(完整版)手拉手模型

合集下载

专题07 手拉手模型(知识解读)(学生版)

专题07 手拉手模型(知识解读)(学生版)

专题07手拉手模型(知识解读)【专题说明】手拉手模型是指有共同顶点的两个等腰三角形,顶角相等。

因为过共同顶点的四条边,像人的两双手,所以通常称为手拉手模型。

手拉手模型常和旋转结合,在考试中作为几何综合题目出现。

【方法技巧】类型一:等边三角形手拉手(1)如图,B、C、D三点共线,▲ABC和▲CDE是等边三角形,连接AD、BE,交于点P(2)记AC、BE交点为M,AD、CE交点为N(2)连接MN(4)记AD、BE交点为P,连接PC:(5)结论五:∠APB=∠BPC=∠CPD=∠DPE=60°(6)连AE:结论六:P点是▲ACE的费马点(PA+PC+PE值最小)类型二:正方形手拉手如图,四边形ABCD和四边形CEFG均为正方形,连接BE、DG【类型一:等边三角形手拉手】【典例1】(2021春•西安期末)如图,在△ABC中,BC=5,以AC为边向外作等边△ACD,以AB为边向外作等边△ABE,连接CE、BD.(1)若AC=4,∠ACB=30°,求CE的长;(2)若∠ABC=60°,AB=3,求BD的长.【变式1-1】(2021九上·吉林期末)如图①,在△ABC中,∠C=90°,AC=BC=6,点D,E分别在边AC,BC上,且CD=CE=2,此时AD=BE,AD⊥BE成立.(1)将△CDE绕点C逆时针旋转90°时,在图②中补充图形,并直接写出BE的长度;(2)当△CDE绕点C逆时针旋转一周的过程中,AD与BE的数量关系和位置关系是否仍然成立?若成立,请你利用图③证明,若不成立请说明理由;(3)将△CDE绕点C逆时针旋转一周的过程中,当A,D,E三点在同一条直线上时,请直接写出AD的长度.【变式1-2】(2021九上·宜春期末)如图(1)问题发现:如图1,△ACB和△DCE均为等边三角形,当△DCE旋转至点A,D,E在同一直线上,连接BE.则:①∠ACB的度数为;②线段BE,CE与AE之间的数量关系是.(2)拓展研究:如图2,△ACB和△DCE均为等腰直角三角形,∠ACB=∠DCE=90°,点A,D,E在同一直线上.若CE=2,BE=2,求AB的长度.(3)探究发现:图1中的△ACB和△DCE,在△DCE旋转过程中,当点A,D,E不在同一直线上时,设直线AD与BE相交于点O,试在备用图中探索∠AOE的度数,直接写出结果,不必说明理由.【变式1-3】(2021春•金牛区校级期中)类比探究:(1)如图1,等边△ABC内有一点P,若AP=8,BP=15,CP=17,求∠APB的大小;(提示:将△ABP绕顶点A 旋转到△ACP′处)(2)如图2,在△ABC中,∠CAB=90°,AB=AC,E、F为BC上的点,且∠EAF=45°.求证:EF2=BE2+FC2;(3)如图3,在△ABC中,∠C=90°,∠ABC=30°,点O为△ABC内一点,连接AO、BO、CO,且∠AOC=∠COB =∠BOA=120°,若AC=1,求OA+OB+OC的值.【典例2】如图,在△ABC与△DEC中,已知∠ACB=∠DCE=90°,AC=6,BC=3,CD=5,CE=2.5,连接AD,BE.(1)求证:△ACD∽△BCE;(2)若∠BCE=45°,求△ACD的面积.【变式2-1】如图1,在Rt△ABC中,AC=BC=5,等腰直角△BDE的顶点D,E分别在边BC,AB上,且BD=,将△BDE绕点B按顺时针方向旋转,记旋转角为α(0°≤α<360°).(1)问题发现当α=0°时,的值为,直线AE,CD相交形成的较小角的度数为;(2)拓展探究试判断:在旋转过程中,(1)中的两个结论有无变化?请仅就图2的情况给出证明:(3)问题解决当△BDE旋转至A,D,E三点在同一条直线上时,请直接写出△ACD的面积.【类型二:正方形手拉手】【典例3】【问题背景】正方形ABCD和等腰直角三角形CEF按如图①所示的位置摆放,点B,C,E在同一条直线上,其中∠ECF=90°.【初步探究】(1)如图②,将等腰直角三角形CEF绕点C按顺时针方向旋转,连接BF,DE,请直接写出BF与DE的数量关系与位置关系:;【类比探究】(2)如图③,将(1)中的正方形ABCD和等腰直角三角形CEF分别改成矩形ABCD和Rt△CEF,其中∠ECF=90°,且,其他条件不变.①判断线段BF与DE的数量关系,并说明理由;②连接DF,BE,若CE=6,AB=12,求DF 2+BE2的值.【变式3】(2021秋•荔湾区校级期中)以△ABC的AB,AC为边分别作正方形ADEB,正方形ACGF,连接DC,BF.(1)CD与BF有什么数量与位置关系?说明理由.(2)利用旋转的观点,在此题中,△ADC可看成由哪个三角形绕哪点旋转多少角度得到的.。

全等典型模型:“手拉手”模型

全等典型模型:“手拉手”模型

《三角形证明》题型解读12 全等典型模型:“手拉手”模型【知识梳理】(一)“手拉手模型”的基本图形题型特征:△ABC 与△BDE 是等边三角形,A 、B 、D 三点在同一直线上。

解题方法:一定有以下六个结论(三组全等、一个60°、一个等边△、一组平行线) ①△ABE ≌△CBD证明过程:∵△ABC 与△BDE 是等边三角形,∴∠1=∠2=∠3=60°,∴∠ABE=∠CBD=120°,∵AB=BC ,BE=BD , ∴△ABE ≌△CBD (SAS ) ②△ABH ≌△CBF证明过程:∵△ABE ≌△CBD ,∴∠4=∠5,∵AB=BC ,∠1=∠2,∴△ABH ≌△CBF (SAS ) ③△BHE ≌△BFD证明过程:∵△ABE ≌△CBD ,∴∠6=∠7,∵BE=BD ,∠2=∠3,∴△BHE ≌△BFD (SAS ) ④∠AGC=60°证明过程:∵△ABE ≌△CBD ,∴∠6=∠7,在△GFE 和△BFD 中(“8”字模型),∠3=180°-∠BFD-∠7,∠EGF=180°-∠GFE-∠6,∵∠6=∠7,∠GFE=∠BFD ,∴∠3=∠EGF ,∵∠AGC=∠EGF ,∠3=60°,∴∠AGC=∠3=60° ⑤△BHF 是等边三角形证明过程:∵△BHE ≌△BFD (SAS ),∴BH=BF ,∵∠2=60°,∴△BHF 是等边三角形(有一个角是60°的等腰三角形是等边三角形) ⑥HF//AD证明过程:∵△BHF 是等边三角形,∴∠8=60°,∵∠3=60°,∴∠8=∠3,∴HF//AD (二)“手拉手模型”的变化图形题型特征:△ABC 与△BDE 是等边三角形,A 、B 、D 三点不在同一直线上。

图2M N 765431H GFEDCBA765431HG F ED CBA解题方法:一定有以下三个结论(一组全等,一个60°、一个角平分线) ①△ABE ≌△CBD证明过程:∵△ABC 与△BDE 是等边三角形,∴∠1=∠3=60°,∴∠ABE=∠CBD (共角模型),∵AB=BC ,BE=BD , ∴△ABE ≌△CBD (SAS ) ②∠AGC=60°证明过程:∵△ABE ≌△CBD ,∴∠6=∠7,在△GFE 和△BFD 中(“8”字模型),∠3=180°-∠BFD-∠7,∠EGF=180°-∠GFE-∠6,∵∠6=∠7,∠GFE=∠BFD ,∴∠3=∠EGF ,∵∠AGC=∠EGF ,∠3=60°,∴∠AGC=∠3=60° ③BG 平分∠HBF证明过程:作BM ⊥AE 于点M ,BN ⊥GD 于点N ,如图2,∵△ABE ≌△CBD ,∴∠4=∠5,∵AB=BC ,∠AMB=∠CNB=90°,∴△ABM ≌△CBN (AAS ),∴BM=BN ,∴BG 平分∠HBF (到角两边的距离相等的点,在这个角的角平分线上) (三)常见“手拉手”变化图形【典型例题】例1.如图,C 为线段AE 上一动点(不与A 、E 重合),在AE 同侧分别作等边△ABC 和等 边△CDE ,AD 与BE 交于点O ,AD 与BC 交于点P ,BE 与CD 交于点Q ,连接PQ ,以下五个结论: ①AD =BE ;②PQ ∥AE ;③CP =CQ ;④BO =OE ;⑤∠AOB =60°,恒成立的结论有( )。

手拉手模型

手拉手模型

手拉手模型手拉手模型,属于初中几何中图形的旋转,是最常见的一类重要模型。

全等型手拉手模型有以下三个主要特征:双等腰、共顶点、顶角相等。

如下左图,△ABC与△ADE都是等腰直角三角形,且具有公共的直角顶点A,顶角都是900。

这两个三角形就像两个人手拉着手一样,所以我们称之为手拉手模型。

如下右图,我们易证△ACE与△ABD全等(SAS)。

实际上以点A为旋转中心,把△ACE顺时针旋转900,就得到了△ABD。

又如下左图,△ABC与△ADE都是等边三角形,且具有公共的顶点A,顶角都是600。

这个图形满足以下三个主要特征:双等腰、共顶点、顶角相等,所以它就属于手拉手模型。

如下右图,我们易证△ACD与△ABE全等(SAS)。

实际上以点A为旋转中心,把△ACD顺时针旋转600,就得到了△ABE。

例 1. 如图,△ABC与△A DE都是等腰直角三角形,其中∠BAC=∠DAE=900,AB=AC,AD=AE。

直线CE交BD于点F,交AB 于点G。

求证:(1)CE=BD;(2)CE⊥BD;(3)A、E、F、D四点共圆;(4)AF平分∠CFD。

解析:图中△ABC与△ADE都是等腰直角三角形,而且他们具有公共顶点A,顶角都是900,所以该图形就是典型的手拉手模型。

简解:(1)易证△ACE≌△ABD(SAS),所以CE=BD;(2)由△ACE≌△ABD可得:∠1=∠2。

再由八字形可得:∠GFB=∠GAC=900,所以CE⊥BD。

(3)由(2)得CE⊥BD,又∠DAE=900,所以∠DAE+∠DFE=1800。

所以A、E、F、D四点共圆。

(4)过A作AM⊥CE于M,作AN⊥BD于N。

由△ACE≌△ABD,可得他们的面积相等,又由全等得CE=BD,所以AM=AN。

所以AF 平分∠CFD。

(或者由A、E、F、D四点共圆,得到∠DFA=∠DEA=450。

所以∠EFA=∠DFA=450。

所以AF平分∠CFD。

)例2. 如下左图,点C、A、E在一条直线上,△ABC与△ADE 都是等边三角形。

(完整版)社会学模型手拉手模型

(完整版)社会学模型手拉手模型

完整版)社会学模型手拉手模型1.引言社会学是研究人类社会行为、社会关系和社会机构的科学。

手拉手模型是社会学中一个重要的概念,用来描述人们在社会互动中相互协作、互惠互助的关系。

本文将介绍手拉手模型的定义、特点和应用,并探讨其在社会学研究中的意义和影响。

2.手拉手模型的定义手拉手模型是指人们在社会交往中通过相互支持、合作和互助,形成紧密的互联互动的关系。

它强调人与人之间的互惠和互助,是一种相互关联和相互依赖的社会联系模式。

3.手拉手模型的特点手拉手模型具有以下几个特点:相互支持:手拉手模型强调人们在社会交往中相互支持,通过共同的努力和帮助来实现目标。

合作互助:在手拉手模型中,人们通过相互合作和互助,共同解决问题和应对挑战。

互联互动:手拉手模型强调人与人之间的紧密联系和互动,通过交流和合作实现共同的利益。

4.手拉手模型的应用手拉手模型在社会学研究中有广泛的应用,例如:教育领域:手拉手模型可以用于描述学生之间的相互支持和合作学习的关系,促进学生的共同学习和发展。

社区发展:手拉手模型可以应用于社区组织和发展,通过组织居民之间的互助、合作和支持,提高社区的凝聚力和发展能力。

心理健康:手拉手模型可以用于描述亲密关系中的相互支持和互助,帮助个体在压力和困难时获得支持和帮助。

5.手拉手模型的意义和影响手拉手模型的应用和研究对社会学具有重要意义和积极影响:加强社会联系:手拉手模型强调人与人之间的相互关联和互助,可以加强社会联系和社区凝聚力。

促进社会发展:通过手拉手模型中的合作和互助,可以促进社会的发展和进步。

改善人际关系:手拉手模型强调相互支持和互助,有助于改善人际关系和促进个体的心理健康。

6.结论手拉手模型是社会学中的一个重要概念,用于描述人们在社会交往中相互协作、互惠互助的关系。

它强调人与人之间的相互支持、合作和互助,在教育、社区发展和心理健康等领域有广泛的应用。

手拉手模型的研究和应用对于加强社会联系、促进社会发展和改善人际关系具有重要意义和积极影响。

八下数学手拉手模型ppt课件

八下数学手拉手模型ppt课件
D
B
M A
已知:以△ABC的三边为边 长分别作等边△ABD、等边 △BCM和等边△ACE。
根据上面条件回答下面问 题:
E 1.判定四边形DMEA的形状,
并证明 2.当△ABC满足什么条件时, 四边形DMEA是矩形?菱形? 正方形? 3.当△ABC满足什么条件时, 四边形DMEA不存在?
C
寒假来临,不少的高中毕业生和大学 在校生 都选择 去打工 。准备 过一个 充实而 有意义 的寒假 。但是 ,目前 社会上 寒假招 工的陷 阱很多
∠CPD,点E、F、G、H分别是边AB、BC、CD、DA的中点。判断中点四边形E
FGH的形状,并说明理由
HD A

A
HD




B
FC
B

C
(3)若改变(2)中的条件,使∠APB=∠CPD=90°,其他条件不变,直接 写中点四边形EFGH的形状
寒假来临,不少的高中毕业生和大学 在校生 都选择 去打工 。准备 过一个 充实而 有意义 的寒假 。但是 ,目前 社会上 寒假招 工的陷 阱很多
两个等腰直角三角形的手拉手模型
A D
已知:如图,∠ACB=∠DCE=90°, AC=BC,DC=EC,点D在AB上
(1)说明BD与AE的关系
(2)求证:AD2+BD2=DE2 (3)求证:AD2+BD2=2DC2
E
B
C
寒假来临,不少的高中毕业生和大学 在校生 都选择 去打工 。准备 过一个 充实而 有意义 的寒假 。但是 ,目前 社会上 寒假招 工的陷 阱很多
已知:以△ABC的边AB和AC为边长分别作等边
△ABD和等边△ACE,点M、P、N分别是DB,BC,

(完整版)教育模型手拉手模型

(完整版)教育模型手拉手模型

(完整版)教育模型手拉手模型教育模型手拉手模型概要本文档介绍了教育模型手拉手模型的完整版内容,包括定义、特点和实施步骤。

定义教育模型手拉手模型是一种基于合作互助的教育模式,旨在通过学生之间的协作和互动,促进彼此的研究和发展。

这种模型强调学生之间的合作与互助,使他们能够通过相互指导、交流和分享知识,共同提升研究效果和研究成果。

特点教育模型手拉手模型具有以下特点:1. 合作互助:学生之间通过合作互助,共同解决问题和完成研究任务。

他们可以互相帮助、互相纠正,提高理解和掌握知识的能力。

2. 个性化研究:每个学生都有机会参与到教学过程中,根据自己的能力和兴趣,选择适合自己的研究内容和方式,实现个性化研究。

3. 责任心培养:学生在模型中扮演不同的角色,既是教师又是学生,通过传授知识和指导他人研究,培养责任心和领导能力。

4. 反馈和评估:学生之间可以相互提供反馈和评估,共同改进研究方法和研究成果,促进个人和团队的进步。

实施步骤教育模型手拉手模型的实施步骤如下:1. 组建研究小组:根据学生的兴趣和能力,组建合适的研究小组,每个小组人数适中,确保每个学生都能有参与的机会。

2. 设定研究目标:每个小组根据研究内容和目标,制定适合自己的研究计划和目标,明确每个成员的任务和责任。

3. 合作研究:小组成员之间展开合作研究,通过互帮互助,共同解决问题和完成研究任务。

可以采用小组讨论、角色扮演、分享报告等方式进行合作研究。

4. 反馈和评估:小组成员互相提供反馈和评估,进行研究成果的讨论和改进。

可以通过小组讨论、写作评价等方式进行反馈和评估。

5. 总结和分享:每个小组总结研究成果和经验,与其他小组分享,促进彼此的研究和发展。

6. 持续改进:根据研究过程和结果,及时调整和改进教育模型手拉手模型,提高研究效果和研究成果。

结论教育模型手拉手模型是一种促进学生合作互助,实现个性化学习和培养责任心的教育模式。

通过合作互助,学生在模型中获得更多的学习机会和提高自身的能力。

全等之手拉手模型(含答案)

全等之手拉手模型(含答案)

全等之手拉手模型1. 等边三角形手拉手核心考点:如果两个等边三角形共顶点,必有手拉手全等.核心考点:和均为等边三角形,三点共线.结论:()≌;();();()≌;();()≌;();()为等边三角形;();()平分.1.如图,在线段上,在同侧作等边三角形和,连接,,若,则.(1)(2)(3)2.如图,以点为等边三角形顶点向左右两侧各作等边和等边,连接、交于点,连接,求证:..平分.(1)(2)3.如图,已知与都是等边三角形,连结、,求证:.与所夹锐角为.4.如图,在中,,分别以、和为边在外部作等边三角形、等边三角形和等边三角形,连接、和交于点,下列结论中正确的是 .(只填序号即可)①;②;③.A.≌B.≌C.D.5.如图,已知等边和等边在线段同侧,则下面错误的是( ).6.如图,为线段上一动点(不与点、重合),在同侧分别作正三角形和正三角形,与交于点,与交于点,与交于点,连结,以下六个结论:①;②;③;④;⑤;⑥平分,恒成立的结论有 (把你认为正确的序号都填上).7.已知,如图等边和等边,连接并延长交于点,求的度数.(1)(2)8.已知是等边三角形,点是直线上一点,以为一边在的右侧作等边.如图,点在线段上移动时,直接写出和的大小关系.如图,点在线段的延长线上移动时,猜想的大小是否发生变化.若不变请求出其大小;若变化,请说明理由.(1)(2)9.如图,在等边中,是边上动点,以为边,向上作等边,连接.求证:.若点运动到延长线上,其它条件不变,是否仍有?2. 等腰直角三角形手拉手核心考点:如果两个等腰直角三角形共顶点,必有手拉手全等.如图,已知和均为等腰直角三角形,结论:() ≌ ;();().同理,正方形也有类似的结论.A. B. C. D.10.已知:如图,在,中,,,,点,,三点在同一条直线上,连接,.以下结论:①;②;③;其中结论正确的个数是( ).11.在中,分别以,为边,向外作正四边形,、相交于点.则.12.已知:如图, 在,中,,,,点,,三点在同一条直线上,连接,.则= .12(1)(2)13.已知,在中,以边为底边作等腰三角形,连接,以为腰作等腰三角形,且.将线段沿着射线的方向平移,得到线段,连接.设,.如图,当时.图根据题意补全图形.求的值.如图,直接写出与之间满足的等量关系.图3. 任意等腰三角形手拉手核心考点:条件:,均为等腰三角形且结论:①≌;②;③;④平分(易忘)(1)(2)14.在中,,点是直线上一点(不与、重合),以为一边在的右侧作,使,,连接.图图如图,如果,则 .如图,设,,当点在线段上移动时,请写出、之间的数量关系,请说明理由.(1)(2)15.已知:如图,在、中,,,,点、、三点在同一直线上,连接.求证:≌.试猜想、有何关系,并证明.(1)(2)16.以点为顶点作等腰,等腰,其中,如图所示放置,使得一直角边重合,连接、.图试判断、的数量关系,并说明理由. 延长与交于点试求的度数.17.在中,分别以,为边,向外作正五边形,、相交于点..18.如图所示,,,,,,则.19.如图,和都是等腰三角形,且,,,,在同一条直线上.求证:.(1)(2)(3)20.已知:和都是等腰直角三角形,.如图①,点在内,求证:.如图②,、、三点在同一条直线上,若,,求的面积.如图③,若,点在上运动,求周长的最小值.4. 任意等腰三角形手拉手核心考点:条件:,均为等腰三角形且结论:①≌;②;③;④平分(易忘)(1)(2)(3)21.如图,,,,、交于点,连接.求的度数.(用表示)求证:平分.如图,若,、分别是、的中点,连接、、.请判断三角形的形状,并证明你的结论.(1)(2)22.如图,在中,,,的平分线交于.求证:.如图,过点作交于,将绕点逆时针旋转角()得到,连接、,求证:.(1)(2)(3)23.已知点为线段上一点,分别以、为边在线段同侧作和,且,,,直线与交于点.如图,若,则的度数为 .图如图,若,连接,则的度数为 (用含的式子表示).图将图中的绕点顺时针旋转,如图,连接、、,,则的度数为多少?图(1)(2)(3)24.已知是等腰三角形,.特殊情形:如图,当时,有.(填“”,“”或“”)图发现探究:若将图中的绕点顺时针旋转()到图位置,则()中的结论还成立吗?若成立,请给予证明;若不成立,请说明理由.图拓展运用:如图,是等腰直角三角形内一点,,且,,,求的度数.图 (1)(2)25.如图,与为等腰三角形,其中,,,、交于.求证:.求和的度数.全等之手拉手模型1. 等边三角形手拉手核心考点:如果两个等边三角形共顶点,必有手拉手全等.核心考点:和均为等边三角形,三点共线.结论:()≌;();();()≌;();()≌;();()为等边三角形;();()平分.【备注】【教法指导】这10个结论,看孩子水平。

1.手拉手模型-课件PPT

1.手拉手模型-课件PPT
∴∠BAD=∠CAE

AB AD
=
AC AE

AB AC
=
AD AE
∴△ABD ∽ △ACE(SAS) (两个三角形:不等腰,相似)
图片来源:几何数学公众号
二、结论1
结论
1. ∠BAC=∠DAE
2.
AB AD
=
AC AE
△ABC ∽ △ADE (两个三角形:不等腰,相似)
给妹妹讲初中数学
已知条件
1. ∵ ∠BAC=∠DAE ∠BAC=∠BAD±∠DAC ∠DAE=∠CAE±∠DAC
③两个三角形面积相等 ④底边是中线的2倍
三、转化
这么多结论,听懂了,也记住了,是不是可以去做题了? NO!NO!NO!
给妹妹讲初中数学
遇到不会的几何大题怎么办? 万物皆可手拉手!(开玩笑的)
三、转化
给妹妹讲初中数学
三角形为特殊三角形,会得出更多结论! 【等腰三角形】
已知条件
更多结论
△ABC与△ADE是两个等腰三角 形
是不是脚拉脚模型?
不建议
给妹妹讲初中数学
三、转化
是不是脚拉脚模型?
给妹妹讲初中数学
三、转化
是不是脚拉脚模型?
不建议
给妹妹讲初中数学
三、转化
是不是脚拉脚模型?
给妹妹讲初中数学
三、转化
【头对脚模型】 也能转化为手拉手模型
给妹妹讲初中数学
给妹妹讲初中数学
三、转化
【脚拉脚模型】 也能转化为手拉手模型
给妹妹讲初中数学
三、转化
①双等腰
脚拉脚模型-特点
②共底角
给妹妹讲初中数学
③顶互补
如果不具备这三个条件,不叫脚拉脚!!!
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

手拉手模型
手拉手模型
特点:由两个顶角相等的等腰三角形所组成,并且顶角的顶点为公共顶点
结论:(1)△ABD ≌△AEC (2)∠α+∠BOC=180°
(3)OA平分∠BOC
变形:
例1.如图,B是线段AC上一点,分别以AB和BC为边长,在直线AC的同一侧作两个等边三角形,△ABD和△ECB,连接AE和CD,AE与DC交于点H,与BD与BE交于点G,F.
(1)求证:△BCD≌△BEA;
(2)探究△BFG的形状,并证明你的结论.
H
F G E
D
A B C
思考:的数量关系。

与DC AE (2)
AE 与DC 之间的夹角为60(3)
DFB AGB (4)
CFB EGB (5)BH 平分
AHC (6)AC GF
//变式精练1:如果两个等边三角形△ABD 和△BCE ,连接AE 与CD ,证明:
(1)AE 与DC 的夹角为60°;
(2)AE 与DC 的交点设为H ,BH 平分∠AHC .
思考:DC AE ;AE 与DC 之间的夹角为60
试一试继续旋转结论是否成立。

H F G E D A B C
变式精练2.以点A为顶点作等腰Rt△ABC,等腰Rt△ADE,其中∠BAC=∠DAE=90°,如图1所示放置,使得一直角边重合,连接BD、CE.
(1)试判断BD、CE的数量关系,并说明理由;
(2)延长BD交CE于点F,试求∠BFC的度数;
(3)把两个等腰直角三角形按如图2放置,(1)中的结论是否仍成立?请说明
理由.
练习:已知:如图①,在△AOB和△COD中,OA=OB,OC=OD,∠AOB=∠COD=50°
(1)求证:①AC=BD;②∠APB=50°;
(2)如图②,在△AOB和△COD中,OA=OB,OC=OD,∠AOB=∠COD=α,则AC与BD间的等量关系为,∠APB的大小为
2.如图,两个正方形ABCD和DEFG,连接AG与CE,二者相交于H
问:(1)△ADG≌△CDE是否成立?
(2)AG是否与CE相等?
(3)AG与CE之间的夹角为多少度?
(4)HD是否平分∠AHE?
(如果你知道勾股定理的话,请问线段AC、GE、AE、CG有什么数量关系?)。

相关文档
最新文档