赤峰数学几何模型压轴题(篇)(Word版 含解析)

合集下载

赤峰市中考数学试卷及答案(Word解析版)

赤峰市中考数学试卷及答案(Word解析版)

内蒙古赤峰市中考数学试卷一、选择题(共8小题,每小题3分,共24分)1.(3分)(•赤峰)有理数﹣3的相反数是()A.3B.﹣3 C.D.﹣考点:相反数.专题:计算题;压轴题.分析:根据相反数的意义,只有符号不同的数为相反数.解答:解:﹣3的相反数是3.故选A.点评:本题考查了相反数的意义.只有符号不同的数为相反数,0的相反数是0.2.(3分)(•赤峰)下面的几何体中,主(正)视图为三角形的是()A.B.C.D.考点:简单几何体的三视图分析:主视图是从几何体的正面看所得到的图形,根据主视图所看的方向,写出每个图形的主视图及可选出答案.解答:解:A、主视图是长方形,故此选项错误;B、主视图是长方形,故此选项错误;C、主视图是三角形,故此选项正确;D、主视图是正方形,中间还有一条线,故此选项错误;故选:C.点评:此题主要考查了简单几何体的三视图,关键是掌握主视图所看的位置.3.(3分)(•赤峰)赤峰市开放以来经济建设取得巨大成就,全市GDP总值为1686.15亿元,将1686.15亿元用科学记数法表示应为()A.168615×102元B.16.8615×104元C.1.68615×108元D.1.68615×1011元考点:科学记数法—表示较大的数.分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.解答:解:1686.15亿=1686 1500 0000=1.68615×1011,故选:D.点评:此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.4.(3分)(•赤峰)下面是扬帆中学九年八班43名同学家庭人口的统计表:家庭人口数(人) 3 4 5 6 2学生人数(人)15 10 8 7 3这43个家庭人口的众数和中位数分别是()A.5,6 B.3,4 C.3,5 D.4,6考点:众数;中位数分析:利用众数及中位数的定义解答即可.解答:解:数据3出现了15次,故众数为3;43人的中位数应该是排序后的第22个学生的家庭人数,、故中位数为家庭人数为4人,故选B.点评:本题考查了众数及中位数的知识,解题的关键是了解其定义,难度较小.5.(3分)(•赤峰)如图,把一块含有30°角(∠A=30°)的直角三角板ABC的直角顶点放在矩形桌面CDEF的一个顶点C处,桌面的另一个顶点F与三角板斜边相交于点F,如果∠1=40°,那么∠AFE=()A.50°B.40°C.20°D.10°考点:平行线的性质;三角形的外角性质专题:计算题.分析:由四边形CDEF为矩形,得到EF与DC平行,利用两直线平行同位角相等求出∠AGE 的度数,根据∠AGE为三角形AGF的外角,利用外角性质求出∠AFE的度数即可.解答:解:∵四边形CDEF为矩形,∴EF∥DC,∴∠AGE=∠1=40°,∵∠AGE为△AGF的外角,且∠A=30°,∴∠AFE=∠AGE﹣∠A=10°.故选D.点评:此题考查了平行线的性质,熟练掌握平行线的性质是解本题的关键.6.(3分)(•赤峰)如图,AB是⊙O的直径,C,D是⊙O上两点,CD⊥AB.若∠DAB=65°,则∠BOC=()A.25°B.50°C.130°D.155°考点:圆周角定理;垂径定理分析:由CD⊥AB.若∠DAB=65°,可求得∠D的度数,又由圆周角定理,即可求得∠AOC 的度数,继而求得答案.解答:解:∵CD⊥AB.∠DAB=65°,∴∠ADC=90°﹣∠DAB=25°,∴∠AOC=2∠ADC=50°,∴∠BOC=180°﹣∠AOC=130°.故C.点评:此题考查了圆周角定理以及直角三角形的性质.此题难度不大,注意掌握数形结合思想的应用.7.(3分)(•赤峰)化简结果正确的是()A.a b B.﹣ab C.a2﹣b2D.b2﹣a2考点:约分.分析:首先将分式的分子因式分解,进而约分求出即可.解答:解:==﹣ab.故选:B.点评:此题主要考查了约分,正确分解因式是解题关键.8.(3分)(•赤峰)如图,一根长5米的竹杆AB斜立于墙AC的右侧,底端B与墙角C的距离为3米,当竹杆顶端A下滑x米时,底端B便随着向右滑行y米,反映y与x变化关系的大致图象是()A.B.C.D.考点:动点问题的函数图象.分析:利用勾股定理列式求出AC,再根据勾股定理列式表示出y与x的函数关系式,然后判断出函数图象即可得解.解答:解:由勾股定理得,AC===4m,竹杆顶端A下滑x米时,底端B便随着向右滑行y米后,AC=4﹣x,BC=3+y,所以,y+3==,所以,y=﹣3,当x=0时,y=0,当A下滑到点C时,x=4,y=2,由函数解析式可知y与x的变化不是直线变化.故选A.点评:本题考查了动点问题的函数图象,主要利用了勾股定理,列出y与x的函数关系式是解题的关键,难点在于正确区分A、B选项.二、填空题(共8小题,每小题3分,共24分)9.(3分)(•赤峰)化简:2x﹣x=x.考点:合并同类项.分析:利用合并同类项的法则:把同类项的系数相加,所得结果作为系数,字母和字母的指数不变,直接得出答案.解答:解:2x﹣x=x.故答案为:x.点评:此题主要考查了合并同类项,正确掌握合并同类项法则是解题关键.10.(3分)(•赤峰)一只蚂蚁在如图所示的矩形地砖上爬行,蚂蚁停在阴影部分的概率是.考点:几何概率分析:根据矩形的性质求出阴影部分占整个面积的,进而得出答案.解答:解:由题意可得出:图中阴影部分占整个面积的,∴一只蚂蚁在如图所示的矩形地砖上爬行,蚂蚁停在阴影部分的概率是:.故答案为:.点评:本题考查几何概率的求法:首先根据题意将代数关系用面积表示出来,一般用阴影区域表示所求事件(A);然后计算阴影区域的面积在总面积中占的比例,这个比例即事件(A)发生的概率.11.(3分)(•赤峰)下列四个汽车图标中,既是中心对称图形又是轴对称图形的图标有1个.考点:中心对称图形;轴对称图形.分析:根据中心对称图形定义把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形,这个点叫做对称中心;轴对称图形的概念:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,可分析出答案.解答:解:第一个图不是轴对称图形,不是中心对称图形,故不合题意;第二个图形是中心对称图形,也是轴对称图形,故符合题意;第三个图形不是中心对称图形,是轴对称图形,故不合题意;第三个图形不是中心对称图形,是轴对称图形,故不合题意.故答案为:1.点评:此题主要考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.12.(3分)(•赤峰)如图,E的矩形ABCD中BC边的中点,将△ABE沿AE折叠到△AEF,F在矩形ABCD内部,延长AF交DC于G点.若∠AEB=55°,求∠DAF=20°.考点:翻折变换(折叠问题)分析::由△ABE沿AE折叠到△AEF,得出∠BAE=∠FAE,由∠AEB=55°,∠ABE=90°,求出∠BAE,利用∠DAF=∠BAD﹣∠BAE﹣∠FAE求解.解答:解:∵△ABE沿AE折叠到△AEF,∴∠BAE=∠FAE,∵∠AEB=55°,∠ABE=90°,∴∠BAE=90°﹣55°=35°,∴∠DAF=∠BAD﹣∠BAE﹣∠FAE=90°﹣35°﹣35°=20°.故答案为:20点评:本题主要考查了折叠问题,解题的关键是利用折叠图形的角相等求解.13.(3分)(•赤峰)如图,反比例函数y=(k>0)的图象与以原点(0,0)为圆心的圆交于A,B两点,且A(1,),图中阴影部分的面积等于.(结果保留π)考点:反比例函数图象的对称性;扇形面积的计算分析:根据反比例函数的图象关于坐标原点对称,是中心对称图形可得:图中两个阴影面积的和等于扇形OAB的面积,又知A(1,),即可求出圆的半径.解答:解:如图,∵A(1,),∴∠AOD=60°,OA=2.又∵点A、B关于直线y=x对称,∴∠AOB=2(60°﹣45°)=30°.又∵反比例函数的图象关于坐标原点对称,是中心对称图形,∴S阴影=S扇形AOB==.故答案是:.点评:本题主要考查反比例函数图象的对称性的知识点,解决本题的关键是利用反比例函数的对称性得到阴影部分与圆之间的关系.14.(3分)(•赤峰)如图所示,在象棋盘上建立平面直角坐标系,使“马”位于点(2,2),“炮”位于点(﹣1,2),写出“兵”所在位置的坐标(﹣2,3).考点:坐标确定位置分析:以“马”的位置向左2个单位,向下2个单位为坐标原点建立平面直角坐标系,然后写出兵的坐标即可.解答:解:建立平面直角坐标系如图,兵的坐标为(﹣2,3).故答案为:(﹣2,3).点评:本题考查了坐标确定位置,确定出原点的位置并建立平面直角坐标系是解题的关键.15.(3分)(•赤峰)直线l过点M(﹣2,0),该直线的解析式可以写为y=x+2.(只写出一个即可)考点:一次函数的性质.专题:开放型.分析:设该直线方程为y=kx+b(k≠0).令k=1,然后把点M的坐标代入求得b的值.解答:解:设该直线方程为y=kx+b(k≠0).令k=1,把点M(﹣2,0)代入,得0=﹣2+b=0,解得b=2,则该直线方程为:y=x+2.故答案是:y=x+2(答案不唯一,符合条件即可).点评:本题考查了一次函数的性质.一次函数图象上所有点的坐标都满足直线方程.16.(3分)(2014•赤峰)平移小菱形◇可以得到美丽的“中国结”图案,下面四个图案是由◇平移后得到的类似“中国结”的图案,按图中规律,第20个图案中,小菱形的个数是800个.考点:规律型:图形的变化类.分析:仔细观察图形发现第一个图形有2×12=2个小菱形;第二个图形有2×22=8个小菱形;第三个图形有2×32=18个小菱形;由此规律得到通项公式,然后代入n=20即可求得答案.解答:解:第一个图形有2×12=2个小菱形;第二个图形有2×22=8个小菱形;第三个图形有2×32=18个小菱形;…第n个图形有2n2个小菱形;第20个图形有2×202=800个小菱形;故答案为:800.点评:本题考查了图形的变化类问题,解题的关键是仔细观察图形的变化,并找到图形的变化规律.三、解答题(共10小题,满分102分)17.(6分)(•赤峰)计算:(π﹣)0+﹣8sin45°﹣()﹣1.考点:实数的运算;零指数幂;负整数指数幂;特殊角的三角函数值专题:计算题.分析:原式第一项利用零指数幂法则计算,第二项化为最简二次根式,第三项利用特殊角的三角函数值计算,最后一项利用负指数幂法则计算即可得到结果.解答:解:原式=1+4﹣8×﹣4=﹣3.点评:此题考查了实数的运算,熟练掌握运算法则是解本题的关键.18.(6分)(•赤峰)求不等式组的正整数解.考点:一元一次不等式组的整数解.分析:先解每一个不等式,求出不等式组的解集,再求出正整数解即可.解答:解:由①得4x+4+3>x解得x>﹣,由②得3x﹣12≤2x﹣10,解得x≤2,∴不等式组的解集为﹣<x≤2.∴正整数解是1、2.点评:此题主要考查了不等式组的解法,并会根据未知数的范围确定它所满足的特殊条件的值.一般方法是先解不等式组,再根据解集求出特殊值.19.(10分)(•赤峰)如图,已知△ABC中AB=AC.(1)作图:在AC上有一点D,延长BD,并在BD的延长线上取点E,使AE=AB,连AE,作∠EAC的平分线AF,AF交DE于点F(用尺规作图,保留作图痕迹,不写作法);(2)在(1)的条件下,连接CF,求证:∠E=∠ACF.考点:全等三角形的判定与性质;等腰三角形的性质;作图—复杂作图专题:作图题;证明题.分析:(1)以A为圆心,以AB长为半径画弧,与BD的延长线的交点即为点E,再以点A 为圆心,以任意长为半径画弧,分别与AC、AE相交,然后以这两点为圆心,以大于它们长度为半径画弧,两弧相交于一点,过点A与这一点作出射线与BE的交点即为所求的点F;(2)求出AE=AC,根据角平分线的定义可得∠EAF=∠CAF,再利用“边角边”证明△AEF和△ACF全等,根据全等三角形对应角相等可得∠E=∠ACF.解答:(1)解:如图所示;(2)证明:∵AB=AC,AE=AB,∴AE=AC,∵AF是∠EAC的平分线,∴∠EAF=∠CAF,在△AEF和△ACF中,,∴△AEF≌△ACF(SAS),∴∠E=∠ACF.点评:本题考查了全等三角形的判断与性质,等腰三角形的性质,作一条线段等于已知线段,角平分线的作法,确定出全等三角形的条件是解题的关键.20.(10分)(•赤峰)自从公布“八项规定”以来,光明中学积极开展“厉行节约,反对浪费”活动,为此,学校学生会对九年八班某日午饭浪费饭菜情况进行调查,调查内容分为四种:A.饭和菜全部吃光;B.有剩饭但菜吃光;C.饭吃光但菜有剩;D.饭和菜都有剩.学生会根据统计结果,绘制了如图两个统计图,根据统计图提供的信息回答下列问题:(1)九年八班共有多少名学生?(2)计算图2中B所在扇形的圆心角的度数,并补全条形统计图;(3)光明中学有学生2000名,请估计这顿午饭有剩饭的学生人数,按每人平均剩10克米饭计算,这顿午饭将浪费多少千克米饭?考点:条形统计图;用样本估计总体;扇形统计图.分析:(1)用A的人数除以相对应的百分比就是总学生数;(2)B的人数=总人数﹣A的人数﹣C的人数﹣D的人数,B所在扇形的圆心角的度数为:×360°=72°,再根据B的人数为10,补全条形统计图;(3)先求出这顿午饭有剩饭的学生人数为:2000×=600(人),再用人数乘每人平均剩10克米饭,把结果化为千克.解答:解:(1)九年八班共有学生数为:30÷60%=50(人);(2)B有剩饭但菜吃光的人数为:50﹣30﹣5﹣5=10(人),B所在扇形的圆心角的度数为:×360°=72°,补全条形统计图如图1:(3)这顿午饭有剩饭的学生人数为:2000×=600(人),600×10=6000(克)=6(千克).点评:本题主要考查了条形统计图,扇形统计图及样本估计总数,解题的关键是能把条形统计图和扇形统计图结合起来解决问题.21.(10分)(•赤峰)位于赤峰市宁城的“大明塔”是我国辽代的佛塔,距今已有1千多年的历史.如图,王强同学为测量大明塔的高度,在地面的点E处测得塔基BC上端C的仰角为30°,他又沿BE方向走了26米,到达点F处,测得塔顶端A飞仰角为52°,已知塔基是以OB为半径的圆内接正八边形,B点在正八边形的一个顶点上,塔基半径OB=18米,塔基高BC=11米,求大明塔的高OA(结果保留到整数,≈1.73,tan52°≈1.28).考点:解直角三角形的应用-仰角俯角问题分析:在直角△CBE中利用三角函数首先求得EC的长,则OF即可求解,然后在直角△AOF 中,利用三角函数即可求解.解答:解:∵在直角△CBE中,∠CEB=30°,BC=11,∴EC=22,则EB==11≈19,∵在直角△AOF中,∠AFO=52°,OF=18+19+26=63,∴OA=OF•tan∠AFO≈63×1.28=81(米).答:大明塔高约81米.点评:本题考查仰角的定义,要求学生能借助仰角构造直角三角形并解直角三角形.22.(10分)(•赤峰)某养殖专业户计划购买甲、乙两种牲畜,已知乙种牲畜的单价是甲种牲畜单价的2倍多200元,买3头甲种牲畜和1头乙种牲畜共需5700元.(1)甲、乙两种牲畜的单价各是多少元?(2)若购买以上两种牲畜50头,共需资金9.4万元,求甲、乙两种牲畜各购买多少头?(3)相关资料表明:甲、乙两种牲畜的成活率分别为95%和99%,若使这50头牲畜的成活率不低于97%且购买的总费用最低,应如何购买?考点:一次函数的应用;一元一次方程的应用分析:(1)设甲种牲畜的单价是x元,列方程3x+2x+200=5700,求出甲种牲畜的单价,再求出乙种牲畜的单价即可.(2)设购买甲种牲畜y头,列方程1100y+(50﹣y)=94000求出甲种牲畜购买20头,乙种牲畜购买30头,(3)设费用为m,购买甲种牲畜n头,则m=1100n+240(50﹣n)=﹣1300n+120000依题意得:n+(50﹣n)≥×50,据m随n的增大而减小,求得n=25时,费用最低.解答:解:(1)设甲种牲畜的单价是x元,依题意得,3x+2x+200=5700解得:x=1100乙种牲畜的单价是:2x+200=2400元,即甲种牲畜的单价是1100元,乙种牲畜的单价是2400元.(2)设购买甲种牲畜y头,依题意得,1100y+(50﹣y)=94000解得y=20,50﹣20=30,即甲种牲畜购买20头,乙种牲畜购买30头.(3)设费用为m,购买甲种牲畜n头,则m=1100n+240(50﹣n)=﹣1300n+120000依题意得:n+(50﹣n)≥×50,解得:n≤25,k=﹣1300<0,m随n的增大而减小,∵当n=25时,费用最低,所以各购买25头时满足条件.点评:本题主要考查了一次函数的应用,理解题意,抓住题目蕴含的数量关系是解决问题的关键.23.(12分)(•赤峰)如图,矩形OABC的顶点A,C分别在x轴和y轴上,点B的坐标为(﹣4,6),双曲线y=(x<0)的图象经过BC的中点D,且于AB交于点E.(1)求反比例函数解析式和E点坐标;(2)若F是OC上一点,且以∠OAF和∠CFD为对应角的△FDC、△AFO相似,求F点的坐标.考点:反比例函数综合题.专题:综合题.分析:(1)由ABCD为矩形,D为BC中点,根据B坐标确定出D坐标,代入反比例解析式求出中k的值,确定出反比例解析式,将x=﹣4代入反比例解析式求出y的值,确定出E坐标即可;(2)如图所示,设F(0,y),根据以∠OAF和∠CFD为对应角的△FDC、△AFO 相似,列出比例式,求出y的值,即可确定出F坐标.解答:解:(1)∵四边形ABCD为矩形,D为BC中点,B(﹣4,6),∴D(﹣2,6),设反比例函数解析式为y=,将D(﹣2,6)代入得:k=﹣12,∴反比例解析式为y=﹣,将x=﹣4代入反比例解析式得:y=3,则E(﹣4,3);(2)设F(0,y),如图所示,连接DF,AF,∵∠OAF=∠DFC,△AOF∽△FDC,∴=,即=,整理得:y2﹣6y+8=0,即(y﹣2)(y﹣4)=0,解得:y1=2,y2=4,则F坐标为(0,2)或(0,4).点评:此题属于反比例函数综合题,涉及的知识有:坐标与图形性质,待定系数法确定函数解析式,相似三角形的性质,以及一元二次方程的解法,熟练掌握待定系数法是解本题的关键.24.(12分)(•赤峰)如图1,E是直线AB,CD内部一点,AB∥CD,连接EA,ED.(1)探究猜想:①若∠A=30°,∠D=40°,则∠AED等于多少度?②若∠A=20°,∠D=60°,则∠AED等于多少度?③猜想图1中∠AED,∠EAB,∠EDC的关系并证明你的结论.(2)拓展应用:如图2,射线FE与矩形ABCD的边AB交于点E,与边CD交于点F,①②③④分别是被射线FE隔开的4个区域(不含边界,其中区域③、④位于直线AB上方,P是位于以上四个区域上的点,猜想:∠PEB,∠PFC,∠EPF的关系(不要求证明).考点:平行线的性质专题:阅读型;分类讨论.分析:(1)①根据图形猜想得出所求角度数即可;②根据图形猜想得出所求角度数即可;③猜想得到三角关系,理由为:延长AE与DC交于F点,由AB与DC平行,利用两直线平行内错角相等得到一对角相等,再利用外角性质及等量代换即可得证;(2)分四个区域分别找出三个角关系即可.解答:解:(1)①∠AED=70°;②∠AED=80°;③猜想:∠AED=∠EAB+∠EDC,证明:延长AE交DC于点F,∵AB∥DC,∴∠EAB=∠EFD,∵∠AED为△EDF的外角,∴∠AED=∠EDF+∠EFD=∠EAB+∠EDC;(2)根据题意得:点P在区域①时,∠EPF=360°﹣(∠PEB+∠PFC);点P在区域②时,∠EPF=∠PEB+∠PFC;点P在区域③时,∠EPF=∠PEB﹣∠PFC;点P在区域④时,∠EPF=∠PFC﹣∠PEB.点评:此题考查了平行线的性质,熟练掌握平行线的性质是解本题的关键.25.(12分)(•赤峰)阅读下列材料:如图1,圆的概念:在平面内,线段PA绕它固定的一个端点P旋转一周,另一个端点A所形成的图形叫做圆.就是说,到某个定点等于定长的所有点在同一个圆上,圆心在P(a,b),半径为r的圆的方程可以写为:(x﹣a)2+(y﹣b)2=r2,如:圆心在P(2,﹣1),半径为5的圆方程为:(x﹣2)2+(y+1)2=25(1)填空:①以A(3,0)为圆心,1为半径的圆的方程为(x﹣3)2+y2=1;②以B(﹣1,﹣2)为圆心,为半径的圆的方程为(x+1)2+(y+2)2=3.(2)根据以上材料解决下列问题:如图2,以B(﹣6,0)为圆心的圆与y轴相切于原点,C是⊙B上一点,连接OC,作BD⊥OC 垂足为D,延长BD交y轴于点E,已知sin∠AOC=.①连接EC,证明EC是⊙B的切线;②在BE上是否存在一点P,使PB=PC=PE=PO?若存在,求P点坐标,并写出以P为圆心,以PB为半径的⊙P的方程;若不存在,说明理由.考点:圆的综合题分析:(1)根据阅读材料中的定义求解;(2)①根据垂径定理由BD⊥OC得到CD=OD,则BE垂直平分OC,再根据线段垂直平分线的性质得EO=EC,则∠EOC=∠ECO,加上∠BOC=∠BCO,易得∠BOE=∠BCE=90°,然后根据切线的判定定理得到EC是⊙B的切线;②由∠BOE=∠BCE=90°,根据圆周角定理得点C和点O偶在以BE为直径的圆上,即当P点为BE的中点时,满足PB=PC=PE=PO,利用同角的余角相等得∠BOE=∠AOC,则sin∠BOE=sin∠AOC=,在Rt△BOE中,利用正弦的定义计算出BE=10,利用勾股定理计算出OE=8,则E点坐标为(0,8),于是得到线段AB的中点P的坐标为(﹣3,4),PB=5,然后写出以P(﹣3,4)为圆心,以5为半径的⊙P的方程.解答:(1)解:①以A(3,0)为圆心,1为半径的圆的方程为(x﹣3)2+y2=1;②以B(﹣1,﹣2)为圆心,为半径的圆的方程为(x+1)2+(y+2)2=3;故答案为(x﹣3)2+y2=1;(x+1)2+(y+2)2=3;(1)①证明:∵BD⊥OC,∴CD=OD,∴BE垂直平分OC,∴EO=EC,∴∠EOC=∠ECO,∵BO=BC,∴∠BOC=∠BCO,∴∠EOC+∠BOC=∠ECO+∠BCO,∴∠BOE=∠BCE=90°,∴BC⊥CE,∴EC是⊙B的切线;②存在.∵∠BOE=∠BCE=90°,∴点C和点O偶在以BE为直径的圆上,∴当P点为BE的中点时,满足PB=PC=PE=PO,∵B点坐标为(﹣6,0),∴OB=6,∵∠AOC+∠DOE=90°,∠DOE+∠BEO=90°,∴∠BOE=∠AOC,∴sin∠BOE=sin∠AOC=,在Rt△BOE中,sin∠BOE=,∴=,∴BE=10,∴OE==8,∴E点坐标为(0,8),∴线段AB的中点P的坐标为(﹣3,4),PB=5,∴以P(﹣3,4)为圆心,以5为半径的⊙P的方程为(x+3)2+(y﹣4)2=25.点评:本题了圆的综合题:熟练掌握垂径定理、切线的判定定理、圆周角定理和等腰三角形的性质;阅读理解能力也是本题考查的重点;会运用锐角三角函数的定义和勾股定理进行几何计算.26.(14分)(2014•赤峰)如图,抛物线y=ax2+bx+c(a≠0)与x轴交于点A(﹣1,0),B (3,0)两点,与y轴交于点C(0,﹣3).(1)求该抛物线的解析式及顶点M坐标;(2)求△BCM面积与△ABC面积的比;(3)若P是x轴上一个动点,过P作射线PQ∥AC交抛物线于点Q,随着P点的运动,在抛物线上是否存在这样的点Q,使以A,P,Q,C为顶点的四边形为平行四边形?若存在,请求出Q点坐标;若不存在,请说明理由.考点:二次函数综合题分析:(1)有抛物线与x轴交于点A(﹣1,0),B(3,0)两点,则可设抛物线解析式为y=a(x+1)(x﹣3).由与y轴交于点C(0,﹣3),则代入易得解析式,顶点易知.(2)求△BCM面积与△ABC面积的比,由两三角形不为同高或同底,所以考虑求解求出两三角形面积再作比即可.因为S△BCM=S梯形OCMD+S△BMD﹣S△BOC,S△ABC=•AB•OC,则结论易得.(3)由四边形为平行四边形,则对边PQ、AC平行且相等,过Q点作x轴的垂线易得Q到x轴的距离=OC=3,又(1)得抛物线解析式,代入即得Q点横坐标,则Q点可求.解答:解:(1)设抛物线解析式为y=a(x+1)(x﹣3),∵抛物线过点(0,3),∴﹣3=a(0+1)(0﹣3),∴a=1,∴抛物线解析式为y=(x+1)(x﹣3)=x2﹣2x﹣3,∵y=x2﹣2x﹣3=(x﹣1)2﹣4,∴M(1,4).(2)如图1,连接BC、BM、CM,作MD⊥x轴于D,∵S△BCM=S梯形OCMD+S△BMD﹣S△BOC=•(3+4)•1+•2﹣4﹣•3•3=+﹣=3S△ABC=•AB•OC=•4•3=6,∴S△BCM:S△ABC=3:6=1:2.(3)存在,理由如下:①如图2,当Q在x轴下方时,作QE⊥x轴于E,∵四边形ACQP为平行四边形,∴PQ平行且相等AC,∴△PEQ≌△AOC,∴EQ=OC=3,∴﹣3=x2﹣2x﹣3,解得x=2或x=0(与C点重合,舍去),∴Q(2,﹣3).②如图3,当Q在x轴上方时,作QF⊥x轴于F,∵四边形ACPQ为平行四边形,∴QP平行且相等AC,∴△PFQ≌△AOC,∴FQ=OC=3,∴3=x2﹣2x﹣3,解得x=1+或x=1﹣,∴Q(1+,3)或(1﹣,3).综上所述,Q点为(2,﹣3)或(1+,3)或(1﹣,3)点评:本题考查了二次函数图象与性质、平行四边形及坐标系中求不规则图形面积等基础考点,难度适中,适合学生练习.。

赤峰市中考数学二次函数和几何综合专题

赤峰市中考数学二次函数和几何综合专题

赤峰市中考数学二次函数和几何综合专题一、二次函数压轴题1.已知抛物线2:23G y mx mx =--有最低点为F .(1)当抛物线经过点E (-1,3)时,①求抛物线的解析式;②点M 是直线EF 下方抛物线上的一动点,过点M 作平行于y 轴的直线,与直线EF 交于点N ,求线段MN 长度的最大值;(2)将抛物线G 向右平移m 个单位得到抛物线1G .经过探究发现,随着m 的变化,抛物线1G 顶点的纵坐标y 和横坐标x 之间存在一个函数,求这个函数关系式,并写出自变量x 的取值范围;(3)记(2)所求的函数为H ,抛物线G 与函数H 的交点为P ,请结合图象求出点P 的纵坐标的取值范围. 2.综合与探究如图,抛物线26y ax bx =+-与x 轴相交于A ,B 两点,与y 轴相交于点C ,()2,0A -,()4,0B ,直线l 是抛物线的对称轴,在直线l 右侧的抛物线上有一动点D ,连接AD ,BD ,BC ,CD .(1)求抛物线的函数表达式:(2)若点D 在x 轴的下方,当BCD △的面积是92时,求ABD △的面积;(3)在直线l 上有一点P ,连接AP ,CP ,则AP CP +的最小值为______;(4)在(2)的条件下,点M 是x 轴上一点,点N 是抛物线上一动点,是否存在点N ,使得以点B ,D ,M ,N 为顶点的四边形是平行四边形,若存在,请直接写出点N 的坐标;若不存在,请说明理由.3.小明结合自己的学习经验,对新函数y =21b kx +的解析式、图象、性质及应用进行探究:已知当x=0时,y=2;当x=1时,y=1.(1)函数解析式探究:根据给定的条件,可以确定由该函数的解析式为:.(2)函数图象探究:①根据解析式,补全如表,则m=,n=.②根据表中数据,在如图所示的平面直角坐标系中描点,并画出函数图象.x……﹣4﹣3﹣2﹣1﹣1201212n4……y……2171525m8528512515217……(3)函数性质探究:请你结合函数的解析式及所画图象,写出该函数的一条性质:.(4)综合应用:已知函数y=|715x﹣815|的图象如图所示,结合你所画的函数图象,直接写出不等式|715x﹣815|≤21bkx.4.根据我们学习函数的过程与方法,对函数y=x2+bx+2﹣c|x﹣1|的图像和性质进行探究,已知该函数图像经过(﹣1,﹣2)与(2,1)两点,(1)该函数的解析式为,补全下表:x⋯﹣4﹣3﹣2﹣1123⋯y⋯2﹣1﹣2212⋯质:.(3)结合你所画的图象与函数y=x的图象,直接写出x2+bx+2﹣c|x﹣1|≤x的解集.5.综合与探究如图,已知二次函数()220y ax bx a =++≠的图像与x 轴交于1,0A ,B 两点,与y 轴交于点C ,直线122y x =-+经过B ,C 两点 (1)求二次函数的解析式;(2)点P 是线段 BC 上一个动点,过点P 作x 轴的垂线于点Q ,交抛物线于点D ,当点Q 是线段PD 的中点时,求点P 的坐标;(3)在(2)的条件下,若点M 是直线BC 上一点,N 是平面内一点,当以P ,D ,M ,N 为顶点的四边形是菱形时,请直接写出点N 的坐标.6.已知抛物线y =x 2+bx +c 的顶点为P ,与y 轴交于点A ,与直线OP 交于点B .(1)如图1,若点P 的横坐标为1,点B 的坐标为(3,6),①试确定抛物线的解析式;②若当m ≤x ≤3时,y =x 2+bx +c 的最小值为2,最大值为6,求m 的取值范围;(2)在(1)的条件下,若M 点是直线AB 下方抛物线上的一点,且S △ABM ≥3,求M 点横坐标的取值范围;(3)如图2,若点P 在第一象限,且PA =PO ,过点P 作PD ⊥x 轴于点D ,将抛物线y =x 2+bx +c 平移,平移后的抛物线经过点 A 、D ,与x 轴的另一个交点为C ,试探究四边形OABC 的形状,并说明理由.7.如图1,在平面直角坐标系中,已知抛物线y=a x2+b x+3经过A(1,0) 、B(-3,0)两点,与y轴交于点C.直线BC经过B、C两点.(1)求抛物线的解析式及对称轴;(2)将△COB沿直线 BC平移,得到△C1O1B1,请探究在平移的过程中是否存在点 O1落在抛物线上的情形,若存在,求出点O1的坐标,若不存在,说明理由;(3)如图2,设抛物线的对称轴与x轴交于点E,连结AC,请探究在抛物线上是否存在一点F,使直线EF∥AC,若存在,求出点F的坐标,若不存在,说明理由.8.如图,抛物线y=﹣x2+bx+c与x轴交于A、B两点(A在B的左侧),与y轴交于点N,过A点的直线l:y=kx+n与y轴交于点C,与抛物线y=﹣x2+bx+c的另一个交点为D,已知A(﹣1,0),D(5,﹣6),P点为抛物线y=﹣x2+bx+c上一动点(不与A、D重合).(1)直接写出抛物线和直线l的解析式;(2)当点P在直线l上方的抛物线上时,连接PA、PD,①当△PAD的面积最大时,P点的坐标是;②当AB平分∠DAP时,求线段PA的长.(3)设M为直线l上的点,探究是否存在点M,使得以点N、C,M、P为顶点的四边形为平行四边形?若存在,直接写出点M的坐标;若不存在,请说明理由.9.小云在学习过程中遇到一个函数21||(1)(2)6y x x x x =-+≥-.下面是小云对其探究的过程,请补充完整:(1)当20x -≤<时,对于函数1||y x =,即1y x =-,当20x -≤<时,1y 随x 的增大而 ,且10y >;对于函数221y x x =-+,当20x -≤<时,2y 随x 的增大而 ,且20y >;结合上述分析,进一步探究发现,对于函数y ,当20x -≤<时,y 随x 的增大而 .(2)当0x ≥时,对于函数y ,当0x ≥时,y 与x 的几组对应值如下表:x121 32 252 3 y 0116167161954872综合上表,进一步探究发现,当0x ≥时,y 随x 的增大而增大.在平面直角坐标系xOy 中,画出当0x ≥时的函数y 的图象.(3)过点(0,m)(0m >)作平行于x 轴的直线l ,结合(1)(2)的分析,解决问题:若直线l 与函数21||(1)(2)6y x x x x =-+≥-的图象有两个交点,则m 的最大值是 . 10.如图,抛物线24y ax bx =++交x 轴于(3,0)A -,(4,0)B 两点,与y 轴交于点C ,AC ,BC .M 为线段OB 上的一个动点,过点M 作PM x ⊥轴,交抛物线于点P ,交BC 于点Q .(1)求抛物线的表达式;(2)过点P 作PN BC ⊥,垂足为点N .设M 点的坐标为(,0)M m ,请用含m 的代数式表示线段PN 的长,并求出当m 为何值时PN 有最大值,最大值是多少?(3)试探究点M 在运动过程中,是否存在这样的点Q ,使得以A ,C ,Q 为顶点的三角形是等腰三角形.若存在,请求出此时点Q 的坐标;若不存在,请说明理由.二、中考几何压轴题11.综合与实践——探究特殊三角形中的相关问题 问题情境:某校学习小组在探究学习过程中,将两块完全相同的且含60︒角的直角三角板ABC 和AFE 按如图1所示位置放置,且Rt ABC 的较短直角边AB 为2,现将Rt AEF 绕A 点按逆时针方向旋转α(090)α︒<<︒,如图2,AE 与BC 交于点M ,AC 与EF 交于点N ,BC 与EF 交于点P .(1)初步探究:勤思小组的同学提出:当旋转角α= 时,AMC 是等腰三角形; (2)深入探究:敏学小组的同学提出在旋转过程中,如果连接AP ,CE ,那么AP 所在的直线是线段CE 的垂直平分线.请帮他们证明; (3)再探究:在旋转过程中,当旋转角30α=︒时,求ABC 与AFE △重叠的面积; (4)拓展延伸:在旋转过程中,CPN 是否能成为直角三角形?若能,直接写出旋转角α的度数;若不能,说明理由.12.(感知)(1)如图①,在四边形ABCD 中,∠C=∠D=90°,点E 在边CD 上,∠AEB=90°,求证:AE EB =DECB. (探究)(2)如图②,在四边形ABCD 中,∠C=∠ADC=90°,点E 在边CD 上,点F 在边AD 的延长线上,∠FEG=∠AEB=90°,且EF EG =AEEB,连接BG 交CD 于点H .求证:BH=GH . (拓展)(3)如图③,点E 在四边形ABCD 内,∠AEB+∠DEC=180°,且AE EB =DEEC,过E 作EF 交AD 于点F ,若∠EFA=∠AEB ,延长FE 交BC 于点G .求证:BG=CG .13.某数学学习小组在复习线段垂直平分线性质时,提出了以下几个问题,请你帮他们解决: [数学理解](1)点P 是线段AB 垂直平分线上的一点,则:PA PB 的值为 ; [拓展延伸](2)在平面直角坐标系xOy 中,点()6,0C , 点Q 在x 轴上,且:O 1:2QO C =, 则点Q 的坐标为 .(3)经小组探究发现,如图,延长线段DE 到点F ,使13EF DE =,以点F 为因心,2EF 长为半径作园,则对于OF 上任一点T ,都有2TD TE =,请你证明这个结论:[问题解决](4)如图,某人乘船以25千米/时的速度沿一笔直的河l 从码头G 到码头M ,再立即坐车沿一笔直公路以75千米/时的速度回到住处H ,已知乘船和坐车所用的时间相等请在河l 边上确定码头M 的位置.(请画出示意图并简要说明理由)14.(问题情境)(1)如图1,四边形ABCD是正方形,点E是AD边上的一个动点,以CE为边在CE的右侧作正方形CEFG,连接DG、BE,则DG与BE的数量关系是;(类比探究)(2)如图2,四边形ABCD是矩形,AB=2,BC=4,点E是AD边上的一个动点,以CE为边在CE的右侧作矩形CEFG,且CG:CE=1:2,连接DG、BE.判断线段DG与BE有怎样的数量关系和位置关系,并说明理由;(拓展提升)(3)如图3,在(2)的条件下,连接BG,则2BG+BE的最小值为.15.将抛物线y=ax2的图像(如图1)绕原点顺时针旋转90度后可得新的抛物线图像(如图2),记为C:y2=1ax.(概念与理解)将抛物线y1=4x2和y2=x2按上述方法操作后可得新的抛物线图像,记为:C1:_____________;C2:____________.(猜想与证明)在平面直角坐标系中,点M(x,0)在x轴正半轴上,过点M作平行于y轴的直线,分别交抛物线C1于点A、B,交抛物线C2于点C、D,如图3所示.(1)填空:当x=1时,ABCD=______;当x=2时,ABCD=_______;(2)猜想:对任意x(x>0)上述结论是否仍然成立?若成立,请证明你的猜想;若不成立,请说明理由.(探究与应用)①利用上面的结论,可得△AOB与△COD面积比为;②若△AOB和△COD中有一个是直角三角形时,求△COD与△AOB面积之差;(联想与拓展)若抛物线C3:y2=mx、C4:y2=nx(0<m<n),M(k,0)在x轴正半轴上,如图所示,过点M作平行于y轴的直线,分别交抛物线C3于点A、B,交抛物线C4于点C、D.过点A 作x轴的平行线交抛物线C4于点E,过点D作x轴的平行线交抛物线C3于点F.对于x轴上任取一点P,均有△PAE与△PDF面积的比值1:3,请直接写出m和n之间满足的等量关系是______.16.(教材呈现)下面是华师版八年级下册教材第89页的部分内容.如图,G,H是平行四边形ABCD对角线AC上的两点,且AG=CH,E,F分别是边AB和CD 的中点求证:四边形EHFG是平行四边形证明:连接EF交AC于点O∵四边形ABCD是平行四边形∴AB=CD,AB∥CD又∵E,F分别是AB,CD的中点∴AE=CF又∵AB∥CD∴∠EAO=∠FCO又∵∠AOE=∠COF∴△AOE≌△COF请补全上述问题的证明过程.(探究)如图①,在△ABC中,E,O分别是边AB、AC的中点,D、F分别是线段AO、CO 的中点,连结DE、EF,将△DEF绕点O旋转180°得到△DGF,若四边形DEFG的面积为8,则△ABC的面积为.(拓展)如图②,GH是正方形ABCD对角线AC上的两点,且AG=CH,GH=AB,E、F分别是AB和CD的中点.若正方形ABCD的面积为16,则四边形EHFG的面积为.17.如图:两个菱形ABCD 与菱形BEFG 的边AB BE ,在同一条直线上,边长分别为a 和b ,点C 在BG 上,点M 为CG 的中点.(1)观察猜想:如图①,线段BM 与线段AE 的数量关系是______________. (2)拓展探究:如图②,120ABC ∠=︒,将图①中的菱形BEFG 绕点B 顺时针旋转至图②位置,其他条件不变,连接BM ,①猜想线段BM 与线段AE 的数量关系,并说明理由. ②求出线段BM 与AE 所成的最小夹角.(3)解决问题:如图③,若将题目中的菱形改为矩形,且3BC EFAB BE=段BM 与线段AE 的数量关系.18.如图,已知ABC 和ADE 均为等腰三角形,AC =BC ,DE =AE ,将这两个三角形放置在一起. (1)问题发现:如图①,当60ACB AED ∠∠︒==时,点B 、D 、E 在同一直线上,连接CE ,则CEB ∠= °,线段BD 、CE 之间的数量关系是 ; (2)拓展探究:如图②,当90ACB AED ∠∠︒==时,点B 、D 、E 在同一直线上,连接CE ,请判断CEB ∠的度数及线段BD 、CE 之间的数量关系,并说明理由; (3)解决问题:如图③,90ACB AED ∠∠︒==,25AC =AE =2,连接CE 、BD ,在AED 绕点A 旋转的过程中,当DE BD ⊥时,请直接写出EC 的长.19.类比、转化、从特殊到一般等思想方法,在数学学习和研究中经常用到,如下是一个案例,请补充完整.原题:如图1,在平行四边形ABCD 中,点E 是BC 的中点,点F 是线段AE 上一点,BF 的延长线交射线CD 于点G .若3AF EF =,求CD CG的值.(1)尝试探究在图1中,过点E 作//EH AB 交BG 于点H ,则AB 和EH 的数量关系是_________,CG 和EH 的数量关系是_________,CD CG 的值是_________. (2)类比延伸如图2,在原题的条件下,若()0AF m m EF =>,则CD CG 的值是_________(用含有m 的代数式表示),试写出解答过程.(3)拓展迁移如图3,梯形ABCD 中,//DC AB ,点E 是BC 的延长线上的一点,AE 和BD 相交于点F .若AB a CD =,BC b BE =,()0,0a b >>,则AF EF 的值是________(用含a 、b 的代数式表示). 20.如图1,在Rt ABC 中,90ACB ∠=︒,点P 在斜边AB 上,点D 、E 、F 分别是线段PA 、PB 、PC 的中点,易知DEF 是直角三角形.现把DEF 以点P 为中心,顺时针旋转α,其中0360α︒<<︒.连接AD 、BE 、CF .(1)操作发现如图2,若点P 是AB 的中点,连接PF ,可以发现=AD CF ______CF BE=______; (2)类比探究如图3,Rt ABC 中,CP AB ⊥于点P ,请判断AD CF 与CF BE 的大小,结合图2说明理由; (3)拓展提高在(2)的条件下,如果30CAB ∠=︒,且4AB =,在DEF 旋转的过程中,当以点C 、D 、F 、P 四点为顶点的四边形与以点B 、E 、F 、P 四点为顶点的四边形都是平行四边形时,直接写出线段AD 、CF 、BE 的长.【参考答案】***试卷处理标记,请不要删除一、二次函数压轴题1.E解析:(1)①2243y x x =--;②2;(2)2(1)y x x =-->;(3)43P y -<<-【分析】(1)①把点E (-1,3)代入223y mx mx =--求出m 的值即可;②先求出直线EF 的解析式,设出点M 的坐标,得到MN 的二次函数关系式,根据二次函数的性质求解即可; (2)写出抛物线G 的顶点式,根据平移规律即可得到1G 的顶点式,进而得到1G 的顶点坐标(1,3)m m +--,即1,3x m y m =+=--,消去m ,得到y 与x 的函数关系式,再由0m >即可求得x 的取值范围;(3)求出抛物线怛过点A (2,-3),函数H 的图象恒过点B (2,-4),从图象可知两函数图象的交点P 应在A ,B 之间,即点P 的纵坐标在A ,B 点的纵坐标之间,从而可得结论.【详解】解:(1)①∵抛物线2:23G y mx mx =--经过点E (-1,3)∴233m+m =-∴2m =∴抛物线的解析式为:2243y x x =--②如图,∵点F 为抛物线的最低点,∴22243=2(1)5y x x x =----∴(1,5)F -设直线EF 的解析式为:y kx b =+把E (-1,3),F (1,-5)代入得,35k b k b -+=⎧⎨+=-⎩解得,41k b =-⎧⎨=-⎩∴直线EF 的解析式为:41y x =--设2(,243)M a a a --,则(,41)N a a --∴22(41)243)=(22M a N a a a ------+=∵20-<∴当0a =时,MN 有最大值,最大值为2;(2)∵抛物线2:(1)3G y m x m =---∴平移后的抛物线21:(1)3G y m x m m =----∴抛物线1G 的顶点坐标为(1,3)m m +--∴1,3x m y m =+=--∴132x y m +=+-=-∴2y x =--∵0,1m m x >=-∴10x ->∴1x >∴y 与x 的函数关系式为:2(1)y x x =-->(3)如图,函数:2(1)H y x x =-->的图象为射线,1x =时,123y =--=-;2x =时,224y =--=-∴函数H 的图象恒过点(2,-4)∵抛物线2:(1)3G y m x m =---,当1x =时,3y m =--;当2x =时,33y m m =--=-;∴抛物线G 恒过点A (2,-3)由图象可知,若抛物线G 与函数H 的图象有交点P ,则有B P A y y y <<∴点P 纵坐标的取值范围为:43P y -<<-【点睛】本题考查了二次函数综合题,涉及到待定系数法求解析式、二次函数的性质和数形结合思想等知识,熟练运用二次函数的性质解决问题是本题的关键.2.A解析:(1)233642y x x =--;(2)454;(3)134)存在,点N 的坐标为:15114,4⎛⎫ ⎪⎝⎭或15114,4⎛⎫ ⎪⎝⎭或151,4⎛⎫-- ⎪⎝⎭ 【分析】(1)把A 、B 两点坐标代入26y ax bx =+-可得关于a 、b 的二元一次方程组,解方程组求出a 、b 的值即可得答案;(2)过D 作DG x ⊥轴于G ,交BC 于H ,根据抛物线解析式可得点C 坐标,利用待定系数法可得直线BC 的解析式,设233,642D x x x ⎛⎫-- ⎪⎝⎭,根据BC 解析式可表示出点H 坐标,即可表示出DH 的长,根据△BCD 的面积列方程可求出x 的值,即可得点D 坐标,利用三角形面积公式即可得答案;(3)根据二次函数的对称性可得点A 与点B 关于直线l 对称,可得BC 为AP +CP 的最小值,根据两点间距离公式计算即可得答案;(4)根据平行四边形的性质得到MB //ND ,MB =ND ,分MB 为边和MB 为对角线两种情况,结合点D 坐标即可得点N 的坐标.【详解】(1)∵抛物线26y ax bx =+-与x 轴相交于A ,B 两点,()2,0A -,()4,0B ,∴426016460a b a b --=⎧⎨+-=⎩, 解得:3432a b ⎧=⎪⎪⎨⎪=-⎪⎩, ∴抛物线的解析式为:233642y x x =--. (2)如图,过D 作DG x ⊥轴于G ,交BC 于H ,当0x =时,6y =-,∴()0,6C -,设BC 的解析式为y kx b =+,则640b k b =-⎧⎨+=⎩, 解得326k b ⎧=⎪⎨⎪=-⎩, ∴BC 的解析式为:362y x =-, 设233,642D x x x ⎛⎫-- ⎪⎝⎭,则3,62H x x ⎛⎫- ⎪⎝⎭, ∴2233336632424DH x x x x x ⎛⎫=----=-+ ⎪⎝⎭, ∵BCD △的面积是92, ∴1922DH OB ⨯=, ∴213943242x x ⎛⎫⨯⨯-+= ⎪⎝⎭,解得:1x =或3,∵点D 在直线l 右侧的抛物线上, ∴153,4D ⎛⎫- ⎪⎝⎭, ∴ABD △的面积11154562244AB DG ⨯=⨯⨯=;(3)∵抛物线26y ax bx =+-与x 轴相交于A ,B 两点,∴点A 与点B 关于直线l 对称,∴BC 为AP +CP 的最小值,∵B (4,0),C (0,-6),∴AP +CP 的最小值=BC 2246+213故答案为:213(4)①当MB 为对角线时,MN //BD ,MN =BD ,过点N 作NE ⊥x 轴于E ,过当D 作DF ⊥x 轴于F ,∵点D (3,154-), ∴DF =154, 在△MNE 和△BDF 中,NEM DFB NMB DBF MN BD ∠=∠⎧⎪∠=∠⎨⎪=⎩, ∴△MNE ≌△BDF ,∴DF =NE =154, ∵点D 在x 轴下方,MB 为对角线,∴点N 在x 轴上方, ∴点N 纵坐标为154, 把y =154代入抛物线解析式得:215336442x x =--, 解得:1114x =2114x =∴1N (114-,154),2N (114+,154) 如图,当BM 为边时,MB //ND ,MB =ND ,∵点D (3,154-), ∴点N 纵坐标为154-, ∴233156424x x --=-, 解得:11x =-,23x =(与点D 重合,舍去), ∴3N (1-,154-),综上所述:存在点N ,使得以点B ,D ,M ,N 为顶点的四边形是平行四边形,点N 的坐标为:15114,4⎛⎫ ⎪⎝⎭或15114,4⎛⎫ ⎪⎝⎭或151,4⎛⎫-- ⎪⎝⎭. 【点睛】本题考查的是二次函数的综合,首先要掌握待定系数法求解析式,其次要添加恰当的辅助线,灵活运用面积公式和平行四边形的判定和性质,应用数形结合的数学思想解题. 3.(1) y=221x +;(2)m=1,n=3;(3) 函数存在最大值,当x=0是,y 取得最大值2.(4)-1≤x≤2 【分析】(1)待定系数法求解函数解析式(2)分别将m,n 代入函数解析式,求出对应的横纵坐标即可求解(3)观察图像即可,答案不唯一(4)观察图像选择曲线在上方的区域即可.【详解】解(1)将(0,2),(1,1)代入解析式得20111b b k ⎧=⎪⎪+⎨⎪=⎪+⎩ 解得:12k b =⎧⎨=⎩ ∴函数的解析式为y =221x + (2) ①令x =-1,则y=1,∴m =1 令y =15,则x =±3, ∵2<n <4,∴n =3②(3)函数存在最大值,当x =0是,y 取得最大值2.(4)直接观察图象可知,当|715x ﹣815|≤时,-1≤x ≤2 【点睛】本题考查了用待定系数法求函数的解析式,函数的图象和性质,根据函数图象求解不等式等问题,综合性强,熟悉函数的图象和性质是解题关键.4.(1) y =x 2﹣x +2﹣3|x ﹣1|,补全表格见解析,(2) 函数图像见解析,当x =-1时,函数有最小值,最小值为-2;55-x 55+15--≤x 15-+ 【分析】(1)将点(﹣1,﹣2)与(2,1)代入解析式即可;(2)画出函数图象,观察图象得到一条性质即可(3)根据图象,求出两个函数图象的交点坐标,通过观察可确定解解集.【详解】解:(1)∵该函数图象经过(﹣1,﹣2)与(2,1)两点, ∴12224221b c b c -+-=-⎧⎨++-=⎩, ∴13b c =-⎧⎨=⎩, ∴y =x 2﹣x +2﹣3|x ﹣1|,故答案为:y =x 2﹣x +2﹣3|x ﹣1|;当x =-4时,y =7;当x =0时,y =-1;补全表格如图, x ⋯ ﹣4 ﹣3 ﹣2 ﹣1 01 2 3 ⋯ y ⋯ 7 2 ﹣1 ﹣2 -1 2 1 2 ⋯-2;(3)当x ≥1时,x 2﹣x +2﹣3x +3=x ,解得,1552x +=,2552x -=,观察图象可知不等式的解集为:552-≤x ≤552+; 当x <1时,x 2﹣x +2+3x ﹣3=x , 解得,3152x -+=,4152x --=,观察图象可知不等式的解集为:152--≤x ≤152-+; ∴不等式x 2+bx +2﹣c |x ﹣1|≤x 的解集为552-≤x ≤552+或152--≤x ≤152-+.【点睛】本题考查二次函数与不等式的关系;掌握描点法画函数图象,利用数形结合解不等式是解题的关键. 5.B解析:(1)215222y x x =-+;(2)P (2,1);(3)4225,1555N ⎛- ⎝,425,1555N ⎛- ⎝,()0,0N ,1811,55N ⎛⎫ ⎪⎝⎭【分析】(1)求出点B ,带入求解即可;(2)设,22t P t ⎛⎫-+ ⎪⎝⎭,(),0Q t ,()215,20<<422D t t t t ⎛⎫-+ ⎪⎝⎭,根据中点的性质列式计算即可; (3)根据菱形的性质分类讨论即可;【详解】(1)令1202x -+=,解得:4x =, ∴()4,0B ,令0x =,则2y =,∴()0,2C ,把1,0A ,()4,0B 代入()220y ax bx a =++≠中,∴2016420a b a b ++=⎧⎨++=⎩, ∴12a =,52b =-, ∴215222y x x =-+; (2)设,22t P t ⎛⎫-+ ⎪⎝⎭,(),0Q t ,()215,20<<422D t t t t ⎛⎫-+ ⎪⎝⎭,∵Q 为PD 中点,∴2115-2202222t t t ⎛⎫++-+=⨯ ⎪⎝⎭, ∴213402t t -+=, ∴12t =,24t =(舍),∴()2,1P ;(3)①如图,由题意可得:PD 为菱形的边,,PM DN 为菱形的对角线,//,PD MN 2,PD MN DM ===由(2)可得:()2,1P ,()2,1D -,2,PD ∴=设22,1M m m -+⎛⎫ ⎪⎝⎭,1,42N m m ⎛⎫-+ ⎪⎝⎭, 由2DM =可得:()221234,2m m ⎛⎫-+-+= ⎪⎝⎭整理得:()()51820,m m --= 解得:1218,2,5m m == 检验:2m =不合题意舍去,取18,5m =1811811,,,.5555M N ⎛⎫⎛⎫∴ ⎪ ⎪⎝⎭⎝⎭如图,PD 为菱形的边, //,PD MN 2,PD MN DN ===同理可得:4225,1555N ⎛⎫+-- ⎪⎝⎭或45252,1.55N ⎛⎫--+ ⎪ ⎪⎝⎭②如图,当PD 为对角线时,由()2,1P ,()2,1D -,()()4,0,0,0,B O可得:,M B 重合,,N O 重合时,四边形PMDN 为菱形,()0,0.N ∴综上:4225,1555N ⎛- ⎝,425,1555N ⎛- ⎝,()0,0N ,1811,55N ⎛⎫ ⎪⎝⎭; 【点睛】本题主要考查了二次函数综合,结合菱形的判定与性质、等腰三角形的性质和一元二次方程的求解是解题的关键.6.A解析:(1)①223y x x =-+,②11m -≤≤;(2)12x ≤≤;(3)四边形OABC 是矩形,证明见详解.【分析】(1)利用顶点P 的横坐标求出b =-2,然后把b =-2和B 点的坐标代入求出抛物线的解析式; (2)先求出A 点坐标,然后得出直线AB 的解析式,设M 点坐标为(x ,x 2-2x +3),根据S △ABM =3列出方程,并解方程,从而得出M 点坐标,再根据S △ABM ≥3求出M 横坐标的范围即可;(3)根据抛物线的图象可求出A 、P 、D 的坐标,利用抛物线与直线相交求出B 点坐标,然后求出平移后抛物线的解析式,然后求出C 点坐标,然后求出BC 的长度,从而得出四边形OABC 是平行四边形,再根据∠AOC =90︒得出四边形OABC 是矩形.【详解】解:(1)①依题意, 121b -=⨯, 解得b =-2, 将b =-2及点B (3, 6)的坐标代入抛物线解析式2y x bxc =++,得 26323c =-⨯+,解c =3,所以抛物线的解析式为223y x x =-+,②当2236y x x =-+=,解得1,3x x =-=,当m ≤x ≤3时,y =x 2+bx +c 的最小值为2,最大值为6,∴11m -≤≤;(2)∵抛物线 223y x x =-+与y 轴交于点A ,∴ A (0, 3),∵ B (3, 6),可得直线AB 的解析式为3y x ,设直线AB 下方抛物线上的点M 坐标为(x ,223x x -+),过M 点作y 轴的平行线交直线AB 于点N , 则N (x , x +3). (如图),∴ 132ABM AMN BMN B A S S S MN x x ∆∆∆=+=⋅-=, ∴()21323332x x x ⎡⎤+--+⨯=⎣⎦, 解得 121,2x x ==,∴点M 的坐标为(1, 2) 或 (2, 3),∵S △ABM ≥3,12x ≤≤;(3)结论是:四边形OABC 是矩形,理由如下:如图,由 PA =PO , OA =c , 可得2c PD =,∵抛物线2y x bx c =++的顶点坐标为 24,24b c b P ⎛⎫-- ⎪⎝⎭, ∴ 2442c b c -=, ∴22b c =,∴ 抛物线2212y x bx b =++, A (0,212b ),P (12b -,214b ), D (12b -,0), ∴直线OP 的解析式为12y bx =-, ∵ 点B 是抛物线2212y x bx b =++与直线12y bx =-的图象的交点, 令 221122bx x bx b -=++, 解得12,2b x b x =-=-, 可得点B 的坐标为(-b ,212b ), 由平移后的抛物线经过点A , 可设平移后的抛物线解析式为2212y x mx b =++, 将点D (12b -,0)的坐标代2212y x mx b =++入,得32m b =, ∴ 平移后的抛物线解析式为223122y x bx b =++, 令y =0, 即2231022x bx b ++=, 解得121,2x b x b =-=-,依题意, 点C 的坐标为(-b ,0),∴ BC =212b , ∴ BC = OA ,又BC ∥OA ,∴ 四边形OABC 是平行四边形,∵ ∠AOC =90︒,∴ 四边形OABC 是矩形.【点睛】本题主要考查二次函数的图象和性质,并与几何图形相结合的综合题,难度较高,解题的关键在于灵活运用二次函数的性质及待定系数法,并注重点的坐标与线段长的互相转化. 7.F解析:(1)223y x x =--+,1x =-;(2)O 1)32-);(3)满足条件的点F 的坐标为F 1(-2,3),F 2(3,-12). 【分析】(1)把A (1,0),B (-3,0)代入y=ax 2+bx+3即可求解;(2)先求出直线OO 1的解析式为y x =,再根据223x x x --+=,求解即可或是根据23(23)3x x x +---+=得出x 的值,再根据直线OO 1的解析式为y x =求解;(3)先求出直线EF 解析式为 33y x =--,再根据22333x x x --+=--求解即可.【详解】解:(1)将点A (1, 0),B (-3, 0)代入抛物线解析式y=a x 2+b x+3得:{309330a b a b ++=-+= 解得:{12a b =-=-∴抛物线解析式为 223y x x =--+∴2(1)4y x =++ ∴1x =-(2)∵点C 为223y x x =--+与y 轴的交点∴C (0,3)∵B(-3,0)∴OB =OC ∴ ∠CBO=45°∵将△COB 沿直线 BC 平移,得到△C 1O 1B 1∴直线OO 1∥BC ∴ ∠O 1OA=45°∴直线OO 1的解析式为y x =根据题意 得 223x x x --+=整理得 2330x x +-=解得 1x =2x =∴O 1 )或)解法2 ∵点C 为223y x x =--+与y 轴的交点∴C (0,3)∴OC=3∵将△COB 沿直线 BC 平移,得到△C 1O 1B 1 01C 1=3∴23(23)3x x x +---+=整理得 2330x x +-=解得 13212x -+= 23212x --= ∵B(-3,0)∴OB =OC ∴ ∠CBO=45°∵将△COB 沿直线 BC 平移,得到△C 1O 1B 1∴直线OO 1∥BC ∴ ∠O 1OA=45°∴直线OO 1的解析式为y=x∴O 1(3212-+,3212-+ )或(3212--,3212--)(3)∵抛物线对称轴与x 轴交于点E,则点E 的坐标为E(-1,0),过点C 作CF ∥x 轴根据抛物线的对称性得F 的坐标为F(-2,3)∴AE=CF=2 ∵CF ∥AE ∴四边形CFEA 为平行四边形∴EF ∥CA设直线EF 的解析式为y kx b =+得:{320k b k b =-+=-+ 解得:{33k b =-=- ∴直线EF 解析式为 33y x =-- 根据题意 得 22333x x x --+=--解得12x =- 23x =满足条件的点F 的坐标为F 1(-2,3),F 2(3,-12).【点睛】本题属于二次函数综合题,考查了二次函数的性质,一次函数的性质,平行线的判定和性质,解题的关键是学会利用参数构建方程组解决问题,学会用转化的思想思考问题. 8.A解析:(1)y =﹣x ﹣1,y =﹣x 2+3x +4;(2)①(2,6);②PA 2;(3)点M 的坐标为:14314或(21414或(4,﹣5)或(﹣4,3.【分析】(1)将点A 、D 的坐标分别代入直线表达式、抛物线的表达式,即可求解;(2)①当△PAD 的面积最大时,P 点到直线AD 的距离就最大.即当直线y=-x+m 与抛物线只有一个交点时满足条件,△=42+4(m-4)=0,解得m=8,解方程可求出答案; ②过点P 作PE ⊥x 轴于点E ,证明△PEA 是等腰直角三角形,得出PE=EA ,设P 点坐标为(m ,n ),由题意得,m+1=-m 2+3m+4,求出m=3,由直角三角形的性质可得出答案; (3)分NC 是平行四边形的一条边、NC 是平行四边形的对角线,两种情况分别求解即可.【详解】(1)将点A 、D 的坐标代入直线表达式得:056k n k n -+=⎧⎨+=-⎩,解得:11k n =-⎧⎨=-⎩, 故直线l 的表达式为:y =﹣x ﹣1,将点A 、D 的坐标代入抛物线表达式,同理可得抛物线的表达式为:y =﹣x 2+3x +4;(2)①当△PAD 的面积最大时,P 点到直线AD 的距离就最大,所以P 点在与直线AD 平行并且与抛物线相切的直线上,即P 点是这两个图像的唯一交点.设P 点坐标为(x ,y ),依题意有:234y x m y x x =-+⎧⎨=-++⎩, ∴x 2-4x +m -4=0∵直线y =-x +m 与抛物线相切,即只有一个交点,∴42+4(m -4)=0∴m =8,∴x 2-4x +4=0,∴x 1=x 2=2∴y =6由此得P 点坐标为(2,6)②过P 作PE ⊥x 轴于E 点,由直线AC 的解析式y =﹣x ﹣1,可得A (-1,0)C (0,-1),∴OA =OC∵∠AOC =90°∴∠DAB =45°,∴当AB 平分∠DAP 时,∠BAP =∠DAB ,则∠BAP =45°,∴△PEA 是等腰直角三角形,∴PE =EA设P 点坐标为(m ,n ),依题意有m +1=﹣m 2+3m +4,∴m 1=3,m 2=-1(舍去),∴PE =EA =4,∴PA 2(3)NC =5,①当NC 是平行四边形的一条边时,设点P 坐标为(x ,﹣x 2+3x +4)、则点M (x ,﹣x ﹣1),由题意得:|y M ﹣y P |=5,即:|﹣x 2+3x +4+x +1|=5,解得:x =20或4(舍去0),则点M 坐标为3或(2或(4,﹣5);②当NC 是平行四边形的对角线时,则NC 的中点坐标为(﹣12,2),设点M 坐标为(m ,﹣m 2+3m +4)、则点M (n ,﹣n ﹣1),N 、C ,M 、P 为顶点的四边形为平行四边形,则NC 的中点即为PM 中点, 即:122m n +-=,2=23412m m n -++--, 解得:m =0或﹣4(舍去0),故点M (﹣4,3);故点M 的坐标为:3或(2或(4,﹣5)或(﹣4,3)【点睛】本题是二次函数综合题,考查了待定系数法,二次函数图象上点的坐标特征,二次函数的性质,坐标与图形的性质,平行四边形的性质,等腰直角三角形的判定与性质,三角形的面积等知识,熟练掌握待定系数法及平行四边形的性质是解题的关键.9.(1)减小,减小,减小;(2)见解析;(3)73【分析】(1)根据一次函数的性质,二次函数的性质分别进行判断,即可得到答案;(2)根据表格的数据,进行描点,连线,即可画出函数的图像;(3)根据函数图像和性质,当2x =-时,函数有最大值,代入计算即可得到答案.【详解】解:(1)根据题意,在函数1y x =-中,∵10k =-<,∴函数1y x =-在20x -≤<中,1y 随x 的增大而减小; ∵222131()24y x x x =-+=-+, ∴对称轴为:1x =,∴221y x x =-+在20x -≤<中,2y 随x 的增大而减小; 综合上述,21||(1)6y x x x =-+在20x -≤<中,y 随x 的增大而减小; 故答案为:减小,减小,减小;(2)根据表格描点,连成平滑的曲线,如图:(3)由(2)可知,当0x ≥时,y 随x 的增大而增大,无最大值;由(1)可知21||(1)6y x x x =-+在20x -≤<中,y 随x 的增大而减小; ∴在20x -≤<中,有 当2x =-时,73y =, ∴m 的最大值为73; 故答案为:73. 【点睛】本题考查了二次函数的性质,一次函数的性质,以及函数的最值问题,解题的关键是熟练掌握题意,正确的作出函数图像,并求函数的最大值.10.A解析:(1)211433y x x =-++;(2)2222PN =,当2m =时,PN 有最大值,22. (3)满足条件的点Q 有两个,坐标分别为:()1,3Q ,52852Q -⎝⎭. 【分析】(1)将点A 、B 的坐标代入解析式中求解即可;(2)由(1)求得点C 坐标,利用待定系数法求得直线BC 的解析式,然后用m 表示出PN ,再利用二次函数的性质即可求解;(3)分三种情况:①AC=CQ ;②AC=AQ ;③CQ=AQ ,分别求解即可.【详解】解:(1)将(3,0)A -,(4,0)B 代入24y ax bx =++,得934016440a b a b -+=⎧⎨++=⎩,解之,得1313a b ⎧=-⎪⎪⎨⎪=⎪⎩. 所以,抛物线的表达式为211433y x x =-++.(2)由211433y x x =-++,得(0,4)C . 将点(4,0)B 、(0,4)C 代入y kx b =+,得404k b b +=⎧⎨=⎩,解之,得14k b =-⎧⎨=⎩. 所以,直线BC 的表达式为:4y x =-+.由(,0)M m ,得211,433P m m m ⎛⎫-++ ⎪⎝⎭,4(),Q m m -+. ∴221114443333PQ m m m m m =-+++-=-+ ∵OB OC =,∴45ABC OCB ∠=∠=︒.∴45PQN BQM ∠=∠=︒.∴22214222sin 4523363PN PQ m m m m ⎛⎫=︒=-+=-+ ⎪⎝⎭. 2222(2)63m =--+. ∵206-< ∴当2m =时,PN 有最大值,最大值为223. (3)存在,理由如下:由点(3,0)A -,(0,4)C ,知5AC =.①当AC CQ =时,过Q 作QE y ⊥轴于点E ,易得222222[4(4)]2CQ EQ CE m m m =+=+--+=,由2225m =,得152m =252m = 此时,点52852Q -⎝⎭; ②当AC AQ =时,则5AQ AC ==.在Rt AMQ △中,由勾股定理,得22[(3)](4)25m m --+-+=. 解之,得1m =或0m =(舍)此时,点()1,3Q ;③当CQ AQ =时,由2222[(3)](4)m m m =--+-+,得252m =(舍).综上知所述,可知满足条件的点Q 有两个,坐标分别为:()1,3Q ,822Q ⎛⎫- ⎪ ⎪⎝⎭. 【点睛】本题是一道二次函数与几何图形的综合题,解答的关键是认真审题,找出相关条件,运用待定系数法、数形结合法等解题方法确定解题思路,对相关信息进行推理、探究、发现和计算.二、中考几何压轴题11.(1)15º或60º;(2)见解析;(3);(4)能,30º或60º【分析】(1)分三种情况讨论:当时,当当 利用三角形的内角和定理与旋转的旋转从而可得答案;(2)先证明,得到 证明,再证明,解析:(1)15º或60º;(2)见解析;(34)能,30º或60º【分析】(1)分三种情况讨论:当CAM CMA ∠=∠时,当30,MAC C ∠=∠=︒当 ,AMC C ∠=∠利用三角形的内角和定理与旋转的旋转从而可得答案;(2)先证明ABM AFN ≌,得到,AM AN = 证明EM CN =,再证明MPE NPC ≌,得到,PE PC = 结合,AE AC = 从而可得结论;(3)先求解ABM 的面积,再证明ABM EPM ≌,结合ABM AFN ≌,从而可得重叠部分的面积;(4)当∠CNP=90°时,依据对顶角相等可求得∠ANF=90°,然后依据∠F=60°可求得∠FAN 的度数,由旋转的定义可求得∠α的度数;当∠CPN=90°时.由∠C=30°,∠CPN=90°,可求得∠CNP 的度数,然后依据对顶角相等可得到∠ANF 的度数,然后由∠F=60°,依据三角形的内角和定理可求得∠FAN 的度数,于是可得到∠α的度数.【详解】解:(1)当CAM CMA ∠=∠时,30,C ∠=︒1803075,2CAM CMA ︒-︒∴∠=∠==︒ 907515,α∴=︒-︒=︒当30,MAC C ∠=∠=︒903060,α∴=︒-︒=︒AMC ∠>60,B ∠=︒,AMC C ∴∠≠∠综上:当α=15︒或60︒,AMC 是等腰三角形;。

内蒙古赤峰市2024年数学(高考)部编版真题(押题卷)模拟试卷

内蒙古赤峰市2024年数学(高考)部编版真题(押题卷)模拟试卷

内蒙古赤峰市2024年数学(高考)部编版真题(押题卷)模拟试卷一、单项选择题(本题包含8小题,每小题5分,共40分。

在每小题给出的四个选项中,只有一项是符合题目要求的)(共8题)第(1)题安徽徽州古城与四川阆中古城、山西平遥古城、云南丽江古城被称为中国四大古城.徽州古城中有一古建筑,其底层部分可近似看作一个正方体.已知该正方体中,点分别是棱的中点,过三点的平面与平面的交线为,则直线与直线所成角为()A.B.C.D.第(2)题已知且,函数在上是单调函数,若关于的方程恰有2个互异的实数解,则的取值范围是()A.B.C.D.第(3)题已知直线,,的斜率分别为,,倾斜角分别为,,,则()A.B.C.D.第(4)题下列方程关于对称的是()A.B.C.D.第(5)题函数的最大值是:()A.B.C.D.第(6)题曲线在点处的切线方程为()A.B.C.D.第(7)题已知函数,则下列说法正确的是()A .点是曲线的对称中心B.点是曲线的对称中心C .直线是曲线的对称轴D .直线是曲线的对称轴第(8)题已知,则()A.B.C.D.二、多项选择题(本题包含3小题,每小题6分,共18分。

在每小题给出的四个选项中,至少有两个选项正确。

全部选对的得6分,选对但不全的得3分,有选错或不答的得0分) (共3题)第(1)题正方体棱长为是直线上的一个动点,则下列结论中正确的是()A.的最小值为B.的最小值为C.若为直线上一动点,则线段的最小值为D.当时,过点作三棱锥的外接球的截面,则所得截面面积的最小值为第(2)题已知函数的最小正周期为,则()A.B .的图象在区间上存在对称轴C.在区间上单调递增D .将的图象向左平移个单位长度可得到的图象第(3)题函数的图象如图所示,将其向左平移个单位长度,得到的图象,则下列说法正确的是()A.函数的最小正周期为B.函数的图象上存在点,使得在点处的切线与直线垂直C.函数的图象关于直线对称D.函数在上单调递减三、填空(本题包含3个小题,每小题5分,共15分。

第13讲 解析几何解答压轴题(原卷版)

第13讲  解析几何解答压轴题(原卷版)

第13讲 解析几何解答压轴题1.(内蒙古赤峰市·高三月考(文))已知椭圆2222:1(0)x y E a b a b +=>>,其左,右集点为12,F F ,过点1F 的直线l 与椭圆E 交于,M N 两点、2MNF 的周长为.(1)求椭圆E 的标准方程:(2)过E 右焦点的直线12,l l 互相垂直,且分别交椭圆E 于,A B 和,C D 四点,求AB CD +的最小值2.(河南新乡市·高三二模(理))已知椭圆2222:1(0)x y C a b a b+=>>的左、右顶点分别为A ,B ,E 为C 上不同于A ,B 的动点,直线AE ,BE 的斜率AE k ,BE k 满足12AE BE k k ⋅=-,AE BE ⋅的最小值为-4.(1)求C 的方程;(2)O 为坐标原点,过O 的两条直线1l ,2l 满足1//l AE ,2//l BE ,且1l ,2l 分别交C 于M ,N 和P ,Q .试判断四边形MPNQ 的面积是否为定值?若是,求出该定值;若不是,说明理由.3.(天津滨海新区·高三月考)已知椭圆2222:1(0)x y C a b a b+=>>过点()2,1P ,1F 、2F 分别为椭圆C 的左、右焦点,且121PF PF ⋅=-.(1)求椭圆C 的方程;(2)过P 点的直线1l 与椭圆C 有且只有一个公共点,直线2l 平行于OP (O 为原点),且与椭圆C 交于A 、B 两点,与直线2x =交于点M (M 介于A 、B 两点之间). (i )当PAB △面积最大时,求2l 的方程; (ii )求证:||||||||PA MB PB MA ⋅=⋅.4.(山东泰安市·高三月考)已知椭圆()2222:10x y C a b a b+=>>过点()2,1P ,12,F F 分别为椭圆C 的左、右焦点且121PF PF ⋅=-.(1)求椭圆C 的方程;(2)过P 点的直线1l 与椭圆C 有且只有一个公共点,直线2l 平行于OP (O 为原点),且与椭圆C 交于两点A 、B ,与直线2x =交于点M (M 介于A 、B 两点之间). (i )当PAB △面积最大时,求2l 的方程;(ii )求证:PA MB PB MA =,并判断12,l l ,,PA PB 的斜率是否可以按某种顺序构成等比数列.5.(浙江绍兴市·高三一模)已知抛物线21:4C x y =和椭圆222:143x y C +=如图,经过抛物线1C 焦点F的直线l 分别交抛物线1C 和椭圆2C 于A ,B ,C ,D 四点,抛物线1C 在点A ,B 处的切线交于点P .(1)求点P 的纵坐标;(2)设M 为线段AB 的中点,PM 交1C 于点Q ,BQ 交AP 于点T .记TCD QBP ,的面积分别为12S S ,.(i )求证:Q 为线段PM 的中点;(ii )若1287S S =,求直线l 的方程.6.(江苏盐城市·高三二模)已知直线:l y x m +=交抛物线2:4C y x =于,A B 两点.(1)设直线l 与x 轴的交点为T .若=2AT TB ,求实数m 的值;(2)若点,M N 在抛物线C 上,且关于直线l 对称,求证:,,,A B M N 四点共圆.7.(内蒙古赤峰市·高三月考(理))已知椭圆2222:1(0)x y E a b a b +=>>,且过点.(1)求椭圆E 的标准方程;(2)过椭圆E 右焦点的直线12l l 、相互垂直,且分别交椭圆E 于A B 、和C D 、四点,求AB CD +的最小值.8.(全国大联考(理))已知抛物线()2:20C y px p =>的焦点为F ,过点F 且垂直于x 轴的直线与C 交于,A B 两点,AOB (点O 为坐标原点)的面积为2. (1)求抛物线C 的方程;(2)若过点()()0,0E a a >的两直线1l ,2l 的倾斜角互补,直线1l 与抛物线C 交于,M N 两点,直线2l 与抛物线C 交于,P Q 两点,FMN 与FPQ △的面积相等,求实数a 的取值范围.9.(江西八校4月联考(理))已知椭圆E :()222210x y a b a b+=>>.左焦点()1,0F -,点()0,2M 在椭圆E 外部,点N 为椭圆E 上一动点,且NMF 的周长最大值为4. (1)求椭圆E 的标准方程;(2)点B 、C 为椭圆E 上关于原点对称的两个点,A 为左顶点,若直线AB 、AC 分别与y 轴交于P 、Q 两点,试判断以PQ 为直径的圆是否过定点.如果是请求出定点坐标,如果不过定点,请说明理由.10.(天津南开区·高三一模)已知椭圆()222210x y a b a b+=>>的左、右焦点分别为1F ,2F ,右顶点为点A ,点E 的坐标为0,4b ⎛⎫ ⎪⎝⎭,延长线段1F E 交椭圆于点M ,2MF x ⊥轴.(1)求椭圆的离心率;(2)设抛物线2245y bx =的焦点为F ,B 为抛物线上一点,365BF b =,直线BF 交椭圆于P ,Q 两点,若22425AP AQ +=,求椭圆的标准方程.11.(四川成都市·高三二模(文))已知椭圆C :()222210x y a b a b +=>>经过点A ⎛ ⎝⎭,其长半轴长为2.(Ⅰ)求椭圆C 的方程;(Ⅰ)设经过点()1,0B -的直线l 与椭圆C 相交于D ,E 两点,点E 关于x 轴的对称点为F ,直线DF 与x 轴相交于点G ,求BEG 与BDG 的面积分别为1S ,2S ,求12S S -的最大值.12.(浙江温州市·高三二模)如图,过点(1,0)F 和点(4,0)E 的两条平行线1l 和2l 分别交抛物线24y x =于,A B 和,C D (其中,A C 在x 轴的上方),AD 交x 轴于点G .(1)求证:点C 、点D 的纵坐标乘积为定值;(2)分别记ABG 和CDG 的面积为1S 和2S ,当1214S S =时,求直线AD 的方程.13.(四川成都市·高三二模(理))已知椭圆C :()222210x y a b a b +=>>经过点1,2A ⎛ ⎝⎭,其长半轴长为2.(Ⅰ)求椭圆C 的方程;(Ⅰ)设经过点()1,0B -的直线l 与椭圆C 相交于D ,E 两点,点E 关于x 轴的对称点为F ,直线DF 与x 轴相交于点G ,求△DEG 的面积S 的取值范围.14.(四省名校联考(文))已知F 是椭圆()2222:10x y C a b a b +=>>的左焦点,焦距为4,且C 过点)P.(1)求C 的方程;(2)过点F 作两条互相垂直的直线12,l l ,若1l 与C 交于,A B 两点,2l 与C 交于,D E 两点,记AB 的中点为,M DE 的中点为N ,试判断直线MN 是否过定点,若过点,请求出定点坐标;若不过定点,请说明理由.15.(辽宁铁岭市·高三一模)已知椭圆方程22143x y +=,直线:4l x =与x 轴相交于点P ,过右焦点F 的直线与椭圆交于A ,B 两点.(1)若过点F 的直线MF 与AB 垂直,且与直线l 交于点M ,线段AB 中点为D ,求证:OD OM k k =. (2)设Q 点的坐标为5,02⎛⎫⎪⎝⎭,直线BQ 与直线l 交于点E ,试问EA 是否垂直EP ,若是,写出证明过程,若不是,请说明理由.16.(广东汕头市·高三一模)在平面直角坐标系xOy 中,P 为坐标原点,)M,已知平行四边形OMNP 两条对角线的长度之和等于4.(1)求动点P 的轨迹方程;(2过)M作互相垂直的两条直线1l 、2l ,1l 与动点P 的轨迹交于A 、B ,2l 与动点P 的轨迹交于点C 、D ,AB 、CD 的中点分别为E 、F ; ①证明:直线EF 恒过定点,并求出定点坐标. ②求四边形ACBD 面积的最小值.17.(聊城市·山东聊城一中高三一模)已知椭圆()2222:10,0x y C a b a b+=>>过点(2,1)-,离心率为216y x =-的准线l 交x 轴于点A ,过点A 作直线交椭圆C 于M ,N . (1)求椭圆C 的标准方程和点A 的坐标;(2)若M 是线段AN 的中点,求直线MN 的方程;(3)设P ,Q 是直线l 上关于x 轴对称的两点,问:直线PM 于QN 的交点是否在一条定直线上?请说明你的理由.18.(浙江宁波市·高三月考)如图,过椭圆2212x y +=的左右焦点12,F F 分别做直线,AB CD ,交椭圆于,,,A B C D 四点,设直线AB 的斜率为(0)k k ≠(1)求||AB (用k 表示); (2)若直线,AB CD 的斜率之积为12-,求四边形ACBD 面积的取值范围.19.(湖北八市三月联考)已知椭圆()2222:10x y C a b a b+=>>,离心率为12,过椭圆C 的左焦点1F 作不与x 轴重合的直线MN 与椭圆C 相交于,M N 两点,过点M 作直线:2m x a =-的垂线ME ,E 为垂足.(1)求椭圆C 的标准方程;(2)①已知直线EN 过定点P ,求定点P 的坐标;②点O 为坐标原点,求OEN 面积的最大值.20.(河南新乡市·高三一模(理))已知动点P 到点(的距离与到直线x =的距离之比为(1)求动点P 的轨迹C 的标准方程;(2)过点(4,0)A -的直线l 交C 于M ,N 两点,已知点(2,1)B --,直线BM ,BN 分别交x 轴于点E ,F .试问在x 轴上是否存在一点G ,使得0BE GF GE BF ⋅+⋅=?若存在,求出点G 的坐标;若不存在,请说明理由.21.(山西晋中市·高三二模(理))设椭圆2222:1(0)x y C a b a b+=>>,O 为原点,点(4,0)A 是x 轴上一定点,已知椭圆的长轴长等于||OA (1)求椭圆的方程;(2)直线:l y kx t =+与椭圆C 交于两个不同点M ,N ,已知M 关于y 轴的对称点为M ',N 关于原点O 的对称点为N ',若,M N ''满足(1)OA OM ON λμλμ''=++=,求证:直线l 经过定点.22.(辽宁高三一模(理))过点()0,2P 作直线l 交抛物线2:4G x y =于,A B 两点,O 为坐标原点,分别过,A B 点作抛物线G 的切线,设两切线交于Q 点. (1)求证:点Q 在一定直线m 上;(2)设直线,AO BO 分别交直线m 于点,C D . (i )求证:AOB COD S S =△△;(ii )设AOD △的面积为1S ,BOC 的面积为2S ,记12P S S =+,求P 的最小值.23.(内蒙古包头市·高三期末(文))在平面直角坐标系xOy 中,椭圆C :2213x y +=的左顶点为A ,点P 、Q 是椭圆C 上的两个动点.(1)当P 、O 、Q 三点共线时,直线PA 、QA 分别与y 轴交于M ,N 两点,求AM AN ⋅的值; (2)设直线AP 、AQ 的斜率分别为1k ,2k ,当121k k =-时,证明:直线PQ 恒过一个定点R .24.(江西上饶模拟(理))在平面直角坐标系xOy 中,已知点()1,1A -,P 是动点,且直线OP 的斜率与直线OA 的斜率之和等于直线的PA 斜率. (1)求动点P 的轨迹C 的方程;(2)过A 作斜率为2的直线与轨迹C 相交于点B ,点()()0,0T t t >,直线AT 与BT 分别交轨迹C 于点E 、F ,设直线EF 的斜率为k ,是否存在常数λ,使得t k λ=,若存在,求出λ值,若不存在,请说明理由.25.(贵州新高考联盟质检(理))已知椭圆2222:1(0)x y C a b a b +=>>的左、右焦点分别为12,,F F 焦距为椭圆C 的右顶点到点2F 的距离与它到直线:l x =(1)求椭圆C 的标准方程;(2)设O 为坐标原点,,A B 为椭圆C 上不同的两点,点A 关于x 轴的对称点为点.D 若直线BD 的斜率为1,求证:OAB 的面积为定值.26.(浙江丽水市·高三月考)已知抛物线2:E x y =,过抛物线上第一象限的点A 作抛物线的切线,与x轴交于点M .过M 作OA 的垂线,交抛物线于B ,C 两点,交OA 于点D .(1)求证:直线BC 过定点;(2)若1OB OM ⋅≤-,求||||AD AO 的最小值.27.(江苏南通市·高三期末)已知椭圆C :()222210x y a b a b+=>>的离心率为12,且过点31,2P ⎛⎫ ⎪⎝⎭. (1)求椭圆C 的方程;(2)已知A ,B 是椭圆C 上的两点,且直线OA ,OB 的斜率之积为34-,点M 为线段OA 的中点,连接BM 并延长交椭圆C 于点N ,求证:OMB AMNS S △△为定值.28.(山西运城市·高三期末(理))已知A ,B 是椭圆222:1(1)x E y a a+=>的左、右顶点,C 为E 的上顶点,3AC BC ⋅=-.(1)求椭圆的方程;(2)若M ,N ,P 是椭圆E 上不同的三点,且坐标原点O 为MNP △的重心,试探究MNP △的面积是否为定值?若是,求出这个定值;若不是,说明理由.29.(河南驻马店市·高三期末(文))已知A 为抛物线21:2(0)C y px p =>上异于原点O 的任意一点,当直线OA 的斜率为1时,||OA =.直线:20-+=l my x 交抛物线1C 于P ,Q 两点,射线OP ,OQ 分别交椭圆222:12y C x +=于E ,F 两点. (1)求抛物线1C 的方程;(2)记OEF 和OPQ △的面积分别为1S 和2S ,当218S S =时,求直线l 的斜率.30.(安徽名校期末联考(理))已知D 为圆22:1O x y +=上一动点,过点D 分别作x 轴y 轴的垂线,垂足分别为,A B ,连接BA 延长至点P ,使得||2PA =,点P 的轨迹记为曲线C .(1)求曲线C的方程;M N两点,Q为曲线C上一动点(点,O Q分别位于直线MN两侧),求四(2)作圆O的切线交曲线C于,边形OMQN的面积的最大值.。

赤峰市七年级下册数学期末压轴难题试卷及答案-百度文库

赤峰市七年级下册数学期末压轴难题试卷及答案-百度文库

赤峰市七年级下册数学期末压轴难题试卷及答案-百度文库一、选择题1.在下列图形中,1∠与2∠是内错角的是( )A .B .C .D . 2.下列现象属于平移的是()A .投篮时的篮球运动B .随风飘动的树叶在空中的运动C .刹车时汽车在地面上的滑动D .冷水加热过程中小气泡变成大气泡3.如图,小手盖住的点的坐标可能为( )A .()2,3B .()2,3-C .()2,3--D .()2,3- 4.下列两个命题:①过一点有且只有一条直线和已知直线平行;②垂直于同一条直线的两条直线互相平行,其中判断正确的是( )A .①②都对B .①对②错C .①②都错D .①错②对 5.为增强学生体质,感受中国的传统文化,学校将国家级非物质文化遗产“抖空竹”引入阳光特色大课间,小聪把它抽象成图2的数学问题:已知AB ∥CD ,∠EAB =80°,110ECD ∠=︒,则∠E 的度数是( )A .30°B .40°C .60°D .70°6.下列说法中正确的是( )A .有理数和数轴上的点一一对应B .0.304精确到十分位是0.30C .立方根是本身的数只有0D .平方根是本身的数只有07.如图,直线//AB CD ,E 为CD 上一点,G 为AB 上一点,BF EG ⊥,垂足为F ,若35B ∠=︒,则DEF ∠的度数为( )A .35︒B .45︒C .55︒D .65︒8.如图所示,平面直角坐标系中,x 轴负半轴有一点()1,0A -,点A 先向上平移1个单位至()11,1A -,接着又向右平移1个单位至点()20,1A ,然后再向上平移1个单位至点()30,2A ,向右平移1个单位至点()41,2A ,照此规律平移下去,点A 平移至点2021A 时,点2021A 的坐标为( )A .()1008,1010B .()1010,1010C .()1009,1011D .()1008,1011二、填空题9.已知实数x,y 满足2x -+(y+1)2=0,则x-y 的立方根是_____.10.在平面直角坐标系中,点(,)M a b 与点(3,1)N -关于x 轴对称,则a b +的值是_____. 11.如图中,36B ∠=︒,76C ∠=︒,AD 、AF 分别是ABC 的角平分线和高,DAF ∠=________.12.如图,把一块三角板的直角顶点放在一直尺的一边上,若∠1=50°,则∠2的度数为_____.13.如图为一张纸片沿直线AB 折成的V 字形图案,已知图中140∠=︒,则2∠=______°.14.对于有理数x 、y ,当x ≥y 时,规定x ※y =y x ;而当x <y 时,规定x ※y =y -x ,那么4※(-2)=_______;如果[(-1)※1]※m=36,则m 的值为______.15.若点P (a +3,2a +4)在y 轴上,则点P 到x 轴的距离为________.16.如图,在平面直角坐标系中,有若干个整数点,其顺序按图中“→”方向排列,如(1,0),(2,0),(2,1),(3,2),(3,1),(3,0),(4,0)……,根据这个规律探索可得第2021个点的坐标是___.三、解答题17.计算.(1)()()1278---+; (2)()202231127162⎛⎫-⨯-+- ⎪⎝⎭. 18.求下列各式中x 的值:(1)()2125x -=;(2)381250x -=.19.完成下面的证明:已知:如图,130∠=︒,60B ∠=︒,AB AC ⊥.求证://AD BC .证明:AB AC ⊥(已知),∵∠______90=︒(____________________).∴130∠=︒,60B ∠=︒(已知),∵1BAC B ∠+∠+∠=__________.即∠______180B +∠=︒∴//AD BC (______________________________).20.如图,在平面直角坐标系中,三角形OBC 的顶点都在网格格点上,一个格是一个单位长度.(1)将三角形OBC 先向下平移3个单位长度,再向左平移2个单位长度(点1C 与点C 是对应点),得到三角形111O B C ,在图中画出三角形111O B C ;(2)直接写出三角形111O B C 的面积为____________.21.如图①,将由5个边长为1的小正方形拼成的图形沿虚线剪开,将剪开后的图形拼成如图②所示的大正方形,设图②所示的大正方形的边长为a .(1)求a 的值;(2)若a 的整数部分为m ,小数部分为n ,试求式子2m a an -+的值.二十二、解答题22.已知在44⨯的正方形网格中,每个小正方形的边长为1.(1)计算图①中正方形ABCD 的面积与边长.(2)利用图②中的正方形网格,作出面积为8的正方形,并在此基础上建立适当的数轴,在数轴上表示实数8和8-.二十三、解答题23.如图1,已知直线CD ∥EF ,点A ,B 分别在直线CD 与EF 上.P 为两平行线间一点.(1)若∠DAP =40°,∠FBP =70°,则∠APB =(2)猜想∠DAP ,∠FBP ,∠APB 之间有什么关系?并说明理由;(3)利用(2)的结论解答:①如图2,AP 1,BP 1分别平分∠DAP ,∠FBP ,请你写出∠P 与∠P 1的数量关系,并说明理由;②如图3,AP 2,BP 2分别平分∠CAP ,∠EBP ,若∠APB =β,求∠AP 2B .(用含β的代数式表示)24.已知//AM CN ,点B 为平面内一点,AB BC ⊥于B .(1)如图1,点B 在两条平行线外,则A ∠与C ∠之间的数量关系为______;(2)点B 在两条平行线之间,过点B 作BD AM ⊥于点D .①如图2,说明ABD C ∠=∠成立的理由;②如图3,BF 平分DBC ∠交DM 于点,F BE 平分ABD ∠交DM 于点E .若180,3FCB NCF BFC DBE ∠∠∠∠+=︒=,求EBC ∠的度数.25.如图,在ABC 中,AD 是高,AE 是角平分线,20B ∠=︒,60C ∠=°.(1)求CAD ∠、AEC ∠和EAD ∠的度数.(2)若图形发生了变化,已知的两个角度数改为:当30B ∠=︒,60C ∠=°,则EAD ∠=__________︒.当50B ∠=︒,C 60∠=︒时,则EAD ∠=__________︒.当60B ∠=︒,60C ∠=°时,则EAD ∠=__________︒.当70B ∠=︒,60C ∠=°时,则EAD ∠=__________︒.(3)若B 和C ∠的度数改为用字母α和β来表示,你能找到EAD ∠与α和β之间的关系吗?请直接写出你发现的结论.26.小明在学习过程中,对教材中的一个有趣问题做如下探究:(习题回顾)已知:如图1,在ABC 中,90ACB ∠=︒,AE 是角平分线,CD 是高,AE 、CD 相交于点F .求证:CFE CEF ∠=∠;(变式思考)如图2,在ABC 中,90ACB ∠=︒,CD 是AB 边上的高,若ABC 的外角BAG ∠的平分线交CD 的延长线于点F ,其反向延长线与BC 边的延长线交于点E ,则CFE ∠与CEF ∠还相等吗?说明理由;(探究延伸)如图3,在ABC 中,AB 上存在一点D ,使得ACD B ∠=∠,BAC ∠的平分线AE 交CD 于点F .ABC 的外角BAG ∠的平分线所在直线MN 与BC 的延长线交于点M .直接写出M ∠与CFE ∠的数量关系.【参考答案】一、选择题1.C解析:C【分析】根据内错角定义进行解答即可.【详解】解:A 、∠1与∠2是同位角,故此选项不合题意;B 、∠1与∠2是同旁内角,故此选项不合题意;C 、∠1与∠2是内错角,故此选项符合题意;D 、∠1与∠2不是内错角,此选项不合题意;故选:C .【点睛】此题主要考查了内错角,关键是掌握内错角的边构成“Z “形.2.C【分析】判断是否是平移现象,要根据平移的性质进行,即图形平移前后的形状和大小没有变化,只是位置发生变化.【详解】解:A. 投篮时的篮球运动,不是沿直线运动,此选项不是平移现象 ;B解析:C【分析】判断是否是平移现象,要根据平移的性质进行,即图形平移前后的形状和大小没有变化,只是位置发生变化.【详解】解:A. 投篮时的篮球运动,不是沿直线运动,此选项不是平移现象 ;B. 随风飘动的树叶在空中的运动,在空中不是沿直线运动,此选项不是平移现象;C. 刹车时汽车在地面上的滑动,此选项是平移现象;D. 冷水加热过程中小气泡变成大气泡,大小发生了变化,此选项不是平移现象. 故选:C .【点睛】本题考查的知识点是平移的概念,掌握平移的性质是解此题的关键.3.C【分析】根据平面直角坐标系的象限内点的特点判断即可;【详解】∵盖住的点在第三象限,∴()2,3--符合条件;故答案选C .【点睛】本题主要考查了平面直角坐标系象限内点的特征,准确分析判断是解题的关键. 4.C【分析】根据平行公理及其推论判断即可.【详解】解:①过直线外一点有且只有一条直线和已知直线平行,故错误;②在同一平面内,垂直于同一条直线的两条直线互相平行,故错误;故选:C .【点睛】本题主要考查了命题与定理,平行公理及其推论,属于基础知识,要牢牢掌握. 5.A【分析】过点E 作//EF AB ,先根据平行线的性质可得100AEF ∠=︒,再根据平行公理推论、平行线的性质可得70CEF ∠=︒,然后根据角的和差即可得.【详解】解:如图,过点E 作//EF AB ,80EAB ∠=︒,180100A E B E A F ∠=︒-=∴∠︒,//AB CD ,//CD EF ∴,180CEF ECD ∴∠+∠=︒,110ECD ∠=︒,18070CEF ECD ∴∠=︒-∠=︒,1007030AEC AEF CEF ∴∠=∠-∠=︒-︒=︒,故选:A .【点睛】本题考查了平行线的判定与性质,熟练掌握平行线的性质是解题关键.6.D【分析】根据实数与数轴、精确度、立方根及平方根的概念和性质逐项判断即可.【详解】解:A. 实数和数轴上的点一一对应,原说法错误;B. 0.304精确到十分位是0.3,原说法错误;C. 立方根是本身的数是0、±1,原说法错误;D. 平方根是本身的数只有0,正确,故选:D .【点睛】本题考查了实数与数轴、精确度、立方根及平方根的概念和性质,熟练掌握基础知识是解题关键.7.C【分析】根据FGB 内角和定理可知FGB ∠的度数,再根据平行线的性质即可求得DEF ∠的度数.【详解】∵BF EG ⊥∴90F ∠=︒∵35B ∠=︒∴180180903555FGB F B ∠=︒-∠-∠=︒-︒-︒=︒∵//AB CD∴55FGB DEF ∠=∠=︒.故选:C本题主要考查了三角形内角和定理及平行线的性质,熟练掌握相关角度计算方法是解决本题的关键.8.C【分析】由题意,A1(-1,1),A3(0,2),A5(1,3),A7(2,4),得出规律,利用规律解决问题即可.【详解】由题意,A1(-1,1),A3(0,2),A5(1,3),A7(2解析:C【分析】由题意,A1(-1,1),A3(0,2),A5(1,3),A7(2,4),得出规律,利用规律解决问题即可.【详解】由题意,A1(-1,1),A3(0,2),A5(1,3),A7(2,4),……,A2n-1(-2+n,n),∵2021101121=⨯-,∴A2021(1009,1011),故选:C.【点睛】本题考查坐标与图形变化一平移,解题的关键是学会探究规律的方法,属于中考常考题型.二、填空题9.【分析】先根据非负数的性质列出方程求出x、y的值求x-y的立方根.【详解】解:由题意得,x-2=0,y+1=0,解得x=2,y=-1,x-y=3,3的立方根是.【点睛】本题考查的是【分析】先根据非负数的性质列出方程求出x、y的值求x-y的立方根.【详解】解:由题意得,x-2=0,y+1=0,解得x=2,y=-1,3【点睛】本题考查的是非负数的性质和立方根的概念,掌握几个非负数的和为0时,这几个非负数都为0是解题的关键.10.4【分析】根据关于x 轴对称的两点的横坐标相同,纵坐标互为相反数求得a 、b 的值即可求得答案.【详解】点与点关于轴对称,,,则a+b 的值是:,故答案为.【点睛】本题考查了关于x 轴对称的解析:4【分析】根据关于x 轴对称的两点的横坐标相同,纵坐标互为相反数求得a 、b 的值即可求得答案.【详解】点(,)M a b 与点(3,1)M -关于x 轴对称,3a ∴=,1b =,则a+b 的值是:4,故答案为4.【点睛】本题考查了关于x 轴对称的点的坐标特征,熟练掌握关于坐标轴对称的点的坐标特征是解此类问题的关键.11.【分析】根据三角形内角和定理及角平分线的性质求出∠BAD 度数,再由三角形内角与外角的性质可求出∠ADF 的度数,由AF ⊥BC 可求出∠AFD=90°,再由三角形的内角和定理即可解答.【详解】∵A解析:20︒【分析】根据三角形内角和定理及角平分线的性质求出∠BAD 度数,再由三角形内角与外角的性质可求出∠ADF 的度数,由AF ⊥BC 可求出∠AFD=90°,再由三角形的内角和定理即可解答.【详解】∵AF 是ABC 的高,∴90AFB ∠=︒,在Rt ABF 中,36B ∠=︒,∴90BAF B ∠=︒-∠9036=︒-︒54=︒.又∵在ABC 中,36B ∠=︒,76C ∠=︒,∴18068BAC B C ∠=︒-∠-∠=︒,又∵AD 平分BAC ∠, ∴11683422BAD CAD BAC ∠=∠=∠=⨯=︒, ∴DAF BAF BAD ∠=∠-∠5434=︒-︒20=︒.故答案为:20︒.【点睛】本题考查了三角形内角和定理、三角形的高线、及三角形的角平分线等知识,难度中等. 12.40°【分析】利用平行线的性质求出∠3即可解决问题.【详解】解:∵直尺的两边互相平行,∴∠1=∠3=50°,∵∠2+∠3=90°,∴∠2=90°﹣∠3=40°,故答案为:40°.解析:40°【分析】利用平行线的性质求出∠3即可解决问题.【详解】解:∵直尺的两边互相平行,∴∠1=∠3=50°,∵∠2+∠3=90°,∴∠2=90°﹣∠3=40°,故答案为:40°.【点睛】本题考查了平行线的性质,直角三角形两锐角互余等知识,解题的关键是灵活运用所学知识解决问题.13.70【分析】根据∠1+2∠2=180°求解即可.【详解】解:∵∠1+2∠2=180°,,∴∠2=70°.故答案为:70.【点睛】本题考查了折叠的性质,角的和差计算,由图得出∠1+2∠解析:70【分析】根据∠1+2∠2=180°求解即可.【详解】解:∵∠1+2∠2=180°,140∠=︒,∴∠2=70°.故答案为:70.【点睛】本题考查了折叠的性质,角的和差计算,由图得出∠1+2∠2=180°是解答本题的关键. 14.或.【分析】根据新定义规定的式子将数值代入再计算即可;先根据新定义的式子将数值代入分情况讨论列方程求解即可.【详解】解:4※(-2)=;(-1)※1=[(-1)※1]※m=解析:6m =-或38m =.【分析】根据新定义规定的式子将数值代入再计算即可;先根据新定义的式子将数值代入分情况讨论列方程求解即可.【详解】解:42>-∴4※(-2)=()42=16-; 11-<∴(-1)※1=()11=2--∴[(-1)※1]※m=2※m=36当2m ≥时,原式可化为236m =解得:6m =±6m ∴=-;当2m <时,原式可化为:236m -=解得:38m =;综上所述,m 的值为:6m =-或38m =;故答案为:16;6m =-或38m =.【点睛】本题考查了新定义的运算,读懂新定义的式子,将值正确代入是解题的关键.15.2【分析】点在y 轴上,则横坐标为0,可求得a 的值,然后再判断点到x 轴的距离即可.【详解】∵点P(a+3,2a+4)在y 轴上∴a+3=0,解得:a=-3∴P(0,-2)∴点P 到x 轴的距离解析:2【分析】点在y 轴上,则横坐标为0,可求得a 的值,然后再判断点到x 轴的距离即可.【详解】∵点P(a +3,2a +4)在y 轴上∴a +3=0,解得:a =-3∴P(0,-2)∴点P 到x 轴的距离为:2故答案为:2【点睛】本题考查坐标点与坐标轴的关系,注意,点到坐标轴的距离一定是非负的.16.(64,4)【分析】横坐标为1的点有1个,纵坐标只是0;横坐标为2的点有2个,纵坐标是0或1;横坐标为3的点有3个,纵坐标分别是0,1,2…横坐标为奇数,纵坐标从大数开始数;横坐标为偶数,则从0解析:(64,4)【分析】横坐标为1的点有1个,纵坐标只是0;横坐标为2的点有2个,纵坐标是0或1;横坐标为3的点有3个,纵坐标分别是0,1,2…横坐标为奇数,纵坐标从大数开始数;横坐标为偶数,则从0开始数.【详解】解:把第一个点(1,0)作为第一列,(2,1)和(2,0)作为第二列,依此类推,则第一列有一个数,第二列有2个数,第n列有n个数.则n列共有()12n n+个数,并且在奇数列点的顺序是由上到下,偶数列点的顺序由下到上.因为1+2+3+…+63=2016,则第2021个数一定在第64列,由下到上是第5个数.因而第2021个点的坐标是(64,4).故答案为:(64,4).【点睛】本题考查了学生的观察图形的能力和理解能力,解此题的关键是根据图形得出规律,题目比较典型,但是一道比较容易出错的题目.三、解答题17.(1)3;(2)【分析】(1)根据有理数加减混合运算法则求解即可;(2)根据平方根与立方根的定义先化简,然后合并求解即可.【详解】解:(1)原式(2)原式【点睛】本题考查有理数解析:(1)3;(2)3 2 -【分析】(1)根据有理数加减混合运算法则求解即可;(2)根据平方根与立方根的定义先化简,然后合并求解即可.【详解】解:(1)原式12783=-++=(2)原式11342⎛⎫=-⨯+- ⎪⎝⎭1342=-+- 542=- 32=- 【点睛】本题考查有理数的加减混合运算,以及实数的混合运算等,掌握基本的运算法则,注意运算顺序是解题关键.18.(1)或;(2)【分析】(1)直接根据求平方根的方法解方程即可;(2)直接根据求立方根的方法解方程即可.【详解】解:(1)∵,∴,∴,∴或;(2)∵,∴,∴.【点睛】本题主解析:(1)6x =或4x =-;(2)52x =【分析】(1)直接根据求平方根的方法解方程即可;(2)直接根据求立方根的方法解方程即可.【详解】解:(1)∵()2125x -=,∴15x -=±,∴15x =±,∴6x =或4x =-;(2)∵381250x -=, ∴31258x =, ∴52x =.【点睛】本题主要考查了利用求平方根和求立方根的方法解方程,解题的关键在于能够熟练掌握相关知识进行求解.19.BAC ,垂直的定义,180°,BAD ,同旁内角互补,两直线平行.【分析】根据垂直的定义和已知证明∠BAD ,即,由同旁内角互补,两直线平行即可得出结论.【详解】证明:∵(已知),∴∠BAC (解析:BAC ,垂直的定义,180°,BAD ,同旁内角互补,两直线平行.【分析】根据垂直的定义和已知证明∠BAD 180B +∠=︒,即1180BAC B ∠+∠+∠=︒,由同旁内角互补,两直线平行即可得出结论.【详解】证明:∵AB AC ⊥(已知),∴∠BAC 90=︒(垂直的定义).∵130∠=︒,60B ∠=︒(已知),∴1BAC B ∠+∠+∠=180°即∠BAD 180B +∠=︒∴//AD BC (同旁内角互补,两直线平行)故答案为:BAC ,垂直的定义,180°,BAD ,同旁内角互补,两直线平行.【点睛】本题主要考查了垂直定义和平行线的判定,证明∠BAD 180B +∠=︒是解题关键. 20.(1)见解析;(2)5【分析】(1)根据平移的性质先确定O 、B 、C 的对应点O1、B1、C1的坐标,然后顺次连接O1、B1、C1即可;(2)根据的面积=其所在的长方形面积减去周围三个三角形的面积解析:(1)见解析;(2)5【分析】(1)根据平移的性质先确定O 、B 、C 的对应点O 1、B 1、C 1的坐标,然后顺次连接O 1、B 1、C 1即可;(2)根据111O B C 的面积=其所在的长方形面积减去周围三个三角形的面积进行求解即可.【详解】解:(1)如图所示,111O B C 即为所求;(2)由题意得:11111143421313=5222O B C S =⨯-⨯⨯-⨯⨯-⨯⨯△. 【点睛】本题主要考查了平移作图,三角形面积,解题的关键在于能够熟练掌握平移作图的方法. 21.(1);(2)1【分析】(1)分析图形得到大正方形的面积,从而得到边长a ;(2)估算出a 的范围,得到整数部分和小数部分,代入计算即可.【详解】解:(1)由题意可得:,∵a >0,∴;解析:(152)1【分析】(1)分析图形得到大正方形的面积,从而得到边长a ;(2)估算出a 的范围,得到整数部分和小数部分,代入计算即可.【详解】解:(1)由题意可得:25a =,∵a >0, ∴5a =(2)∵459, ∴253<<,∴m =2,n 52, ∴2m a an -+ =)225552=()()-+-252552=254525-+-=1【点睛】本题考查了算术平方根的应用,无理数的估算,解题的关键是能估算出的范围.二十二、解答题22.(1)正方形的面积为10,正方形的边长为;(2)见解析【分析】(1)利用正方形的面积减去4个直角三角形的面积即可求出正方形的面积,然后根据算术平方根的意义即可求出边长;(2)根据(1)的方法画解析:(1)正方形ABCD的面积为10,正方形ABCD的边长为10;(2)见解析【分析】(1)利用正方形的面积减去4个直角三角形的面积即可求出正方形ABCD的面积,然后根据算术平方根的意义即可求出边长;(2)根据(1)的方法画出图形,然后建立数轴,根据算术平方根的意义即可表示出结论.【详解】×3×1=10解:(1)正方形ABCD的面积为4×4-4×12则正方形ABCD的边长为10;×2×2=8,所以该正方形即为所求,如图建立(2)如下图所示,正方形的面积为4×4-4×12数轴,以数轴的原点为圆心,正方形的边长为半径作弧,分别交数轴于两点∴8∴弧与数轴的左边交点为8888【点睛】此题考查的是求网格中图形的面积和实数与数轴,掌握算术平方根的意义和利用数轴表示无理数是解题关键.二十三、解答题23.(1)110°;(2)猜想:∠APB=∠DAP+∠FBP,理由见解析;(3)①∠P=2∠P1,理由见解析;②∠AP2B=.【分析】(1)过P作PM∥CD,根据两直线平行,内错角相等可得∠APM=解析:(1)110°;(2)猜想:∠APB=∠DAP+∠FBP,理由见解析;(3)①∠P=2∠P1,理由见解析;②∠AP2B=1 1802β︒-.【分析】(1)过P作PM∥CD,根据两直线平行,内错角相等可得∠APM=∠DAP,再根据平行公理求出CD∥EF然后根据两直线平行,内错角相等可得∠MPB=∠FBP,最后根据∠APM+∠MPB=∠DAP+∠FBP等量代换即可得证;(2)结论:∠APB=∠DAP+∠FBP.(3)①根据(2)的规律和角平分线定义解答;②根据①的规律可得∠APB=∠DAP+∠FBP,∠AP2B=∠CAP2+∠EBP2,然后根据角平分线的定义和平角等于180°列式整理即可得解.【详解】(1)证明:过P作PM∥CD,∴∠APM=∠DAP.(两直线平行,内错角相等),∵CD∥EF(已知),∴PM∥CD(平行于同一条直线的两条直线互相平行),∴∠MPB=∠FBP.(两直线平行,内错角相等),∴∠APM+∠MPB=∠DAP+∠FBP.(等式性质)即∠APB=∠DAP+∠FBP=40°+70°=110°.(2)结论:∠APB=∠DAP+∠FBP.理由:见(1)中证明.(3)①结论:∠P=2∠P1;理由:由(2)可知:∠P=∠DAP+∠FBP,∠P1=∠DAP1+∠FBP1,∵∠DAP=2∠DAP1,∠FBP=2∠FBP1,∴∠P=2∠P1.②由①得∠APB=∠DAP+∠FBP,∠AP2B=∠CAP2+∠EBP2,∵AP2、BP2分别平分∠CAP、∠EBP,∴∠CAP2=12∠CAP,∠EBP2=12∠EBP,∴∠AP2B=12∠CAP+12∠EBP,= 12(180°-∠DAP)+ 12(180°-∠FBP),=180°- 12(∠DAP+∠FBP),∠APB,=180°- 12β.=180°- 12【点睛】本题考查了平行线的性质,角平分线的定义,熟记性质与概念是解题的关键,此类题目,难点在于过拐点作平行线.24.(1)∠A+∠C=90°;(2)①见解析;②105°【分析】(1)根据平行线的性质以及直角三角形的性质进行证明即可;(2)①过点B作BG∥DM,根据平行线找角的联系即可求解;②先过点B作BG∥解析:(1)∠A+∠C=90°;(2)①见解析;②105°【分析】(1)根据平行线的性质以及直角三角形的性质进行证明即可;(2)①过点B作BG∥DM,根据平行线找角的联系即可求解;②先过点B作BG∥DM,根据角平分线的定义,得出∠ABF=∠GBF,再设∠DBE=α,∠ABF=β,根据∠CBF+∠BFC+∠BCF=180°,可得2α+β+3α+3α+β=180°,根据AB⊥BC,可得β+β+2α=90°,最后解方程组即可得到∠ABE=15°,进而得出∠EBC=∠ABE+∠ABC=15°+90°=105°.【详解】解:(1)如图1,AM与BC的交点记作点O,∵AM∥CN,∴∠C=∠AOB,∵AB⊥BC,∴∠A+∠AOB=90°,∴∠A+∠C=90°;(2)①如图2,过点B作BG∥DM,∵BD⊥AM,∴DB⊥BG,∴∠DBG=90°,∴∠ABD+∠ABG=90°,∵AB⊥BC,∴∠CBG+∠ABG=90°,∴∠ABD=∠CBG,∵AM∥CN,BG∥DM,//,BG CN∴∠C=∠CBG,∠ABD=∠C;②如图3,过点B作BG∥DM,∵BF平分∠DBC,BE平分∠ABD,∴∠DBF=∠CBF,∠DBE=∠ABE,由(2)知∠ABD=∠CBG,∴∠ABF=∠GBF,设∠DBE=α,∠ABF=β,则∠ABE=α,∠ABD=2α=∠CBG,∠GBF=∠AFB=β,∠BFC=3∠DBE=3α,∴∠AFC=3α+β,∵∠AFC+∠NCF=180°,∠FCB+∠NCF=180°,∴∠FCB=∠AFC=3α+β,△BCF中,由∠CBF+∠BFC+∠BCF=180°得:2α+β+3α+3α+β=180°,∵AB⊥BC,∴β+β+2α=90°,∴α=15°,∴∠ABE=15°,∴∠EBC=∠ABE+∠ABC=15°+90°=105°.【点睛】本题主要考查了平行线的性质的运用,解决问题的关键是作平行线构造内错角,运用等角的余角(补角)相等进行推导.余角和补角计算的应用,常常与等式的性质、等量代换相关联.解题时注意方程思想的运用.25.(1)30°,70°,20°;(2)15°,5°,0°,5°;(3)当时,;当时,.【分析】(1)先利用三角形内角和定理求出的度数,再根据角平分线和高的性质分别得出和的度数,进而可求和的度数;解析:(1)30°,70°,20°;(2)15°,5°,0°,5°;(3)当αβ<时,1()2EAD βα∠=-;当αβ>时,1()2EAD αβ∠=-. 【分析】(1)先利用三角形内角和定理求出BAC ∠的度数,再根据角平分线和高的性质分别得出EAC ∠和DAC ∠的度数,进而可求AEC ∠和EAD ∠的度数;(2)先利用三角形内角和定理求出BAC ∠的度数,再根据角平分线和高的性质分别得出EAC ∠和DAC ∠的度数,则前三问利用EAD EAC DAC ∠=∠-∠即可得出答案,第4问利用EAD DAC EAC ∠=∠-∠即可得出答案;(3)按照(2)的方法,将相应的数换成字母即可得出答案.【详解】(1)∵20B ∠=︒,60C ∠=°,∴180100BAC B C ∠=-∠-∠=︒︒ .∵AE 平分BAC ∠, ∴1502EAC BAC ∠=∠=︒. ∵AD 是高,90ADC ADE ∴∠=∠=︒ ,9030CAD C ∴∠=︒-∠=︒ ,20EAD EAC CAD ∴∠=∠-∠=︒ ,9070AEC EAD ∴∠=︒-∠=︒ .(2)当30B ∠=︒,60C ∠=°时,∵30B ∠=︒,60C ∠=°,∴18090BAC B C ∠=︒-∠-∠=︒.∵AE 平分BAC ∠, ∴1452EAC BAC ∠=∠=︒. ∵AD 是高,90ADC ∴∠=︒ ,9030CAD C ∴∠=︒-∠=︒ ,15EAD EAC CAD ∴∠=∠-∠=︒ ;当50B ∠=︒,60C ∠=°时,∵50B ∠=︒,60C ∠=°,∴18070BAC B C ∠=-∠-∠=︒︒ .∵AE 平分BAC ∠, ∴1352EAC BAC ∠=∠=︒. ∵AD 是高,90ADC ∴∠=︒ ,9030CAD C ∴∠=︒-∠=︒ ,5EAD EAC CAD ∴∠=∠-∠=︒ ;当60B ∠=︒,60C ∠=°时,∵60B ∠=︒,60C ∠=°,∴18060BAC B C ∠=︒-∠-∠=︒.∵AE 平分BAC ∠, ∴1302EAC BAC ∠=∠=︒. ∵AD 是高,90ADC ∴∠=︒ ,9030CAD C ∴∠=︒-∠=︒ ,0EAD EAC CAD ∴∠=∠-∠=︒ ;当70B ∠=︒,60C ∠=°时,∵70B ∠=︒,60C ∠=°,∴18050BAC B C ∠=︒-∠-∠=︒.∵AE 平分BAC ∠, ∴1252EAC BAC ∠=∠=︒. ∵AD 是高,90ADC ∴∠=︒ ,9030CAD C ∴∠=︒-∠=︒ ,5EAD DAC EAC ∴∠=∠-∠=︒ .(3)当B C ∠<∠ 时,即αβ<时,∵B α∠=,C β∠=,∴180180BAC B C αβ∠=︒-∠-∠=︒-- .∵AE 平分BAC ∠, ∴1111(180)902222EAC BAC αβαβ∠=∠=︒--=--. ∵AD 是高,90ADC ∴∠=︒ ,9090CAD C β∴∠=︒-∠=︒- ,1()2EAD EAC CAD βα∴∠=∠-∠=- ; 当B C ∠>∠ 时,即αβ>时,∵B α∠=,C β∠=,∴180180BAC B C αβ∠=︒-∠-∠=︒-- .∵AE 平分BAC ∠, ∴1111(180)902222EAC BAC αβαβ∠=∠=︒--=--. ∵AD 是高,90ADC ∴∠=︒ ,9090CAD C β∴∠=︒-∠=︒- ,1()2EAD DAC EAC αβ∴∠=∠-∠=- ; 综上所述,当αβ<时,1()2EAD βα∠=-;当αβ>时,1()2EAD αβ∠=-. 【点睛】本题主要考查三角形内角和定理和三角形的角平分线,高,掌握三角形内角和定理和直角三角形两锐角互余是解题的关键.26.[习题回顾]证明见解析;[变式思考] 相等,证明见解析;[探究延伸] ∠M+∠CFE=90°,证明见解析.【分析】[习题回顾]根据同角的余角相等可证明∠B=∠ACD ,再根据三角形的外角的性质即可解析:[习题回顾]证明见解析;[变式思考] 相等,证明见解析;[探究延伸]∠M+∠CFE=90°,证明见解析.【分析】[习题回顾]根据同角的余角相等可证明∠B=∠ACD ,再根据三角形的外角的性质即可证明;[变式思考]根据角平分线的定义和对顶角相等可得∠CAE=∠DAF 、再根据直角三角形的性质和等角的余角相等即可得出CFE ∠=CEF ∠;[探究延伸]根据角平分线的定义可得∠EAN=90°,根据直角三角形两锐角互余可得∠M+∠CEF=90°,再根据三角形外角的性质可得∠CEF=∠CFE ,由此可证∠M+∠CFE=90°.【详解】[习题回顾]证明:∵∠ACB=90°,CD 是高,∴∠B+∠CAB=90°,∠ACD+∠CAB=90°,∴∠B=∠ACD ,∵AE 是角平分线,∴∠CAF=∠DAF ,∵∠CFE=∠CAF+∠ACD ,∠CEF=∠DAF+∠B ,∴∠CEF=∠CFE ;[变式思考]相等,理由如下:证明:∵AF 为∠BAG 的角平分线,∴∠GAF=∠DAF ,∵∠CAE=∠GAF,∴∠CAE=∠DAF,∵CD为AB边上的高,∠ACB=90°,∴∠ADC=90°,∴∠ADF=∠ACE=90°,∴∠DAF+∠F=90°,∠E+∠CAE=90°,∴∠CEF=∠CFE;[探究延伸]∠M+∠CFE=90°,证明:∵C、A、G三点共线 AE、AN为角平分线,∴∠EAN=90°,又∵∠GAN=∠CAM,∴∠M+∠CEF=90°,∵∠CEF=∠EAB+∠B,∠CFE=∠EAC+∠ACD,∠ACD=∠B,∴∠CEF=∠CFE,∴∠M+∠CFE=90°.【点睛】本题考查三角形的外角的性质,直角三角形两锐角互余,角平分线的有关证明,等角或同角的余角相等.在本题中用的比较多的是利用等角或同角的余角相等证明角相等和三角形一个外角等于与它不相邻的两个内角之和,理解并掌握是解决此题的关键.。

内蒙古自治区赤峰市,2020~2021年中考数学压轴题精选解析

内蒙古自治区赤峰市,2020~2021年中考数学压轴题精选解析

内蒙古自治区赤峰市,2020~2021年中考数学压轴题精选解析内蒙古自治区赤峰市中考数学压轴题精选~~第1题~~(2020怀化.中考模拟) 李老师家距学校1900米,某天他步行去上班,走到路程的一半时发现忘带手机,此时离上班时间还有23分钟,于是他立刻步行回家取手机,随后骑电瓶车返回学校.已知李老师骑电瓶车到学校比他步行到学校少用20分钟,且骑电瓶车的平均速度是步行速度的5倍,李老师到家开门、取手机、启动电瓶车等共用4分钟.(1)求李老师步行的平均速度;(2)请你判断李老师能否按时上班,并说明理由.~~第2题~~(2020扬州.九上月试) 直角三角形的两直角边长分别为8和6,则此三角形的外接圆半径是________.~~第3题~~(2020赤峰.中考真卷) 如图,矩形ABCD中,点P为对角线AC所在直线上的一个动点,连接PD,过点P作PE⊥PD,交直线AB于点E,过点P作MN⊥AB,交直线CD于点M,交直线AB于点N. ,AD =4.(1)如图1,①当点P在线段AC上时,∠PDM和∠EPN的数关系为:∠PDM________ ∠EPN;②的值是________;(2)如图2,当点P在CA延长线上时,(1)中的结论②是否成立?若成立,请证明;若不成立,说明理由;(3)如图3,以线段PD,PE为邻边作矩形PEFD.设PM的长为x,矩形PEFD的面积为y.请直接写出y与x之间的函数关系式及y的最小值.~~第4题~~(2019赤峰.中考真卷) (问题)如图1,在中,,过点作直线平行于.,点在直线上移动,角的一边始终经过点,另一边与交于点,研究和的数量关系.(1)(探究发现)如图2,某数学兴趣小组运用“从特殊到一般”的数学思想,发现当点移动到使点与点重合时,通过推理就可以得到,请写出证明过程;(2) (数学思考)如图3,若点是上的任意一点(不含端点),受(1)的启发,这个小组过点作 交于点,就可以证明,请完成证明过程;(3) (拓展引申)如图4,在(1)的条件下,是边上任意一点(不含端点),是射线上一点,且,连接 与交于点,这个数学兴趣小组经过多次取 点反复进行实验,发现点在某一位置时的值最大.若,请你直接写出的最大值.~~第5题~~(2019赤峰.中考模拟) 如图,在平面鱼角坐标系xOy 中,A (﹣3,0),点B 为y 轴正半轴上一点,将线段AB 绕点B 旋转90°至BC 处,过点C 作CD 垂直x 轴于点D ,若四边形ABCD 的面积为36,则线AC 的解析式为________.~~第6题~~(2019赤峰.中考模拟) 如图,直线y = x +a 与x轴交于点A (4,0),与y 轴交于点B , 抛物线y = x +bx +c 经过点A , B. 点M (m , 0)为x 轴上一动点,过点M 且垂直于x 轴的直线分别交直线AB 及抛物线于点P , N .(1) 填空:点B 的坐标为,抛物线的解析式为;2(2) 当点M 在线段OA 上运动时(不与点O ,A 重合),①当m 为何值时,线段PN 最大值,并求出PN 的最大值;②求出使△BPN 为直角三角形时m 的值;(3) 若抛物线上有且只有三个点N 到直线AB 的距离是h ,请直接写出此时由点O ,B ,N ,P 构成的四边形的面积.~~第7题~~(2018赤峰.中考真卷) 已知抛物线 的图象如图所示:(1) 将该抛物线向上平移2个单位,分别交x 轴于A 、B 两点,交y 轴于点C ,则平移后的解析式为.(2) 判断△ABC 的形状,并说明理由.(3) 在抛物线对称轴上是否存在一点P ,使得以A 、C 、P 为顶点的三角形是等腰三角形?若存在,求出点P 的坐标;若不存在,说明理由.~~第8题~~(2017赤峰.中考真卷) 如图,二次函数y=ax +bx+c (a≠0)的图象交x 轴于A 、B 两点,交y 轴于点D ,点B的坐标为(3,0),顶点C 的坐标为(1,4).(1)求二次函数的解析式和直线BD 的解析式;(2)点P 是直线BD 上的一个动点,过点P 作x 轴的垂线,交抛物线于点M ,当点P 在第一象限时,求线段PM 长度的最大值;(3)在抛物线上是否存在异于B 、D 的点Q ,使△BDQ 中BD 边上的高为2?若存在求出点Q 的坐标;若不存在请说明理由.~~第9题~~(2017宁城.中考模拟) 已知二次函数y=ax +bx ﹣3经过A (﹣1,0),B (3,0)两点,22(1)求二次函数解析式及对称轴方程;(2)连接BC,交对称轴于点E,求E点坐标;(3)在y轴上是否存在一点M,使△BCM为等腰三角形?若存在,直接写出点M的坐标;若不存在,请说明理由;(4)在第四象限内抛物线上是否存一点H,使得四边形ACHB的面积最大?若存在,求出点H坐标;若不存在,说明理由.~~第10题~~(2016赤峰.中考真卷) 在平面直角坐标系中,已知点A(﹣2,0),B(2,0),C(3,5).(1)求过点A,C的直线解析式和过点A,B,C的抛物线的解析式;(2)求过点A,B及抛物线的顶点D的⊙P的圆心P的坐标;(3)在抛物线上是否存在点Q,使AQ与⊙P相切,若存在请求出Q点坐标.内蒙古自治区赤峰市中考数学压轴题答案解析~~第1题~~答案:解析:~~第2题~~答案:解析:~~第3题~~答案:解析:~~第4题~~答案:解析:~~第5题~~答案:解析:答案:解析:~~第7题~~答案:解析:~~第8题~~答案:解析:~~第9题~~答案:解析:答案:解析:。

赤峰市七年级下册数学期末压轴难题试卷及答案-百度文库

赤峰市七年级下册数学期末压轴难题试卷及答案-百度文库

赤峰市七年级下册数学期末压轴难题试卷及答案-百度文库一、选择题1.下列所示的四个图形中,1∠和2∠不是同位角的是( )A .①B .②C .③D .④2.下列图案可以由部分图案平移得到的是( ) A .B .C .D .3.在平面直角坐标系中,下列点中位于第四象限的是( ) A .()0,3B .()2,1-C .()1,2-D .()1,1--4.下列四个命题:①9的平方根是3±;②5是5的算术平方根;③经过一点有且只有一条直线与这条直线平行;④两条直线被第三条直线所截,同旁内角互补.其中真命题有( ) A .0个B .1个C .2个D .3个5.如图,AB ∥CD ,∠1=∠2,∠3=130°,则∠2等于( )A .30°B .25°C .35°D .40°6.下列各组数中,互为相反数的是( ) A .2-与2B .2-与12-C .()23-与23-D .38-与38-7.如图,将一张长方形纸片ABCD 沿EF 折叠.使顶点C ,D 分别落在点C ',D 处,C E '交AF 于点G ,若70CEF ∠=︒,则GFD '∠=( )A .30B .40︒C .45︒D .60︒8.如图,在平面直角坐标系中,存在动点P 按图中箭头所示方向运动,第1次从原点运动到点(1,1),第2次接着运动到点(2,0),第3次接着运动到点(3,2),…,按这样的运动规律,经过第2021次运动后,点P 的坐标是( )A .(2022,1)B .(2021,0)C .(2021,1)D .(2021,2)二、填空题9.36的平方根是______,81的算术平方根是______.10.将点()14P -,先关于x 轴对称,再关于y 轴对称的点的坐标为_______. 11.三角形ABC 中,∠A=60°,则内角∠B ,∠C 的角平分线相交所成的角为_____. 12.如图,已知AB ∥CD ,如果∠1=100°,∠2=120°,那么∠3=_____度.13.如图,将四边形纸片ABCD 沿MN 折叠,点A 、D 分别落在点A 1、D 1处.若∠1+∠2=130°,则∠B +∠C =___°.14.将1,2,3,6按下列方式排列,若规定(,)m n 表示第m 排从左向右第n 个数,则(20,9)表示的数的相反数是___15.已知,(0,4)A ,0()2,B ﹣,1(3,)C ﹣,则ABCS =________.16.如图,在平面直角坐标系中,一动点从原点O 出发,按向上,向右,向下,向右的方向不断移动,每移动一个单位,得到点1(0,1)A ,()21,1A ,()31,0A ,()42,0A ,…,那么点2021A 的坐标为__________.三、解答题17.计算下列各式的值: (1)23(7)-- (2)313(3)83+-18.求下列各式中x 的值 (1)2280x -= (2)()352125x -=-19.如图,点D ,F 分别是BC 、AB 上的点,//DF AC ,FDE A ∠=∠.(1)对//DE AB 说明理由,将下列解题过程补充完整. 解://DF AC (已知)A ∴∠=________(________________________) A FDE ∠=∠(已知)FDE ∴∠=___________(________________________)//DE AB ∴(______________________________)(2)若AED ∠比BFD ∠大40︒,求BFD ∠的度数. 20.已知点P (﹣3a ﹣4,a +2). (1)若点P 在y 轴上,试求P 点的坐标;(2)若M (5,8),且PM //x 轴,试求P 点的坐标; (3)若点P 到x 轴,y 轴的距离相等,试求P 点的坐标. 21.例如∵479.即273<,∴7的整数部分为272,仿照上例回答下列问题;(117介于连续的两个整数a 和b 之间,且a <b ,那么a = ,b = ; (2)x 172的小数部分,y 171的整数部分,求x = ,y = ; (3)求(17)y x 的平方根.二十二、解答题22.数学活动课上,小新和小葵各自拿着不同的长方形纸片在做数学问题探究.(1)小新经过测量和计算得到长方形纸片的长宽之比为3:2,面积为30,请求出该长方形纸片的长和宽;(2)小葵在长方形内画出边长为a ,b 的两个正方形(如图所示),其中小正方形的一条边在大正方形的一条边上,她经过测量和计算得到长方形纸片的周长为50,阴影部分两个长方形的周长之和为30,由此她判断大正方形的面积为100,间小葵的判断正确吗?请说明理由.二十三、解答题23.已知//AM CN ,点B 为平面内一点,AB BC ⊥于B .(1)如图1,求证:90A C ∠+∠=︒;(2)如图2,过点B 作BD MA ⊥的延长线于点D ,求证:ABD C ∠=∠;(3)如图3,在(2)问的条件下,点E 、F 在DM 上,连接BE 、BF 、CF ,且BF 平分DBC ∠,BE 平分ABD ∠,若AFC BCF ∠=∠,3BFC DBE ∠=∠,求EBC ∠的度数.24.如图,AB ⊥AK ,点A 在直线MN 上,AB 、AK 分别与直线EF 交于点B 、C ,∠MAB+∠KCF =90°.(1)求证:EF ∥MN ;(2)如图2,∠NAB 与∠ECK 的角平分线交于点G ,求∠G 的度数;(3)如图3,在∠MAB 内作射线AQ ,使∠MAQ =2∠QAB ,以点C 为端点作射线CP ,交直.线.AQ 于点T ,当∠CTA =60°时,直接写出∠FCP 与∠ACP 的关系式. 25.如图①,AD 平分BAC ∠,AE ⊥BC ,∠B=450,∠C=730. (1) 求DAE ∠的度数;(2) 如图②,若把“AE ⊥BC ”变成“点F 在DA 的延长线上,FE BC ⊥”,其它条件不变,求DFE ∠ 的度数;(3) 如图③,若把“AE ⊥BC ”变成“AE 平分BEC ∠”,其它条件不变,DAE ∠的大小是否变化,并请说明理由.26.如图,//MN GH ,点A 、B 分别在直线MN 、GH 上,点O 在直线MN 、GH 之间,若116NAO ∠=︒,144OBH ∠=︒.(1)AOB ∠= ︒;(2)如图2,点C 、D 是NAO ∠、GBO ∠角平分线上的两点,且35CDB ∠=︒,求ACD ∠ 的度数;(3)如图3,点F 是平面上的一点,连结FA 、FB ,E 是射线FA 上的一点,若MAE ∠=n OAE ∠,HBF n OBF ∠=∠,且60AFB ∠=︒,求n 的值.【参考答案】一、选择题 1.C 解析:C 【分析】根据同位角:两条直线被第三条直线所截形成的角中,若两个角都在两直线的同侧,并且在第三条直线(截线)的同旁,则这样一对角叫做同位角进行分析即可. 【详解】解:选项A 、B 、D 中,∠1与∠2在截线的同侧,并且在被截线的同一方,是同位角; 选项C 中,∠1与∠2的两条边都不在同一条直线上,不是同位角. 故选:C . 【点睛】本题考查了同位角的应用,注意:两条直线被第三条直线所截,如果有两个角在第三条直线的同旁,并且在两条直线的同侧,那么这两个角叫同位角.2.C 【分析】根据平移的定义,逐一判断即可.【详解】解:、是旋转变换,不是平移,选项错误,不符合题意; 、轴对称变换,不是平移,选项错误,不符合题意; 、是平移,选项正确,符合题意; 、图形的大解析:C 【分析】根据平移的定义,逐一判断即可. 【详解】解:A 、是旋转变换,不是平移,选项错误,不符合题意;B 、轴对称变换,不是平移,选项错误,不符合题意;C 、是平移,选项正确,符合题意;D 、图形的大小发生了变化,不是平移,选项错误,不符合题意.故选:C . 【点睛】本题考查平移变换,解题的关键是判断图形是否由平移得到,要把握两个“不变”,图形的形状和大小不变;一个“变”,位置改变. 3.C 【分析】根据各象限内点的坐标特征对各选项分析判断后利用排除法求解. 【详解】解:A 、(0,3)在y 轴上,故本选项不符合题意; B 、(2,1)-在第二象限,故本选项不符合题意; C 、(1,2)-在第四象限,故本选项符合题意; D 、(1,1)--在第三象限,故本选项不符合题意. 故选:C . 【点睛】本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解题的关键,四个象限的符号特点分别是:第一象限(,)++;第二象限(,)-+;第三象限(,)--;第四象限(,)+-.4.B 【分析】根据算术平方根的概念、平方根的概念、平行公理、平行线的性质判断即可. 【详解】解:3=,3的平方根是5的算术平方根,正确,是真命题,符合题意;③经过直线外一点,有且只有一条直线与这条直线平行,故原命题错误,是假命题,不符合题意;④两条平行直线被第三条直线所截,同旁内角互补,故原命题错误,是假命题,不符合题意.真命题只有②, 故选:B . 【点睛】本题考查的是命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理. 5.B 【分析】根据AB ∥CD ,∠3=130°,求得∠GAB =∠3=130°,利用平行线的性质求得∠BAE =180°﹣∠GAB =180°﹣130°=50°,由∠1=∠2 求出答案即可. 【详解】解:∵AB ∥CD ,∠3=130°, ∴∠GAB =∠3=130°, ∵∠BAE +∠GAB =180°,∴∠BAE =180°﹣∠GAB =180°﹣130°=50°, ∵∠1=∠2,∴∠2=12∠BAE =12×50°=25°. 故选:B . 【点睛】此题考查平行线的性质:两直线平行同位角相等,两直线平行同旁内角互补,熟记性质定理是解题的关键. 6.C 【分析】根据绝对值运算、有理数的乘方运算、立方根、相反数的定义逐项判断即可得. 【详解】A 、B 、2-与12-不是相反数,此项不符题意;C 、()223399,--=-=,则()23-与23-互为相反数,此项符合题意;D 2,2=-- 故选:C . 【点睛】本题考查了绝对值运算、有理数的乘方运算、立方根、相反数的定义,熟记各运算法则和定义是解题关键. 7.B 【分析】根据两直线平行,内错角相等求出EFG ,再根据平角的定义求出EFD ∠,然后根据折叠的性质可得EFD EFD '∠=∠,进而即可得解. 【详解】解:∵在矩形纸片ABCD 中,//AD BC ,70CEF ∠=︒,70EFG CEF ∴∠=∠=︒, 180110EFD EFG ∴∠=︒-∠=︒,∵折叠,∴110EFD EFD ∠'=∠=︒,GFD EFD EFG ∴∠'=∠'-∠11070=︒-︒40=︒.故选:B . 【点睛】本题考查了平行线的性质以及折叠的性质,根据两直线平行,内错角相等求出EFG 是解题的关键,另外,根据折叠前后的两个角相等也很重要.8.C 【分析】观察点的坐标变化发现每个点的横坐标与次数相等,纵坐标是1,0,2,0,…4个数一个循环,进而可得经过第2021次运动后,动点P 的坐标. 【详解】解:观察点的坐标变化可知: 第1次从原解析:C 【分析】观察点的坐标变化发现每个点的横坐标与次数相等,纵坐标是1,0,2,0,…4个数一个循环,进而可得经过第2021次运动后,动点P 的坐标. 【详解】解:观察点的坐标变化可知: 第1次从原点运动到点(1,1), 第2次接着运动到点(2,0), 第3次接着运动到点(3,2), 第4次接着运动到点(4,0), 第5次接着运动到点(5,1), …按这样的运动规律,发现每个点的横坐标与次数相等, 纵坐标是1,0,2,0;4个数一个循环, 所以2021÷4=505…1, 所以经过第2021次运动后,动点P 的坐标是(2021,1). 故选:C . 【点睛】本题考查了规律型−点的坐标,解决本题的关键是观察点的坐标变化寻找规律.二、填空题 9.±6 9. 【解析】 ∵(±6)2=36, ∴36的平方根是±6; ∵92=81,∴81的算术平方根是9.解析:±6 9. 【解析】 ∵(±6)2=36, ∴36的平方根是±6; ∵92=81,∴81的算术平方根是9.10.(1,-4) 【分析】直角坐标系中,关于x 轴对称的两点,横坐标相同,纵坐标互为相反数.关于y 轴对称的两点,纵坐标相同,横坐标互为相反数,由此即可求解. 【详解】设关于x 轴对称的点为 则点的坐标为解析:(1,-4) 【分析】直角坐标系中,关于x 轴对称的两点,横坐标相同,纵坐标互为相反数.关于y 轴对称的两点,纵坐标相同,横坐标互为相反数,由此即可求解. 【详解】设()14P -,关于x 轴对称的点为P' 则P'点的坐标为(-1,-4) 设点P'和点''P 关于y 轴对称 则''P 的坐标为(1,-4) 故答案为:(1,-4) 【点睛】本题考查了关于坐标轴对称的点的坐标特征,关于x 轴对称的两点,横坐标相同,纵坐标互为相反数,关于y 轴对称的两点,纵坐标相同,横坐标互为相反数.11.120°和60°【详解】试题分析:因为三角形的内角和是180度,所以∠B+∠C=180°-∠A=180°-60°=120°,又因为∠DFE=∠BFC,∠BFC=180°-(∠FBC+∠FCB),解析:120°和60°【详解】试题分析:因为三角形的内角和是180度,所以∠B+∠C=180°-∠A=180°-60°=120°,又因为∠DFE=∠BFC,∠BFC=180°-(∠FBC+∠FCB),因为角平分线CD、EF相交于F,所以∠FBC+∠FCB=(∠B+∠C)÷2=120°÷2=60°,再代入∠DFE=∠BFC=180°-(∠FBC+∠FCB),即可解答.试题解析:∠B+∠C=180°-∠A=180°-60°=120°,又因为∠DFE=∠BFC,∠BFC=180°-(∠FBC+∠FCB),因为角平分线CD、EF相交于F,所以∠FBC+∠FCB=(∠B+∠C)÷2=120°÷2=60°,∠DFE=180°-(∠FBC+∠FCB),=180°-60°,=120°;∠DFE的邻补角的度数为:180°-120°=60°.考点:角的度量.12.40【分析】过作平行于,由与平行,得到与平行,利用两直线平行同位角相等,同旁内角互补,得到,,即可确定出的度数.【详解】解:如图:过作平行于,,,,,即,.故答案为:40.【解析:40【分析】过F作FG平行于AB,由AB与CD平行,得到FG与CD平行,利用两直线平行同位角相∠的度数.等,同旁内角互补,得到1100∠+∠=︒,即可确定出3EFGGFC∠=∠=︒,2180【详解】解:如图:过F 作FG 平行于AB ,//AB CD ,//FG CD ∴,1100EFG ∴∠=∠=︒,2180GFC ∠+∠=︒,即60GFC ∠=︒,31006040EFG GFC ∴∠=∠-∠=︒-︒=︒.故答案为:40.【点睛】此题考查了平行线的性质,熟练掌握平行线的性质是解本题的关键.13.115【分析】先根据∠1+∠2=130°得出∠AMN+∠DNM 的度数,再由四边形内角和定理即可得出结论.【详解】解:∵∠1+∠2=130°,∴∠AMN+∠DNM= =115°.∵∠A+∠解析:115【分析】先根据∠1+∠2=130°得出∠AMN +∠DNM 的度数,再由四边形内角和定理即可得出结论.【详解】解:∵∠1+∠2=130°,∴∠AMN +∠DNM =3601302︒-︒ =115°. ∵∠A +∠D +(∠AMN +∠DNM )=360°,∠A +∠D +(∠B +∠C )=360°,∴∠B +∠C =∠AMN +∠DNM =115°.故答案为:115.【点睛】本题考查的是翻折变换,熟知图形翻折不变性的性质是解答此题的关键.14.【分析】根据数的排列方法可知,第一排:1个数,第二排2个数.第三排3个数,第四排4个数,…第m-1排有(m-1)个数,从第一排到(m-1)排共有:1+2+3+4+…+(m-1)个数,根据数的排列解析:3- 【分析】 根据数的排列方法可知,第一排:1个数,第二排2个数.第三排3个数,第四排4个数,…第m-1排有(m-1)个数,从第一排到(m-1)排共有:1+2+3+4+…+(m-1)个数,根据数的排列方法,每四个数一个轮回,根据题目意思找出第m 排第n 个数到底是哪个数后再计算.【详解】(20,9)表示第20排从左向右第9个数是从头开始的第1+2+3+4+…+19+9=199个数, ∵1994493÷=……,即1,2,3,6中第三个数 :3,∴3的相反数为3-故答案为3-.【点睛】此题主要考查了数字的变化规律,这类题型在中考中经常出现.对于找规律的题目找准变化是关键.15.11【分析】根据三角形的面积等于正方形面积减去三个小三角形面积解答即可.【详解】解:如图示,根据,,三点坐标建立坐标系得:则.故答案为:11【点睛】此题考查利用直角坐标系求三角形的解析:11【分析】根据三角形的面积等于正方形面积减去三个小三角形面积解答即可.【详解】解:如图示,根据(0,4)A ,0()2,B ﹣,1(3,)C ﹣三点坐标建立坐标系得:则1115524351511222ABC S .故答案为:11【点睛】此题考查利用直角坐标系求三角形的面积,关键是根据三角形的面积等于正方形面积减去三个小三角形面积解答.16.【分析】由题意可知,每隔四次移动重复一次,继续得出A5,A6,A7,A8,…,归纳出点An 的一般规律,从而可求得结果.【详解】∵,,,∴根据点的平移规律,可分别得:,,,,,,,,…,,,解析:()1010,1【分析】由题意可知,每隔四次移动重复一次,继续得出A 5,A 6,A 7,A 8,…,归纳出点A n 的一般规律,从而可求得结果.【详解】∵1(0,1)A ,()21,1A ,()31,0A ,()42,0A∴根据点的平移规律,可分别得:()52,1A ,()63,1A ,()73,0A ,()84,0A ,()94,1A ,()105,1A ,()115,0A ,()126,0A ,…,()4322,1n A n --,()4221,1n A n --,()4121,0n A n --,()42,0n A n∵2021=505×4+1∴2021A 的横坐标为2×505=1010,纵坐标为1即2021(1010,1)A故答案为:()1010,1【点睛】本题考查了平面直角坐标系中点的坐标的规律问题,点平移的坐标特征,体现了由特殊到一般的数学思想,关键是由前面若干点的的坐标寻找出规律.三、解答题17.(1);(2)【分析】(1)先求绝对值,同时利用计算,再合并即可;(2)利用乘法的分配率先进行乘法运算,同时求解的立方根,再合并即可.【详解】解:(1)【点睛】本题考解析:(1)4-;(2)2.【分析】(1)先求绝对值,同时利用()20a a =≥计算2,再合并即可; (2)利用乘法的分配率先进行乘法运算,同时求解8的立方根,再合并即可.【详解】解:(1)23--37 4.=-=-(2312=+-2.=【点睛】本题考查的是实数的运算,考查()20a a =≥,求一个数的立方根,绝对值的运算,掌握以上知识是解题的关键. 18.(1);(2)【分析】(1)先移项,再根据平方根的性质开平方即可得;(2)方程变形后,再根据立方根的性质开立方可得关于x 的方程,解之可得.【详解】解:(1)∴即(2)解得,解析:(1)122,2x x ==-;(2)35x =- 【分析】(1)先移项,再根据平方根的性质开平方即可得;(2)方程变形后,再根据立方根的性质开立方可得关于x 的方程,解之可得.【详解】解:(1)2280x -=22=8x∴2x =±即122,2x x ==-(2)()352125x -=- 525x -=- 解得,35x =- 【点睛】本题考查了立方根,平方根,解题的关键是熟练掌握平方根与立方根的性质.19.(1)∠BFD ;两直线平行,同位角相等;∠BFD ;等量代换;内错角相等,两直线平行;(2)70°【分析】(1)根据平行线的性质得出∠A =∠BFD ,求出∠BFD =∠FDE ,根据平行线的判定得出即可解析:(1)∠BFD ;两直线平行,同位角相等;∠BFD ;等量代换;内错角相等,两直线平行;(2)70°【分析】(1)根据平行线的性质得出∠A =∠BFD ,求出∠BFD =∠FDE ,根据平行线的判定得出即可;(2)根据平行线的性质得出∠A +∠AED =180°,∠A =∠BFD ,再求出∠AED ﹣∠A =40°,即可求出答案.【详解】(1)证明:∵DF //AC (已知),∴∠A =∠BFD (两直线平行,同位角相等),∵∠A =∠FDE (已知),∴∠FDE =∠BFD (等量代换),∴DE //AB (内错角相等,两直线平行);故答案为:∠BFD ;两直线平行,同位角相等;∠BFD ;等量代换;内错角相等,两直线平行;(2)解:∵DF //AC ,∴∠A =∠BFD ,∵∠AED 比∠BFD 大40°,∴∠AED ﹣∠BFD =40°,∴∠AED ﹣∠A =40°,∴∠AED =40°+∠A ,∵DE //AB ,∴∠A +∠AED =180°,∴∠A +40°+∠A =180°,∴∠A =70°,∴∠BFD =70°.【点睛】本题考查了平行线的性质和判定,能熟练地运用定理进行推理是解此题的关键,注意:平行线的性质有:①两直线平行,同位角相等,②两直线平行,内错角相等,③两直线平行,同旁内角互补,反之亦然.20.(1)P (0,);(2)P (-22,8);(3)P (,)或P (-1,1).【分析】(1)根据y 轴上的点的坐标特征:横坐标为0列方程求出a 值即可得答案; (2)根据平行于x 轴的直线上的点的纵坐标相解析:(1)P (0,23);(2)P (-22,8);(3)P (12,12)或P (-1,1). 【分析】(1)根据y 轴上的点的坐标特征:横坐标为0列方程求出a 值即可得答案;(2)根据平行于x 轴的直线上的点的纵坐标相等列方程求出a 值即可得答案;(3)根据点P 到x 轴,y 轴的距离相等可得|34||2|a a --=+,解方程求出a 值即可得答案.【详解】(1)∵点P 在y 轴上,∴340a --=, ∴43a =-, ∴422233a +=-+= ∴P (0,23). (2)∵PM //x 轴,∴28a +=,∴6a =,此时,3422a --=-,∴P (-22,8)(3)∵若点P 到x 轴,y 轴的距离相等,∴|34||2|a a --=+,∴342a a --=+或34(2)a a --=-+, 解得:32a =-或1a =-, 当32a =-时,﹣3a ﹣4=12,a +2=12, ∴P (12,12),当1a =-时,﹣3a ﹣4=-1,a +2=1,∴P (-1,1),综上所述:P (12,12)或P (-1,1).【点睛】本题主要考查了点的坐标性质,用到的知识点为:点到坐标轴的距离相等,那么点的横纵坐标相等或互为相反数以及在坐标轴上的点的性质. 21.(1),;(2);(3)【分析】(1)根据的范围确定出、的值;(2)求出,的范围,即可求出、的值,代入求出即可;(3)将代入中即可求出.【详解】解:(1),,,,故答案是:,;(解析:(1)4a =,5b =;(2)4,3x y =;(3)8±【分析】(1a 、b 的值;(221的范围,即可求出x 、y 的值,代入求出即可;(3)将4,3x y ==代入)y x 中即可求出.【详解】解:(1)1617<45∴<<,4a ∴=,5b =,故答案是:4a =,5b =;(2)4175<,627∴<,314<<,2264-,1的整数部分为:3;故答案是:4,3x y =;(3)174,3x y ==,3)464y x ∴==,)y x ∴的平方根为:8=±.【点睛】本题考查了估算无理数的大小的应用、求平方根,解题的关键是读懂题意及求出45<.二十二、解答题22.(1)长为,宽为;(2)正确,理由见解析【分析】(1)设长为3x ,宽为2x ,根据长方形的面积为30列方程,解方程即可; (2)根据长方形纸片的周长为50,阴影部分两个长方形的周长之和为30列方程解析:(1)长为,宽为2)正确,理由见解析【分析】(1)设长为3x ,宽为2x ,根据长方形的面积为30列方程,解方程即可;(2)根据长方形纸片的周长为50,阴影部分两个长方形的周长之和为30列方程组,解方程组求出a 即可得到大正方形的面积.【详解】解:(1)设长为3x ,宽为2x ,则:3x •2x =30,∴x∴3x =,2x =答:这个长方形纸片的长为(2)正确.理由如下:根据题意得:()()2504230a b a b a b ⎧⎡⎤++=⎪⎣⎦⎨+-=⎪⎩, 解得:105a b =⎧⎨=⎩, ∴大正方形的面积为102=100.【点睛】本题考查了算术平方根,二元一次方程组,解二元一次方程组的基本思路是消元,把二元方程转化为一元方程是解题的关键.二十三、解答题23.(1)见解析;(2)见解析;(3).【分析】(1)先根据平行线的性质得到,然后结合即可证明;(2)过作,先说明,然后再说明得到,最后运用等量代换解答即可; (3)设∠DBE=a ,则∠BFC=3解析:(1)见解析;(2)见解析;(3)︒=∠105EBC .【分析】(1)先根据平行线的性质得到C BDA ∠=∠,然后结合AB BC ⊥即可证明;(2)过B 作//BH DM ,先说明ABD CBH ∠=∠,然后再说明//BH NC 得到CBH C ∠=∠,最后运用等量代换解答即可;(3)设∠DBE =a ,则∠BFC =3a ,根据角平分线的定义可得∠ABD =∠C =2a ,∠FBC =12∠DBC =a +45°,根据三角形内角和可得∠BFC +∠FBC +∠BCF =180°,可得∠AFC =∠BCF 的度数表达式,再根据平行的性质可得∠AFC +∠NCF =180°,代入即可算出a 的度数,进而完成解答.【详解】(1)证明:∵//AM CN ,∴C BDA ∠=∠,∵AB BC ⊥于B ,∴90B ∠=︒,∴90A BDA ∠+∠=︒,∴90A C ∠+∠=︒;(2)证明:过B 作//BH DM ,∵BD MA ⊥,∴90ABD ABH ∠+∠=︒,又∵AB BC ⊥,∴90ABH CBH ∠+∠=︒,∴ABD CBH ∠=∠,∵//BH DM ,//AM CN∴//BH NC ,∴CBH C ∠=∠,∴ABD C ∠=∠;(3)设∠DBE =a ,则∠BFC =3a ,∵BE 平分∠ABD ,∴∠ABD =∠C =2a ,又∵AB ⊥BC ,BF 平分∠DBC ,∴∠DBC=∠ABD+∠ABC=2a+90,即:∠FBC=12∠DBC=a+45°又∵∠BFC+∠FBC+∠BCF=180°,即:3a+a+45°+∠BCF=180°∴∠BCF=135°-4a,∴∠AFC=∠BCF=135°-4a,又∵AM//CN,∴∠AFC+∠NCF=180°,即:∠AFC+∠BCN+∠BCF=180°,∴135°-4a+135°-4a+2a=180,解得a=15°,∴∠ABE=15°,∴∠EBC=∠ABE+∠ABC=15°+90°=105°.【点睛】本题主要考查了平行线的性质、角平分线的性质及角的计算,熟练应用平行线的性质、角平分线的性质是解答本题的关键.24.(1)见解析;(2)∠CGA=45°;(3)∠FCP=2∠ACP或∠FCP+2∠ACP=180°.【分析】(1)有垂直定义可得∠MAB+∠KCN=90°,然后根据同角的余角相等可得∠KAN=∠K解析:(1)见解析;(2)∠CGA=45°;(3)∠FCP=2∠ACP或∠FCP+2∠ACP=180°.【分析】(1)有垂直定义可得∠MAB+∠KCN=90°,然后根据同角的余角相等可得∠KAN=∠KCF,从而判断两直线平行;(2)设∠KAN=∠KCF=α,过点G作GH∥EF,结合角平分线的定义和平行线的判定及性质求解;(3)分CP交射线AQ及射线AQ的反向延长线两种情况结合角的和差关系分类讨论求解.【详解】解:(1)∵AB⊥AK∴∠BAC=90°∴∠MAB+∠KAN=90°∵∠MAB+∠KCF=90°∴∠KAN=∠KCF∴EF∥MN(2)设∠KAN=∠KCF=α则∠BAN=∠BAC+∠KAN=90°+α∠KCB=180°-∠KCF=180°-α∵AG平分∠NAB,CG平分∠ECK∴∠GAN=12∠BAN=45°+12α,∠KCG=12∠KCB=90°-12α∴∠FCG=∠KCG+∠KCF=90°+12α过点G作GH∥EF∴∠HGC=∠FCG=90°+12α又∵MN ∥EF∴MN ∥GH∴∠HGA=∠GAN=45°+12α∴∠CGA=∠HGC -∠HGA=(90°+12α)-(45°+12α)=45°(3)①当CP 交射线AQ 于点T∵180CTA TAC ACP ∠+∠+∠=︒∴180CTA QAB BAC ACP ∠+∠+∠+∠=︒又∵=60,90CTA BAC ∠︒∠=︒∴30QAB ACP ∠+∠=︒由(1)可得:EF ∥MN∴FCA MAC ∠=∠∵FCP FCA ACP ∠=∠+∠∴FCP MAC ACP ∠=∠+∠∵MAC MAQ QAB BAC ∠=∠+∠+∠,2MAQ QAB ∠=∠∴()390=330901803MAC QAB ACP ACP ∠=∠+︒︒-∠+︒=︒-∠∴1803FCP ACP ACP ∠=︒-∠+∠即∠FCP +2∠ACP=180°②当CP 交射线AQ 的反向延长线于点T ,延长BA 交CP 于点GFCP FCA ACP ∠=∠-∠,由EF ∥MN 得MAC FCA ∠=∠∴FCP MAC ACP ∠=∠-∠又∵TAG QAB ∠=∠,180BAC CAG ∠+∠=︒,90BAC ∠=︒∴18090CAG BAC ∠=︒-∠=︒90CAT CAG TAG QAB ∠=∠-∠=︒-∠∵180CAT CTA ACP ∠+∠+∠=︒,60CTA ∠=︒∴120CAT ACP ∠+∠=︒∴90120QAB ACP ︒-∠+∠=︒∴30QAB ACP ∠=∠-︒由①可得390MAC QAB ∠=∠+︒∴()=330903MAC ACP ACP ∠∠-︒+︒=∠∴32FCP MAC ACP ACP ACP ACP ∠=∠-∠=∠-∠=∠综上,∠FCP =2∠ACP 或∠FCP +2∠ACP=180°.【点睛】本题考查平行线的判定和性质以及角的和差关系,准确理解题意,正确推理计算是解题关键.25.(1)∠DAE =14°;(2)∠DFE =14°;(3)∠DAE 的大小不变,∠DAE =14°,证明详见解析.【分析】(1)求出∠ADE 的度数,利用∠DAE=90°-∠ADE 即可求出∠DAE解析:(1)∠DAE =14°;(2)∠DFE =14°;(3)∠DAE 的大小不变,∠DAE =14°,证明详见解析.【分析】(1)求出∠ADE 的度数,利用∠DAE=90°-∠ADE 即可求出∠DAE 的度数.(2)求出∠ADE 的度数,利用∠DFE=90°-∠ADE 即可求出∠DAE 的度数.(3)利用AE 平分∠BEC ,AD 平分∠BAC ,求出∠DFE=15°即是最好的证明.【详解】(1)∵∠B=45°,∠C=73°,∴∠BAC=62°,∵AD 平分∠BAC ,∴∠BAD=∠CAD=31°,∴∠ADE=∠B+∠BAD=45°+31°=76°,∵AE ⊥BC ,∴∠AEB=90°,∴∠DAE=90°-∠ADE=14°.(2)同(1),可得,∠ADE=76°,∵FE ⊥BC ,∴∠FEB=90°,∴∠DFE=90°-∠ADE=14°.(3)DAE ∠的大小不变.DAE ∠=14°理由:∵ AD 平分∠ BAC ,AE 平分∠BEC∴∠BAC=2∠BAD ,∠BEC=2∠AEB∵ ∠BAC+∠B+∠BEC+∠C =360°∴2∠BAD+2∠AEB=360°-∠B-∠C=242°∴∠BAD+∠AEB=121°∵ ∠ADE=∠B+∠BAD∴∠ADE=45°+∠BAD∴∠DAE=180°-∠AEB-∠ADE=180°-∠AEB-45°-∠BAD=135°-(∠AEB+∠BAD )=135°-121°=14°【点睛】本题考查了三角形内角和定理和三角形外角的性质,熟练掌握性质是解题的关键. 26.(1)100;(2)75°;(3)n=3.【分析】(1)如图:过O 作OP//MN ,由MN//OP//GH 得∠NAO+∠POA=180°,∠POB+∠OBH=180°,即∠NAO+∠AOB+∠OB解析:(1)100;(2)75°;(3)n =3.【分析】(1)如图:过O 作OP //MN ,由MN //OP //GH 得∠NAO +∠POA =180°,∠POB +∠OBH =180°,即∠NAO +∠AOB +∠OBH =360°,即可求出∠AOB ; (2)如图:分别延长AC 、CD 交GH 于点E 、F ,先根据角平分线求得58NAC ∠=︒,再根据平行线的性质得到58CEF ∠=︒;进一步求得18DBF ∠=︒,17DFB ∠=︒,然后根据三角形外角的性质解答即可;(3)设BF 交MN 于K ,由∠NAO =116°,得∠MAO =64°,故∠MAE =641n n ︒⨯+,同理∠OBH =144°,∠HBF =n ∠OBF ,得∠FBH =1441n n ︒⨯+,从而=n BKA FBH n ∠∠=⨯︒+1441,又∠FKN =∠F +∠FAK ,得144606411n n n n ︒︒︒⨯=+⨯++,即可求n . 【详解】解:(1)如图:过O 作OP //MN ,∵MN //GHl∴MN //OP //GH∴∠NAO +∠POA =180°,∠POB +∠OBH =180°∴∠NAO +∠AOB +∠OBH =360°∵∠NAO =116°,∠OBH =144°∴∠AOB =360°-116°-144°=100°;(2)分别延长AC 、CD 交GH 于点E 、F ,∵AC 平分NAO ∠且116NAO ∠=︒, ∴58NAC ∠=︒,又∵MN //GH ,∴58CEF ∠=︒;∵144OBH ∠=︒,36OBG ∠=︒ ∵BD 平分OBG ∠,∴18DBF ∠=︒,又∵,CDB ∠=︒35∴351817DFB CDB DBF ∠=∠-∠=-=︒; ∴175875ACD DFB AEF ∠=∠+∠=︒+︒=︒; (3)设FB 交MN 于K ,∵116NAO ∠=︒,则MAO ∠=︒64; ∴641n MAE n ∠=⨯︒+ ∵144OBH ∠=︒, ∴+1n FBH n ∠=⨯︒144,=n BKA FBH n ∠∠=⨯︒+1441, 在△FAK 中,64601n BKA FKA F n ∠=∠+∠=⨯︒+︒+, ∴144646011n n n n ⨯︒=⨯︒+︒++, ∴3n =.经检验:3n =是原方程的根,且符合题意.【点睛】本题主要考查平行线的性质及应用,正确作出辅助线、构造平行线、再利用平行线性质进行求解是解答本题的关键.。

内蒙古赤峰市翁牛特旗重点中学2024届中考数学押题试卷含解析

内蒙古赤峰市翁牛特旗重点中学2024届中考数学押题试卷含解析

内蒙古赤峰市翁牛特旗重点中学2024届中考数学押题试卷考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。

选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。

2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。

3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。

一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1.下列各式中,不是多项式2x2﹣4x+2的因式的是()A.2 B.2(x﹣1)C.(x﹣1)2D.2(x﹣2)2.如图1,在△ABC中,AB=BC,AC=m,D,E分别是AB,BC边的中点,点P为AC边上的一个动点,连接PD,PB,PE.设AP=x,图1中某条线段长为y,若表示y与x的函数关系的图象大致如图2所示,则这条线段可能是()A.PD B.PB C.PE D.PC3.某体育用品商店一天中卖出某种品牌的运动鞋15双,其中各种尺码的鞋的销售量如表所示:鞋的尺码/cm 23 23.5 24 24.5 25销售量/双 1 3 3 6 2则这15双鞋的尺码组成的一组数据中,众数和中位数分别为()A.24.5,24.5 B.24.5,24 C.24,24 D.23.5,244.下列说法:①;②数轴上的点与实数成一一对应关系;③﹣2是的平方根;④任何实数不是有理数就是无理数;⑤两个无理数的和还是无理数;⑥无理数都是无限小数,其中正确的个数有( )A.2个B.3个C.4个D.5个5.已知正方形MNOK和正六边形ABCDEF边长均为1,把正方形放在正六边形外,使OK边与AB边重合,如图所示,按下列步骤操作:将正方形在正六边形外绕点B逆时针旋转,使ON边与BC边重合,完成第一次旋转;再绕点C逆时针旋转,使MN边与CD边重合,完成第二次旋转;……在这样连续6次旋转的过程中,点B,O间的距离不可能是()A.0 B.0.8 C.2.5 D.3.46.PM2.5是指大气中直径小于或等于2.5μm(0.0000025m)的颗粒物,含有大量有毒、有害物质,也称为可入肺颗粒物,将25微米用科学记数法可表示为()米.A.25×10﹣7B.2.5×10﹣6C.0.25×10﹣5D.2.5×10﹣57.如图是某商品的标志图案,AC与BD是⊙O的两条直径,首尾顺次连接点A,B,C,D,得到四边形ABCD.若AC=10cm,∠BAC=36°,则图中阴影部分的面积为()A.210πcm C.25πcm B.220πcm15πcm D.28.某校40名学生参加科普知识竞赛(竞赛分数都是整数),竞赛成绩的频数分布直方图如图所示,成绩的中位数落在()A.50.5~60.5 分B.60.5~70.5 分C.70.5~80.5 分D.80.5~90.5 分9.如图,抛物线y=-x 2+mx 的对称轴为直线x=2,若关于x 的-元二次方程-x 2+mx-t=0 (t 为实数)在l<x<3的范围内有解,则t 的取值范围是( )A .-5<t≤4B .3<t≤4C .-5<t<3D .t>-510.如图,在下列条件中,不能判定直线a 与b 平行的是( )A .∠1=∠2B .∠2=∠3C .∠3=∠5D .∠3+∠4=180°二、填空题(共7小题,每小题3分,满分21分) 11.如图,直线123y x =+与x 轴交于点A ,与y 轴交于点B ,点D 在x 轴的正半轴上,OD OA =,过点D 作CD x ⊥轴交直线AB 于点C ,若反比例函数(0)ky k x=≠的图象经过点C ,则k 的值为_________________.12.如图,四边形ABCD 是菱形,∠DAB =50°,对角线AC ,BD 相交于点O ,DH ⊥AB 于H ,连接OH ,则∠DHO =_____度.13.如图:图象①②③均是以P 0为圆心,1个单位长度为半径的扇形,将图形①②③分别沿东北,正南,西北方向同时平移,每次移动一个单位长度,第一次移动后图形①②③的圆心依次为P 1P 2P 3,第二次移动后图形①②③的圆心依次为P4P5P6…,依此规律,P0P2018=_____个单位长度.14.如图,△ABC中,AB=5,AC=6,将△ABC翻折,使得点A落到边BC上的点A′处,折痕分别交边AB、AC 于点E,点F,如果A′F∥AB,那么BE=_____.15.菱形ABCD中,∠A=60°,AB=9,点P是菱形ABCD内一点,PB=PD=33,则AP的长为_____.16.如图,在矩形ABCD中,AD=3,将矩形ABCD绕点A逆时针旋转,得到矩形AEFG,点B的对应点E落在CD 上,且DE=EF,则AB的长为_____.17.有两名学员小林和小明练习射击,第一轮10枪打完后两人打靶的环数如图所示,通常新手的成绩不太稳定,那么根据图中的信息,估计小林和小明两人中新手是_______.三、解答题(共7小题,满分69分)18.(10分)如图所示:△ABC是等腰三角形,∠ABC=90°.(1)尺规作图:作线段AB的垂直平分线l,垂足为H.(保留作图痕迹,不写作法);(2)垂直平分线l交AC于点D,求证:AB=2DH.19.(5分)分式化简:(a-22ab b a-)÷a b a - 20.(8分)如图,点B 在线段AD 上,BC DE ,AB ED =,BC DB =.求证:A E ∠=∠.21.(10分)鄂州市化工材料经销公司购进一种化工原料若干千克,价格为每千 克30元.物价部门规定其销售单价不高于每千克60元,不低于每千克30元.经市场调查发现:日销售量y (千克)是销售单价x (元)的一次函数,且当x=60时 ,y=80;x=50时,y=1.在销售过程中,每天还要支付其他费用450元.求出y 与x 的函数关系式,并写出自变量x 的取值范围.求该公司销售该原料日获利w (元)与销售单价x (元)之间的函数关系式.当销售单价为多少元时,该公司日获利最大?最大获利是多少元?22.(10分)某市为了解市民对已闭幕的某一博览会的总体印象,利用最新引进的“计算机辅助电话访问系统”(简称CATI 系统),采取电脑随机抽样的方式,对本市年龄在16~65岁之间的居民,进行了400个电话抽样调查.并根据每个年龄段的抽查人数和该年龄段对博览会总体印象感到满意的人数绘制了下面的图(1)和图(1)(部分)根据上图提供的信息回答下列问题:(1)被抽查的居民中,人数最多的年龄段是 岁;(1)已知被抽查的400人中有83%的人对博览会总体印象感到满意,请你求出31~40岁年龄段的满意人数,并补全图1.注:某年龄段的满意率=该年龄段满意人数÷该年龄段被抽查人数×100%.23.(12分)如图,点O为Rt△ABC斜边AB上的一点,以OA为半径的⊙O与BC切于点D,与AC交于点E,连接AD.求证:AD平分∠BAC;若∠BAC=60∘,OA=4,求阴影部分的面积(结果保留π).24.(14分)甲、乙两组工人同时开始加工某种零件,乙组在工作中有一次停产更换设备,更换设备后,乙组的工作效率是原来的2倍.两组各自加工零件的数量y(件)与时间x(时)之间的函数图象如下图所示.求甲组加工零件的数量y与时间x之间的函数关系式.求乙组加工零件总量a的值.参考答案一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1、D【解题分析】原式分解因式,判断即可.【题目详解】原式=2(x2﹣2x+1)=2(x﹣1)2。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

赤峰数学几何模型压轴题(篇)(Word 版 含解析)一、初三数学 旋转易错题压轴题(难)1.已知:如图①,在矩形ABCD 中,3,4,AB AD AE BD ==⊥,垂足是E .点F 是点E 关于AB 的对称点,连接AF 、BF .(1)求AF 和BE 的长;(2)若将ABF 沿着射线BD 方向平移,设平移的距离为m (平移距离指点B 沿BD 方向所经过的线段长度).当点F 分别平移到线段AB AD 、上时,直接写出相应的m 的值. (3)如图②,将ABF 绕点B 顺时针旋转一个角1(080)a a ︒<<︒,记旋转中ABF 为''A BF ,在旋转过程中,设''A F 所在的直线与直线AD 交于点P ,与直线BD 交于点Q .是否存在这样的P Q 、两点,使DPQ 为等腰三角形?若存在,求出此时DQ 的长;若不存在,请说明理由.【答案】(1)129,55AF BF ==;(2)95m =或165m =;(3)存在4组符合条件的点P 、点Q ,使DPQ 为等腰三角形; DQ 的长度分别为2或25891055或35105 【解析】 【分析】(1)利用矩形性质、勾股定理及三角形面积公式求解;(2)依题意画出图形,如图①-1所示.利用平移性质,确定图形中的等腰三角形,分别求出m 的值;(3)在旋转过程中,等腰△DPQ 有4种情形,分别画出图形,对于各种情形分别进行计算即可. 【详解】(1)∵四边形ABCD 是矩形, ∴∠BAD=90°,在Rt △ABD 中,AB=3,AD=4, 由勾股定理得:2222345AB AD +=+=,∵S △ABD 12=BD•AE=12AB•AD ,∴AE=AB AD3412 BD55⋅⨯==,∵点F是点E关于AB的对称点,∴AF=AE125=,BF=BE,∵AE⊥BD,∴∠AEB=90°,在Rt△ABE中,AB=3,AE125 =,由勾股定理得:BE2222129355 AB AE⎛⎫=-=-=⎪⎝⎭;(2)设平移中的三角形为△A′B′F′,如图①-1所示:由对称点性质可知,∠1=∠2.BF=BE95 =,由平移性质可知,AB∥A′B′,∠4=∠1,BF=B′F′95 =,①当点F′落在AB上时,∵AB∥A′B′,∴∠3=∠4,根据平移的性质知:∠1=∠4,∴∠3=∠2,∴BB′=B′F′95=,即95m=;②当点F′落在AD上时,∵AB∥A′B′,AB⊥AD,∴∠6=∠2,A′B′⊥AD,∵∠1=∠2,∠5=∠1,∴∠5=∠6,又知A′B′⊥AD,∴△B′F′D为等腰三角形,∴B′D=B′F′95 =,∴BB′=BD-B′D=5-91655=,即m165=;(3)存在.理由如下:∵四边形ABCD是矩形,∴∠BAD=90°,∵AE⊥BD,∴∠AEB=90°,∠2+∠ABD=90°,∠BAE+∠ABD=90°,∴∠2=∠BAE,∵点F是点E关于AB的对称点,∴∠1=∠BAE,∴∠1=∠2,在旋转过程中,等腰△DPQ依次有以下4种情形:①如图③-1所示,点Q落在BD延长线上,且PD=DQ,则∠Q=∠DPQ,∴∠2=∠Q+∠DPQ=2∠Q,∵∠1=∠3+∠Q,∠1=∠2,∴∠3=∠Q,∴A′Q=A′B=3,∴F′Q=F′A′+A′Q=1227355+=,在Rt△BF′Q中,由勾股定理得:2222927910 BF F Q555⎛⎫⎛⎫+=+=⎪ ⎪⎝⎭⎝⎭'',∴DQ=BQ-BD=9105 5-;②如图③-2所示,点Q落在BD上,且PQ=DQ,则∠2=∠P,∵∠1=∠2,∴∠1=∠P,∴BA′∥PD,则此时点A′落在BC边上.∵∠3=∠2,∴∠3=∠1,∴B Q=A′Q,∴F′Q=F′A′-A′Q=125-BQ,在Rt△BQF′中,由勾股定理得:BF′2+F′Q2=BQ2,即:222 91255BQ BQ⎛⎫⎛⎫+-=⎪ ⎪⎝⎭⎝⎭,解得:158 BQ=,∴DQ= BD-BQ=5-1525 88=;③如图③-3所示,点Q落在BD上,且PD=DQ,则∠3=∠4.∵∠2+∠3+∠4=180°,∠3=∠4,∴∠4=90°-12∠2.∵∠1=∠2,∴∠4=90°-12∠1,∴∠A′QB=∠4=90°-12∠1,∴∠A′QB=∠A′BQ,∴A′Q=A′B=3,∴F′Q=A′Q-A′F′=3-123 55=,在Rt△BF′Q中,由勾股定理得:BQ=222293310 BF F Q555⎛⎫⎛⎫+=+=⎪ ⎪⎝⎭⎝⎭'',∴DQ=BQ-BD=3105-;④如图④-4所示,点Q落在BD上,且PQ=PD,则∠2=∠3.∵∠1=∠2,∠3=∠4,∠2=∠3,∴∠1=∠4,∴BQ=BA′=3,∴DQ=BD-BQ=5-3=2.综上所述,存在4组符合条件的点P、点Q,使△DPQ为等腰三角形,DQ的长度分别为:2或25891055或35105【点睛】本题是四边形综合题目,主要考查了矩形的性质、轴对称的性质、平移的性质、旋转的性质、勾股定理、等腰三角形的性质等知识点;第(3)问难度很大,解题关键是画出各种旋转图形,依题意进行分类讨论.2.探究:如图1和图2,四边形ABCD中,已知AB=AD,∠BAD=90°,点E、F分别在BC、CD上,∠EAF=45°.(1)①如图1,若∠B、∠ADC都是直角,把△ABE绕点A逆时针旋转90°至△ADG,使AB与AD重合,直接写出线段BE、DF和EF之间的数量关系;②如图2,若∠B、∠D都不是直角,但满足∠B+∠D=180°,线段BE、DF和EF之间的结论是否仍然成立,若成立,请写出证明过程;若不成立,请说明理由.(2)拓展:如图3,在△ABC中,∠BAC=90°,AB=AC=22.点D、E均在边BC边上,且∠DAE=45°,若BD=1,求DE的长.【答案】(1)①EF=BE+DF;②成立,理由详见解析;(2)DE=53.【解析】【分析】(1)①根据旋转的性质得出AE=AG,∠BAE=∠DAG,BE=DG,求出∠EAF=∠GAF=45°,根据SAS推出△EAF≌△GAF,根据全等三角形的性质得出EF=GF,即可求出答案;②根据旋转的性质作辅助线,得出AE=AG,∠B=∠ADG,∠BAE=∠DAG,求出C、D、G 在一条直线上,根据SAS推出△EAF≌△GAF,根据全等三角形的性质得出EF=GF,即可求出答案;(2)如图3,同理作旋转三角形,根据等腰直角三角形性质和勾股定理求出∠ABC=∠C=45°,BC=4,根据旋转的性质得出AF=AE,∠FBA=∠C=45°,∠BAF=∠CAE,求出∠FAD =∠DAE=45°,证△FAD≌△EAD,根据全等得出DF=DE,设DE=x,则DF=x,BF=CE=3﹣x,根据勾股定理得出方程,求出x即可.【详解】解:(1)∵把△ABE绕点A逆时针旋转90°至△ADG,使AB与AD重合,∴AE=AG,∠BAE=∠DAG,BE=DG,∠B=∠ADG=90°,∵∠ADC=90°,∴∠ADC+∠ADG=90°∴F、D、G共线,∵∠BAD=90°,∠EAF=45°,∴∠BAE+∠DAF=45°,∴∠DAG+∠DAF=45°,即∠EAF=∠GAF=45°,在△EAF和△GAF中,∵AF AFEAF GAFAE AG=⎧⎪∠=∠⎨⎪=⎩,∴△EAF≌△GAF(SAS),∴EF=GF,∵BE=DG,∴EF=GF=DF+DG=BE+DF,故答案为:EF=BE+DF;②成立,理由:如图2,把△ABE绕A点旋转到△ADG,使AB和AD重合,则AE=AG,∠B=∠ADG,∠BAE=∠DAG,∵∠B+∠ADC=180°,∴∠ADC+∠ADG=180°,∴C、D、G在一条直线上,与①同理得,∠EAF=∠GAF=45°,在△EAF和△GAF中,∵AF AFEAF GAFAE AG=⎧⎪∠=∠⎨⎪=⎩,∴△EAF≌△GAF(SAS),∴EF=GF,∵BE=DG,∴EF=GF=BE+DF;(2)解:∵△ABC中,AB=AC=2,∠BAC=90°,∴∠ABC=∠C=45°,由勾股定理得:BC22AB AC+4,如图3,把△AEC绕A点旋转到△AFB,使AB和AC重合,连接DF,则AF =AE ,∠FBA =∠C =45°,∠BAF =∠CAE , ∵∠DAE =45°,∴∠FAD =∠FAB +∠BAD =∠CAE +∠BAD =∠BAC ﹣∠DAE =90°﹣45°=45°, ∴∠FAD =∠DAE =45°,在△FAD 和△EAD 中AD AD FAD EAD AF AE =⎧⎪∠=∠⎨⎪=⎩,∴△FAD ≌△EAD (SAS ), ∴DF =DE , 设DE =x ,则DF =x , ∵BC =4,∴BF =CE =4﹣1﹣x =3﹣x , ∵∠FBA =45°,∠ABC =45°, ∴∠FBD =90°,由勾股定理得:DF 2=BF 2+BD 2, x 2=(3﹣x )2+12, 解得:x =53, 即DE =53. 【点睛】本题考查了四边形的综合题,旋转的性质,全等三角形的性质和判定,勾股定理的应用,此题是开放性试题,运用类比的思想;首先在特殊图形中找到规律,然后再推广到一般图形中,对学生的分析问题,解决问题的能力要求比较高.3.如图一,矩形ABCD 中,AB=m ,BC=n ,将此矩形绕点B 顺时针方向旋转θ(0°<θ<90°)得到矩形A 1BC 1D 1,点A 1在边CD 上.(1)若m=2,n=1,求在旋转过程中,点D 到点D 1所经过路径的长度;(2)将矩形A 1BC 1D 1继续绕点B 顺时针方向旋转得到矩形A 2BC 2D 2,点D 2在BC 的延长线上,设边A 2B 与CD 交于点E ,若161A E EC=,求nm 的值.(3)如图二,在(2)的条件下,直线AB 上有一点P ,BP=2,点E 是直线DC 上一动点,在BE左侧作矩形BEFG且始终保持BE nBG m=,设AB=33,试探究点E移动过程中,PF 是否存在最小值,若存在,求出这个最小值;若不存在,请说明理由.【答案】(1)5π;(2)3;(3)存在,63+【解析】【分析】(1)作A1H⊥AB于H,连接BD,BD1,则四边形ADA1H是矩形.解直角三角形,求出∠ABA1,得到旋转角即可解决问题;(2)由△BCE∽△BA2D2,推出222A DCE nCB A B m==,可得CE=2nm,由161A EEC=-推出16A CEC=,推出A1C=26nm•,推出BH=A1C=26nm•,然后由勾股定理建立方程,解方程即可解决问题;(3)当A、P、F,D,四点共圆,作PF⊥DF,PF与CD相交于点M,作MN⊥AB,此时PF 的长度为最小值;先证明△FDG∽△FME,得到3FGFFM FED==,再结合已知条件和解直角三角形求出PM和FM的长度,即可得到PF的最小值.【详解】解:(1)作A1H⊥AB于H,连接BD,BD1,则四边形ADA1H是矩形.∴AD=HA1=n=1,在Rt△A1HB中,∵BA1=BA=m=2,∴BA1=2HA1,∴∠ABA1=30°,∴旋转角为30°, ∵BD=22125+=, ∴D 到点D 1所经过路径的长度=30551806ππ⋅⋅=; (2)∵△BCE ∽△BA 2D 2,∴222A D CE nCB A B m==, ∴2n CE m=,∵161EA EC=-, ∴16A CEC=, ∴A 1C=26n m⋅,∴BH=A 1C=2226n m n m-=⋅,∴42226n m n m-=⋅,∴m 4﹣m 2n 2=6n 4,∴242416n n m m-=•,∴3n m =(负根已舍去). (3)当A 、P 、F ,D ,四点共圆,作PF ⊥DF ,PF 与CD 相交于点M ,作MN ⊥AB ,此时PF 的长度为最小值;由(2)可知,3BE n BG m ==, ∵四边形BEFG 是矩形,∴33FG FE =, ∵∠DFG+∠GFM=∠GFM+∠MFE=90°,∴∠DFG=∠MFE ,∵DF ⊥PF ,即∠DFM=90°,∴∠FDM+∠GDM=∠FDM+∠DFM=∠FDM+90°,∴∠FDG=∠FME ,∴△FDG ∽△FME ,∴33FG F FM FE D ==, ∵∠DFM=90°,tan 3FD FMD FM ∠==, ∴∠FDM=60°,∠FMD=30°,∴3FM DM =; 在矩形ABCD 中,有33AD AB =, 即333=,则3AD =, ∵MN ⊥AB ,∴四边形ANMD 是矩形,∴MN=AD=3,∵∠NPM=∠DMF=30°,∴PM=2MN=6,∴NP=33AB =,∴DM=AN=BP=2,∴332322FM DM ==⨯=, ∴63PF PM MF =+=+;【点睛】本题考查点的运动轨迹,旋转变换、解直角三角形、弧长公式、矩形的性质、相似三角形的判定和性质等知识,解题的关键是理解题意,灵活运用所学知识解决问题,属于压轴题,中考常考题型.正确作出辅助线,正确确定动点的位置,注意利用数形结合的思想进行解题.4.如图1,正方形ABCD 与正方形AEFG 的边AB 、AE (AB <AE )在一条直线上,正方形AEFG 以点A 为旋转中心逆时针旋转,设旋转角为. 在旋转过程中,两个正方形只有点A 重合,其它顶点均不重合,连接BE 、DG.(1)当正方形AEFG旋转至如图2所示的位置时,求证:BE=DG;(2)当点C在直线BE上时,连接FC,直接写出∠FCD 的度数;(3)如图3,如果=45°,AB =2,AE=,求点G到BE的距离.【答案】(1)证明见解析;(2)45°或135°;(3).【解析】试题分析:(1)根据正方形的性质可得AB=AD,AE=AG,∠BAD=∠EAG=90°,再求出∠BAE=∠DAG,然后利用“边角边”证明△ABE和△ADG全等,根据全等三角形对应边相等证明即可.(2)当点C在直线BE上时,可知点E与C重合或G点C与重合,据此求解即可.(3)根据和求解即可.试题解析:(1)如图2,∵四边形ABCD是正方形,∴AB=AD,∠BAE+∠EAD=90°.∵四边形AEFG是正方形,∴AE=AG,∠EAD+∠DAG=90°.∴∠BAE=∠DAG..∴△ABE≌△ADG(SAS).∴BE=DG..(2)如图,当点C在直线BE上时,可知点E与C重合或G点C与重合,此时∠FCD 的度数为45°或135°.(3)如图3,连接GB、GE.由已知α=45°,可知∠BAE=45°.又∵GE为正方形AEFG的对角线,∴∠AEG=45°.∴AB∥GE.∵,∴GE =8.∴.过点B作BH⊥AE于点H.∵AB=2,∴. ∴..设点G到BE的距离为h.∴.∴.∴点G到BE的距离为.考点:1.旋转的性质;2.正方形的性质;3.全等三角形的判定和性质;4.平行的判定和性质;5.勾股定理;6.分类思想的应用.5.如图1,矩形ABCD中,E是AD的中点,以点E直角顶点的直角三角形EFG的两边EF,EG分别过点B,C,∠F=30°.(1)求证:BE=CE(2)将△EFG绕点E按顺时针方向旋转,当旋转到EF与AD重合时停止转动.若EF,EG分别与AB,BC相交于点M,N.(如图2)①求证:△BEM≌△CEN;②若AB=2,求△BMN面积的最大值;③当旋转停止时,点B恰好在FG上(如图3),求sin∠EBG的值.【答案】(1)详见解析;(2)①详见解析;②2;③62.【解析】【分析】(1)只要证明△BAE≌△CDE即可;(2)①利用(1)可知△EBC是等腰直角三角形,根据ASA即可证明;②构建二次函数,利用二次函数的性质即可解决问题;③如图3中,作EH⊥BG于H.设NG=m,则BG=2m,BN=EN=3m,EB=6m.利用面积法求出EH,根据三角函数的定义即可解决问题.【详解】(1)证明:如图1中,∵四边形ABCD是矩形,∴AB=DC,∠A=∠D=90°,∵E是AD中点,∴AE=DE,∴△BAE≌△CDE,∴BE=CE.(2)①解:如图2中,由(1)可知,△EBC是等腰直角三角形,∴∠EBC=∠ECB=45°,∵∠ABC=∠BCD=90°,∴∠EBM=∠ECN=45°,∵∠MEN=∠BEC=90°,∴∠BEM=∠CEN,∵EB=EC,∴△BEM≌△CEN;②∵△BEM≌△CEN,∴BM=CN,设BM=CN=x,则BN=4-x,∴S△BMN=12•x(4-x)=-12(x-2)2+2,∵-12<0,∴x=2时,△BMN的面积最大,最大值为2.③解:如图3中,作EH⊥BG于H.设NG=m,则BG=2m,BN=EN=3m,EB=6m.∴3(3m,∵S△BEG=12•EG•BN=12•BG•EH,∴EH=3?(13)2m mm+=32m,在Rt△EBH中,sin∠EBH=3+362246mEHEB m==.【点睛】本题考查四边形综合题、矩形的性质、等腰直角三角形的判定和性质、全等三角形的判定和性质、旋转变换、锐角三角函数等知识,解题的关键是准确寻找全等三角形解决问题,学会添加常用辅助线,学会利用参数解决问题,6.在正方形ABCD中,点E,F分别在边BC,CD上,且∠EAF=∠CEF=45°.(1)将△ADF绕着点A顺时针旋转90°,得到△ABG(如图①),求证:△AEG≌△AEF;(2)若直线EF与AB,AD的延长线分别交于点M,N(如图②),求证:EF2=ME2+NF2;(3)将正方形改为长与宽不相等的矩形,若其余条件不变(如图③),请你直接写出线段EF,BE,DF之间的数量关系.【答案】(1)证明见解析;(2)证明见解析;(3)EF2=2BE2+2DF2.【解析】试题分析:(1)根据旋转的性质可知AF=AG,∠EAF=∠GAE=45°,故可证△AEG≌△AEF;(2)将△ADF绕着点A顺时针旋转90°,得到△ABG,连结GM.由(1)知△AEG≌△AEF,则EG=EF.再由△BME、△DNF、△CEF均为等腰直角三角形,得出CE=CF,BE=BM,NF=DF,然后证明∠GME=90°,MG=NF,利用勾股定理得出EG2=ME2+MG2,等量代换即可证明EF2=ME2+NF2;(3)将△ADF绕着点A顺时针旋转90°,得到△ABG,根据旋转的性质可以得到△ADF≌△ABG,则DF=BG,再证明△AEG≌△AEF,得出EG=EF,由EG=BG+BE,等量代换得到EF=BE+DF.试题解析:(1)∵△ADF绕着点A顺时针旋转90°,得到△ABG,∴AF=AG,∠FAG=90°,∵∠EAF=45°,∴∠GAE=45°,在△AGE与△AFE中,,∴△AGE≌△AFE(SAS);(2)设正方形ABCD的边长为a.将△ADF绕着点A顺时针旋转90°,得到△ABG,连结GM.则△ADF≌△ABG,DF=BG.由(1)知△AEG≌△AEF,∴EG=EF.∵∠CEF=45°,∴△BME、△DNF、△CEF均为等腰直角三角形,∴CE=CF,BE=BM,NF=DF,∴a﹣BE=a﹣DF,∴BE=DF,∴BE=BM=DF=BG,∴∠BMG=45°,∴∠GME=45°+45°=90°,∴EG2=ME2+MG2,∵EG=EF,MG=BM=DF=NF,∴EF2=ME2+NF2;(3)EF2=2BE2+2DF2.如图所示,延长EF交AB延长线于M点,交AD延长线于N点,将△ADF绕着点A顺时针旋转90°,得到△AGH,连结HM,HE.由(1)知△AEH≌△AEF,则由勾股定理有(GH+BE)2+BG2=EH2,即(GH+BE)2+(BM﹣GM)2=EH2又∴EF=HE,DF=GH=GM,BE=BM,所以有(GH+BE)2+(BE﹣GH)2=EF2,即2(DF2+BE2)=EF2考点:四边形综合题7.已知,如图:正方形ABCD,将Rt△EFG斜边EG的中点与点A重合,直角顶点F落在正方形的AB边上,Rt△EFG的两直角边分别交AB、AD边于P、Q两点,(点P与点F重合),如图1所示:(1)求证:EP2+GQ2=PQ2;(2)若将Rt△EFG绕着点A逆时针旋转α(0°<α≤90°),两直角边分别交AB、AD边于P、Q两点,如图2所示:判断四条线段EP、PF、FQ、QG之间是否存在什么确定的相等关系?若存在,证明你的结论.若不存在,请说明理由;(3)若将Rt△EFG绕着点A逆时针旋转α(90°<α<180°),两直角边所在的直线分别交BA、AD两边延长线于P、Q两点,并判断四条线段EP、PF、FQ、QG之间存在何种确定的相等关系?按题意完善图3,请直接写出你的结论(不用证明).【答案】(1)见解析;(2)PF2+FQ2=EP2+GQ2;(3)四条线段EP、PF、FQ、QG之间的关系为PF2+GQ2=PE2+FQ2.【解析】【分析】(1)过点E作EH∥FG,由此可证△EAH≌△GAQ,然后根据全等三角形的性质得到EH=QG,又PQ=PH,在Rt△EPH中,EP2+EH2=PH2,由此可以得到EP2+GQ2=PQ2;(2)过点E作EH∥FG,交DA的延长线于点H,连接PQ、PH,由此可证△EAH≌△GAQ,然后根据全等三角形的性质得到EH=QG,又PH=PQ,在Rt△EPH中,EP2+EH2=PH2,即EP2+GQ2=PH2,在Rt△PFQ中,PF2+FQ2=PQ2,故PF2+FQ2=EP2+GQ2;(3)四条线段EP、PF、FQ、QG之间的关系为PE2+GQ2=PF2+FQ2,证明方法同上.【详解】(1)过点E作EH∥FG,连接AH、FH,如图所示:∵EA=AG,∠HEA=∠AGQ,∠HAE=∠GAD,∴△EAH≌△GAQ,∴EH=QG,HA=AQ,∵FA⊥AD,∴PQ=PH.在Rt△EPH中,∵EP2+EH2=PH2,∴EP2+GQ2=PQ2;(2)过点E作EH∥FG,交DA的延长线于点H,连接PQ、PH,∵EA=AG,∠HEA=∠AGQ,∠HAE=∠GAD,∴△EAH≌△GAQ,∴EH=QG,HA=AQ,∵PA⊥AD,∴PQ=PH.在Rt△EPH中,∵EP2+EH2=PH2,∴EP2+GQ2=PH2.在Rt△PFQ中,∵PF2+FQ2=PQ2,∴PF2+FQ2=EP2+GQ2.(3)四条线段EP、PF、FQ、QG之间的关系为PF2+GQ2=PE2+FQ2.【点睛】本题主要考查了旋转的性质,全等三角形的判定与性质,三线合一,勾股定理,正确作出辅助线是解答本题的关键.8.如图,矩形OABC的顶点A在x轴正半轴上,顶点C在y轴正半轴上,点B的坐标为(4,m)(5≤m≤7),反比例函数y=16x(x>0)的图象交边AB于点D.(1)用m的代数式表示BD的长;(2)设点P在该函数图象上,且它的横坐标为m,连结PB,PD①记矩形OABC面积与△PBD面积之差为S,求当m为何值时,S取到最大值;②将点D绕点P逆时针旋转90°得到点E,当点E恰好落在x轴上时,求m的值.【答案】(1)BD=m﹣4(2)①m=7时,S取到最大值②m=5【解析】【分析】(1)先确定出点D横坐标为4,代入反比例函数解析式中求出点D横坐标,即可得出结论;(2)①先求出矩形OABC的面积和三角形PBD的面积得出S=﹣12(m﹣8)2+24,即可得出结论;②利用一线三直角判断出DG=PF,进而求出点P的坐标,即可得出结论.【详解】解:(1)∵四边形OABC是矩形,∴AB⊥x轴上,∵点B(4,m),∴点D的横坐标为4,∵点D在反比例函数y=16x上,∴D(4,4),∴BD=m﹣4;(2)①如图1,∵矩形OABC的顶点B的坐标为(4,m),∴S矩形OABC=4m,由(1)知,D(4,4),∴S△PBD=12(m﹣4)(m﹣4)=12(m﹣4)2,∴S=S矩形OABC﹣S△PBD=4m﹣12(m﹣4)2=﹣12(m﹣8)2+24,∴抛物线的对称轴为m=8,∵a<0,5≤m≤7,∴m=7时,S取到最大值;②如图2,过点P作PF⊥x轴于F,过点D作DG⊥FP交FP的延长线于G,∴∠DGP=∠PFE=90°,∴∠DPG+∠PDG=90°,由旋转知,PD=PE,∠DPE=90°,∴∠DPG+∠EPF=90°,∴∠PDG=∠EPF,∴△PDG≌△EPF(AAS),∴DG=PF,∵DG=AF=m﹣4,∴P(m,m﹣4),∵点P在反比例函数y=16x,∴m(m﹣4)=16,∴m=2+25或m=2﹣25(舍).【点睛】此题是反比例函数综合题,主要考查了待定系数法,矩形的性质,三角形的面积公式,全等三角形的判定,构造出全等三角形是解本题的关键.二、初三数学圆易错题压轴题(难)9.如图,二次函数y=x2-2mx+8m的图象与x轴交于A、B两点(点A在点B的左边且OA≠OB),交y轴于点C,且经过点(m,9m),⊙E过A、B、C三点。

相关文档
最新文档