“三校生”职业高中高一数学期末考试试卷

合集下载

职业高中高一下学期期末数学试题卷5(含答案)

职业高中高一下学期期末数学试题卷5(含答案)

职业高中下学期期末考试 高一《 数学_》试题5一. 选择题:(每小题3分,共30分)1.函数()x a y 1-=在R 上是增函数,则a 的取值范围是( )A.a >1B.1<a <2C.a >2D.2<a <3 2.若n m ==5ln ,2ln ,则n m e +2的值为 ( )A .2B .5C .20D .103.函数2()log (1)f x x π=+的定义域是( ) A .(1,1)-B .(0,)+∞C .(1,)+∞D .R4.下列说法中,正确的是( )A. 第一象限角一定是锐角B.锐角一定是第一象限角 B. 小于90度的角一定是锐角 D.第一象限角一定是正角5.已知α为第二象限角,则=-•αα2cos 1sin 1. A. 1 B.-1 C.1或-1 D.以上都不是6.下列函数中,在区间⎪⎭⎫⎝⎛2,0π上是减函数的是( )A .x y sin =B .x y cos =C .x y tan =D .2x y =7.等差数列{n a }的通项公式是n a = -3n + 2 ,则公差d = ( )A. -4B. -3C. 3D. 48.在等差数列{n a }中,若=+173a a 10 ,则19S = ( )A. 65B. 75C. 85D. 959.已知等比数列{}n a 中,,32,832==a a 则=1a ( )A. 2B. 4C. 6D. 810.三个正数c b a ,,成等比数列, 是c b a lg ,lg ,lg 成等差数列的 A .充要条件 B .必要条件 C .充分条件 D .无法确定 二.填空题(每小题3分,共24分) 11.已知()[]0lg log log 37=x ;则=x .12.函数()lg(lg 2)f x x =-的定义域是 .13. =+2log 15514.与52π-终边相同的角中最小正角是 15.在三角形ABC 中,如果B A cos sin ⋅<0,则△ABC 是 三角形 16.已知2cos sin =+αα,则=⋅ααcos sin . 17.等比数列{}n a 中,若,2563=a a 则=72a a _______ 18.等比数列{}n a 中,若12632==a a ,,则S 6 =_______ 三.计算题:(每小题8分,共24分)19.已知:()()521322231,31-++-⎪⎭⎫⎝⎛=⎪⎭⎫⎝⎛=x x x x x g x f ,()x f >()x g ,求x 的取值范围.专业 班级 姓名 学籍号 考场 座号20.求值sin()tan()cos()cos(2)tan()sin()πααπαπαπαπα+-+++-.21.在等比数列{}n a 中,若,2,12413=-=-a a a a 求首项1a 和公比q .四.证明题:(每小题6分,共12分)22.已知(1,10)x ∈, 22lg ,lg ,lg(lg ),A x B x C x === 证明:C A B <<.23.1=-.五:综合题:(10分) 24.等比数列}{n a 中,公比q=2,25log log log 1022212=+•••++a a a ,求n a a a +•••++21.高一 《 数学__》试题5参考答案一.选择题:1---5 CCDBA 6----10 BBDAA 二.填空题11. 1000 12.[100,+∞ ) 13. 10 14.58π 15.钝角 16.2117.25 18.189 三.计算题:(每小题8分,共24分) 19.已知:()()521322231,31-++-⎪⎭⎫⎝⎛=⎪⎭⎫⎝⎛=x x x x x g x f ,()x f >()x g ,求x 的取值范围.20.求值sin()tan()cos()cos(2)tan()sin()πααπαπαπαπα+-+++-.解 原式=()()1sin tan cos cos tan sin -=---αααααα.21.在等比数列{}n a 中,若,2,12413=-=-a a a a 求首项1a 和公比q . 解 由等比数列的通项公式得()()⎩⎨⎧=-=-=-=-21112113121121q q a q a q a q a a q a 解得 ⎪⎩⎪⎨⎧==2311q a 所以2,311==q a 四.证明题:(每小题6分,共12分)22.已知(1,10)x ∈, 22lg ,lg ,lg(lg ),A x B x C x === 证明:C A B <<.(答案略)23.1=-.证明 左边=()()120cos 20sin 20cos 20sin 20cos 20sin 20cos 20sin 20cos 20sin 20cos 20sin 2-=---=--=--οοοοοοοοοοοο=右边所以1︒=-五:综合题:(10分) 24.等比数列}{n a 中,公比q=2,25log log log 1022212=+•••++a a a ,求na a a +•••++21.(答案略)。

高一高职班数学期末考试试卷

高一高职班数学期末考试试卷

高一高职班数学期末考试试卷 一 、选择题:(只有一个正确,每题5分,共75分)1、下列关系正确的是( )A 、∅ = {0}B 、0 ∈∅C 、0 =∅D 、0 ∈{0}2、已知集合}{5,2,1=A }{4,3,2=B ,则=⋂B A ( )A .}{2B .}{5,4,3,2,1C . }{5,4,3,2,2,1 D .φ 3、若4:2=x p ,2:=x q ,则p 是q 的( )条件。

A.充分而不必要B.必要而不充分C.充要; D 既不充分也不必要4、二次函数542+--=x x y 的最大值为( )A .9B .5C .4D .15、不等式022<--x x 的解集是 ( )A .{}1->x xB .{}2<x xC . {}21<<-x xD . {}12-<>x x x 或 6、3log 32=( ) A. 1 B . 2 C . 5 D . 97、 下列不表示同一函数的是( )A. 、f(x) =︱x ︱与g(x)=2 B .、g(x)=1与 f(x)=x °(x ≠0)C .、f(x) =x 与 g(x)=x 2xD 、f(x)=√x 3 与f(x)=x √x 8、已知函数f(x) =a x 经过点(1,2),则log a 16= ( )A. 2 B . 4 C .6 D . 89、已知集合},,{c b a ,下列哪个集合不是它的真子集( )A .φ B. }{a C . },{b a D .},,{c b a10、如果b a >,那么下列各不等式恒成立的是 ( )A .bc ac >B . c b c a +>+C . 22b a >D . ()0lg >-b a11、下列不等式中,解集为R 的是( )A .02<x B. 0<x C . 0122>++x x D .0>x12、如果,)32()32(n m -<则正确的是( ) A .n m -< B. n m < C . n m > D .n m ->13、若偶函数()x f y =,在(]1,-∞-上是增函数,则下列关系式中成立的是 ( )A .()()1232-<⎪⎭⎫ ⎝⎛-<f f fB .()()2231f f f <⎪⎭⎫ ⎝⎛-<- C .()()⎪⎭⎫ ⎝⎛-<-<2312f f f D . ()()2123f f f <-<⎪⎭⎫ ⎝⎛- 14、设奇函数()f x 的定义域为[5,5]-.若当[0,5]x ∈时,()f x 的图象如下图,则不等式()0f x >的解集是 ( )A .[)(]5,22,5--UB .(0,2)(2,0)-UC .[5,2)(0,2)--UD .(0,2)15、函数y=log(x 2−kx +2)定义域为R 。

职高高一数学第二学期期末试题

职高高一数学第二学期期末试题

高一(职高)数学期末试卷(总分150分,时间120分)一、 选择题(每小题5分,共75分)1.在等比数列中,126,9,a s ==则公比q=( ) .2A -1.2B - 1.2C .2D2.下列说法不正确的是( )A .平行于同一直线的两直线平行B .垂直于同一平面的两直线平行 C.平行于同一平面的两平面平行 D.垂直于同一直线的两直线平行3.化简:(AB -CB )+(DM -DC )=( )A. MAB. BMC. AMD. AD4.已知(1,3),(,1),//,a b x a b x =-=-=且则( )A .3 B. 13 C. -3 D.13-5.下列直线中通过点M(1, -2)的为( )A.x-2y+1=0B. 2x-y-1=0C. 2x-y+1=0D. 3x+y-1=06.下面两条直线互相平行的是( )A.x-y-1=0与x+y-1=0B.x-y=1与y=xC. x-y-1=0与-x-y+1=0D. x-y+1=0与y=-x+17.直线2x+y-1=0的斜率和在y 轴上的截距分别为 ( )A.-2,-1B.-2,1C.2,-1D.2,18.若点P(2,m)到直线3x-4y+2=0的距离为4,则m 的值为( )A.m= -3B.m=7C.m= -3或m=7D. m=3或m=79.两条平直线中的一条和一个平面平行,则另一条与这个平面位置关系是( )A.平行B.在平面内C.平行或在平面内D.相交10. //,,,a b a b αβαβ⊆⊆若则与的位置关系是( )A.平行B.异面C.平行或异面D.相交11.由2,3,4,5四个数字可以组成没有重复数字的四位数( )A.24个B.8个C.12个D.28个12.把一枚构造均匀的硬币抛掷两次,正好得到两次正面朝上的概率为( )A. 14B. 13C. 12D.113.有980件产品,编号分别为01,02,…..,980,现从中抽取5件进行质量检验,用系统抽样方法抽取样本,则抽得的编号可能是( )A.04,198,392,586,780B.10,160,310,460,610C.02,198,394,590,786D.05,105,205,305,40514.下列语句中,表示随机事件的是( )A.掷两颗骰子出现的点数之和是1B.异性电荷互相吸引C.太阳从东边升起D.连续掷一枚硬币三次,出现三次正面朝上15.样数据1,3,4,5,7 的方差是( )A.0B.2C.4D.10(每小题5分,共20分) 、在等比数列中, 5112,,2a a ==公比q=则____________________ 、(1,2),(3,5),a b a b ==•=则______ 、12:210:10l mx y l x y +-=--=直线与直线互相垂直,则m= 、224620x y x y ++--=圆的圆心坐标为 (每小题 分,共55分) 、在等差数列中,已知1661,16,a a d s ==求和 . 、已知(1.2),(2,3),a b == 求 (1)()(2)a b a b +•- (2)a b + 班级姓名学号22、已知向量(3,4),(2,1),))==+-且向量(m与(垂直,求实数m的值.a b a b a b23、求经过两点(3,5)和(-3,7),并且圆心在x轴上的圆的方程。

中职高一数学期末统考试卷

中职高一数学期末统考试卷

高一数学期末统考试卷班级学号姓名一判断下列命题的真假(20分)1 空集是任何一个集合的真子集()2 学习较好的同学组成一个集合()3 任何一个实数的平方都是非负数()4 若一个数列从第二项起,每一项与它前一项的差是同一常数,则这个数列是等差数列. ()5 若ac>bc , 则 a>b ()6 若 a>b ,则 ac²>bc²()7 不等式2 x²–4x +9>0的解集是空集()8常数数列一定是等比数列()9 函数y=9-x²是偶函数.()10 函数 y=x²在区间[0,∞] 上是增函数 ( ) 二选择题(30分)1 若s={1,2,3},m={2,3,4,5},则s ∩m=( )A{2,3} B{1,2,3} C{1,2,3,4,5} D{4,5}2集合A={–1,0,1}的所有子集的个数是()A 4B 6C 7D 83 .如果a>b,那么下列不等式错误的是()A a+3>b+3B 5a>5bC -2a>-2bD a+7>b +54 不等式|x+2|<1的解集为()A {x|x<1}B {x|x>-3}C {x|­3<x<­1}D {x|­1<x<­3}5 若f(x)=x ­1 ,则f(­2)=( )A –1B –3C 1D 36 不等式(x+3)(x-5 )<0的解集是( )A {x|>–3}B {x|x<5}C {x|–3<x<5}D 空集7两个数的等比中项之一是12,等差中项是20,那么这两个数为 ( )(A)18,22 (B)9,16 (C)4,36 (D)16,248已知、、+成等差数列,、、成等比数列,则、的值是 ( ).9如果奇函数f(x)在区间[3,7]上是增函数,且最小值为5,那么f(x)在区间-[-7,-3]上是( )A 增函数且最小值为-5B 增函数且最大值为-5C 减函数且最小值为-5D 减函数且最大值为-510 函数f(x)=√x ²­4 的定义域是( )A x ≠±2B x ≤-2 或x ≥2C x ≥2D x ≤–2三 填空题 (20分)1在等差数列{}n a 中,已知2,185=-=a a ,求.________,1==d a2 不等式2x ²+1>0的解集是3不等式|x|>5的解集的4 点P(2,3)关于原点的对称点的坐标是5 设A={–2,0,2,4} B={1,3} 则A ∪ B= 6等差数列10,7,4,……,-47的各项和为__________.7等比数列2,4,8,……从第5项到第8项的和为_________.8若函数f(x)是奇函数,且f(–3)=8,则f(3)=9 函数y=(k –3) x ² +4x+k 与x 轴有唯一的的交点,则k=10 函数f(x)=–x ²+2x –1的顶点坐标为 ,对称轴为四 解答题 (20分)1、1集合{|12},{|03},A x x B x x =-<<=<<求(1)A B =I (2)AUB2.解下列不等式(或组):(1)(+3)>0; (2)(3). | 2-3x | > 4 (4){3|12|0322<+≥--x x x3 小张家想利用一面墙,再用篱笆围成一个矩形的鸡场,他家已备足可以围10米的篱笆,试问:矩形鸡场的长和宽各是多少米时,鸡场的面积最大?最大面积是多少平方米?4.一天,有个年轻人来到小米步童鞋店里买了一双鞋子。

高一职高数学期末考试(第一学期)

高一职高数学期末考试(第一学期)

高一职高期末考试数学试题一、选择(每题3分)1、设全集U=},104|{N x x x ∈≤≤,A={4,6,8,10},则A C U ( ) A.{5} B 、{5,7} C 、{5,7,9} D 、{7,9}2、已知集合},,{},{c b a A b a = ,则符合条件集合A 的个数为( ) A 、1个 B 、2个 C 、3个 D 、4个3、若集合P={}21|≤<-x x ,集合Q={}01|>-x x ,则Q P 等于( ) A 、}11|{<<-x x B 、}21|{≤<x x C 、}21|{≤<-x x D 、 }1|{->x x4、“0>a 且0>b ”是“a ·b>0”的( )条件A、充分不必要 B 、必要不充分 C 、充分必要 D 、以上答案都不对 5、若a 、b 是任意实数,且a >b,则( ) A 、22b a > B 、1<abC 、b a lg lg >D 、b a --<22 6、下列命题中,正确的是( )A、若a >b ,则a c>bc B 、若,22bc ac >则a >b C 、若b a >,则22bc ac > D 、若b a >,c>d,则bd ac >7、如果A==<+-}01|{2ax ax x Φ,则实数a 的集合是( ) A 、(0,4) B 、[0,4] C 、(0,4] D、[0,4)8、已知方程02)2(22=+++-m x m x 有两个不等的实根,则m 的取值范围是( ) A 、(-2,-1) B 、(-2,0) C 、),1()2,(+∞---∞ D 、),1(+∞- 9、下列四组函数中,有相同图像的一组是( ) A 、||x y =与33x y = B 、x y =与2x y =C 、||||x y =与22x y = D 、1)(=x f 与xx x g =)( 10、设144)2(2++=x x x f ,则)(x f 等于( )A 、2)1(+xB 、122++x xC 、12++x xD 、18162++x x11、函数2655)(xx f x x +-=-是( )函数A 、奇函数B 、偶函数C 、既奇又偶函数D 、非奇非偶函数 12、已知函数)(x f y =在),(o -∞上是减函数,则( )A 、)42()31()21(->->-f f f B 、)31()42()21(->->-f f fC 、)21()42()31(->->-f f f D 、)21()31()42(->->-f f f 13、函数225x x y --=在[-2,1]上的最大值与最小值分别是( ) A 、6,3 B 、6,5 C 、5,3 D 、6,214、函数32)1()(2++-=mx x m x f 且2)1(=-f ,则)(x f 是( ) A 、在),0[+∞上的单调递增函数 B 、在]0,(-∞上的单调递减函数C 、在),(+∞-∞内的奇函数D 、在),(+∞-∞内的偶函数15、把函数)(x f y =的图像向左、向下分别平移2个单位,得到函数xy 2=的图像,则( ) A 、22)(2+=+x x f B 、22)(2-=+x x f C 、22)(2+=-x x f D 、22)(2-=-x x f二、填空题(每题3分)1、设U=R ,P=}1|{≥x x ,Q=}30|{≤≤x x ,则)(Q P C u ⋂=__________________2、若0>a ,则aba b _________1-(填<或>) 3、不等式3|3|1≤-<x 的解集为________________4、设函数=)(x f 0,10,22{≤->+x x x x , 则___________)]2([=-f f5、设函数)(x f 是偶函数,函数)(x g 是奇函数,且x x x g x f +=+2)()(,则)(x f =__________6、设二次函数的图像顶点为(1,3),且过点(2,5),则其解析式为_________________7、_______________2009)49(8102343=++-8、化简,当0≥a 时,a a a 3141的值是_______________9、4524log =x ,则x =______________ 10、函数13+=-x a y 的图像恒过一个定点坐标是______________三、解答题 1、解不等式(1)、0)3)(2)(1(2>++-x x x (2)、x x283)31(2-->2、求函数41432++++=x x x y 的定义域3、设函数1)(35+++=cx bx ax x f 且1)(-=πf ,求)(π-f 的值4、323524log 25log 3log )01.0(lg +--5、证明、函数xx f 1)(=在)0,(-∞上为减函数 6、已知函数0,123,0,32{)(≤+≤<-=x x x x x f(1)求)(x f 的定义域。

“三校生”职业高中高一数学期末考试试卷

“三校生”职业高中高一数学期末考试试卷

“三校生”职业高中高一年级期末考试数学试题一、是非选择题:本大题共10小题,每小题3分,共30分。

对每小题的命题作出判断,对的选A,错的选B 。

1.{}c b a a ,,⊆ ……………………………………………( ) 2.如果c a c b b a >>>则,,…………………………………( ) 3.a a =2………………………………………………( )4.若b a >,则b a 11< ……………………………………( )5.9log 3log )93(log 333+=+………………………………( )6.函数53+=x y 是在实数集上的增函数………………( )7.函数532+-=x x y )(3>x 有最小值,无最大值……( )8.24log 3log 32= ………………………………………( )9.函数)1lg(2+=x y 的图像关于坐标原点对称…………( )10.xy 31-=函数的定义域为()∞+,1…………………( ) 二、单项选择题:本大题共8小题,每小题5分,共40分。

11.已知12)(+=x x f ,那么=)1(f …………………( ) A .1 B .2 C .3 D.412.的是且000>>>xy y x ……………………………( ) A .充分条件 B .必要条件C .充要条件D .既不是充分条件也不是必要条件13.不等式0)2(1>++-x x )(的解集为………………( ) A.(1,2) B.(-2,1) C.()()+∞∞-,21, D.R14.若n m )21()21(>,则n m ,的大小关系为……………( )n D.m n C.m n B .m n A.m ≤≥<>15.已知函数n x x f =)(的图像过点(3,9)则=)1(f ( ) A.1 B.-1 C.2 D.316.集合{}02≤x x 的子集个数是…………………( ) A.0 B.1 C.2 D.3 17.下列大小比较不正确的是………………( ) A.5log 5.0log 22> B.4.002>π C.1.0lg 1lg > D.322.02.0<18.函数()+∞=,0)(在x f y 上是减函数,若),23()(-<x f x f 则x 的取值范围是……………………( )1A.32<<x B.0>x C.1<x D.10<<x三、填空题:本大题共6小题,每小题5分,共30分。

职高高一数学试卷期末

职高高一数学试卷期末

一、选择题(每题4分,共40分)1. 下列各数中,属于无理数的是()A. √4B. 0.1010010001...C. 2/3D. -π2. 已知函数f(x) = 2x + 3,则f(-1)的值为()A. 1B. 2C. 3D. 43. 下列各对数中,正确的是()A. log2 4 = 2B. log3 9 = 2C. log5 25 = 1D. log10 100 = 24. 已知等差数列{an}的第三项a3 = 10,公差d = 2,则第一项a1为()A. 6B. 8C. 10D. 125. 若等比数列{bn}的第一项b1 = 3,公比q = 2,则第n项bn为()A. 3×2^(n-1)B. 3×2^nC. 6×2^(n-1)D. 6×2^n6. 已知函数y = ax^2 + bx + c(a ≠ 0),若a > 0,则该函数的图像()A. 在y轴左侧单调递减,在y轴右侧单调递增B. 在y轴左侧单调递增,在y轴右侧单调递减C. 在整个实数域上单调递增D. 在整个实数域上单调递减7. 下列各三角形中,是直角三角形的是()A. 边长分别为3,4,5的三角形B. 边长分别为5,12,13的三角形C. 边长分别为6,8,10的三角形D. 边长分别为7,24,25的三角形8. 已知圆的半径为r,则该圆的面积S为()A. πr^2B. 2πrC. πr^2 + 2πrD. πr^2 + 2r9. 下列各等式中,正确的是()A. (a + b)^2 = a^2 + b^2B. (a - b)^2 = a^2 - b^2C. (a + b)^2 = a^2 + 2ab + b^2D. (a - b)^2 = a^2 - 2ab + b^210. 若直线y = kx + b与直线y = 2x - 3平行,则k的值为()A. 2B. 3C. -2D. -3二、填空题(每题5分,共50分)1. 若x^2 - 5x + 6 = 0,则x的值为______。

(完整word版)职高高一上期末数学考试试卷

(完整word版)职高高一上期末数学考试试卷

职高高一年级上期期末考试数学试卷本试卷分第Ⅰ(选择题)卷和第Ⅱ卷(非选择题)两部分。

满分150 分,考试用时100 分钟。

第Ⅰ卷(选择题,共60 分)本卷 15 小题,每题 4 分,共 60 分。

在每题给出的四个选项中,只有一个正确选项。

(1)以下选项能构成会合的是()A 、有名的运动健儿B、英文26 个字母C、特别靠近0 的数D、英勇的人( 2)设会合M2,则以下写法正确的选项是()。

A .2 M B. 2 M C. 2 M D. 2 M(3)设 A={x|-2<x≤ 2}, B={x|1 < x<3}, A∪B=()A.{x|-2<x<3} B. {x|-2< x≤ 1} C. {x|1< x≤ 2} D. {x|2< x< 3}( 4)函数y9x2的定义域是()x2,B.,C.,,D.,,A.3 3 3 3 3 2 2 3 3 2 2 3(5)设全集为 R,会合A1,5 ,则 C U A()A ., 1 B. 5, C., 15, D.,15,( 6)函数y x2x 是()A奇函数B偶函数C非奇非偶函数D又奇又偶函数( 7)不等式 |x+1| <1 的解集是()A.{x|0<x<1} B. { x|x< -2 或 x> 2 }C. { x|-2< x< 0 }D. { x|-2< x< 2 }( 8)不等式x 2 3 x 2 0的解集是()A.x | x 1或 x 2 B . x |1 x2C. x | 1x2D.x | x1 2或 x2( 9)函数y x2的单一减区间为()A1, B 0,C,0B,( 10)不等式1x16的解集为()A.1, 2B.0,5C.10 ,5D.10 ,51,2 333333(11) 、一次函数 y=kx+b 的图像(如图示),则()yA .k>0,b>0B .k>0,b<0C .k<0,b<0 D.k<0,b>00x ( 12)以下会合中,表示同一个会合的是()(图一) A.M={(3,2)},N={(2,3)} B . M={3,2},N={2,3}C.M={(x,y)|x+y=1},N={y|x+y=1} D . M={1,2},N={(1,2)}( 13x y1)方程x y的解集是()1A x0, y1B0,1C(0,1)D(x, y) | x0域 y 1( 14)若 a1,则不等式x a x 10的解集是()A.x | a x 1B. x |1 x aC. x | x a或x 1D. x | x 1或x a ( 15)若二次函数y=2x 2+n 的图像经过点(1, -4 ),则 n 的值为()A.-6B.-4C.-2D.0请将选择题的答案填入下表:题号123456789101112131415答案第Ⅱ卷(非选择题,共90 分)二.填空题:(本大题共4 个小题,每题 5 分,共 20 分。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

“三校生”职业高中高一年级期末考试
数学试题
一、是非选择题:本大题共10小题,每小题3分,共30分。

对每小题的命题作出判断,对的选A,错的选B 。

1.{}c b a a ,,⊆ ……………………………………………( ) 2.如果c a c b b a >>>则,,…………………………………( ) 3.a a =2………………………………………………( )
4.若b a >,则b a 1
1< ……………………………………( )
5.9log 3log )93(log 333+=+………………………………( )
6.函数53+=x y 是在实数集上的增函数………………( )
7.函数532+-=x x y )(3>x 有最小值,无最大值……( )
8.24log 3log 32= ………………………………………( )
9.函数)1lg(2+=x y 的图像关于坐标原点对称…………( )
10.x
y 31-=函数的定义域为()∞+,
1…………………( ) 二、单项选择题:本大题共8小题,每小题5分,共40分。

11.已知12)(+=x x f ,那么=)1(f …………………( ) A .1 B .2 C .3 D.4
12.的是且000>>>xy y x ……………………………( ) A .充分条件 B .必要条件
C .充要条件
D .既不是充分条件也不是必要条件
13.不等式
0)2(1>++-x x )(的解集为………………( ) A.(1,2) B.(-2,1) C.()()+∞∞-,21, D.R
14.若n m )2
1
()21(>,则n m ,的大小关系为……………( )
n D.m n C.m n B .m n A.m ≤≥<>
15.已知函数n x x f =)(的图像过点(3,9)则=)1(f ( ) A.1 B.-1 C.2 D.3
16.集合{}
02≤x x 的子集个数是…………………( ) A.0 B.1 C.2 D.3 17.下列大小比较不正确的是………………( ) A.5log 5.0log 22> B.4.002>π C.1.0lg 1lg > D.322.02.0<
18.函数()+∞=,0)(在x f y 上是减函数,若),23()(-<x f x f 则x 的取值范围是……………………( )
1A.32<<x B.0>x C.1<x D.10<<x
三、填空题:本大题共6小题,每小题5分,共30分。

19.若2,+>a b a 则 2-b (用<>,填空)。

20.5x 用分数指数幂表示: 。

21.==2log ,3log 62则已知m 。

22.不等式 53>+-x 的解集是 。

23.若函数)1,0()(1≠>=+a a a x f x ,则)(x f 必过点 。

24.函数)2lg(2a x x y ++=的定义域为R ,则a 的范围是 。

四、解答题:本在题共6小题,25—28小题每小题8分,29—30小题9分,共50分。

25.已知全集{}{}2,0A 8,5,2,1,0,3-U ==,,{},5,1,3-B =
求B A ,B C A C B C A C u u u u ,,.
26.计算:
(1)032
2
-3-27
83)()(π++ (2)2log 5log 25lg 4lg 52-+
27.已知函数)3lg()3lg()(x x x f -++= (1)求函数)(x f 的定义域;
(2)判断函数)(x f 的奇偶性,说明理由。

28.若一元二次不等式02<++n mx x 的解集为(1,2); (1)求n m ,的值;
(2)求抛物线n mx x y ++=2的顶点坐标和对称轴。

29.已知函数124)(+-=x x x f .
(1)求()()11-+f f 的值; (2)解不等式()x f <1;
(3)判断)(x f 的单调性。

30.某公司要招聘甲乙两种工种的工人60人,甲乙两种工种的工人的月工资分别为1500元和2000元。

现要求乙种工种的工人数不少于甲种工种工人数的2倍,问:甲乙两种工种各招聘多少人时,可使得每月所付的工资最少?。

相关文档
最新文档