电机的原理与应用

合集下载

电机控制系统的工作原理及应用

电机控制系统的工作原理及应用

电机控制系统的工作原理及应用一、引言电机控制系统是现代工业中广泛应用的一种自动化系统。

它通过对电机的控制,实现对机械设备的精确控制和调节。

本文将介绍电机控制系统的工作原理及其在各个领域的应用。

二、电机控制系统的工作原理电机控制系统主要由以下几个组成部分组成:1.电机:电机是电机控制系统的核心部件,负责转换电能为机械能。

电机的类型可以是直流电机、交流电机或步进电机等。

2.电源:电源为电机提供所需的电能。

3.传感器:传感器用于感知电机的工作状态和环境参数,如转速、温度等。

4.控制器:控制器是电机控制系统的大脑,负责对电机进行控制和调节,根据传感器的反馈信号进行判断和决策。

5.执行器:执行器将控制器发出的控制信号转换为电机所需的驱动力,驱动电机正常工作。

电机控制系统的工作原理可以概括为以下几个步骤:1.接收信号:控制器接收传感器传来的电机状态信号和环境参数信号。

2.判断和决策:控制器根据接收到的信号进行判断和决策,确定电机应该采取的工作模式和参数。

3.发出控制信号:控制器根据决策结果发出相应的控制信号。

4.控制电机:执行器接收控制器发出的控制信号,将其转换为电机所需的驱动力,控制电机正常工作。

5.监测与反馈:控制器持续监测电机的工作状态,并根据传感器的反馈信号进行实时调节和控制。

三、电机控制系统的应用电机控制系统广泛应用于各种工业领域和生活场景。

以下列举了几个常见的应用领域:1.机械制造:电机控制系统在机械制造中起到关键作用。

它可以控制机床、输送设备、装配线等机械设备的运行,实现精确的加工和组装。

2.自动化生产线:电机控制系统被广泛应用于自动化生产线。

它可以实现对生产线上的各种机械设备的自动控制和调节,提高生产效率和产品质量。

3.物流仓储:电机控制系统在物流仓储领域也有重要应用。

它可以控制货物的输送、分拣和储存,实现高效的物流管理。

4.汽车制造:电机控制系统在汽车制造中扮演重要角色。

它可以控制汽车的发动机、制动系统、转向系统等关键部件,实现对汽车性能和安全的控制和调节。

直流电机的原理应用实例

直流电机的原理应用实例

直流电机的原理应用实例简介直流电机是一种将直流电能转换为机械能的电动机。

它由直流电源、通电绕组以及转子等部分组成。

直流电机在工业生产、交通运输、办公设备等领域都有广泛的应用。

本文将介绍直流电机的原理和几个应用实例。

原理解析直流电机的工作原理基于洛伦兹力和电动势的相互作用。

当有电流通过电机的绕组时,电源产生的电动势和电流流过的绕组之间会产生相互作用力,从而使得电机转动。

直流电机的转子上装有永磁体或电枢线圈,当电流通过电枢线圈时,会在磁场中产生力矩,从而使转子旋转。

应用实例1. 电动汽车电动汽车中的驱动电机大多为直流电机。

直流电机在电动汽车中起到驱动车辆运动的作用。

电动汽车的电池组为电机提供直流电源,通过对电机的电流进行调节,实现汽车的加速、减速和制动等操作。

直流电机具有快速响应、高效率和可靠性等优点,因此被广泛应用于电动汽车领域。

2. 工业生产在工业生产中,直流电机被广泛应用于各种设备的驱动系统中。

例如,直流电机可以用于传动机械设备,如输送带、机床和压力机等。

直流电机在工业生产中具有精准控制、负载适应性强等特点,能够满足不同工作环境的需求。

3. 办公设备直流电机也常见于办公设备中。

例如,打印机、扫描仪、复印机等设备中的各种驱动轴都采用了直流电机。

直流电机在办公设备中具有体积小、噪音低、较低的功耗等特点,适合于长时间持续工作的环境。

4. 小家电直流电机还广泛应用于各种小家电中。

如搅拌机、榨汁机、电动牙刷等都采用直流电机作为驱动源。

直流电机在小家电中具有体积小、工作平稳、低噪音等特点,能够满足用户对于小家电性能的要求。

结论直流电机作为一种重要的电动机,具有广泛的应用领域。

本文介绍了直流电机的工作原理以及在电动汽车、工业生产、办公设备和小家电等领域的具体应用实例。

通过深入了解直流电机的原理和应用,可以更好地理解它在各个领域中的重要性和作用。

电动机的原理和应用

电动机的原理和应用

电动机的原理和应用电动机是电气学中最为基本的元器件之一,是将电能转换成机械能的装置。

它能够将电能转换成旋转或线性运动,广泛应用于工业、交通等领域。

本文将介绍电动机的原理和应用。

一、电动机的原理电动机是一种能将电能转换成机械能的装置。

它的基本原理是利用电场和磁场之间的相互作用来实现转动。

通常,电动机可以分为交流电动机和直流电动机两种类型。

其中,直流电动机是最常见的一种电动机。

直流电动机的工作原理是基于法拉第电磁感应定律和安培定律,通过电路中的电流和磁场相互作用来产生转矩,从而使电动机转动。

具体而言,当一个带有电流的导体置于磁场中时,由于电流产生的磁场与磁场本身相互作用,会产生一个力矩并导致电机转动。

电动机的核心部件包括转子和定子。

转子是电动机转动的部分,定子是不动的部分。

转子和定子之间形成了一个空隙,也就是电机的极距。

电机在运动时,需要将直流电送入定子上的线圈中,形成一个旋转磁场。

此时,磁场和转子上的永磁体相互作用,产生一个磁场力矩,从而使转子转动。

二、电动机的应用电动机广泛应用于各个领域,包括工业、农业、交通、航空等。

下面将介绍电动机在几个领域的应用。

1. 工业领域电动机在工业领域最为广泛应用。

它可以用于各种机械设备,如泵、压缩机、机床、风扇等。

在现代工业中,电动机已经成为生产各种机械设备的重要动力。

2. 交通领域电动机在交通领域也有广泛应用。

例如地铁、高铁等交通工具中就配备了大型电动机,用于推动车辆行驶。

此外,电动汽车的发展也促进了电动机在交通领域的应用。

电动汽车使用的是电池供电的电动机,它能够将电能转换成车轮的动力,推动车辆行驶前进。

3. 农业领域电动机在农业领域的应用主要是用于大型农用机械,如收割机、插秧机等。

这些机械设备需要大量的动力来完成农业工作,而电动机正是提供这种动力的重要装置。

4. 航空领域电动机在航空领域也有应用。

虽然目前大型飞机还是使用喷气发动机,但随着科技的发展,电动飞机已经开始出现。

直流电机的工作原理与应用

直流电机的工作原理与应用

直流电机的工作原理与应用直流电机是一种将直流电能转化为机械能的装置,广泛应用于各个领域,如工业生产、交通运输、家用电器等。

本文将介绍直流电机的工作原理及其在各个领域的应用。

一、直流电机的工作原理直流电机由电枢和磁极组成,电枢位于磁极之间。

电枢由导电材料绕制而成,形成一个或多个线圈。

磁极则由磁铁或电磁铁组成,产生磁场。

当通过电枢通电时,电枢中会产生电流,形成电流环。

由于电流环中的电流会受到磁场力的作用,所以电枢就会受到力的作用而旋转。

电枢旋转时,也会带动外部负载的运动。

直流电机的工作原理可以通过动力学和电磁学来解释。

从动力学的角度来看,电枢旋转的原因是电流受到了扭矩的作用,扭矩由电流和磁场力共同决定。

从电磁学的角度来看,磁场力由磁场和电流共同决定,而电流又由电源提供。

二、直流电机的应用1. 工业生产领域直流电机广泛应用于各个工业生产领域,如机床、钢铁、化工等。

它们被用于驱动各类设备和机械,如风机、水泵、输送带等。

直流电机的精准控制能力使得工业生产更高效、稳定。

2. 交通运输领域交通运输领域也是直流电机应用的重要领域之一。

电动车辆、电动火车等都采用直流电机作为驱动装置。

直流电机不仅具有较高的效率和可靠性,还具备调速范围广、控制精度高的特点。

3. 家用电器领域在家用电器中,直流电机也起到了关键作用。

例如,电动工具、洗衣机、空调等都采用了直流电机。

直流电机的高效能和低噪音使得家用电器在使用过程中更加舒适和节能。

4. 环境工程领域直流电机在环境工程领域也得到了广泛应用。

例如,风力发电机组中的风机、水泵系统中的水泵等均采用了直流电机。

直流电机的高效能和可控性可以更好地满足环境工程的需求。

5. 信息技术领域直流电机在信息技术领域也有一定的应用。

例如,打印机、扫描仪等设备中的驱动部分采用了直流电机。

直流电机的精准控制能力可以实现高质量的打印和高速的扫描。

综上所述,直流电机是一种将直流电能转化为机械能的装置,其工作原理基于电流和磁场之间的相互作用。

直线电机的原理与应用

直线电机的原理与应用

直线电机的原理与应用1. 简介直线电机是一种将直线运动转换为电动力的电机。

与传统的旋转电机相比,直线电机具有更高的运动精度和效率,广泛应用于工业自动化、机器人技术和交通运输等领域。

2. 原理直线电机的工作原理基于洛伦兹力和磁力线相互作用的原理。

通常由线圈和磁场组成。

当电流通过线圈时,会产生一个磁场,与磁场相互作用,产生力使得直线电机运动。

3. 结构与组成直线电机主要由定子、滑块和导轨组成。

•定子:定子是由线圈和磁铁组成的部分。

线圈中通电流后会产生一个磁场,磁铁则产生静态磁场。

•滑块:滑块是直线电机的运动部分,滑块上有线圈,当线圈通电后与定子产生相互作用,使滑块运动。

•导轨:导轨是直线电机固定部分,滑块沿导轨直线运动。

4. 工作原理直线电机的工作原理是利用洛伦兹力的作用。

当通过线圈的电流与磁场相互作用时,会产生电动力,使直线电机产生运动。

具体工作原理可分为以下几个步骤:1.电流通入线圈:通过控制线圈的电流,来控制直线电机的运动。

2.产生磁场:线圈通电后产生一个磁场,在直线电机中与静态磁场相互作用。

3.产生洛伦兹力:当线圈中的电流与磁场相互作用时,会产生一个电动力,使得直线电机运动。

4.运动控制:通过控制线圈中的电流,可以调节电动力的大小和方向,从而实现对直线电机运动的控制。

5. 应用领域直线电机由于其特殊的结构和工作原理,具有广泛的应用领域。

•工业自动化:直线电机广泛应用于自动化生产线上,可以实现对工件的精确定位和高速运动。

•机器人技术:直线电机在机器人技术中被用于机械臂、线性推进等部件的驱动,实现精确的运动控制。

•交通运输:直线电机被应用于磁悬浮列车和磁浮列车等交通工具上,可以实现高速、平稳的运动。

•医疗设备:直线电机在医疗设备中的应用越来越广泛,如医用CT、核磁共振等设备中的运动部件。

•光学仪器:直线电机可以用于光学仪器的焦平面控制,实现高精度的自动对焦功能。

6. 优势与挑战直线电机相对于传统旋转电机具有以下优势:•高速、高精度:直线电机能够实现较高的运动速度和更高的运动精度,适用于对运动要求较高的场合。

电机工作原理

电机工作原理

电机工作原理电机是一种将电能转化为机械能的装置,广泛应用于各个领域。

本文将介绍电机的工作原理,包括直流电机和交流电机两种类型。

一、直流直流电机是最基本的一类电机,其工作原理基于洛伦兹力和法拉第定律。

当直流电流通过电枢线圈时,将在导线周围产生磁场。

同时,电枢线圈置于磁场中,根据左手定则,电枢线圈将受到力的作用。

这个力将使电枢线圈开始旋转。

直流电机主要由电枢线圈和永磁体组成。

当直流电流通过电枢线圈时,会在永磁体中产生磁场。

根据洛伦兹力,电枢线圈将受到施加在它上面的力的作用。

由于电枢线圈是可旋转的,这个力将导致电枢线圈开始旋转。

通过安装一个电刷,可以改变电流的方向,从而使直流电机保持旋转。

直流电机的工作原理可以总结为:当直流电流通过电枢线圈时,电磁感应定律产生的磁场与永磁体的磁场相互作用,产生力矩使电枢旋转。

二、交流交流电机是一种根据电压和频率变化而旋转的电机。

其工作原理基于旋转磁场效应和感应定律。

交流电机主要分为异步电机和同步电机两种类型。

异步电机是最常见的交流电机,其工作原理是利用线圈感应磁场的旋转。

当交流电流通过主线圈时,线圈产生一个旋转磁场。

在旋转磁场的作用下,旋转磁场感应到的二次线圈中会产生感应电流,从而导致感应电机的旋转。

由于旋转磁场的频率不断变化,异步电机将保持稳定的旋转。

同步电机是另一种常见的交流电机,其工作原理是通过与电源频率同步旋转以产生恒定速度的旋转。

同步电机的转子和旋转磁场保持同步运动,这是由于定子绕组中通入的电流频率与电源频率相同。

同步电机广泛应用于需要恒定速度旋转的场合,如发电机和电力传输设备。

三、总结电机作为将电能转化为机械能的重要设备,其工作原理根据不同类型的电机而有所不同。

直流电机的工作原理基于洛伦兹力和法拉第定律,通过电流和磁场之间的相互作用产生力矩使电机旋转。

交流电机的工作原理则基于旋转磁场效应和感应定律,利用线圈感应磁场的旋转或与电源频率同步旋转以产生旋转动力。

永磁同步电机原理及其应用

永磁同步电机原理及其应用

永磁同步电机原理及其应用
一、原理:
在永磁同步电机中,定子通过三相交流电源提供供电。

当定子绕组通
电时,产生的磁场与转子上的磁场相互作用,产生电磁力。

通过控制定子
电流和转矩的关系,可以实现对永磁同步电机的转速和转矩进行精确控制。

二、应用:
1.工业领域:永磁同步电机广泛应用于工业生产线上,用于驱动各种
设备和机械。

由于永磁同步电机具有较高的效率和稳定的转速特性,可以
实现精确的控制,因此被广泛应用于机床、风力发电等工业设备中。

2.交通领域:永磁同步电机在交通工具中应用广泛,如电动汽车、电
动自行车等。

与传统的燃油车辆相比,电动交通工具具有无污染、无噪音、低能耗等优点,而永磁同步电机则是实现电动化的核心驱动装置。

3.航空航天领域:永磁同步电机在航空航天领域也有重要应用,如用
于无人机、飞机净化单位等设备中。

由于永磁同步电机具有高效率和高动
态响应的特点,可以提供稳定的动力输出,因此在航空航天领域中得到广
泛应用。

4.家电领域:永磁同步电机也被广泛应用于家电产品中,如洗衣机、
冰箱、空调等。

由于永磁同步电机具有高效率和可靠性,可以提供稳定的
动力输出,因此在家电产品中取得了良好的性能表现。

综上所述,永磁同步电机具有结构简单、效率高、动态响应快等优点,在工业、交通、航空航天和家电等领域都有广泛的应用。

随着技术的不断
创新,永磁同步电机的性能将进一步提高,应用领域也将得到进一步拓展。

机器人电动机的原理和应用

机器人电动机的原理和应用

机器人电动机的原理和应用一、电动机的基本原理电动机是将电能转换为机械能的装置,它是机器人的核心部件之一。

电动机的工作原理主要基于两个基本现象:电磁感应和洛伦兹力。

1.电磁感应:当导体在磁场中运动或磁场变化时,会在导体两端产生感应电动势。

基于这个原理,电动机通过通过将电能输入到线圈中,在磁场中产生感应电流,从而产生电磁力。

2.洛伦兹力:当电流通过导体时,导体会受到力的作用,这个力的方向与电流方向以及磁场方向有关。

电动机利用这个原理,电流通过线圈时产生的洛伦兹力使得线圈磁场与外部磁场产生相互作用,从而引发电动机的转动。

二、电动机的分类根据机器人应用需求的不同,电动机可以分为多种类型,其中最常见的有以下几种:1.直流电动机:直流电动机是最早发展的电动机之一,它具有较好的速度调节性能和起动特性,广泛应用于机器人领域。

直流电动机的转速主要由供电电压和电枢的电流决定。

2.交流异步电动机:交流异步电动机是目前应用最广泛的电动机之一,它结构简单、制造成本低廉,具有出色的耐久性。

交流异步电动机的转速主要受电源频率和电机设计决定。

3.步进电动机:步进电动机是一种相对简单但精确的电动机,它可以按照步进角度精确控制转子的转动。

步进电动机广泛应用于机器人精密定位和加工等需要精确控制的场景。

三、电动机在机器人中的应用电动机在机器人中有着广泛的应用,下面将介绍几个常见的应用场景:1.机器人运动:机器人行走、转动等运动都需要电动机驱动。

通过控制电动机的转动,机器人可以实现各种运动。

直流电动机和交流异步电动机广泛应用于机器人的运动控制。

2.机器人臂部运动:机器人的臂部运动通常需要使用步进电动机或伺服电动机。

步进电动机通过控制步进角度实现精准控制;伺服电动机通过控制反馈信号实现精确的位置和速度控制。

3.机器人夹爪:夹爪是机器人的重要执行器之一,用于抓取、处理物体。

夹爪通常采用直流电动机或步进电动机驱动,通过电动机的转动实现夹爪的开闭和抓取等动作。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

K e 0.13 K t 1.24 K e K t 2 0.16
n
(3)此时,U=UNa=220V;电枢电路总电阻 R=Ra+Rad=1.7+2=3.7
UN R Rad 220 3.7 a TN 14 1368 K e N K e K t 2 0.13 0.16
5.直流他激电动机的制动特性
直流他激电动机的工作状
态分为电动状态和制动状 态,如右图所示. 图中,(a)为电动状态; (b)为制动状态. 1)特点:电动机的转矩T与转 速n方向相反,电机处于发 电工作状态. 2)制动形式:稳定的制动状态; 过渡的制动状态. 3)制动方法有3种:
反馈制动; 反接制动; 能耗制动.
1)他激直流电动机的自然机械特性(正转)
在额定电压,额定磁通,电枢电路内不外接电阻时的
机械特性即为自然机械特性.
额定负载时,转速降 落不多,是硬特性;
金属切削机床,冷轧 机,造纸机等宜于选 用硬特性的电动机.
2)自然机械特性曲线的作法
已知电动机的PN,UN,IN,nN,由公式可计算出Ra,
更要防止飞车,因此,直流他 激电动机设有失磁保护.
串激直流电动机的机械特性
1)特点:电枢电流就是激




磁电流. 2)机械特性分析: 第一段,电动机轻载时, 机械特性具有双曲线的 形状,理想空载转速趋近 无穷大. 第二段,电动机负载较重 时,磁路趋于饱和,机械特 性近似一条直线. 3)注意事项: 直流串激电动机不允许 空载运行----飞车事故.
6.直流他激电动机的调速特性
Ra Rad U n T 2 K e K e K t
由直流他激电动机人工机械特性方程式
直流电动机的调速方法:
式中, Ke,Kt,Ra 均为常数,因此,电动机有3种调速方法 1.变电枢电路外接电阻Rad; 2.变电枢电压U; 3.变磁通 .
1.改变电枢电路外接电阻调速
例题求解
(2)此时,U=UN=220V,Ra=1.7欧
K e 0.8K e N 0.1 Kt 9.55 K e 0.99 K e K t 2 0.099
n UN Ra 220 1.7 TN ( 14 1962 r / min 2 K e K e K t 0.1 0.099
K e K e U N I N Ra 220 12.4 1.7 0.13 nN 1500
nN
1500
n 1962
K e K t 2 0.13 1.24 0.16
Kt 9.55 K e 9.55 0.13 1.24
Ra U 180 1.7 n TN 14 1236 K e K e K t 2 0.13 0.16
Ra U n T n0 n 2 K e K e Kt
(1)电枢回路串附加电阻Rad的人工机械特性 在自然机械特性方程式中,用(Rad+Ra)代替Ra,得到
串电阻的人工机械特性方程式:
n U N Rad Ra T n0 n 2 K e K e K t
附加电阻Rad越大,机械特性越软.
(2)改变电枢电压的人工机械特性
Ra U n T n0 n 2 K e K e Kt
no UN K eN
随U的变化而变化
U改变,但转速降不变 .因此,变电枢电压的人工机械 特性是一簇与自然机械特性 平行的特性曲线. 只允许在额定电压以下调节. 在后面的自动调速系统学习中 有广泛的应用.
鼠笼式三相异步电动机的结构示意图
5.定子铁心,6.定子绕组,7.转轴,8.转子,9.风扇,11.轴承,12.机座
鼠笼电动机转子和线绕电动机转子绕组与外部接线
2).三相异步电动机的工作原理
(1)三相正弦交流电通入电动机定子的三相绕组,产生旋转磁场,旋转磁场的 转速称之为同步转速; (2)旋转磁场切割转子导体,产生感应电势; (3)转子绕组中感生电流; (4)转子电流在旋转磁场中产生力,形成电磁转矩,电动机就转动起来了. 电动机的转速达不到旋转磁场的转速,否则,就不能切割磁力线,就没 有感应电势,电动机就停下来了.转子转速与同步转速不一样,差那么一 些,称之为异步. 设同步转速为no,电动机的转速为n,则转速差为 ; no-n; 电动机的转速差与同步转速之比定义为异步电动机的转差率S,S是分 析异步电动机运行情况的主要参数,且
高于理想空载转速,运行不太安全.
2.反接制动
1)实现条件:电枢电压
或电枢电势反向. 2)分类: (1)电源反接制动.改变 电枢电压U的方向所产 生的制动. 机械特性方程式为;

n U Ra Rad T 2 K e K e K t
为了限制制动时比较大的电枢电流,实施电源反接 制动时,一定要在电枢电路中串入限流电阻. 应用在需要迅速减速或频繁正反转的机械上.
(以上转速单位为r/min)
1.2三相异步电动机的工作原理及特性
1).三相异步电动机的基本结构
三相异步电动机由定子和转子构成,定子和转子之间有气隙. (1)定子 定子由铁心,绕组,机座三部分组成. 铁心由0.5mm的硅钢片叠压而成; 三相绕组连接成星形或三角形; 机座一般用铸铁作成,主要用于固定和支撑定子铁心. (2)转子 转子由铁心和绕组组成. 转子同样由硅钢片叠压而成,压装在转轴上; 转子绕组分为鼠笼式和线绕式两种. 线绕式异步电动机还有滑环,电刷机构.
2.直流电机的基本工作原理
简化为一对磁极,一个线圈
发电机
电动机
2.直流电机的基本方程式
1)感应电势E
2)电磁转矩T
E K en
T K t I a

式中:E-电动势(V); 一对磁极的磁通(Wb);
n-电枢转速(r/min); Ke -与结构有关的常数.
式中:
T-电磁转矩(Nm);
反接制动
(2)倒拉反接制动.改变电枢



电势方向所产生的制动. 如:起重机的重物下降时, 电枢反转,电势反向.此时, 位能负载转矩TL使重物下 放,电动机转矩TM反对重物 下放-----制动. 特点:适当选择电枢电路中 的附加电阻,可以得到低的 转速,保证安全; 转速稳定性较差. 制动特性如右图所示.是第 一象限在第四象限的延伸 或第三象限在第二象限的 延伸.
电动机电枢电路串电阻
后,其人工机械特性如右 图示.
1)应用: 起重机,卷扬机;
2)缺点:机械特性软,实现无级调 速困难;
3)注意:串电阻调速与起动特性相 似,但起动电阻与调速电阻不同.
2.改变电动机电枢供电电压调速
变电枢电压调速的机械
特性如右图. 1)特点:容易实现无级调速; 机械特性是一组平行线,硬度 不变;不需用其他起动设备. 2)应用;适用于恒转矩负载, 组成SCR-M系统,在工业生 产中广泛应用.第11章将重点 学习.

-一对磁极的磁通(Wb);

Ia-电枢电流(A);

Kt-与结构有关的常数
3.直流电动机的机械特性
1.他激和并激直流电动机的机械特性
1)原理电路图
1)直流电动机机械特性方程式
直流电动机电枢电压平衡方程式

U E I a Ra
E Ke n
Re U n Ia K e K e
U N I N Ra nN
UN n0 N 9 55 nN
3)举例
(1)一台Z2-51型直流他激电动机,已知额定功率
5.5kW,额定电压220V,额定电流31A,额定转速 1500r/min,忽略损耗,求自然机械特性. 解:分析 只要求出理想空载点和额定运行点,就可 绘出机械特性.
1.反馈制动
1)实现条件:外部作用使电
动机的转速n大于其理想空 载转速no.如,电车下坡,起重 机下放重物. 2)机械特性:正转时,是第一 象限的机械特性在第二象限 内的延伸,如右图所示. 3)特点:
(1)利用位能转矩带动电动机发
电,将机械能变成电能,向电源馈 送.
(2)重物下放时电动机的转速仍
4 直流他激电动机的起动特性
直流他激电动机的起动电流
是额定电流的(10-20)倍,不 允许直接起动.限制其起动电 流的方法有两种. 1.降压起动: 组成SCR-M自动调速系统的 起动环节.是后面学习的一个 重点. 2.电枢电路串外接电阻起动 右图为具有三段起动电阻的 他激电动机电路原理图和起 动特性, 其起动特性就是前面刚刚学 习过的一种人工机械特性.
(3)改变磁通的人工机械特性
Ra U n T n0 n 2 K e K e Kt
从机械特性方程可知,改变
磁通时,电动机的理想空载 转速和转速降落都会随磁通 的变化而变化.
磁通只能在额定值以下调节,
理想空载转速和转速降落都 要增大-------弱磁增速.
使用中,要防止电动机过载,
n0 n S n0
3).三相异步电动机的旋转磁场
(1)旋转磁场的产生
设电动机为2极,每相绕组只有一个线圈.
在0-T/2这个区间,分析有一相电流为零的几个点. 规定:当电流为正时,从首端进尾端出;电流为负时,
从尾端进首端出.
t=0时,iA=0;iB为负,iC为正
t=0时,iA=0;iB为负,电流实际方向与正方向相
反,即电流从Y端流到B端;iC为正,电流实际方 向与正方向一致,即电流从C端流到Z端。按右手 螺旋法则确定三相电流产生的合成磁场,如图(a) 中箭头所示。
t=T/6时,ω t=ω T/6=π /3,iA为正;iB为负;iC=0
t=T/6时,ω t=ω T/6=π
/3,iA为正(电流从A端流 到X端);iB为负(电流从Y端流到B端);iC=0。此时 的合成磁场如图(b)所示,合成磁场已从t=0瞬间所 在位置顺时针方向旋转了π /3。
相关文档
最新文档