功分器设计报告

合集下载

Wilkinson功率分配器设计报告

Wilkinson功率分配器设计报告

Wilkinson功率分配器设计报告一、设计指标要求工作频率0.9-1.1GHz;中心频率1GHz;通带内端口反射系数小于-10db;端口2和端口3之间的隔离度小于-10db;端口1和端口2的传输损耗小于3.1db。

二、功率分配器概述1.功率分配器定义功率分配器是一种将一路输入信号能量分成两路或多路信号能量输出的器件(也可反过来将多路信号能量合成一路输出,此时也可称为合路器),可以等效为将输入功率分成相等或不相等的几路输出功率的一种多端口微波网络。

2.功率分配器分类及比较●功率分配器按路数分为:2 路、3 路和4 路及通过它们级联形成的多路功率分配器。

●功率分配器按结构分为:微带功率分配器及腔体功率分配器。

●根据能量的分配分为:等分功率分配器及不等分功率分配器。

●根据电路形式可分为:微带线、带状线、同轴腔功率分配器。

常用的功率分配器都是等功率分配,从电路形式上来分,主要有微带线、带状线、同轴腔功率分配器,几者间的区别如下:(1)同轴腔功分器优点是承受功率大,插损小,缺点是输出端驻波比大,而且输出端口间无任何隔离。

微带线、带状线功分器优点是价格便宜,输出端口间有很好的隔离,缺点是插损大,承受功率小。

(2)微带线、带状线和同轴腔的实现形式也有所不同:同轴腔功分器是在要求设计的带宽下先对输入端进行匹配,到输出端进行分路;而微带功分器先进行分路,然后对输入端和输出端进行匹配。

3.功率分配器基本原理根据设计要求,结合以上对各种类型功率分配器的比较,我选择Wilkinson功率分配器结构进行设计。

Wilkinson功率分配器是三端口网络,它的微带结构如图1 Wilkinson功率分配器微带结构所示。

其输入端口传输线特性阻抗为Z0,两段分支线的长度为λ/4,特性阻抗都是√2Z0,两个终端的负载阻抗为Z0。

图 1 Wilkinson功率分配器微带结构此三端口网络的散射参量为[S]=10j jj00j00]因为S11=S22=S33=0,所以理想情况下在中心频率它的3个端口完全匹配。

功分器设计

功分器设计

摘要摘要功率分配器简称功分器,在被用于功率分配时,一路输入信号被分成两路或多路较小的功率信号。

功率合成器与功率分配器属于互易结构,利用功率分配器与功率合成器可以进行功率合成。

功分器在相控阵雷达,大功率器件等微波射频电路中有着广泛的应用。

现在射频和微波系统的设计越来越复杂,对电路的指标要求也越来越高,电路的功能也越来越多,电路的尺寸越来越小,而设计周期越来越短,传统的设计方案已经不能满足微波电路设计的需求,使用微波软件工具进行微波系统的设计已经成为微波电路设计的必然趋势。

小型低功耗器件是射频电路设计的研究热点,而微带技术具有小型化低功耗的优点,为此我学习了功分器的基本原理,结合当下的实际情况,设计了一个Wilkinson 功分器,并使用基于矩量法的ADS 软件设计、仿真和优化计算相关数据参数,进行参数的优化,并制作了一个性能良好的Wilkinson功分器。

关键词:功分器,ADS,优化参数IABSTRACTABSTRACTPower divider is referred to as power divider, in which the input signal is divided into two (or more) smaller power signals when the power distribution is used.Power synthesizer,and a power divider is reciprocity structure, power synthesis can be carried out using the power splitter and combiner.Power divider is widely used in phased array radar,high power devices and other microwave circuits.Now the design of RF and microwave system is more and more complex, the circuit requirements are also getting higher and higher,more and more functions of the circuit,the circuit size is getting smaller and smaller and design cycle becoming shorter and shorter, the traditional design scheme has been unable to meet the demand of microwave circuit design,using microwave software tools for the design of microwave system has become the inevitable trend of the microwave circuit design.small size and low power consumption devices is the focus of the research on the RF circuit design,and microstrip technology has the advantages of miniaturization and low power consumption. Therefore,I learned the basic principle of power divider, combined with the current actual situation,the design of the a Wilkinson power divider, and use based on method of moments of the ADS software to design,simulation and optimization calculation parameters,parameter optimization, and produced a good performance of Wilkinson power divider.Key words: power divider,ADS,optimization parametersII目录目录第1章引言 (1)1.1 功分器的发展概况 (1)第2章研究理论基础 (2)2.1 功分器的理论基础 (2)2.2 功分器技术基础 (4)2.2.1 什么是功分器 (4)2.2.2 功分器的重要性 (4)2.2.3 Wilkinson功分器的优点 (4)2.3 wilkinson基本工作原理: (5)2.4 Wilkinson功率功分器的基本指标 (6)2.4.1.输入端口的回波损耗 (6)2.4.2插入损耗 (7)2.4.3输入端口间的隔离度 (7)2.4.4功分比 (7)2.4.5相位平衡度 (7)第3章ADS的介绍 (8)3.1 ADS趋势 (8)3.2线性分析 (9)3.3电磁反正分析 (10)3.4仿真向导 (10)第4章功分器的原理图设计仿真与优化 (12)4.1 等分威尔金森功分器的设计指标 (12)4.2 建立工程与设计原理图 (12)4.2.1 建立工程 (12)4.2.2 设计原理图: (13)4.2.3 基板参数设置 (16)4.2.4 基板参数输入 (18)4.2.5 插入V AR (19)I I I目录4.2.6 V AR参数设置 (19)4.2.7 V AR微带线 (19)4.3 功分器原理图优化仿真 (21)4.4 功分器优化版图生成 (24)4.5 功分器优化 (24)4.6 功分器的版图生成与仿真 (31)第5章结论 (36)参考文献 (37)致谢 (38)外文资料原文 (39)译文 (41)I V第1章引言第1章引言1.1 功分器的发展概况功率分配器是将输入信号功率分成相等或不相等的几路输出的一种多端口的微波网络,广泛应用于雷达,多路中继通信机等大功率器件等微波射频电路中。

威尔金森(wilkinson)功分器设计

威尔金森(wilkinson)功分器设计

此功分器比较简单。

如果只是做仿真,ADS较为方便,如果要做实物或产品的话,HFSS比较可靠。

本人亲测HFSS仿真结果和实物基本一致,ADS差别不一。

多节功分器原理和单节一样,网上有多节等分功分器归一化数据表格,按照表格中的值球的传输线阻抗得到的功分器只需要少许优化即可。

接下来以双节8-11G功分器大致介绍一下设计流程。

如图所示,L0和L3都是Z0阻抗的传输线,一般选择为50Ω,在ADS中可以算出现款和线长,线的长度L0和L3对功分器没太大影响,所以在做的时候可以根据要求增加或减少。

因为是8-11G的,f2/f1<1.5,所以双节的都满足要求,可以用频带宽度比为1.5的功分器,这样的话隔离度更好。

查表得到L1L2归一化阻抗分别是1.1998和1.6070归一化电阻为5.3163和1.8643,得到阻抗和电阻值分别是60、80.33和93、265,注意的是电阻顺序是倒过来的这样分别用微带线计算软件算得两段线的带宽和π/4线长,分别是0.324/6.28和0.653/6.15,这样在HFSS中九可以建立模型仿真,在建模的时候做成参数模型,这样可以调节和优化,电阻直接在合适的地方画一个矩形,右键lumped RLC可以设置。

模型可以做成实际的0.035mm的铜,也可以设置成perfect E,大致都差不多,我做过一个,实测和仿真基本上一致,损耗都在3.2左右,隔离倒是有点差,差了约5db。

有些做成弧形,原理都是一样,个人觉得倒是美观很多。

弧形这个是我对上面功分器改变形状得来的,出来的效果只是差了一点点。

对了,基片背面需要铺地,否则仿真时可能有问题,本人也是兴趣自己做着玩的,不是专业的,有错请指正,有需要模型或交流的可以联系我,最后总结一下。

1、建模的时候最好建立参数模型,可调可优化;2、基板背面最好铺地;3、在仿真的时候波端口向量应该向接地(向下);4、归一化电阻值顺序和归一化阻抗是相反的;5、输入端的驻波比要好好仿真,容易变差;。

微带wilkinson功分器的仿真设计实验报告

微带wilkinson功分器的仿真设计实验报告

微带wilkinson功分器的仿真设计实验报告学院电子科学与工程学院姓名学号指导教师2016年10月21日一、实验目的● 了解功率分配器电路的原理及设计方法。

● 学习使用ADS 软件进行微波电路的设计,优化,仿真。

● 掌握功率分配器的制作及调试方法。

二、设计要求指标● 通带范围0.9 — 1.1GHz 。

● 双端输出,功分比为1:1。

● 通带内个端口反射系数小于-20dB 。

● 两个输出端口的隔离度小于-20dB 。

● 传输损耗小于3.1dB 。

三、设计思路图一:设计思路示意图四、理论分析设计1. 基本工作原理分析理论学习尺寸计算绘制ADS 原理图原理图仿真优化设计版图仿真功率分配器是三端口电路结构,其信号输入端的输入功率为P1,而其它两个输出端的输出功率分别为P2和P3。

理论上,由能量守恒定律可知:P1=P2+P3。

端口特性为:(1) 端口1无反射(2) 端口2和端口3输出电压相等且相同(3) 端口2、端口3输出功率比值为任意指定值1/由这些条件可以确定Z o2、Z o3以及R2、R3的值。

2.功分器技术指标计算(1)输入端口回波损耗输入端口1的回波损耗根据输入端口1的反射功率和输入功率之比来计算(2)插入损耗输入端口1的回波损耗根据输出端口的输出功率和输入端口1的输入功率之比来计算(3)输出端口间的隔离度输出端口2和输出端口3间的隔离度可以根据输出端口2和输出端口3的输出功率比来计算(4)功分比当其它端口没有反射时,功分比根据输出端口3和输出端口4的输出功率比来计算(5)相位平滑度在做功率分配器时,输出端口的平滑度直接影响功率合成效率。

五、尺寸计算使用ADS软件自带的计算工具计算出微带线的尺寸。

图5.1 50Ω的微带线宽度计算图5.2 75Ω的微带线宽度计算输入Z0=50Ohm,可以算出微带线的宽度为1.52mm。

填入ZO=70.7Ohm和E_Eff=90deg,可以算出微带线的线宽为0.79mm和长度42.9mm。

功分器设计报告

功分器设计报告
P2 IL: IL 10 lg (dB) 20 lg S 21 P1
(4)输出端口间的隔离度 端口 3 和端口 2 互为隔离端口,在理想情况下,隔离端口间应没有相互输出 的功率,但由于设计及制作精度的限制,使隔离端口间尚有一些功率输出。端口 3 到端口 2 的隔离度定义为: D 20 lg S 23 (dB)
/ 4
Zo 2Z o Zo
2Z o Zo 2Z o
/ 4
图2
关于这一点,我没有详述,大家可以参考由栾秀珍、房少军、金红和邰佑城 老师编著的《微波技术》这本书,书中对这阐述的非常详细。
三、功分器的基本指标
(1)频率范围 频率范围是各种射频和微波电路工作的前提, 功率分配器的设计结构和尺寸 大小与工作频率密切相关, 必须首先明确功率分配器的工作频率,才能进行具体 的设计工作。尤其是需要指明中心频率及其频带宽度。 (2)输入端口 1 的回波损耗 用 RL1 表示的端口 1 的回波损耗为: RL1 20 lg S11 (dB) (3)输入输出间的传输损耗 定义为输出端口 2 的输出功率 P2 和输入端口 1 的输入功率 P1 之比,记为
姓名:陶伟 班级:电科 09-1 班 学号:2220092322
一、 引言
功率分配器是将输人功率分成相等或不相等的几路功率输出的一种多端口 微波网络。在微波系统中, 需要将发射功率按一定的比例分配到各发射单元, 如 相控阵雷达等, 因此功分器在微波系统中有着广泛的应用。它的性能好坏直接影 响到整个系统能量的分配、合成效率。功率分配器有多种形式,其中最常用的是 四分之一波长(λp/4)功率分配器,这种功率分配器称为威尔金森(Wilkinson) 功率分配器。 威尔金森功率分配器由三端口网络构成, 其功率分配可以是相等的, 也可以是不相等的。在这里,我介绍的是等功率分配的微带线 Wilkinson功率分 配器。

功分器设计仿真开题报告

功分器设计仿真开题报告

功分器设计仿真开题报告1. 研究背景功分器(Power Divider),又称功分器,是一种被广泛应用于无线通信系统、射频电路和微波工程中的无源元器件。

功分器的主要功能是将输入信号分为若干个等幅度的输出信号,通常为二分、三分或四分等。

功分器常用于天线分配、信号合并和功率衰减等场合,对于射频电路的设计和优化起到至关重要的作用。

2. 研究目的本次研究旨在设计一种高性能的功分器,并通过仿真分析其参数和性能指标,为实际电路设计提供参考。

3. 研究内容3.1 功分器基本原理功分器的基本原理是基于电磁场的传输线理论。

传输线上的电磁波在传输过程中会发生反射、传播和辐射等现象,在特定的结构和参数设置下,可以实现功分器的基本功能。

传统的功分器结构包括等长线耦合和辐射耦合两种。

3.2 功分器设计流程功分器的设计流程主要包括以下几个步骤:1.确定功分器的工作频段和频率范围。

2.根据功分器的功分比要求和准确性要求,选择适当的结构和耦合方式。

3.根据设计要求,计算功分器的尺寸和参数。

4.使用电磁场仿真软件对功分器进行模拟和优化。

5.根据仿真结果,进一步优化功分器的性能。

6.制作并测试样品,验证设计结果。

3.3 功分器的性能指标功分器的性能指标主要包括:•功分比(Power Division Ratio):表示输入功率在输出端口上的分配比例。

•插入损耗(Insertion Loss):表示输入功率与输出功率之间的损耗。

•匹配度(Match):表示功分器的输入和输出端口与传输线的匹配程度。

•平衡度(Isolation):表示功分器在一个输出端口上的输入功率对其他输出端口的影响程度。

4. 研究方法本次研究将采用如下方法:1.使用ADS(Advanced Design System)等电磁场仿真软件进行功分器的模拟和优化。

2.通过改变结构参数、优化线路走向等方式,提高功分器的性能。

3.设计并制作实际样品,通过网络分析仪等测试仪器对功分器进行性能测试和验证。

设计报告-H-T矩形波导功分器

设计报告-H-T矩形波导功分器

班级:通信13-2 姓名:王景远学号:1306030220 成绩:电子与信息工程学院信息与通信工程系一、报告要求1.设计波导H-T型接头(功分器)2.两端口功率比1 :23.工作在10GHz4.利用HFSS或其他软件进行仿真分析注:此设计参考《HFSS电磁仿真设计应用详解_李明洋》里面第二章第十章例程与H—T型2:1功率分配器和同轴馈电矩形天线设计一致。

真正的学习不是盲目模仿,而是消化吸收,做的不仅仅是报告。

二、设计依据图 1设计理论依据:端口1 是信号输入端口,端口2 和端口3 是信号输出端口。

正对着端口1 一侧的波导壁上凹进去一块,相当于放置了一个隔片,通过改变隔片的位置可以改变端口1 到端口2 和端口3 的传输功率以及端口1 的反射功率。

设计时可以先把隔片的位置设计到中央,观察在8~10GHz 的工作频段内,波导3 个端口的S 参数随着频率变化的关系曲线,同时分析查看在10GHz 时波导表面的电场分布。

然后利用HFSS 的参数扫描分析功能分析在10GHz 处,波导3个端口的S 参数随着隔片位置变量Offset 变化的关系曲线,使用HFSS 的优化设计功能,求解出当端口3 的输出功率是端口2 的输出功率的两倍时隔片所在的位置。

三.结构模型图2 功分器结构模型参数设置:此模型有三个小长方体组合而成中间有一隔片长方体参数:dx 2 dy 0.9 dz 0.4 单位in材料真空隔片尺寸Xsize 0.45 Ysize 0.1 Zsize 0.4 单位inY轴位置0.093in(优化后功分比2:1时)四.相关报告数据分析图3 S参数幅度随频率变化的曲线图4 隔片在中间位置时表面场流动分布(平均分)图5 隔片偏离中间某一位置时表面场流动分布(全反射)图6隔片偏离中间某一位置时表面场流动分布(一端输出)图7优化求解功分比2:1时表面场流动分布最终优化结果:图8图 9 五.具体设计步骤1、新建工程及工程设置a.新建工程b.设置求解类型c.设置模型长度单位in图102、设计建模a.创建小长方体b.设置激励端口面c.复制2个小长方体d.Uinte三个小长方体组合e.创建隔片f.Tee中减去隔片 Subtract图11 图12 图13图14模型如下:图153、求解设置a. Solution Frequency 项输入10,默认单位为GHz,其他项都保持默认设置不变图 16b.扫频设置图17 4、设计检查和运行仿真计算图18 5、分析隔片位置和各端口功率之间的关系a.添加参数扫描分析项b.运行参数扫描分析c.查看分析结果图196、根据6中参数优化隔片位置并求解求解功率比2:1时隔片位置=====WORD完整版----可编辑----专业资料分享=====六.设计总结及体会在许多题目中选择这个确实是个缘分,不过这个题目带来了很多未知的探索和迷茫,要设计功分器首先要知道和熟悉功分器的设计原理,由于自己在微波技术与天线的前4章还学习的很好,对很多概念还能看懂,受到《HFSS电磁仿真设计应用详解》书中T型波导的启发,根据书上的相关步骤,首先总体把握设计流程,根据设计流程,和设计细节一步一步耐心地做,设计的过程中虽然也遇到了一些警告和错误但是最后经过有道词典和百度和自己的分析终于排除所有错误完成了整个设计流程。

功分器的设计范文

功分器的设计范文

功分器的设计范文功分器是一种常见的无线通信电路元件,用于将输入信号分配到多个输出端口上,常用于天线阵列、无线信号接收和传输系统中。

功分器的设计需要结合具体的应用需求和性能指标,本文将从功分器的基本原理、设计流程和优化方法等方面进行详细探讨。

1.功分器的基本原理:功分器的基本原理是将输入信号经过特定的网络分配到多个输出端口上,使得每个输出端口上的功率尽可能相等。

常见的功分器有微带功分器和负荷耦合功分器两种类型。

微带功分器由微带线和阻抗变换网络组成,通过微带线上的特定尺寸和形状来实现不同端口的功率分配。

负荷耦合功分器则是通过负荷和相应的耦合元件来实现功率的分配。

2.功分器的设计流程:(1)确定应用需求:首先需要明确功分器的工作频率范围、输入和输出阻抗、功率分配比等参数,以确定功分器的基本设计要求。

(2)选择功分器类型:根据应用需求和性能指标选择合适的功分器类型,如微带功分器或负荷耦合功分器。

(3)设计网络参数:根据所选功分器类型,设计微带线或耦合元件的尺寸和参数。

(4)优化设计:通过仿真和实验等方法对功分器进行优化设计,使得功率分配更加均匀,并满足其他性能要求。

(5)制作和测试:根据设计完成PCB板的制作,并进行实测,验证设计的性能指标和工作频率范围。

3.功分器的优化方法:(1)耦合元件的优化:负荷耦合功分器中,耦合元件的参数对功率分配有较大影响,可以通过仿真和试错法来得到较优的耦合元件参数。

(2)反馈网络的设计:通过添加适当的反馈网络,可以改善功分器的频率响应和工作稳定性。

(3)多级结构的设计:将多个功分器级联,可以实现更细致的功率分配和增强功分器的带宽性能。

(4) 调控电路的设计:通过添加可调控的电路结构,如 PIN diode 或变容二极管等,可以实现功分器的可调功分功能。

(5)高精度制作工艺:利用先进的微加工技术和高精度制作工艺,如光刻和无线电频率电子束均匀在生长环境的真空中被扫描的实验技术(EBL),可以提高功分器的性能和稳定性。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Wilkinson 功率分配器设计报告
姓名:陶伟 班级:电科 09-1 班 学号:2220092322
一、 引言
功率分配器是将输人功率分成相等或不相等的几路功率输出的一种多端口 微波网络。在微波系统中, 需要将发射功率按一定的比例分配到各发射单元, 如 相控阵雷达等, 因此功分器在微波系统中有着广泛的应用。它的性能好坏直接影 响到整个系统能量的分配、合成效率。功率分配器有多种形式,其中最常用的是 四分之一波长(λp/4)功率分配器,这种功率分配器称为威尔金森(Wilkinson) 功率分配器。 威尔金森功率分配器由三端口网络构成, 其功率分配可以是相等的, 也可以是不相等的。在这里,我介绍的是等功率分配的微带线 Wilkinson功率分 配器。
(5)由于隔离电阻被去掉了,所以需要将版图再导回到原理图仿真,方法如下, 选择版图视窗中的【Momentum】菜单>【Component】>【Create/Update】命令, 弹出设置元件库的对话框,在“Model Type”中选择 Momentum RF,在 Lowest Frequency 填上 1GHz, Highest Frequency 填上 2GHz, 其他保持默认, 单击 【OK】 完成创建新的元件库的设置,这样功分器被当做一个元器件添加到元件库里了。 (6)在 ADS 主视窗中新建原理图并保存为 divider_JC,单击菜单中的元件库图标, 打开元件库,如图 2.17 所示,单击左侧 Projects,会在右侧窗口显示项目 divider 的所有原理图,右键单击 divider,会出现 Place Component,单击它,然后打开 刚新建的原理图 divider_JC,在其画图区放上刚选择的功分器元件 (7)在新建的原理图 divider_JC 中,在隔离电阻安放位置连接一个阻值为 100Ω的 集总电阻,并在输入输出端口连接终端负载 Term,然后插入仿真控件 SP,对 S 参数仿真控件 SP 设置如下。 频率扫描类型 Sweep Type 选为 Linear。 频率扫描起始值 Start 设为 1GHz。 频率扫描终止值 Stop 设为 2GHz。 频率扫描步长 Step-size 设为 0.001GHz。 (8)接下来就可以进行版图仿真了,单击仿真【Simulate】图标,运行仿真,仿 真结束后,数据显示视窗自动弹出,用矩形图查看 S11、S21、S23 参数曲线, 如图 6 所示。从图 6 中可以看出,各曲线均达到技术指标。
二、功分器的基本工作原理
图1 图1是微带三端口功率分配器的原理结构,其中 Z0 是它的输入端口特性阻 抗,Z02和Z03是它的分支微带线的特性阻抗,R2和R3是它的终端负载。对于等 功分威尔金森功分器来说,图1的原理结构可以等效为如下图2结构,而且有 R2=R3=Z0; Z02=Z03=Z0*1.414; R=2*Z0;
七、原理图优化
步骤如下: (1) 在 VAR 控 件 的 “ Variables&Equations ” 窗 口 中 选 择 L70b , 单 击 [Tune/Opt/Stat/DOE setup]按钮,弹出“Setup”窗口,选择[Optimization]选项卡, 在 “Optimization status” 中选择 “Enabled” 、 “Type” 中选择 “continuous” 、 “Format” 中选择“min/max” 、 “Minimum Value”和“Maximum Value”分别设置为 9.5 和 30,就完成了对 L70b 的设置。 (2) 用同样的办法设置 W50、W70 的比较小的优化范围。 (3)完成上述的范围设定后,还需要选择优化方式和优化目标。步骤如下: (4) 在原理图设计窗口中选择优化工具栏,将优化控件“ Optim ”和目标控件 “Goal”插入到原理图中,由于需要 3 个优化目标 S(1,1)、S(2,2)、S(2,1)、S(2,3), 因此需要添加 4 个目标控件。S(1,1)和 S(2,2)分别用来分析输入输出端口的反射 系数,S(2,1)用来分析功率分配器通带内的衰减情况,S(2,3)用来分析两个输出端 口的隔离度。 (5) 设置优化方法为随机(Random)或者梯度(Gradient)等, 随机法通常用于大范围 搜索, 梯度法则用于局部收敛。 在 “Optimization Type” 下拉表中选择 “Random” , 在“Random”文本框中修改为 50。 (6) 接着设置 4 个目标控件的参数,设置完之后如图 4 所示。

H=3mm,表示微带线基板的厚度为 3mm。 Er=2.65,表示微带线基板的相对节点常数为 2.65。 Mur=1,表示微带线的相对磁导率为 1。 Cond=1.0e+50,表示微带线导体的电导率为 1.0e+50。 Hu=1.0e+033mm,表示微带线的封装厚度为 1.0e+0.33mm。 T=0.005mm,表示微带线的导体层厚度为 0.005mm。 TanD=0.0003,表示微带线的损耗角正切为 0.0003。 Rough=0mm,表示微带线的表面粗糙为 0mm。
四、设计指标

3dB Wilkinson 功率分配器。 中心频率 1.5GHz。 工作频带内输入端口的回波损耗: 这里的 S11 (dB) 是 S11 (dB) 20dB , 指 RL1。



工作频带内的传输损耗: 3.2dB S 21 (dB ) 2.8dB 。 两个输出端口间的隔离度 S23(dB) ≤ -20dB。 微带线基板的厚度为 3mm,基板的相对介电常数为 2.65。 各端口特性阻抗采用 50Ω。
图 4、优化设置
(7) 完成相关参数设置之后,单击工具栏中的[Simulate]按钮进行优化仿真。 优化过程中系统会自动打开一个状态窗口显示优化结果,其中的“ CurrentEF” 表示与优化目标的偏差, 当它的值减小到 0 的时候表示达到了优化目标。优化结
束后数据显示窗口会自动打开。 由于选择的优化方法是随机(Random), 因此每次 优化的结果都会有所不同甚至相去甚远,所以要不断改变参数的值,多次进行优 化,直至得到跟所需要的优化结果最接近的数据为止,就如图 5 所示。 (8)当优化后各项参数都符合设计要求,再点击原理图窗口菜单中的[Simulate]— —[Update Optimization Values]命令保存优化后的变量值。 这样就完成了原理图的 设计、仿真和优化,并达到了设计的指标的要求。但是在实际应用中还是会发现 仿真结果与实际设计的电路指标有很大差别,因此必须在原理图设计与 电路制作中对版图进行仿真,以进一步保证结果符合设计要求。
图 5、原理图的优化曲线
八、版图设计及仿真
(1)在生成版图之前,必须先将原理图中的负载终端 Term 和“接地”以及优化控 件去掉。去掉的方法是单击原理图工具栏中的【Deactive or Active Component】 按钮,然后单击负载终端 Term、 “接地” ,OPTIM 和四个 GOAL。因为原理图 上的隔离电阻是集中元件,不能够出现在版图上,所以也必须将电阻 R 去掉。 (2)选择原理图 divider 上的【 Layout 】菜单 > 【 Generate/Update Layout 】 ,弹出 【Generate/Update Layout】设置窗口,单击窗口上的【OK】按钮,默认它的设 置。这时又会弹出【Status of Layout Generation】版图生成状态窗口,单击【OK】 按钮,完成版图的生成过程。对比原理图和版图可以发现,原理图中构成分支定 向耦合器电路的各种微带线元件模型,在版图中已经转化为实际微带线。 (3)选择版图工具栏上的端口 Port,插入版图,输入端口设置为端口 1,输出端口 设置为端口 2 和端口 3,隔离电阻处的两端口设置为端口 4 和端口 5。 (4)为了使版图的仿真结果有效,必须使版图中微带线的基本参数与原理图中的 微带线的基本参数一致,具体设置方法如下:选择版图视窗中的【Momentum】 菜单>【Substrate】>【Update From Schematic】命令,从原理图视窗得到微带线 的 基 本 参 数 。 再 选 择 版 图 视 窗 中 的 【 Momentum 】 菜 单 > 【 Substrate 】 > 【Create/Modify】命令,打开【Create/Modify Substrate】窗口,此时,你可以看 到微带线的基本参数与与原理图中的微带线的基本参数是一致的了。



五、原理图设计
1.原理图绘制
图3、原理图 (1) 新建工程文件,点击Length Unit设置长度单位为毫米(mm)并创建工程。 (2) 在原理图设计窗口中选择微带线器件面板列表,在微带线器件面板中选择 MLIN与MTEE插入原理图中,并用导线工具连接起来,构成功率分配器的输入端 口。双击MLIN,在弹出的参数设置窗口中设置MLIN的W=W50mm、L=5mm。用 同样的办法设置MTEE的W1=W70mm、W2=W70mm和W3=W50mm。 (3) 从微带线器件面板中分别选择4个MLIN、2个MSOBND_MDS和1个MTEE,插入 到原理图中, 并用导线连接成功率分配器的一路分支线,用同样的器件构成功率 分配器的另外一路分支线, 由于功率分配器结构的对称性,两路分支线中各段微 带线的尺寸参数相同。 (4) 把输入端口与两路分支线连接起来,并在两路分支线之间插入隔离电阻R,R 的参数为R=100Ω。 (5) 分别用3 个 TLIN 和 2 个 MSOBND_MDS 以及连接导线构成功率分配器的输出端 口2。 用同样的器件构成与之对称的另一个输出端口3, 由于功分器结构的对称性, 两输出端口的各段微带线尺寸参数相同。 (6)至此,功率分配器的所有部分连接完成。
/ 4
Zo 2Z o Zo
2Z o Zo 2Z o
/ 4
图2
关于这一点,我没有详述,大家可以参考由栾秀珍、房少军、金红和邰佑城 老师编著的《微波技术》这本书,书中对这阐述的非常详细。
相关文档
最新文档