动,过点A作AC⊥x轴于点C,以AC为对角线作矩形ABCD,连结BD,则对角线BD的最小值为()A.1 B.2 C.D.2.二次函数y=ax2+bx+c自变量x的部分取值和对应函数值y如表:x…﹣2﹣10123…y…830﹣103…则在实数范围内能使得y﹣3>0成立的x取值范围是()A.x>3B.x<﹣1C.﹣1<x<3D.x<﹣1或x>33.如图,正方形四个顶点为(1,1),(3,1),(3,3),(1,3).若抛物线y=ax2图象与正方形有公共点,则实数a取值范围是()A.≤a≤3B.≤a≤1C.≤a≤3D.≤a≤14.已知点M(m,2018),N(n,2018)是二次函数y=ax2+bx+2017图象上的两个不同的点,则当x=m+n时,其函数值y=()A.2019 B.2018 C.2017 D.2016 5.已知抛物线C:y=ax2+2x﹣1(a≠0)和直线l:y=kx+b,点A(﹣3,﹣3),B(1,﹣1)均在直线l上.(1)若抛物线C与直线l有交点,求a的取值范围;(2)当a=﹣1,二次函数y=ax2+2x﹣1的自变量x满足m≤x≤m+2时,函数y的最大值为﹣4,求m的值;(3)若抛物线C与线段AB有两个不同的交点,请直接写出a的取值范围.。

初中数学精品试题:探索勾股定理 一

初中数学精品试题:探索勾股定理 一

第3题 第6题 B A C D E 第9题2.7探索勾股定理 (一)A 组1. 如图,正方形网格中,每个小正方形的边长为1,则网格上三角形ABC 中,边长为无理数的边有( )A .3条B .2条C .1条D .0条2.已知一直角三角形的两条边长为3,4,则第三边的长为 ( )A .5B .7C .7或5D .无法判断3.如图,数轴上点A 所表示的数为a ,则a 的值是( )A .51-B .51-+C .51+D .54.如图,一架25分米的梯子,斜立在一竖直的墙上,这时梯的底部距墙底端7分米,如果梯子的顶端沿墙下滑4分米,那么梯的底部将平滑( ) A.9分米 B.15分米 C.5分米 D.8分米5.已知一个直角三角形的两条直角边是6和8,则这个直角三角形斜边上的高为_______,斜边上的中线为_______.6.如图,分别以DEF Rt ∆的三边为边向外作正方形,已知正方形M和Q 的面积分别是21和13,则正方形P 的面积是______.7.若等腰三角形的顶角为120°,腰长为2cm ,则它的底边长为 .8.已知在Rt △ABC 中,AB=c ,BC=a ,AC=b ,∠C =90°. (1)若a =6,b =8,求c ;(2)若a =2,c =6,求b ;(3)若c =34,:8:15a b =,求a ,b 的值。

9. 如图,有一个直角三角形纸片,两条直角边BC =6cm ,AC =8cm ,现将直角边BC 沿直线BD 折叠,使它落在斜边AB 上,且与BE 重合,求CD 的长.10.在△ABC 中,AB=13 cm ,AC =20 cm ,BC 边上的高为12 cm ,求△ABC 的面积. 第1题B 组★11.小刚测量河水的深度,他把一根竹竿竖直插到离岸边1.5米远的水底,竹竿高出水面0.5米,把竹竿的顶端拉向岸边,竿顶和岸边的水面刚好相齐,河水的深度是____米.★12.在Rt△ABC中,∠A=90°,AB=AC,BC=2+1,M,N分别是边BC,AB上的动点,沿MN所在的直线折叠∠B,使点B的对应点B’始终落在边AC上。

初中数学精品试题:圆心角圆周角综合练习

初中数学精品试题:圆心角圆周角综合练习

3.5.3圆心角、圆周角综合练习班级姓名评价_________1.如图,已知⊙O的直径CD垂直于弦AB,垂足为点E,∠ACD=22.5°,若CD=6cm,则AB的长为_________2.如图,有一圆通过△ABC的三个顶点,且的中垂线与相交于D点.若∠B=74°,∠C=46°,则的度数为何?_________3.如图,AB是⊙O的直径,C,D是⊙O上两点,CD⊥AB.若∠DAB=65°,则∠BOC= _________4.如图,△ABC的顶点A、B、C均在⊙O上,若∠ABC+∠AOC=90°,则∠AOC的大小是_________5.如图,在⊙O中,AB是直径,BC是弦,点P是上任意一点.若AB=5,BC=3,则AP的长不可能为()A.3B.4C.D.56.如图,▱ABCD的顶点A、B、D在⊙O上,顶点C在⊙O的直径BE上,连接AE,∠E=36°,则∠ADC的度数是_________7.如图,A、B、C、D四个点均在⊙O上,∠AOD=70°,AO∥DC,则∠B的度数为()8.如图,在⊙O中,AB为直径,点C为圆上一点,将劣弧沿弦AC翻折交AB于点D,连接CD.如果∠BAC=20°,则∠BDC=_________9.如图,点A、B、C、D在⊙O上,O点在∠D的内部,四边形OABC为平行四边形,则∠OAD+∠OCD=_________度.10.如图,OB是⊙O的半径,弦AB=OB,直径CD⊥AB.若点P是线段OD上的动点,连接PA,则∠PAB的度数可以是_________(写出一个即可)11.如图,⊙C过原点并与坐标轴分别交于A、D两点.已知∠OBA=30°,点D的坐标为(0,2),则点C的坐标为(_________,_________).12.如图,AB是⊙O的直径,点C在⊙O上,∠AOC=40°,D是BC弧的中点,则∠ACD= _________.13.如图,AB是半圆O的直径,C、D是半圆O上的两点,且OD∥BC,OD与AC交于点E.(1)若∠B=70°,求∠CAD的度数;(2)若AB=4,AC=3,求DE的长.14.如图,在⊙O中,AB是直径,点D是⊙O上一点,点C是的中点,弦CM⊥AB于点F,连接AD,交CF于点P,连接BC,∠DAB=30°.(1)求∠ABC的度数;(2)若CM=8,求长度(结果保留π).15.如图,AB为⊙O的直径,点C在⊙O上,延长BC至点D,使DC=CB,延长DA与⊙O的另一个交点为E,连接AC、CE.(1)求证:∠B=∠D;(2)若AB=,BC﹣AC=2,求CE的长.16.如图,l1、l2、l3是一组距离不相等的平行线,作等边△ABC,使A、B在l1上,C在l3上,BC交l2于点M,△ACM的外接圆交l3于点N,试判断△AMN的形状并证明.17.如图,△ABD是⊙O内接三角形,圆心O在边AB上,点C为的中点,AD分别与BC、OC交于E、F两点.求证:(1)OF∥BD.(2)若∠C=30°,则AD平分OC.。

初中数学精品试题:初中数学原创题 1

初中数学原创题一、选择题10.如图,下列各图形中的三个数之间均具有相同的规律。

根据此规律,图形中M与m、n 的关系是()A.M=mn B.M=n(m+1) C.M=mn+1 D.M=m(n+1)考点分析:规律型:数字的变化类思路意图:通过前面3个图形找到规律解答过程:D二、填空题16.如图,在△ABC中,以AB为直径的⊙O交AC于点M,弦MN∥BC交AB于点E,且ME=1,AM=2,AE=,=考点分析:勾股定理的逆定理;弧长的计算;解直角三角形思路意图:本题综合考查了勾股定理的逆定理,弧长的计算,解直角三角形等解答过程:如图,连接ON.在Rt△AEM中,sinA==,∴∠A=30°.∵AB⊥MN,∴=,EN=EM=1,∴∠BON=2∠A=60°.在Rt△OEN中,sin∠EON=,∴ON==,∴的长度是:•=.三、解答题22.(8分)阅读材料:求1+2+22+23+24+…+22013的值.解:设S=1+2+22+23+24+…+22012+22013,将等式两边同时乘以2得:2S=2+22+23+24+25+…+22013+22014将下式减去上式得2S﹣S=22014﹣1即S=22014﹣1即1+2+22+23+24+…+22013=22014﹣1请你仿照此法计算:(1)1+2+22+23+24+…+210(2)1+3+32+33+34+…+3n (其中n 为正整数) 考点分析:同底数幂的乘法思路意图:考查同底数幂的乘法,弄清题中的技巧是解本题的关键解答过程:解:(1)设S=1+2+22+23+24+ (210)将等式两边同时乘以2得2S=2+22+23+24+…+210+211,将下式减去上式得:2S ﹣S=211﹣1,即S=211﹣1,则1+2+22+23+24+…+210=211﹣1;(2)设S=1+3+32+33+34+…+3n ,两边乘以3得:3S=3+32+33+34+…+3n +3n+1, 下式减去上式得:3S ﹣S=3n+1﹣1,即S=21(3n+1﹣1), 则1+3+32+33+34+…+3n =21(3n+1﹣1). 23.(10分)如图,△ABC 中,点O 是边AC 上一个动点,过O 作直线MN ∥BC .设MN 交∠ACB 的平分线于点E ,交∠ACB 的外角平分线于点F . (1)求证:OE=OF ;(2)若CE=12,CF=5,求OC 的长;(3)当点O 在边AC 上运动到什么位置时,四边形AECF 是矩形?并说明理由.考点分析:矩形的判定;平行线的性质;等腰三角形的判定与性质;直角三角形斜边上的中线思路意图:此题主要考查矩形的判定、平行四边形的判定和直角三角形的判定等知识,根据已知得出∠ECF=90°是解题关键解答过程:(1)证明:∵MN 交∠ACB 的平分线于点E ,交∠ACB 的外角平分线于点F ,∴∠2=∠5,4=∠6, ∵MN ∥BC ,∴∠1=∠5,3=∠6, ∴∠1=∠2,∠3=∠4, ∴EO=CO ,FO=CO , ∴OE=OF ;(2)解:∵∠2=∠5,∠4=∠6,∴∠2+∠4=∠5+∠6=90°,∵CE=12,CF=5,∴EF==13,∴OC=EF=6.5;(3)答:当点O在边AC上运动到AC中点时,四边形AECF是矩形.证明:当O为AC的中点时,AO=CO,∵EO=FO,∴四边形AECF是平行四边形,∵∠ECF=90°,∴平行四边形AECF是矩形.24.(14分)我们知道,经过原点的抛物线的解析式可以是y=ax2+bx(a≠0)(1)对于这样的抛物线:当顶点坐标为(1,1)时,a=;当顶点坐标为(m,m),m≠0时,a与m之间的关系式是(2)继续探究,如果b≠0,且过原点的抛物线顶点在直线y=kx(k≠0)上,请用含k的代数式表示b;(3)现有一组过原点的抛物线,顶点A1,A2,…,A n在直线y=x上,横坐标依次为1,2,…,n(为正整数,且n≤12),分别过每个顶点作x轴的垂线,垂足记为B1,B2,…,B n,以线段A n B n为边向右作正方形A n B n C n D n,若这组抛物线中有一条经过D n,求所有满足条件的正方形边长.考点分析:二次函数综合题思路意图:本题考查了待定系数法求二次函数的解析式,二次函数图象上点的坐标特征,二次函数的顶点坐标公式以及正方形的性质.解答(3)题时,要注意n的取值范围解答过程:解:(1)∵顶点坐标为(1,1),∴,解得,,即当顶点坐标为(1,1)时,a=1;当顶点坐标为(m,m),m≠0时,,解得,则a与m之间的关系式是:a=﹣或am+1=0.故答案是:﹣1;a=﹣或am+1=0.(2)∵a≠0,∴y=ax2+bx=a(x+)2﹣,∴顶点坐标是(﹣,﹣).又∵该顶点在直线y=kx(k≠0)上,∴k(﹣)=﹣.∵b≠0,∴b=2k;(3)∵顶点A1,A2,…,A n在直线y=x上,∴可设A n(n,n),点D n所在的抛物线顶点坐标为(t,t).由(1)(2)可得,点D n所在的抛物线解析式为y=﹣x2+2x.∵四边形A n B n C n D n是正方形,∴点D n的坐标是(2n,n),∴﹣(2n)2+2•2n=n,∴4n=3t.∵t、n是正整数,且t≤12,n≤12,∴n=3,6或9.∴满足条件的正方形边长是3,6或9.数学命题双向细目表初中数学原创题命题比赛双向细目表(样张)。

初中数学精品试题:七年级上数学资料4

七年级数学资料41.一个多项式与x2-2x +1的和是3x -2,则这个多项式为 . 整式7-2x +x2减去5+3x -2x2的差是 .比2a 2-3a -7少3-2a 2的多项式是 .2.李明在一次测验中计算一个多项式加上5xy -3yz +2xz 时,误认为减去此式,计算出错误的结果为2xy -6yz +xz ,试求出正确答案.3.已知m 2-m =6,则1-2m 2+2m =__ __.4.已知多项式226y y -+的值为8那么多项式2241y y -+的值为___________.5.当242a b a b -=+时,代数式3(2)3(2)4(2)2a b a b a b a b -+++-的值是 .6.已知x 2-xy=60,xy -y 2=40,求代数式x 2-y 2和x 2-2xy+y 2的值.7. 已知a -b =2,a -c =21,求代数式(b -c )2+3(b -c )+49的的值.8.若m -n = 4,mn = -1,求(-2mn + 2m + 3n )-(3mn +2n -2m )-(m + 4n + mn )的值。

9.设A =bx ax -33,B =823+--bx ax .(1)求A +B ;(2)当x =-1时,A +B =10,求代数式962b a -+的值.10.已知代数式的值为,求代数式的值.11.已知多项式935+++cx bx ax ,当x =-2时,多项式的值为17,则该多项式当x =2时的值 是 .12.一种商品每件的进价为a 元,按进价提高25%定出标价,再按标价的9折出售,那么每件还能盈利 .13.某商品进价为a 元,商店将其价格提高30%作为零售价销售,在销售旺季过后,商店又以8折(即售价的80%)的价格开展促销活动,这时一件商品的售价为 .14.两列火车都从A 地驶向B 地,已知甲车的速度为x 千米/时,乙车的速度为y 千米/时,经过3时,乙车距离B 地5千米,此时甲车距离B 地 千米15.已知甲、乙两种糖果的单价分别是x 元/千克和12元/千克.为了使甲乙两种糖果分别销售与把它们混合成什锦糖后再销售收入保持不变,则由20千克甲种糖果和y 千克乙种糖果混合而成的什锦糖的单价应是 元/千克.16.一个三角形第一条边长为a ,第二条边比第一条边长a -1,第三条边比第二条边短2-a ,求这个三角形的周长.17.车上原有乘客(2a -b)人,中途一半乘客下车,又有若干人上车,结果车上共有乘客(8a -5b)人,问中途上车的乘客有多少人?当a =8,b =6时,上车乘客有多少人?18.一个三位数,它的个位数字是a ,十位数字比个位数字的3倍少1,百位数字比个位数字大5.(1)试用含a 的代数式表示此三位数;(2)若交换个位数字和百位数字,其余不变,则新得到的三位数比原三位数减少了多少?(3)请你根据题目的条件思考,a 的取值可能是多少?此时相应的原三位数是多少?19.根据国家规定,稿费收入的个人所得税征收标准:当人均稿费不超过800元时,免交个人所得税;当人均稿费超过800元时,其中800元免交个人所得税,超过部分需交税,税率为20%.若稿酬为a(a>800)元,稿费所得者为1人,请你给出扣除个人所得税后实得稿费的计算公式,一位作家出版一本小说的稿酬为15 300元,问:扣除个人所得税后实得多少元?20.国家规定个人发表文章或出版著作所获稿费应纳税,其计算方法是:(1)稿费不高于800元不纳税;(2)稿费高于800元,但不高于4000元,应缴纳超过800元的那一部分的20%的税;(3)稿费高于4000元,应缴纳全部稿费的20%的税.张教授出版了一本著作获得a 元稿费.(1)张教授缴纳的税费是0元表示什么?(2)张教授的稿费高于800元,但不高于4000元,请你写出张教授应缴纳的税费;(3)张教授的稿费是2500元,他应缴纳多少税费?21.我国出租车收费标准因地而异.甲市:起步价6元,超过3千米,每千米加1.5元;乙市:起步价10元,超过3千米,每千米加1.2元.(1)试问在甲、乙两市乘坐出租车s(s>3)千米的差价是多少元?(2)若某人在甲、乙两市乘坐出租车的路程均为10千米,那么在哪个城市的收费高些?高多少?22.某商场计划投入一笔资金采购一批紧俏商品,经过市场调查发现:如果月初出售,可获利15%,并可用本和利再投资其他商品,到月末可再次获利10%;如果月末出售可获利30%,但要付仓储费用700元.(1)若商场投入x元,请写出这两种出售方式的获利情况;(2)若商场准备投入3 000元,你认为应采用哪种出售方式较好?23.雄凤商场文具部的某种钢笔售价为25元,A种笔记本每本售价为5元,该商场为促销制定了两种优惠方法:甲:买一支钢笔赠送一本A种笔记本;乙:按总金额的九折付款。

初中数学精品试题:第一讲 整数的整除性和带余数除法

第一讲 整数的整除性和带余数除法一. 内容提要 班级______ 姓名______1. 整除的性质⑴ n 个连续正整数的积能被n !整除.(n 的阶乘:n !=1×2×3×…×n ).例如:a 为整数时,2a(a+1),6a(a+1)(a+2),24a(a+1)(a+2)(a+3),……⑵ 若a b 且a c ,则a (b ±c). ⑶ 若a,b 互质,且a c, b c ,则ab c ;反之则有:a,b 互质,ab c ,则a c, b c. 2. 带余数除法用一个整数a 去除整数b ,且a>0,则必有并且只有两个整数q 与r ,使b=aq+r ,0≤r<a .这就是带余数除去的一般表达式.当r=0时,记为a│b ,b 被a 整除;当r≠0时,记为ab ,b 不能被a 整除,或者说,b 除以a 有余数.利用余数将自然数分类,在解决实际问题中有广泛应用.我们说,任何一个自然数b 被正整数a 除时,余数只可能是0、1、2、…、a-1.这样就可以把自然数分为a 类.例如,一个自然数被4除,余数只能是0、1、2、3中的一个.因此,所有自然数按被4除时的余数分为4类,即4k ,4k+1,4k+2,4k+3.任何自然数都在这四类之中. 二. 热身练习1. 2006年“五一节”是星期一,同年“国庆节”是星期 .2. 有一个数能被5整除,但除以4余3,这个正整数最小是 .3. 一个整数去除300,262,205,所得余数相同,这个整数是 .4. 一个数除以3余2,除以4余1,那么这个数除以12,余数是 .5. 正整数2006200634+除以3,所得余数是________.6.已知x ,y ,z 均为整数,若11|(7x+2y-5z ),求证:11|(3x-7y+12z ).7.如果一个四位数abcd 能被9整除,试说明四位数bdca 也能被9整除.8.设一个五位数abcad,其中d-b=3,试问a,c为何值时,这个五位数被11整除。

初中数学精品试题:小升初培优专题(二)

小升初培优专题二----列方程解应用题1、10名同学参加数学竞赛,前4名同学平均得分150分,后6名同学平均得分比10人的平均分少20分,这10名同学的平均分是________分.2、某商店想进饼干和巧克力共444千克,后又调整了进货量,使饼干增加了20千克,巧克力减少5%,结果总数增加了7千克。

那么实际进饼干多少千克?3、某文具店用16000元购进4种练习本共6400本。

每本的单价是:甲种4元,乙种3元,丙种2元,丁种1.4元。

如果甲、丙两种本数相同,乙、丁两种本数也相同, _____本。

4、六年级某班学生中有161的学生年龄为13岁,有43的学生年龄为12岁,其余学生年龄为11岁,这个班学生的平均年龄是_________岁。

5、某个五位数加上20万并且3倍以后,其结果正好与该五位数的右端增加一个数字2的得数相等,这个五位数是__________6、大小酒桶共80个,每个大桶可装酒25千克,每个小桶可装酒15千克大桶比小桶共多装600千克,则大酒桶有__________个7、某自来水公司水费计算办法如下:若每户每月用水不超过5立方米,则每立方米收费1.5元,若每户每月用水超过5立方米,则超出部分每立方米收取较高的定额费用,1月份,张家用水量是李家用水量的32,张家当月水费是17.5元,李家当月水费27.5元,超出5立方米的部分每立方米收费多少元?8.商店在销售二种售价一样的商品时,其中一件盈利25%,另一件亏损25%,卖这两件商品总的是盈利还是亏损.9. 参加迎春杯数学竞赛的人数共有2000多人。

其中光明区占1/3,中心区占2/7,朝阳区占1/5,剩下的全是远郊区的学生。

比赛结果,光明区有1/24的学生得奖,中心区有1/16的学生得奖,朝阳区有1/18的学生得奖,全部获奖者的1/7是远郊区的学生。

那么参赛学生有多少名?获奖学生有多少名?10. 4只同样的瓶子内分别装有一定数量的油。

每瓶和其他各瓶分别合称一次,所得重量的千克数如下:8、9、10、11、12、13。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

化简a a−1+11−a
的结果为( )
A .1
B .﹣1
C .a +1a−1
D .a +1
1−a
【2】【单选题】
计算149−m 2÷1
m 2−7m 的结果为( )
A .m m +7
B .m m −7
C .149−7m
D .﹣m m +7
【3】【单选题】
化简1
x 2−1÷1
x 2−2x +1+2
x +1
的结果是( ) A .1 B .12 C .x−1x +1 D .2x−2
(x +1)2
【4】【单选题】
若(x ﹣1)0=1成立,则x 的取值范围是( ) A .x=﹣1
B .x=1
C .x ≠0
D .x ≠1
【5】【单选题】
当a 2
+a ﹣1=0时,2
a 2+a ﹣a +2
a 2+2a +1
的结果是( )
A .−1− 52
B .−1+ 52
C .1
D .0
【6】【单选题】
小明通常上学时走上坡路,途中平均速度为m 千米/时,放学回家时,沿原路返回,通常的平均速度为n 千米/时,则小明上学和放学路上的平均速度为( )千米/时.
A .
m +n 2
B .mn m +n
C .2mn m +n
D .
m +n mn
【7】【单选题】
2016年某省高考报名人数为18.37万人,其中男生约有a 万人,则女生约有( ) A .(18.37+a )万人 B .1837a
万人 C .18.37a 万人 D .(18.37﹣a )万人
【8】【填空题】
已知a ﹣1
a =3,则﹣12a 2+3
2
a= .
(1)(3b 2a
)2= ; (2)
10ab c ÷
5a 4c
= .
【10】【填空题】
将代数式a
5−1xy 2化成不含有分母的形式是 .
【11】【填空题】
已知n >1,M=n
n−1,N=n−1n ,P=n n +1
,则M 、N 、P 的大小关系为 .
【12】【填空题】 计算:x x 2y−y ÷xy
x 2+x
= .
【13】【解答题】
先化简,再求值:x 2−2x +1x −x ÷(x ﹣1
x
),其中x= 2﹣1.
【14】【填空题】
(1)计算:(﹣1)2016﹣|﹣2|+( 3−π)0× 83+(14
)﹣1
(2)先化简,再求值:(x +2x ﹣x−1x−2
)÷x−4
x 2−4x +4,其中x 是不等式3x +7>1的
负整数解.
【15】【综合题】
学完分式运算后,老师出了一道题:“计算2x x 2−1

1x−1
”小明解答如下:
解:原式=
2x (x +1)(x−1)

x +1(x +1)(x−1)
……第一步
=2x ﹣(x +1)……第二步 =2x ﹣x ﹣1 ……第三步 =x ﹣1 ……第四步 【15.1】【#解答题】
上述解题过程中的错误从第 步开始; 【15.2】【#解答题】
2x x2−1−
1
x−1
的值.
当x为x﹣3<0的正整数解时,求
【1】【答案】A
【1】【解析】解:原式=
a
a−1

1
a−1
=
a−1
a−1
=1,
【1】【难度】中【2】【答案】D
【2】【解析】解:原式=
1
−(m+7)(m−7)
•m(m﹣7)=﹣
m
m+7

【2】【难度】中【3】【答案】A
【3】【解析】解:原式=
1
(x+1)(x−1)
•(x﹣1)2+
2
x+1
=x−1
x+1
+
2
x+1
=x+1 x+1
=1,
【3】【难度】中
【4】【答案】D
【4】【解析】解:由题意可知:x﹣1≠0,x≠1
【4】【难度】中
【5】【答案】C
【5】【解析】解:∵a2+a﹣1=0,
∴a2=1﹣a,
∴原式=
2
1−a+a

a+2
1−a+2a+1
=2﹣1 =1.
【5】【难度】中
【6】【答案】C
【6】【解析】解:设上学路程为1,则往返总路程为2,上坡时间为1
m
,下坡时
间为1n

则平均速度=21+1=2mn
m +n
(千米/
【6】【难度】中
【7】【答案】D
【7】【解析】解:∵高考报名人数为18.37万人,男生约有a 万人, ∴女生约有(18.37﹣a )万人. 【7】【难度】中
【8】【答案】﹣12

【8】【解析】解:∵a ﹣1
a
=3,
∴a ﹣3=1
a ,
∴﹣12a 2+32a=﹣12a (a ﹣3)=﹣12a•1a =﹣12.
【8】【难度】中 【9】【答案】
8b c

【9】【解析】解:(1)(
3b 2a
)2
=
9b 4a 2

故答案为:9b 4a
2;
(2)10ab
c 2÷5a 4c =10ab c 2×4c 5a =8b
c

【9】【难度】中
【10】【答案】5ax﹣1y﹣2
【10】【解析】解:原式=5ax﹣1y﹣2,【10】【难度】中
【11】【答案】M>P>N.
【11】【解析】解:∵n>1,M=n
n−1,N=
n−1
n
,P=
n
n+1

∴M﹣P=
n
n−1

n
n+1
=
n2+n−n2+n
n−1
=
2n
(n+1)(n−1)
>0,P﹣N=
n
n+1

n−1 n =
n2−n2+1
n(n+1)
=
1
n(n+1)
>0,
则M>P>N.【11】【难度】中
【12】【答案】x
y x−y

【12】【解析】解:x
x2y−y ÷
xy
x2+x
=
x
y(x+1)(x−1)
×
x(x+1)
xy
=
x
y2x−y2

【12】【难度】中
【13】【答案】解:当x=2﹣1时,
原式=(x−1)2
x(x−1)
÷
x2−1
x
=x−1
x

x
(x+1)(x−1)
=
1 x+1
=
2
=
2 2
【13】【解析】
【13】【难度】中
【14】【答案】解:(1)原式=1﹣2+1×2+4=5
(2)原式=(x+2)(x−2)−x(x−1)
x(x−2)
×
(x−2)2
x−4
=x−2 x
当3x+7>1,即x>﹣2时的负整数时,
当x=﹣1时
原式=3
【14】【解析】
【14】【难度】中
【15.1】【#答案】解:(1)从第2步开始错误【15.1】【#解析】
【15.2】【#答案】当x﹣3<0时,
∴x<3
∵x是整数,
∴x=2
∴原式=
2x
(x+1)(x−1)

x+1
(x+1)(x−1)
=
x−1 (x+1)(x−1)
=
1 x+1
=1 3
【15.2】【#解析】。

相关文档
最新文档