有关角平分线辅助线做法-含例题与分析

合集下载

【中考数学必备专题】几何辅助线大揭秘 之角平分线问题(含答案)

【中考数学必备专题】几何辅助线大揭秘 之角平分线问题(含答案)

【中考数学必备专题】几何辅助线大揭秘之角
平分线问题
一、证明题(共3道,每道40分)
1.已知,如图,△ABC的外角∠CBD和∠BCE的平分线相交于点F.求证:点F在∠DAE的平分线上.
答案:∵BF是∠CBD的平分线∴FG=FI ∵CF是∠BCE的平分线∴FH=FI ∴FG=FH ∴点F在∠DAE的平分线上
解题思路:过F作FG⊥AD于点G,FH⊥AE于点H,FI⊥BC于点I,如图只要证明FG=FH即可
试题难度:三颗星知识点:三角形角平分线
2.如图,在△ABC中,AD为∠BAC的平分线,∠B=2∠C.求证:AC=AB+BD.
答案:∵AD是∠BAC的平分线∴∠BAD=∠EAD 在△ABD和△AED中AB=AE ∠BAD=∠EAD AD=AD ∴△ABD≌△AED(SAS)∴BD=ED,∠B=∠AED ∵∠AED=∠B=2∠C ∴∠CDE=∠AED ﹣∠C=∠C ∴DE=CE ∴BD=CE ∵AC=AE+CE ∴AC=AB+BD
解题思路:在AC上截取AE=AB,连接DE,如图只要证明BD=CE即可
试题难度:三颗星知识点:三角形角平分线
3.已知:如图,在△ABC中,BE平分∠ABC,AD⊥BE,垂足为点D.求证:∠BAD=∠DAE+∠C.
答案:∵BE平分∠ABC,AD⊥BE ∴△ABF为等腰三角形(三线合一)∴∠BAD=∠BFD ∵∠BFD 为△ACF的外角∴∠BFD=∠DAE+∠C ∴∠BAD=∠DAE+∠C
解题思路:延长AD与BC交于点F,如图只要证明∠BFD=∠BAD即可
试题难度:三颗星知识点:三角形角平分线。

2 角平分线中作辅助线的四种常用方法

2 角平分线中作辅助线的四种常用方法
∵∠ABC=90°,AE⊥CD, ∴∠FAB+∠F=90°,∠ECF+∠F=90°,∴∠FAB=∠ECF.
∠FAB=∠DCB, 在△ABF 和△CBD 中,AB=CB,
∠ABF=∠CBD=90°,
∴△ABF≌△CBD(ASA).∴AF=CD. ∵AE=12CD,∴AE=12AF=EF.
AE=FE, 在△ACE 和△FCE 中,∠AEC=∠FEC=90°,
解:.能在 AB 上确定一点 E,使△BDE 的周长等于 AB 的
长,即过点 D 作 DE⊥AB 于点 E,则点 E 就是所要 确定的点(如图). 理由:∵AD 平分∠CAB, CD⊥AC,DE⊥AB, ∴DC=DE. 在 Rt△ACD 和 Rt△AED 中,ADDC= =ADDE, ,
∴Rt△ACD≌Rt△AED(HL).
∴AC=AE.
∵AC=BC,
∴△BDE的周长=BD+DE+BE=BD+DC+BE
=BC+BE=AC+BE=AE+BE=AB.
返回
方法 2 作两边的垂线段
2.如图,已知∠AOB=90°,OM是∠AOB的平分 线,将三角尺的直角顶点P在射线OM上滑动, 两直角边分别与OA,OB交于点 C,D.求证:PC=PD.
CE=CE, CE. 又∵DM⊥AC,DB⊥BC, ∴DM=DB=8 cm. ∴点D到AC的距离为8 cm.
返回
方法 4 截取作对称图形法 4.如图,AD为△ABC的中线,DE,DF分别是
△ADB和△ADC的角平分线.求证:BE+ CF>EF.
证明: 如图,在AD上截取DH,使DH=BD, 连接EH,FH. ∵AD是BC边上的中线, ∴BD=CD=HD. ∵DE平分∠ADB, ∴∠BDE=∠HDE. 又∵DE=DE,

专题4 与角平分线有关的辅助线作法(含答案)

专题4 与角平分线有关的辅助线作法(含答案)

专题4 与角平分线有关的辅助线作法知识解读角平分线所在直线是所在角的对称轴,因此角平分线的性质都是以轴对称为基础的,其辅助线作法也应多从轴对称的角度来考虑,其常用的辅助线构造方法有:(1)过角平分线上一点作到角的两边的垂线段,如图1-4-1①.(2)以顶点为圆心,在角两边截取两条相等的线段,构造全等三角形,如图1-4-1②.(3)利用三线合一定理构造等腰三角形,如图1-4-1③.(4)过角平分线上一点作角的一边的平行线,构造等腰三角形,如图1-4-1④.培优学案典例示范一、过角平分线上一点作两边的垂线段.例1如图1-4-2,AB//CD,E为AD上一点,且BE,CE分别平分∠ABC,∠BC D.求证:AE=E D.【提示】由于角平分线上一点到角的两边的距离相等,而点E是两条角平分线的交点,因此我们可以过点E,分别作AB,BC,CD的垂线段,如图1-4-3.【解答】【技巧点评】过一点作角两边的垂线段,构造的是一对全等的直角三角形,可以得到一些相等的线段和相等的角,但利用角平分线的性质,可以省去证明全等这一环节,直接证得线段相等。

同样由“距离”相等,也能直接得到角平分线.让证明来得更简捷。

跟踪训练1.如图1-4-4,在△ABC中,DC⊥AC,∠1=∠2,DA=D B.求证:AB=2A C.二、角平分线+高=全等三角形例2如图1-4-5,在△ABC中,∠BAC=90°,AB=AC,BE平分∠ABC,CELBE.求证:CE=12B D.【提示】由于BE平分∠ABC,因而可以考虑过点D作BC的垂线或延长CE从而构造全等三角形。

【解答】【技巧点评】当一根线段同时满足“是角平分线”、“是中线”和“是高”中两个时,可考虑将图形补成一个等腰三角形解决问题。

跟踪训练2.如图1-4-6,BD是∠ABC的平分线,AD⊥BD,垂足为D,求证:∠BAD=∠DAC+∠C.三、借助角平分线的轴对称性构造全等三角形例3如图1-4-7,在△ABC中,AD平分∠BAC,∠C=2∠B.求证:AB=AC+C D.【提示】可考感以AD 为对称轴构造全等三角形,可在AB 边上截取AE =AC ,也可以延长AC 到点E ,使得AE =A B. 【解答】【技巧点评】角平分线所在直线是角的对称轴,可以对称着构造全等三角形。

几何辅助线之角平分线专题

几何辅助线之角平分线专题

几何辅助线之角平分线专题1、角平分线辅助线四种基本模型已知:AD是∠BOC的角平分线(1)(2)(3)(4)2、补充性质:如图,在△ABC中,AD平分∠BAC,则有AB:AC=BD:DC典型例题例1、已知:如图,在△ABC中,∠C=90°,AC=BC,AD平分∠CAB.求证:AC+CD=AB例2、已知:如图,在Rt△ABC中,∠C=90°,沿过B点的一条直线BE折叠这个三角形,使C点与AB边上的一点D重合,当∠A满足什么条件时,点D恰为AB中点?写出一个你认为适当的条件,并利用此条件证明D为AB中点.例3、如图,AB=2AC,∠BAD=∠DAC,DA=DB ,求证:DC⊥AC。

DEHA BC例4、如图所示,已知AD 是△ABC 的角平分线,DE AB ⊥,DF AC ⊥,垂足分别是E ,F .求证:AD 垂直平分EF .例5、 如图,在△ABC 中,∠A 等于60°,BE 平分∠ABC ,CD 平分∠ACB 求证:DH=EH例6、如图,已知等腰直角三角形ABC 中,∠A =90°,AB =AC ,BD 平分∠ABC ,CE ⊥BD ,垂足为E ,求证: BD =2CE 。

例7、如图,OP是∠MON的平分线,请你利用该图形画一对以OP所在直线为对称轴的全等三角形。

变式练习请你参考上图构造全等三角形的方法,解答下列问题:⑴如图,在△ABC中,∠ACB是直角,∠B=60°,AD、CE分别是∠BAC、∠BCA的平分线,AD、CE相交于点F。

请你判断写出FE与FD之间的数量关系;⑵如图,在△ABC中,如果∠ACB不是直角,而⑴中的其他条件不变,请问,你在⑴中所得结论是否依然成立?若成立请证明;若不成立,请说明理由。

课后练习1、已知:如图所示,∠C=2∠B,∠BAD=∠CAD,求证:AB=AC+CD。

2、已知,如图,BN 平分∠ABC,P为BN上一点,且PD⊥BC于D,AB+BC=2BD,求证:∠BAP+∠BCP=180°。

初二数学辅助线常用做法及例题(含答案)

初二数学辅助线常用做法及例题(含答案)

DCB A常见的辅助线的作法总论:全等三角形问题最主要的是构造全等三角形,构造二条边之间的相等,构造二个角之间的相等【三角形辅助线做法】图中有角平分线,可向两边作垂线。

也可将图对折看,对称以后关系现。

角平分线平行线,等腰三角形来添。

角平分线加垂线,三线合一试试看。

线段垂直平分线,常向两端把线连。

要证线段倍与半,延长缩短可试验。

三角形中两中点,连接则成中位线。

三角形中有中线,延长中线等中线。

1.等腰三角形“三线合一”法:遇到等腰三角形,可作底边上的高,利用“三线合一”的性质解题2.倍长中线:倍长中线,使延长线段与原中线长相等,构造全等三角形3.角平分线在三种添辅助线4.垂直平分线联结线段两端5.用“截长法”或“补短法”: 遇到有二条线段长之和等于第三条线段的长,6.图形补全法:有一个角为60度或120度的把该角添线后构成等边三角形7.角度数为30、60度的作垂线法:遇到三角形中的一个角为30度或60度,可以从角一边上一点向角的另一边作垂线,目的是构成30-60-90的特殊直角三角形,然后计算边的长度与角的度数,这样可以得到在数值上相等的二条边或二个角。

从而为证明全等三角形创造边、角之间的相等条件。

8.计算数值法:遇到等腰直角三角形,正方形时,或30-60-90的特殊直角三角形,或40-60-80的特殊直角三角形,常计算边的长度与角的度数,这样可以得到在数值上相等的二条边或二个角,从而为证明全等三角形创造边、角之间的相等条件。

常见辅助线的作法有以下几种:最主要的是构造全等三角形,构造二条边之间的相等,二个角之间的相等。

1) 遇到等腰三角形,可作底边上的高,利用“三线合一”的性质解题,思维模式是全等变换中的“对折”法构造全等三角形.2) 遇到三角形的中线,倍长中线,使延长线段与原中线长相等,构造全等三角形,利用的思维模式是全等变换中的“旋转” 法构造全等三角形.3) 遇到角平分线在三种添辅助线的方法,(1)可以自角平分线上的某一点向角的两边作垂线,利用的思维模式是三角形全等变换中的“对折”,所考知识点常常是角平分线的性质定理或逆定理.(2)可以在角平分线上的一点作该角平分线的垂线与角的两边相交,形成一对全等三角形。

专题05 三角形中的角平分线模型--2024年中考数学核心几何模型重点突破(解析版)

专题05 三角形中的角平分线模型--2024年中考数学核心几何模型重点突破(解析版)

专题05三角形中的角平分线模型【模型1】如图,已知OP 平分AOB ∠,过点P 作OA PD ⊥,OB PE ⊥;可根据角平分线性质证得ODP ∆≌OEP ∆,从而可得OPE OPD ∠=∠,PE PD OE OD ==;。

【模型拓展】与角平分线有关的辅助线作法【辅助线作法一】如图,已知OP 平分AOB ∠,点C 是OA 上的一点,通常情况下,在OB 上取一点D,使得OC OD =,连接PD,结合OP OP =,POD POC ∠=∠,可证得OPC ∆≌OPD ∆。

从而可得PD PC =,PDO PCO ∠=∠,DPO CPO ∠=∠。

【辅助线作法二】如图,已知OP 平分AOB ∠,OP CP ⊥,通常情况下,延长CP 交OB 于点D,结合OP OP =,POD POC ∠=∠,︒=∠=∠90OPD OPC ,可证得OPC ∆≌OPD ∆。

从而可得PD PC =,PDO PCO ∠=∠,OD OC =。

【辅助线作法三】如图,已知OP 平分AOB ∠,通常情况下,过点P 作PC//OB,根据平行线性质:两直线平行内错角相等;结合POD POC ∠=∠,从而可得PC OC =,CPO COP ∠=∠。

【例1】如图,OC 为∠AOB 的角平分线,点P 是OC 上的一点,PD ⊥OA 于D ,PE ⊥OB 于E ,F 为OC 上另一点,连接DF ,EF ,则下列结论:①OD =OE ;②DF =FE ;③∠DFO =∠EFO ;④S △DFP =S △EFP ,正确的个数为()A .1个B .2个C .3个D .4个【答案】D 【分析】证明△ODP ≌△OEP (AAS ),由全等三角形的性质可推出OD =OE ,证明△DPF ≌△EPF (SAS ),由全等三角形的性质可推出DF =EF .∠DFP =∠EFP ,S △DFP =S △EFP ,则可得出答案.【解析】解:①∵OC 平分∠AOB ,∴∠DOP =∠EOP ,∵PD ⊥OA 于点D ,PE ⊥OB 于点E ,∴∠ODP =∠OEP =90°,∵OP =OP ,∴△ODP ≌△OEP (AAS ),∴OD =OE .故①正确;②∵△ODP ≌△OEP ,∴PD =PE ,∠OPD =∠OPE ,∴∠DPF =∠EPF ,∵PF =PF ,∴△DPF ≌△EPF (SAS ),∴DF =EF .故②正确;③∵△DPF ≌△EPF ,∴∠DFO =∠EFO ,故③正确;④∵△DPF ≌△EPF ,∴S △DFP =S △EFP ,故④正确.故选:D .【例2】如图,已知OC 平分∠MON ,点A 、B 分别在射线OM ,ON 上,且OA =OB .求证:△AOC ≌△BOC.【答案】见解析【分析】根据角平分线的性质和全等三角形的判定方法可以证明结论成立.【解析】证明:∵OC 平分∠MON ,∴∠AOC =∠BOC ,在△AOC 和△BOC 中,OA OB AOC BOC OC OC =⎧⎪∠=∠⎨⎪=⎩,∴△AOC ≌△BOC (SAS ).【例3】请阅读以下材料,并完成相应的问题:角平分线分线段成比例定理:如图1,在△ABC 中,AD 平分∠BAC ,则AB BD AC CD=,下面是这个定理的部分证明过程:证明:如图2,过C 作CE ∥DA ,交BA 的延长线于E .…任务:(1)请按照上面的证明思路,写出该证明的剩余部分;(2)如图3,已知Rt △ABC 中,AB =3,BC =4,∠ABC =90°,AD 平分∠BAC ,求BD 的长.(请按照本题题干的定理进行解决)【答案】(1)见解析;(2).【分析】(1)如图2:过C 作CE ∥DA .交BA 的延长线于E ,利用平行线分线段成比例定理得到BD CD =BA EA,利用平行线的性质得∠2=∠ACE ,∠1=∠E ,由∠1=∠2得∠ACE =∠E ,所以AE =AC 即可证明结论;(2)先利用勾股定理计算出AC =5,再利用(1)中的结论得到AC AB =CD BD ,即53=CD BD ,则可计算出BD =32,然后利用勾股定理计算出AD =2,从而可得到△ABD 的周长.【解析】(1)解:如图2:过C 作CE ∥DA .交BA 的延长线于E ,∵CE //AD ,∴BD CD =BA EA,∠2=∠ACE ,∠1=∠E ,∵AD 平分∠BAC∴∠1=∠2,∴∠ACE =∠E ,∴AE =AC ,∴AB AC =BD CD;(2)∵AB =3,BC =4,∠ABC =90°,∴AC =5,∵AD 平分∠BAC ,∴AC AB =CD BD ,即53=4BD BD -,∴BD =32,∴AD∴△ABD 的周长=32+3+2=92+.一、单选题1.如图,ABC 中,5AB =,6BC =,10CA =,点D ,E 分别在BC ,CA 上,DE AB ∥,F 为DE 中点,AF 平分BAC ∠,则BD 的长为()A .32B .65C .85D .2【答案】B【分析】根据角平分线和平行可得EA EF =,从而可得2DE AE =,然后证明EDC ABC △△∽,利用相似三角形的性质即可求出AE ,DE ,进而求出CD ,最后进行计算求出BD 即可解答.【解析】解:∵F 为DE 中点,∴2ED EF =,∵AF 平分BAC ∠,∴EAF FAB ∠=∠,∵DE AB ∥,∴FAB AFE ∠=∠,∴EAF AFE ∠=∠,∴EA EF =,∴2DE AE =,设AE x =,则2DE x =,∵DE AB ∥,∴EDC B ∠=∠,∵C C ∠=∠,∴EDC ABC △△∽,∴ED EC DC AB AC BC==,∵5AB =,6BC =,10CA =,∴210510x x -=,∴2x =,∴24DE x ==,∴456CD =,∴245CD =,∴246655BD BC CD =-=-=.故选:B .2.如图,平行四边形ABCD 中,∠A 的平分线AE 交CD 于E ,若AB =5,BC =3,则EC 的长为()A .1B .2C .2.5D .4【答案】B 【分析】根据平行四边形的性质可得AB =CD =5,AD =BC =3,AB ∥CD ,然后根据平行线的性质可得∠EAB =∠AED ,然后根据角平分线的定义可得∠EAB =∠EAD ,从而得出∠EAD =∠AED ,根据等角对等边可得DA =DE =3,即可求出EC 的长.【解析】解:∵四边形ABCD 是平行四边形,AB =5,BC =3,∴AB =CD =5,AD =BC =3,AB ∥CD∴∠EAB =∠AED∵AE 平分∠DAB∴∠EAB =∠EAD∴∠EAD =∠AED∴DA =DE =3∴EC =CD -DE =2故选B .3.如图,OP 平分MON ∠,PA ON ⊥于点A ,点Q 是射线OM 上的一个动点,则下列结论正确的是()A .PA PQ=B .PA PQ <C .PA PQ >D .PA PQ≤【答案】D 【分析】连接PQ ,当PQ ⊥OM 时,根据角平分线的性质得出PQ =PA ,利用直线外一点到直线的垂线段最短即可得出结论.【解析】解:连接PQ ,当PQ ⊥OM 时,∵OP 平分∠MON ,PQ ⊥OM ,PA ⊥ON ,∴PQ =PA ,此时点P 到OM 的距离PQ 最小,∴PA ≤PQ ,故选:D .4.如图,CD ,CE ,CF 分别是ABC 的高、角平分线、中线,则下列各式中错误的是()A.2AB BF=B.12ACE ACB∠=∠C.AE BE=D.CD BE⊥【答案】C【分析】从三角形的一个顶点向它的对边作垂线,垂足与顶点之间的线段叫做三角形的高.三角形一个内角的平分线与这个内角的对边交于一点,则这个内角的顶点与所交的点间的线段叫做三角形的角平分线.三角形一边的中点与此边所对顶点的连线叫做三角形的中线.依此即可求解.【解析】解:∵CD,CE,CF分别是△ABC的高、角平分线、中线,∴CD⊥AB,∠ACE=12∠ACB,AB=2BF,无法确定AE=BE.故选:C.5.如图,在△ABC中,∠C=90°,AD平分∠BAC,DE⊥AB于E,则下列结论:①AD平分∠CDE;②∠BAC=∠BDE;③DE平分∠ADB;④BE+AC=AB,其中正确的有()A.1个B.2个C.3个D.4个【答案】C【分析】根据题中条件,结合图形及角平分线的性质得到结论,与各选项进行比对,排除错误答案,选出正确的结果.【解析】解:∵AD平分∠BAC,∴∠DAC=∠DAE,∵∠C=90°,DE⊥AB,∴∠C=∠E=90°,∵AD=AD,∴△DAC≌△DAE,∴∠CDA=∠EDA,∴①AD平分∠CDE正确;无法证明∠BDE =60°,∴③DE 平分∠ADB 错误;∵BE +AE =AB ,AE =AC ,∴BE +AC =AB ,∴④BE +AC =AB 正确;∵∠BDE =90°-∠B ,∠BAC =90°-∠B ,∴∠BDE =∠BAC ,∴②∠BAC =∠BDE 正确.综上,正确的个数的3个,故选:C .6.如图,∠BAC =30°,AD 平分∠BAC ,DF ⊥AB 交AB 于F ,DE ⊥DF 交AC 于E ,若AE =8,则DF 等于()A .5B .4C .3D .2【答案】B 【分析】过点D 作DG AC ⊥,根据角平分线的性质可得DF DG =,根据角平分线的定义,平行线的性质以及等腰三角形的判定,可得AE ED =,进而根据含30度角的直角三角形的性质即可求解.【解析】如图,过点D 作DG AC ⊥ AD 平分∠BAC ,DF ⊥AB ,DG AC⊥∴DF DG =,CAD BAD∠=∠DE DF ⊥ ,DF ⊥AB ,AB DE∴∥BAD EDA∴∠=∠EAD EDA∴∠=∠EA ED∴=8AE = 8DE AE ∴== ∠BAC =30°,30DEG ∴∠=︒142DG DE ∴==4DF ∴=故选B二、填空题7.如图,已知AD 是△ABC 的角平分线,DE ∥AC 交AB 于点E ,请你添加一个条件________,使四边形AEDF 是菱形.【答案】DF ∥AB【分析】添加DF ∥AB ,根据DE ∥AC 交AB 于点E ,DF ∥AB 交AC 于点F ,可以判断四边形AEDF 是平行四边形,再根据角平分线的性质和平行线的性质即可证明结论成立.【解析】解:DF ∥AB ,理由如下:∵DE ∥AC 交AB 于点E ,DF ∥AB 交AC 于点F ,∴四边形AEDF 是平行四边形,∠EAD =∠ADF ,∵AD 是△ABC 的角平分线,∴∠EAD =∠FAD ,∴∠ADF =∠FAD ,∴FA =FD ,∴平行四边形AEDF 是菱形(有一组邻边相等的平行四边形是菱形).8.如图,在平行四边形ABCD 中,DE 平分∠ADC ,AD =8,BE =3,则AB 的长为________.【答案】5【分析】首先由在平行四边形ABCD 中,AD =8,BE =3,求得CE 的长,然后由DE 平分∠ADC ,可证CD =CE =5,即可求解.【解析】∵在平行四边ABCD 中,AD =8,∴BC =AD =8,AD //BC ,∴CE =BC -BE =8-3=5,∠ADE =∠CED ,∴DE 平分∠ADC ,∴∠ADE =∠CDE ,∴∠CDE =∠CED ,∴CD =CE =5=AB ,故答案为:5.9.如图,在ABC 中,ACB ∠的平分线交AB 于点D ,DE AC ⊥于点E .F 为BC 上一点,若DF AD =,6ACD CDF S S -=△△,则AED 的面积为______.【答案】3【分析】在CA 上截取CG =CF ,连接DG .根据题意易证()CDG CDF SAS ≅ ,得出DG DF =,CDG CDF S S = .即可求出AD DG =,6ADG S = .最后根据等腰三角形“三线合一”的性质即可求出ADE S .【解析】如图,在CA 上截取CG =CF ,连接DG,∵CD 平分ACB ∠,∴ACD BCD ∠=∠.在CDG 和CDF 中,CG CF GCD FCD CD CD =⎧⎪∠=∠⎨⎪=⎩,∴()CDG CDF SAS ≅ ,∴DG DF =,CDG CDF S S = .∵6ACD CDF S S -=△△,∴6ACD CDG S S -= ,即6ADG S = .∵AD DF =,∴AD DG=.∴AE=EG,∴132ADE GDE ADGS S S===.故答案为:3.10.如图,AB=BE,∠DBC=12∠ABE,BD⊥AC,则下列结论正确的是:_____.(填序号)①BC平分∠DCE;②∠ABE+∠ECD=180°;③AC=2BE+CE;④AC=2CD﹣CE.【答案】①②④【分析】根据已知∠DBC=12∠ABE,BD⊥AC,想到构造一个等腰三角形,所以延长CD,以B为圆心,BC长为半径画弧,交CD的延长线于点F,则BF=BC,就得到∠FBC=2∠DBC,然后再证明△FAB≌△CBE,就可以判断出BC平分∠DCE,再由角平分线的性质想到过点B作BG⊥CE,交CE的延长线于点G,从而证明△ABD≌△EBG,即可判断.【解析】解:延长CD,以B为圆心,BC长为半径画弧,交CD的延长线于点F,则BF=BC,过点B作BG⊥CE,交CE的延长线于点G,∵FB=BC,BD⊥AC,∴DF=DC,∠DBC=∠DBF=12∠FBC,∵∠DBC=12∠ABE,∴∠FBC=∠ABE,∴∠FBA=∠CBE,∵AB=AE,∴△FAB≌△CBE(SAS),∴∠F=∠BCE,∵BF=BC,∴∠F=∠BCD,∴∠BCD=∠BCE,∴BC平分∠DCE,故①正确;∵∠FBC+∠F+∠BCD=180°,∴∠ABE+∠BCE+∠BCD=180°,∴∠ABE+∠DCE=180°,故②正确;∵∠BDC=∠BGC=90°,BC=BC,∴△BDC≌△BGC(AAS),∴AD=GE,CD=CG,∵AC=AD+DC,∴AC=AD+CG=AD+GE+CE=2GE+CE,∵GE≠BE,∴AC≠2BE+CE,故③错误;∵AC=CF﹣AF,∴AC=2CD﹣CE,故④正确;故答案为:①②④.11.如图,在△ABC中,BD平分∠ABC交AC于点D,DE∥AB,交BC于点E,BE=2,则DE的长是___.【答案】2【分析】根据角平分线的定义得到∠ABD=∠CBD,根据平行线的性质得到∠ABD=∠BDE,等量代换得到∠DBE=∠BDE,得到DE=BE,于是得到结论.【解析】解:∵BD平分∠ABC,∴∠ABD=∠CBD,∵DE∥AB,∴∠ABD=∠BDE,∴∠DBE=∠BDE,∴DE=BE,∵BE=2,∴DE=2.故答案为:2.12.如图,△ABC中,AD、BD、CD分别平分△ABC的外角∠CAE、内角∠ABC、外角∠ACF,AD∥BC.以下结论:①∠ABC=∠ACB;②∠ADC+∠ABD=90°;③BD平分∠ADC;④2∠BDC=∠BAC.其中正确的结论有____________.(填序号)【答案】①②④【分析】根据角平分线的定义得到∠EAD=∠CAD,根据平行线的性质得到∠EAD=∠ABC,∠CAD=∠ACB,求得∠ABC=∠ACB,故①正确;根据角平分线的定义得到∠ADC=90°12-∠ABC,求得∠ADC+∠ABD=90°故②正确;根据全等三角形的性质得到AB=CB,与题目条件矛盾,故③错误,根据角平分线的定义和三角形外角的性质即可得到2∠BDC=∠BAC,故④正确.【解析】解:∵AD平分∠EAC,∴∠EAD=∠CAD,∵AD∥BC,∴∠EAD=∠ABC,∠CAD=∠ACB,∴∠ABC=∠ACB,故①正确;∵AD,CD分别平分∠EAC,∠ACF,∴可得∠ADC=90°12-∠ABC,∴∠ADC+12∠ABC=90°,∴∠ADC+∠ABD=90°,故②正确;∵∠ABD =∠DBC ,BD =BD ,∠ADB =∠BDC ,∴△ABD ≌△BCD (ASA ),∴AB =CB ,与题目条件矛盾,故③错误,∵∠DCF =∠DBC +∠BDC ,∠ACF =∠ABC +∠BAC ,∴2∠DCF =2∠DBC +2∠BDC ,2∠DCF =2∠DBC +∠BAC ,∴2∠BDC =∠BAC ,故④正确,故答案为:①②④.三、解答题13.如图,AC =BC ,∠1=∠2,求证:OD 平分∠AOB .【答案】见详解【分析】证明△ACO ≌△BCO 即可求证.【解析】证明:∵∠1=∠2,∠1+∠ACO =180°,∠2+∠BCO =180°,∴∠ACO =∠BCO ,∵AC =BC ,CO =CO ,∴△ACO ≌△BCO ,∴∠AOC =∠BOC ,∴OD 平分∠AOB .14.如图,在ABC 中,AE 平分BAC BE AE ∠⊥,于点E ,延长BE 交AC 于点D ,点F 是BC 的中点.若35AB AC ==,,求EF 的长.【答案】1【分析】根据角平分线的定义结合题意,即可利用“ASA”证明BAE DAE ≅ ,即得出3AD AB ==,BE DE =,从而可得出2CD =,点E 为BD 中点,从而可判定EF 为BCD △的中位线,进而可求出EF 的长.【解析】∵AE 平分BAC BE AE∠⊥,∴BAE DAE ∠=∠,90AEB AED ∠=∠=︒.又∵AE =AE ,∴BAE DAE ≅ (ASA),∴3AD AB ==,BE DE =,∴2CD AC AD =-=,点E 为BD 中点.∵F 是BC 的中点,∴EF 为BCD △的中位线,∴112EF CD ==.15.已知:如图,在△ABC 中,AB =AC ,∠A =100°,BD 是∠ABC 的平分线,BD =BE .求证:(1)△CED 是等腰三角形;(2)BD +AD =BC .【答案】(1)见解析;(2)见解析【分析】(1)由AB =AC ,∠A =100°求出∠ABC =∠C =40°,再由BD 是∠ABC 的平分线求出∠DBC =12∠ABC =20°,根据BD =BE 求出∠BED =∠BDE =80°,再根据三角形的外角等于与它不相邻的两个内角的和求得∠EDC =40°,则∠EDC =∠C ,从而证明ED =EC ,即△CED 是等腰三角形;(2)在BE 上截取BF =BA ,连结DF ,先证明△FBD ≌△ABD ,则FD =AD ,∠BFD =∠A =100°,可证明∠EFD =∠FED =80°,则AD =FD =ED =EC ,即可证明BD +AD =BE +EC =BC .【解析】(1)∵AB =AC ,∠A =100°,∴∠ABC =∠C =12×(180°-100°)=40°,∵BD 是∠ABC 的平分线,∴∠DBC =12∠ABC =20°,∵BD =BE ,∴∠BED =∠BDE =12×(180°-20°)=80°,∴∠EDC =∠BED -∠C =80°-40°=40°,∴∠EDC =∠C ,∴ED =EC ,∴△CED 是等腰三角形.(2)如图,在边BC 上取点F ,使BF BA =,在ABD △和FBD 中∵AB FB ABD FBD BD BD =⎧⎪∠=∠⎨⎪=⎩∴ABD FBD≌△△∴AD DF =,100BFD A ∠=∠=︒,∴18010080DFE ∠=︒-︒=︒,∴DFE DEF∠=∠∴DF DE=∴AD EC=∴BD AD BE EC BC +=+=.16.如图,AD 为△ABC的角平分线.(1)如图1,若CE ⊥AD 于点F ,交AB 于点E ,AB =8,AC =5.则BE =_______.(2)如图2,若∠C =2∠B ,点E 在AB 上,且AE =AC ,AB =a ,AC =b ,求CD 的长;(用含a 、b 的式子表示)(3)如图3,BG ⊥AD ,点G 在AD 的延长线上,连接CG ,若△ACG 的面积是7,求△ABC 的面积.【答案】(1)3;(2)CD =a -b ;(3)ABC S =14【分析】(1)利用ASA 证明△AEF ≌△ACF ,得AE =AC =5,得出答案;(2)利用ASA 证明△ADE ≌△ADC ,得∠C =∠AED ,DC =DE ,再证明∠B =∠BDE ,得出BE =DE ,即可得到结论;(3)利用ASA 证明△AGB ≌△AGH ,得出BG =HG ,即可得出△ABC 的面积.【解析】(1)∵AD 是△ABC 的平分线,∴∠BAD =∠CAD ,∵CE ⊥AD ,∴∠CFA =∠EFA ,∵在△AEF 和△ACF 中EAF CAF AF AF AFE AFC ∠∠⎧⎪⎨⎪∠∠⎩===,∴△AEF ≌△ACF (ASA ),∴AE =AC =5,∵AB =8,∴BE =AB −AC =8−5=3,故答案为:3;(2)∵AD 平分∠BAC ,∴∠BAD =∠CAD ,在△ADE 和△ADC 中AE AC EAD CAD AD AD =⎧⎪∠=∠⎨⎪=⎩∴△ADE ≌△ADC∴∠C =∠AED ,DC =DE又∵∠C =2∠B ,∠AED =∠B +∠BDE∴∠B =∠BDE∴DE =BE ,∴DC =DE =BE =AB -AE =AB -AC=a -b ;(3)如图,分别延长AC ,BG 交于点H ,∵AD 平分∠BAC ,∴∠BAD =∠CAD ,∵AG ⊥BH ,∴∠AGB =∠AGH =90°,∵在△AGB 和△AGH 中BAD CAD AG AG AGB AGH ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△AGB ≌△AGH ,∴BG =HG ,∴22BCH BCG HCG S S S == ,又∵2ABC BCH ACG CGH S S S S +=+ ()∴ABC S =14.17.已知:如图1,在Rt ABC 中,90ACB ∠=︒,60B ∠=︒,AD ,CE 是角平分线,AD 与CE 相交于点F ,FM AB ⊥,FN BC ⊥,垂足分别为M ,N .【思考说理】(1)求证:FE FD =.【反思提升】(2)爱思考的小强尝试将【问题背景】中的条件“90ACB ∠=︒”去掉,其他条件不变,观察发现(1)中结论(即FE FD =)仍成立.你认为小强的发现正确吗?如果不正确请举例说明,如果正确请仅就图2给出证明.【答案】(1)证明见详解;(2)正确,证明见详解;【分析】(1)由角平分线的性质、三角形内角和定理证()Rt FDN Rt FEM AAS ∆≅∆∠即可求解;(2)在AB 上截取CP =CD ,分别证()CDF CPF SAS ∆≅∆、()AFE AFP ASA ∆≅∆即可求证;【解析】证明:(1)∵AD 平分∠BAC ,CE 平分∠ACB ,∴点F 是ABC ∆的内心,∵FM AB ⊥,FN BC ⊥,∴FM FN =,∵90ACB ∠=︒,60ABC ∠=︒,∴30CAB ∠=︒∴15CAD ∠=︒∴75ADC ∠=︒∵45ACE ∠=︒∴75CEB ∠=︒∴ADC CEB∠=∠∴()Rt FDN Rt FEM AAS ∆≅∆∠∴FE FD=(2)如图,在AB 上截取CP =CD ,在CDF ∆和CPF ∆中,∵CD CP DCF PCF CF CF =⎧⎪∠=∠⎨⎪=⎩∴()CDF CPF SAS ∆≅∆∴FD FP =,∠CFD =∠CFP ,∵AD 平分∠BAC ,CE 平分∠ACB ,∴∠CAD =∠BAD ,∠ACE =∠BCE ,∵∠B =60°,∴∠ACB +∠BAC =120°,∴∠CAD +∠ACE =60°,∴∠AFC =120°,∵∠CFD =∠AFE =180°-∠AFC =60°,∵∠CFD =∠CFP ,∴∠AFP =∠CFP =∠CFD =∠AFE =60°,在AFE ∆和AFP ∆中,∵AFE AFP AF AF PAF EAF ∠=∠⎧⎪=⎨⎪∠=∠⎩∴()AFE AFP ASA ∆≅∆∴FP =EF∴FD =EF .18.如图,∠MAN 是一个钝角,AB 平分∠MAN ,点C 在射线AN 上,且AB =BC ,BD ⊥AC ,垂足为D.(1)求证:BAM BCA ∠=∠;(2)动点P ,Q 同时从A 点出发,其中点Q 以每秒3个单位长度的速度沿射线AN 方向匀速运动;动点P 以每秒1个单位长度的速度匀速运动.已知AC =5,设动点P ,Q 的运动时间为t 秒.①如图②,当点P 在射线AM 上运动时,若点Q 在线段AC 上,且52ABP BQC S S =△△,求此时t 的值;②如图③,当点P 在直线AM 上运动时,点Q 在射线AN 上运动的过程中,是否存在某个时刻,使得 APB 与 BQC 全等?若存在,请求出t 的值;若不存在,请说出理由.【答案】(1)见解析(2)①2517t =;②存在,54t =或52t =【分析】(1)①先证Rt △BDA ≌Rt △BDC (HL ),推出∠BAC =∠BCA .再由角平分线的定义得∠BAM =∠BAC ,等量代换即可证明BAM BCA ∠=∠;(2)①作BH ⊥AM ,垂足为M .先证△AHB ≌△ADB (AAS ),推出BH =BD ,再由S △ABP =52S △BQC ,推出52AP CQ =,结合P ,Q 运动方向及速度即可求解;②分“点P 沿射线AM 方向运动,点Q 在线段AC 上”,以及“点P 沿射线AM 反向延长线方向运动,点Q 在线段AC 延长线上”两种情况讨论,利用三角形全等得出AP 与CQ 的关系即可求解.【解析】(1)证明:∵BD ⊥AC ,∴90BDA BDC ∠=∠=︒,在Rt △BDA 和Rt △BDC 中,BD BD AB CB=⎧⎨=⎩,∴Rt △BDA ≌Rt △BDC (HL ),∴∠BAC =∠BCA .∵AB 平分∠MAN ,∴∠BAM =∠BAC ,∴∠BAM =∠BCA .(2)解:①如下图所示,作BH ⊥AM ,垂足为M .∵BH ⊥AM ,BD ⊥AC ,∴∠AHB =∠ADB =90°,在△AHB 和△ADB 中,AHB ADB BAH BAD AB AB ∠=∠⎧⎪∠=∠⎨⎪=⎩,,,∴△AHB ≌△ADB (AAS ),∴BH =BD ,∵S △ABP =52S △BQC ,∴151222AP BH CQ BD =⨯ ,∴52AP CQ =,∴5(53)2t t =-,∴2517t =.②存在,理由如下:当点P 沿射线AM 方向运动,点Q 在线段AC上时,如下图所示,∵AB =BC ,又由(1)得∠BAM =∠BCA ,∴当AP =CQ 时,△APB ≌△CQB ,∴53t t =-,∴54t =;当点P 沿射线AM 反向延长线方向运动,点Q 在线段AC 延长线上时,如下图所示,由(1)得∠BAM=∠BCA,∴∠BAP=∠BCQ,又∵AB=BC,∴当AP=CQ时,△APB≌△CQB,∴35t t=-,∴52 t=.综上所述,当54t=或52t=时,△APB和△CQB全等.。

三角形中做辅助线的技巧及典型例题

三角形中做辅助线的技巧及典型例题

三角形中做辅助线的技巧及典型例题Document number:NOCG-YUNOO-BUYTT-UU986-1986UT三角形中做辅助线的技巧口诀:三角形图中有角平分线,可向两边作垂线。

也可将图对折看,对称以后关系现。

角平分线平行线,等腰三角形来添。

角平分线加垂线,三线合一试试看。

线段垂直平分线,常向两端把线连。

线段和差及倍半,延长缩短可试验。

线段和差不等式,移到同一三角去。

三角形中两中点,连接则成中位线。

三角形中有中线,延长中线等中线。

一、由角平分线想到的辅助线 口诀:图中有角平分线,可向两边作垂线。

也可将图对折看,对称以后关系现。

角平分线平行线,等腰三角形来添。

角平分线加垂线,三线合一试试看。

角平分线具有两条性质:a 、对称性;b 、角平分线上的点到角两边的距离相等。

对于有角平分线的辅助线的作法,一般有两种。

①从角平分线上一点向两边作垂线;②利用角平分线,构造对称图形(如作法是在一侧的长边上截取短边)。

通常情况下,出现了直角或是垂直等条件时,一般考虑作垂线;其它情况下考虑构造对称图形。

至于选取哪种方法,要结合题目图形和已知条件。

与角有关的辅助线(一)、截取构全等如图1-1,∠AOC=∠BOC ,如取OE=OF ,并连接DE 、DF ,则有△OED ≌△OFD ,从而为我们证明线D段、角相等创造了条件。

如图1-2,AB2AC2AC3 CAC 。

3.已知:如图2-5, ∠BAC=∠CAD,AB>AD ,CE ⊥AB ,AE=21(AB+AD ).求证:∠D+∠B=180。

4.已知:如图2-6,在正方形ABCD 中,E 为CD 的中点,F 为BC上的点,∠FAE=∠DAE 。

求证:AF=AD+CF 。

已知:如图2-7,在Rt △ABC 中,∠ACB=90,CD ⊥AB ,垂足为D ,AE 平分∠CAB 交CD 于F ,过F 作FH 21证:BD=2CE 。

分析:给出了角平分线给出了边上的一点作角平分线的垂线,可延长此垂线与另外一边相交,近而构造出等腰三角形。

2024年中考数学二轮复习题型突破课件—与角平分线有关的辅助线问题

2024年中考数学二轮复习题型突破课件—与角平分线有关的辅助线问题
100°, ∠ABC = 40°, ∴ ∠ACB = 40°, ∠DFC =
180°- ∠BFD = 80°.∴ ∠FDC = 60°.∵ ∠EDC =
∠ADB=180°-∠1-∠A=180°-20°-100°=60°,
∴ ∠EDC = ∠FDC. 又 ∵ CD = CD , ∴
△DCE≌△DCF.∴ CE=CF.∴ BC=BF+CF=AB
积是
16
.
第3题
1
2
3
4
5
6
7
4. 如图,∠ADE=∠BDE=15°,EF∥DB,EC⊥DB于点C.若EC= 3,
则EF的长为
2
.
第4题
1
2
3
4
5
6
7
5. 如图,在△ABC中,AD是∠BAC的平分线,BE是△ABD的边AD上的
中线.若△ABC的面积是24,AB=5,AC=3,则△ABE的面积是
2024年中考数学二轮复习题型突破—与角平分线有关的辅助线问

主讲人:XXX
类型1 作垂线
模型解读:如图,P是∠MON的平分线上一点,过点P作PA⊥OM于点
A,PB⊥ON于点B,则PA=PB,△OAP≌△OBP.
典例1 如图,∠AOB=30°,OC平分∠AOB,CD⊥OA于点D,CE∥AO
交OB于点E,OE=20cm,求CD的长.
∠NBD.在△CDM和△BDN中,∵ ∠CMD=∠BND=90°,∠MCD=
∠NBD,DM=DN,∴ △CDM≌△BDN.∴ CD=BD
第6题答案
1
2
3
4
5
6
7
7. 如图,在△ABC中,∠BAC=60°,∠ABC=80°,∠BAC与∠ABC的平
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

由角平分线想到的辅助线角平分线具有两条性质:a 、对称性;b 、角平分线上的点到角两边的距离相等。

对于有角平分线的辅助线的作法,一般有两种。

①从角平分线上一点向两边作垂线;②利用角平分线,构造对称图形(如作法是在一侧的长边上截取短边)。

通常情况下,出现了直角或是垂直等条件时,一般考虑作垂线;其它情况下考虑构造对称图形。

至于选取哪种方法,要结合题目图形和已知条件。

与角有关的辅助线(一)、截取构全等如图1-1,∠AOC=∠BOC ,如取OE=OF ,并连接DE 、DF ,则有△OED ≌△OFD ,从而为我们证明线段、角相等创造了条件。

例1. 如图1-2,AB//CD ,BE 平分∠ABC ,CE 平分∠BCD ,点E 在AD 上,求证:BC=AB+CD 。

分析:此题中就涉及到角平分线,可以利用角平分线来构造全等三角形,即利用解平分线来构造轴对称图形,同时此题也是证明线段的和差倍分问题,在证明线段的和差倍分问题中常用到的方法是延长法或截取法来证明,延长短的线段或在长的线段长截取一部分使之等于短的线段。

但无论延长还是截取都要证明线段的相等,延长要证明延长后的线段与某条线段相等,截取要证明截取后剩下的线段与某条线段相等,进而达到所证明的目的。

简证:在此题中可在长线段BC 上截取BF=AB ,再证明CF=CD ,从而达到证明的目的。

这里面用到了角平分线来构造全等三角形。

另外一个全等自已证明。

此题的证明也可以延长BE 与CD 的延长线交于一点来证明。

自已试一试。

例2. 已知:如图1-3,AB=2AC ,∠BAD=∠CAD ,DA=DB ,求证DC ⊥ACB图1-2DBC分析:此题还是利用角平分线来构造全等三角形。

构造的方法还是截取线段相等。

其它问题自已证明。

例3. 已知:如图1-4,在△ABC 中,∠C=2∠B,AD 平分∠BAC ,求证:AB-AC=CD分析:此题的条件中还有角的平分线,在证明中还要用到构造全等三角形,此题还是证明线段的和差倍分问题。

用到的是截取法来证明的,在长的线段上截取短的线段,来证明。

试试看可否把短的延长来证明呢?练习 1.已知在△ABC 中,AD 平分∠BAC ,∠B=2∠C ,求证:AB+BD=AC2.已知:在△ABC 中,∠CAB=2∠B ,AE 平分∠CAB 交BC 于E ,AB=2AC ,求证:AE=2CE3.已知:在△ABC 中,AB>AC,AD 为∠BAC 的平分线,M 为AD 上任一点。

求证:BM-CM>AB-AC4.已知:D 是△ABC 的∠BAC 的外角的平分线AD 上的任一点,连接DB 、DC 。

求证:BD+CD>AB+AC 。

(二)、角分线上点向角两边作垂线构全等过角平分线上一点向角两边作垂线,利用角平分线上的点到两边距离相等的性质来证明问题。

例1. 如图2-1,已知AB>AD, ∠BAC=∠FAC,CD=BC 。

求证:∠ADC+∠B=180ABC图1-4ABC分析:可由C 向∠BAD 的两边作垂线。

近而证∠ADC 与∠B 之和为平角。

例2. 如图2-2,在△ABC 中,∠A=90 ,AB=AC ,∠ABD=∠CBD 。

求证:BC=AB+AD分析:过D 作DE ⊥BC 于E ,则AD=DE=CE ,则构造出全等三角形,从而得证。

此题是证明线段的和差倍分问题,从中利用了相当于截取的方法。

例3. 已知如图2-3,△ABC 的角平分线BM 、CN 相交于点P 。

求证:∠BAC 的平分线也经过点P 。

分析:连接AP ,证AP 平分∠BAC 即可,也就是证P 到AB 、AC 的距离相等。

练习:1.如图2-4∠AOP=∠BOP=15 ,PC//OA ,PD ⊥O A ,如果PC=4,则PD=( )A 4B 3C 2D 12.已知在△ABC 中,∠C=90 ,AD 平分∠CAB ,CD=1.5,DB=2.5.求AC 。

3.已知:如图2-5, ∠BAC=∠CAD,AB>AD ,CE ⊥AB ,AE=21(AB+AD ).求证:∠D+∠B=180 。

4.已知:如图2-6,在正方形ABCD 中,E 为CD 的中点,F 为BC上的点,∠FAE=∠DAE 。

求证:AF=AD+CF 。

5.已知:如图2-7,在Rt △ABC 中,∠ACB=90 ,CD ⊥AB ,垂足为D ,AE 平分∠CAB 交CD 于F ,过F 作FH//AB 交BC 于H 。

求证CF=BH 。

图2-2BC图2-3ABC 图2-4OADABDD(三):作角平分线的垂线构造等腰三角形从角的一边上的一点作角平分线的垂线,使之与角的两边相交,则截得一个等腰三角形,垂足为底边上的中点,该角平分线又成为底边上的中线和高,以利用中位线的性质与等腰三角形的三线合一的性质。

(如果题目中有垂直于角平分线的线段,则延长该线段与角的另一边相交)。

例1. 已知:如图3-1,∠BAD=∠DAC ,AB>AC,CD ⊥AD 于D ,H 是BC 中点。

求证:DH=21(AB-AC ) 分析:延长CD 交AB 于点E ,则可得全等三角形。

问题可证。

例2. 已知:如图3-2,AB=AC ,∠BAC=90 ,AD 为∠A BC 的平分线,CE ⊥BE.求证:BD=2CE 。

分析:给出了角平分线给出了边上的一点作角平分线的垂线,可延长此垂线与另外一边相交,近而构造出等腰三角形。

例3.已知:如图3-3在△ABC 中,AD 、AE 分别∠BAC 的内、外角平分线,过顶点B 作BN 垂直AD,交AD 的延长线于F ,连结FC 并延长交AE 于M 。

求证:AM=ME 。

分析:由AD 、AE 是∠BAC 内外角平分线,可得EA ⊥AF ,从而有BF//AE ,所以想到利用比例线段证相等。

B图3-2BC图3-3E例4. 已知:如图3-4,在△ABC 中,AD 平分∠BAC ,AD=AB ,CM ⊥AD 交AD 延长线于M 。

求证:AM=21(AB+AC ) 分析:题设中给出了角平分线AD ,自然想到以AD 为轴作对称变换,作△AB D 关于AD 的对称△AED ,然后只需证DM=21EC ,另外由求证的结果AM=21(AB+AC ),即2AM=AB+AC ,也可尝试作△ACM 关于CM 的对称△FCM ,然后只需证DF=C F 即可。

练习: 1.已知:在△ABC 中,AB=5,AC=3,D 是BC 中点,AE 是∠BAC 的平分线,且CE ⊥AE 于E ,连接DE ,求DE 。

2.已知BE 、BF 分别是△ABC 的∠ABC 的内角与外角的平分线,AF ⊥BF于F ,AE ⊥BE 于E ,连接EF 分别交AB 、AC 于M 、N ,求证MN=21BC (四)、以角分线上一点做角的另一边的平行线有角平分线时,常过角平分线上的一点作角的一边的平行线,从而构造等腰三角形。

或通过一边上的点作角平分线的平行线与另外一边的反向延长线相交,从而也构造等腰三角形。

如图4-1和图4-2所示。

图4-2图4-1ABC BIG例4 如图,AB>AC, ∠1=∠2,求证:AB -AC>BD -CD 。

1 2ACD例5 如图,BC>BA ,BD 平分∠ABC ,且AD=CD ,求证:∠A+∠C=180。

例6 如图,AB ∥CD ,AE 、DE 分别平分∠BAD 各∠ADE ,求证:AD=AB+CD 。

练习:1. 已知,如图,∠C=2∠A ,AC=2BC 。

求证:△ABC 是直角三角形。

2.已知:如图,AB=2AC ,∠1=∠2,DA=DB ,求证:DC ⊥ACBDCAAB EC DCAB ABDC1 23.已知CE 、AD 是△ABC 的角平分线,∠B=60°,求证:AC=AE+CD4.已知:如图在△ABC 中,∠A=90°,AB=AC ,BD 是∠ABC 的平分线,求证:BC=AB+AD(五)、角平分线且垂直一线段,应想到等腰三角形的中线例6.如图7,ΔABC 是等腰直角三角形,∠BAC=90°,BD 平分∠ABC 交AC 于点D ,CE 垂直于BD ,交BD 的延长线于点E 。

求证:BD=2CE 。

证明:延长BA ,CE 交于点F ,在ΔBEF 和ΔBEC 中, ∵∠1=∠2,BE=BE ,∠BEF=∠BEC=90°, ∴ΔBEF ≌ΔBEC ,∴EF=EC ,从而CF=2CE 。

又∠1+∠F=∠3+∠F=90°,故∠1=∠3。

ABCDAEBDDCBA在ΔABD 和ΔACF 中,∵∠1=∠3,AB=AC ,∠BAD=∠CAF=90°, ∴ΔABD ≌ΔACF ,∴BD=CF ,∴BD=2CE 。

注:此例中BE 是等腰ΔBCF 的底边CF 的中线。

(六)、借助角平分线造全等1:如图,已知在△ABC 中,∠B=60°,△ABC 的角平分线AD,CE 相交于点O ,求证:OE =OD2:(06郑州市中考题)如图,△ABC 中,AD 平分∠BAC ,DG ⊥BC 且平分BC ,DE ⊥AB 于E ,DF ⊥AC 于F. (1)说明BE=CF 的理由;(2)如果AB=a ,AC=b ,求AE 、BE的长.中考应用(06北京中考)如图①,OP 是∠MON 的平分线,请你利用该图形画一对以OP 所在直线为对称轴的全等三角形。

请你参考这个作全等三角形的方法,解答下列问题:(1)如图②,在△ABC 中,∠ACB 是直角,∠B =60°,AD 、CE 分别是∠BAC 、∠BCA 的平分线,AD 、CE 相交于点F 。

请你判断并写出FE 与FD 之间的数量关系;(2)如图③,在△ABC 中,如果∠ACB 不是直角,而(1)中的其它条件不变,请问,你在(1)中所得结论是否仍然成立?若成立,请证明;若不成立,请说明理由EDGFCBAOP AMNEB CD FAEFB D图①图② 图③。

相关文档
最新文档