特征选择和特征提取

合集下载

特征提取与特征选择的区别与联系(四)

特征提取与特征选择的区别与联系(四)

特征提取与特征选择是机器学习和模式识别领域的两个重要概念,它们在数据分析和模型构建中扮演着至关重要的角色。

在本文中,我将探讨特征提取与特征选择的区别和联系,以及它们在实际应用中的作用。

特征提取是指从原始数据中提取对于解决问题有用的信息的过程。

在机器学习或模式识别任务中,通常需要从大量的原始数据中提取出最能够反映数据特点的特征,这些特征可以是数值型、文本型、图像型等。

特征提取的目的是将原始数据转化为更加易于处理和分析的形式,同时保留数据的重要信息。

常见的特征提取方法包括主成分分析(PCA)、独立成分分析(ICA)、小波变换等。

与特征提取不同,特征选择是指从原始特征中选择出最具有代表性、对模型构建有帮助的特征的过程。

在实际应用中,原始数据可能包含大量的特征,但并不是所有的特征都对于解决问题有用,有些特征可能是噪声或冗余的。

因此,通过特征选择可以剔除这些无用的特征,提高模型的准确性和泛化能力。

常见的特征选择方法包括过滤式特征选择、包裹式特征选择和嵌入式特征选择等。

特征提取和特征选择之间有着一定的联系。

特征提取可以看作是一种特征选择的方式,它不仅可以提取原始数据中的重要信息,还可以通过降维的方式来减少特征的数量。

而特征选择则是在原始特征的基础上进行筛选,保留最具有代表性的特征。

在实际应用中,常常会将特征提取和特征选择结合起来,以达到更好的效果。

特征提取与特征选择在实际应用中有着广泛的应用。

以图像识别为例,通过对图像进行特征提取和特征选择,可以将图像中的信息转化为机器可以理解和处理的形式,从而实现图像的自动识别和分类。

在自然语言处理领域,通过对文本进行特征提取和特征选择,可以从中提取出关键词、短语等信息,用于文本分类、情感分析等任务。

总的来说,特征提取和特征选择是机器学习和模式识别中至关重要的步骤,它们可以帮助我们从海量的数据中提取出最有用的信息,为模型构建提供有力的支持。

同时,特征提取和特征选择也是一门值得深入研究的学科,在不断的实践中不断完善和发展。

特征基本知识点总结

特征基本知识点总结

特征基本知识点总结随着人工智能和大数据技术的发展,特征工程在机器学习和数据挖掘领域中扮演着越来越重要的角色。

特征工程是指对原始数据进行预处理,提取有效的特征来帮助机器学习算法更好地理解数据和进行预测。

在实际应用中,良好的特征工程往往能够为模型的性能带来显著的提升。

因此,掌握特征工程的基本知识点对于从事机器学习和数据分析工作的人员来说是非常重要的。

本文将从特征选择、特征提取、特征变换和特征构建四个方面,对特征工程的基本知识点进行总结。

一、特征选择特征选择是指从原始数据中选择出最具有代表性和信息量丰富的特征,以提高模型的泛化能力和降低模型的复杂度。

特征选择的方法主要有过滤式、包裹式和嵌入式三种。

1. 过滤式特征选择过滤式特征选择是在训练模型之前,利用一些统计指标或者信息论方法对特征进行排序,然后选择排名靠前的特征作为模型的输入。

常用的方法有方差选择法、相关系数法、互信息法等。

- 方差选择法:将方差较小的特征去除,因为方差较小的特征往往意味着这个特征的取值变化不大,对模型的预测能力没有太大贡献。

- 相关系数法:计算特征与目标变量之间的相关系数,选取相关系数较大的特征。

相关系数越大,意味着特征与目标变量之间的线性关系越密切,对模型的预测能力越有贡献。

- 互信息法:计算特征与目标变量之间的互信息量,选取互信息量较大的特征。

互信息量衡量了两个变量之间的非线性相关性,对于发现复杂的模式和规律非常有效。

2. 包裹式特征选择包裹式特征选择是将特征选择看作是一个优化问题,即在特征子集中搜索出一个最优的特征组合,使得模型在训练数据上的性能达到最优。

常用的方法有递归特征消除法、基于模型的选择法等。

- 递归特征消除法:通过不断地删除权重系数较小的特征,从而找到一个最优的特征子集。

该方法在训练模型时会递归地进行特征删除和训练模型,因此计算成本较高,但可以得到更好的特征子集。

- 基于模型的选择法:利用一个基于模型的评估准则来选取特征,如特征重要性评分、特征权重系数等。

特征的提取和选择

特征的提取和选择

特征的提取和选择
特征提取和选择是机器学习中非常重要的环节,它既可以减少计算量,又可以提高模型的性能。

选择较好的特征可以让模型更加简单,更加容易
和快速的训练出最佳参数,从而使得模型更加精确、效果更好。

一般来说,特征提取和选择有以下几步:
1.特征提取。

特征提取关注的是利用现有特征生成新的特征。

它可以
是特征融合(如结合多个特征生成更强大的特征),也可以是特征变换
(如离散特征变换成连续特征)。

2.无关特征删除。

把没有帮助的特征删除,有助于减少模型的运行时间,提高模型的效果。

3.有关特征选择。

把与目标值有很强关联的特征选择出来,这些特征
被称为有关特征,它们可以帮助模型训练出更好的结果。

4.特征降维。

为了减少特征之间的相关性,减少计算量,与有关特征
相关性比较低的特征可以被删除。

5.特征加权。

调整特征的权重,使得有关特征拥有更大的影响力,从
而帮助模型更好的进行预测。

通过这种特征提取和选择的过程,可以把训练集中拥有相关性比较高
的有用特征保留下来,把没用的特征抛弃,有效的提高模型的性能。

第6章特征的提取与选择

第6章特征的提取与选择

第6章特征的提取与选择
特征提取与选择是机器学习和模式识别领域的一个重要组成部分,它
用于改善获得的特征的性能。

特征提取和特征选择是特征工程的基础,目
的是通过提取有用的信息,优化特征以提高模型的性能。

特征提取和特征
选择有助于减少模型需要考虑的特征数量,更有效地使用数据,减少计算量,提高模型表现,控制过拟合,提高模型可解释性和改善可靠性。

现有的特征提取和特征选择方法可以分为基于深度学习的方法和基于
浅层学习的方法。

基于深度学习的方法基于深度神经网络来提取特征,它
可以自动从原始数据中提取出多层特征,从而以最佳方式捕捉数据的复杂性,为模型提供更好的表示能力。

但是,这种方法往往会带来高昂的计算
成本,并受到训练数据量的限制。

基于浅层学习的方法则是从原始数据中提取、过滤、转换和变换特征,它仅仅是用统计工具来量化每一个变量,以及建立不同特征之间的关系,
并基于关系筛选出最有效的特征。

它没有深度学习方法的计算成本高及数
据量受限的缺点,但是往往缺乏深度学习方法的表示能力。

对于特征的提取和选择,应该从相关特征的概念,特征工程的思想,
特征提取的方法,特征选择的方法等方面考虑。

特征选择和特征提取

特征选择和特征提取

特征选择和特征提取特征选择(Feature Selection)和特征提取(Feature Extraction)是机器学习领域中常用的特征降维方法。

在数据预处理阶段,通过选择或提取与目标变量相关且有代表性的特征,可以有效提高模型的性能和泛化能力。

特征选择指的是从原始特征集合中选择一部分最相关的特征子集,剔除无关或冗余的特征,以减少计算成本和模型复杂度。

它可以分为三种类型的方法:过滤方法(Filter Method)、包裹方法(Wrapper Method)和嵌入方法(Embedded Method)。

过滤方法是利用统计或信息论的方法来评估特征与目标变量之间的相关程度,然后根据得分来选择特征。

常见的过滤方法包括互信息(Mutual Information)、方差选择(Variance Selection)和相关系数选择(Correlation Selection)等。

包裹方法是在特征子集上训练模型,通过观察模型性能的变化来评估特征子集的优劣,并选择性能最好的特征子集。

包裹方法的代表性算法有递归特征消除(Recursive Feature Elimination)和遗传算法(Genetic Algorithm)等。

嵌入方法则是将特征选择融入到模型的训练过程中,通过训练模型时的正则化项或特定优化目标来选择特征。

常见的嵌入方法有L1正则化(L1 Regularization)和决策树的特征重要性(Feature Importance of Decision Trees)等。

主成分分析是一种无监督学习方法,通过线性变换将原始特征投影到一组正交的主成分上,使得投影后的特征具有最大的方差。

主成分分析可以降低特征的维度,并保留原始特征的主要信息。

线性判别分析是一种有监督学习方法,通过线性变换找到一个投影方式,使得在投影空间中不同类别的样本更容易区分。

线性判别分析可以有效地提取类别间的差异和类别内的相似性。

因子分析则是一种概率模型,通过考虑变量之间的相关性而提取潜在的共享特征。

特征提取与特征选择的区别与联系(七)

特征提取与特征选择的区别与联系(七)

特征提取与特征选择的区别与联系特征提取和特征选择是机器学习和模式识别领域中常用的两种特征处理方法。

它们都是在原始特征空间中对特征进行加工和处理,以便更好地应用于后续的分类、聚类或回归任务。

虽然它们都是对特征进行处理,但是它们的目的和方法却有很大的不同。

下面我们将详细探讨特征提取与特征选择的区别与联系。

特征提取是指从原始特征中抽取出新的特征表示。

在实际应用中,原始特征往往具有冗余和噪声,通过特征提取可以将原始特征进行变换,得到更具有辨识度和可分性的特征表示。

常见的特征提取方法包括主成分分析(PCA)、线性判别分析(LDA)、独立成分分析(ICA)等。

这些方法通过线性或非线性的变换,将原始特征映射到一个新的特征空间中,以便更好地进行后续的分类或聚类任务。

特征选择则是从原始特征中选择出子集,以降低维度、提高模型的泛化能力和减少计算复杂度。

特征选择方法包括过滤式、包裹式和嵌入式三种。

过滤式方法通过对特征进行打分或排序,然后选择得分高的特征作为子集;包裹式方法则是将特征选择看作一个搜索问题,针对具体的学习算法进行搜索;嵌入式方法则是将特征选择融入到学习器的训练过程中。

这些方法都是通过评估特征子集的质量,选择对模型性能影响最大的特征子集。

特征提取和特征选择在目的和方法上存在着很大的不同。

特征提取的目的是通过变换原始特征,得到更具有可分性和辨识度的新特征表示,从而提高模型的性能;而特征选择的目的则是通过选择出对模型性能影响最大的特征子集,降低维度、提高泛化能力和减少计算复杂度。

从方法上看,特征提取是通过线性或非线性的变换,将原始特征映射到一个新的特征空间中;而特征选择则是在原始特征空间中进行子集选择,保留对模型性能影响最大的特征子集。

特征提取和特征选择虽然在目的和方法上有很大的不同,但是它们之间也存在着联系。

首先,特征提取可以看作是一种特殊的特征选择,它通过对原始特征进行变换和映射,得到一个新的特征表示,实质上也是在选择对模型性能影响最大的特征子集。

特征提取与特征选择的区别与联系

特征提取与特征选择的区别与联系

特征提取与特征选择的区别与联系在机器学习和数据挖掘领域,特征提取和特征选择是两个重要的概念。

它们在数据预处理和模型构建中起着至关重要的作用。

本文将探讨特征提取与特征选择的区别与联系,并从理论和实践角度进行深入分析。

1. 特征提取的定义与意义首先,我们来看看特征提取的定义与意义。

特征提取是指从原始数据中提取出具有代表性的特征,以便进行后续的数据分析和建模。

在实际应用中,原始数据往往包含大量的冗余信息和噪声,特征提取的目的就是通过某种算法或方法,对原始数据进行转换或映射,得到更加有用和有效的特征表示。

这样可以提高模型的准确性和泛化能力,同时减少计算复杂度和存储空间的消耗。

特征提取的方法有很多种,比如主成分分析(PCA)、独立成分分析(ICA)、线性判别分析(LDA)等。

这些方法都是通过对原始数据进行变换,得到新的特征表示,从而达到降维、去噪或增强特征的目的。

2. 特征选择的定义与意义接下来,我们再来看看特征选择的定义与意义。

特征选择是指从原始特征中选择出最具有代表性和重要性的特征子集,以用于后续的建模和预测。

在实际应用中,原始特征往往包含很多冗余和无关的信息,特征选择的目的就是找出对目标变量影响最大的特征,从而简化模型、提高预测性能和可解释性。

特征选择的方法有很多种,比如过滤式、包裹式和嵌入式等。

过滤式方法是直接对特征进行评估和排序,选择最高分的特征子集;包裹式方法是把特征选择看作一个搜索问题,通过试验不同的特征子集来找到最佳组合;嵌入式方法则是在模型训练过程中,通过正则化或增加惩罚项的方式来选择特征。

3. 特征提取与特征选择的区别特征提取与特征选择虽然都是对原始数据或特征进行处理,但它们在目的和方法上有着明显的区别。

首先,特征提取是通过某种变换或映射,得到新的特征表示,目的是降维、去噪或增强特征;而特征选择是从原始特征中选择出最具有代表性和重要性的特征子集,目的是简化模型、提高预测性能和可解释性。

特征提取与特征选择的区别与联系(Ⅲ)

特征提取与特征选择的区别与联系(Ⅲ)

特征提取和特征选择是机器学习和数据挖掘领域中常用的两个概念。

虽然它们都是为了从原始数据中提取出有用的特征以便进行进一步的分析和建模,但是它们之间有着明显的区别和联系。

首先我们来看看特征提取,特征提取是指从原始数据中提取出一些能够代表数据特征的特征。

这些特征可以是原始数据中的某些属性,也可以是对原始数据进行某种变换得到的新的特征。

特征提取的目的是将原始数据转化为更容易被机器学习算法处理的形式,同时保持数据的最重要的特征。

特征提取的方法有很多种,比如说主成分分析(PCA)、线性判别分析(LDA)、小波变换等。

这些方法可以将高维度的数据降维到低维度,从而减小了数据的复杂度,提高了机器学习的效率。

特征提取的过程可以看成是对数据的一种抽象和概括,它的目的是提取出对于目标任务最有用的信息。

而特征选择则是在特征提取的基础上进行的一个步骤。

特征选择是指从已有的特征中选择出对目标任务最有用的特征。

在特征提取的过程中,可能会产生大量的特征,有些特征可能对于目标任务没有太大的作用,甚至会影响到机器学习算法的性能。

因此需要进行特征选择,选择出对目标任务最有用的特征,去除那些冗余或者无关的特征。

特征选择的方法也有很多种,比如说过滤式特征选择、包裹式特征选择、嵌入式特征选择等。

过滤式特征选择是指通过对特征进行评估,选择出对目标任务最有用的特征,比如说使用相关系数或者信息增益进行特征评估。

包裹式特征选择是指在特征子集上训练出一个机器学习模型,通过模型的性能来评估特征的重要性。

嵌入式特征选择则是指在模型训练的过程中自动选择出对目标任务最有用的特征,比如说使用正则化方法。

特征提取和特征选择在实际应用中经常会同时进行,它们之间有着很大的联系。

特征提取会产生大量的特征,在特征选择的过程中,有时候也需要对特征进行一些变换和组合。

比如说,在包裹式特征选择的过程中,需要对特征子集进行训练,可能需要将特征进行某种组合,而这个过程有点类似于特征提取。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

在这个例子里,用LLE 进行降维成功的体现了数 据内在的局部分布结构,而用PCA 映射则会将高维空 间里的远点映射到低维空间后变成了近邻点。
四、特征的选择
特征选择:=从原始特征中挑选出一些最有代表性、 分类性能最好的特征进行分类。
从-D典个型特的征组中合选优取化d个问,共题CdCD种Dd 组合。 特征选择的方法大体可分两大类:
u2
x2
u1 x1
主成分是这个椭圆的「长轴」方 向。短轴的方向和长轴垂直,是 「第二个」主成分的方向。变换 后的各分量,它们所包括的信息 量不同,呈逐渐减少趋势。事实 上,第一主分量集中了最大的信 息量,常常占80%以上。第二、 三主分量的信息量依次很快递减, 到了第n分量,信息几乎为零。
从几何意义来看,变换后的主分量空间坐标系与变
➢ 等距映射(Isomap).
J.B. Tenenbaum, V. de Silva, and J. C. Langford. A global geometric framework for nonlinear dimensionality reduction. Science, vol. 290, pp. 2319--2323, 2000.
• LDA的思想: 寻找最能把两类样本分开的投影直线. • LDA的目标: 使投影后两类样本的均值之差与投影
样本的总类散布的比值最大 . • LDA的求解: 经过推导把原问题转化为关于样本集
总类内散布矩阵和总类间散布矩阵的广义特征值 问题.
Best projection direction for classification
y
2 j


E


uTj
xxT
u
j

jd 1
jd 1

因为uj是确定性向量,所以有



uTj E xxT u j
uTj Ru j
j d 1
j d 1
R rij E( xi x j ) E xxT
求解最小均方误差正交基
2 1
求其特征向量。
Q 1 1

2 2
2
1
2 v1 0 v1 1
Q 2 3

2

2
2
1
2 v2 0 v2 1
K-L变换
特征 提取
• 离散K-L变换:对向量x用标准正交向量系uj进行线 性变换,得到新的向量Y. 经过K-L变换组合,输出
例:A

1 2
2 1
1 2 1 2 4 0
向量vk , Avk kvk ,则vk称为A的特征向量。
求特征向量的方法是解线性方程组
A k V 0
例:A

1 2

主成分分析 ( PCA )
➢主分量分析(Primary Component Analysis, PCA)就 是基于K-L变换的提取图像特征的一种最优正交线性变 换,可以有效去掉一个随机向量中各元素间的相关性。
➢PCA的目的:寻找能够表示采样数据的最好的投影子 空间.
➢ PCA的求解:特征向量常被叫做“主分量”,每个样 本被它在前几个主分量上的投影近似表示,U张成的空 间称为原空间的子空间,PCA实际上就是在子空间上的 投影.
K-L变换:当取矩阵R的d个最大特征值对应的特征向量来展 开x时,其截断均方误差最小。这d个特征向量组成的正交 坐标系称作x所在的D维空间的d维K-L变换坐标系, x在K-L 坐标系上的展开系数向量y称作x的K-L变换
K-L变换的表示
特征 提取
K-L变换的向量展开表示:
d
x
y ju j
模式识别原理与应用
专 业: 模式识别与智能系统 学生姓名: *** 任课教师: 余老师
一、基本概念
引言
特征的选择与提取是模式识别中重要而困 难的一个环节:
➢分析各种特征的有效性并选出最有代表性的特 征是模式识别的关键一步。
➢降低特征维数在很多情况下是有效设计分类器 的重要课题。
特征的形成
引言
换前的空间坐标系相比旋转了一个角度。而且新坐标系的 坐标轴一定指向数据信息量较大的方向。以二维空间为例, 假定某样本的分布呈椭圆状,那么经过旋转后,新坐标系 的坐标轴一定分别指向椭圆的长半轴和短半轴方向——主 分量方向,因为长半轴这一方向的信息量最大。
Principal component
PCA对于椭球状分布的样本集有很好的效果, 学习所 得的主方向就是椭球的主轴方向.
特征形成 (acquisition): ➢信号获取或测量→原始测量 ➢原始特征
实例: ➢数字图象中的各像素灰度值 ➢人体的各种生理指标
原始特征分析: ➢原始测量很大程度上不能反映对象本质
➢高维原始特征不利于分类器设计:计算量大, 冗余,样本分布十分稀疏。
二、特征的选择与提取
两类提取有效信息、压缩特征空间的方法: 特征提取和特征选择
j 1
y j uTj x
K-L变换的矩阵表示:
x [u1, u2 ,..., ud ]y Uy
y UT x
K-L变换的性质
特征 提取
y的相关矩阵是对角矩阵:
E yi y j E uTi xxT u j uTi E xxT u j
uTi Ru j uTi ju j iij
人脸图像所包含的模式特征十分丰富,它不仅包括一些能直观感觉到的特征,如肤色、 发色等颜色特征,脸的轮廓等轮廓特征,用到的更多的是不能感觉,只能通过变换等处理 之后才表现出来的特征,如特征脸、小波特征等变换域特征,均值、方差等模板特征。
直方图特征 (分布、距离等)
颜色特征 (肤色、发色等)
轮廓特征 (椭圆轮廓等)
PCA 是一种非监督的算法, 能找到很好地代表所有样 本的方向, 但这个方向对于分类未必是最有利的
人脸特征表述
人脸识别就是将已检测到的待识别人脸与数据库中的已知人脸进行比较匹配, 得出相关信息,来鉴别该人是谁。这一过程的核心是选择恰当的人脸表征方式与 匹配策略,即选择合适的人脸模式的特征,根据所提取的特征进行匹配。
– 特征值
对于一个N N的矩阵A,有N个标量k,k 1,L N,满足 A k I 0 k 称为矩阵的一组特征值。
如果给定的矩阵是奇异的,那么N个特征值中至
少有一个为0。
矩阵的秩
定义为矩阵非零特征值的个数。
矩阵的条件数 定义为最大特征值与最小特征值
的比值的绝对值。
病态矩阵
条件数很大。
三、特征提取与K-L变换
特征提取:用映射(或变换)的方法把原始 特征变换为较少的新特征
PCA (Principle Component Analysis)方法: 进行特征降维变换,不能完全地表示原有的 对象,能量总会有损失。希望找到一种能量 最为集中的的变换方法使损失最小。
K-L (Karhunen-Loeve)变换:最优正交线性变 换,相应的特征提取方法被称为PCA方法
E yyT E U T xxTU U T RU Λ
K-L变换的性质
特征 提取
K-L坐标系把矩阵R对角化,即通过K-L变 换消除原有向量x的各分量间的相关性,
从而有可能去掉那些带有较少信息的分 量以达到降低特征维数的目的
1
Λ
2

O

0
0



d
细胞自动识别:
➢原始测量:(正常与异常)细胞的数字图像 ➢原始特征(特征的形成,找到一组代表细胞性质
的特征):细胞面积,胞核面积,形状系数,光 密度,核内纹理,核浆比
➢压缩特征:原始特征的维数仍很高,需压缩以便 于分类
• 特征选择:挑选最有分类信息的特征 • 特征提取:数学变换
– 傅立叶变换或小波变换 – 用PCA方法作特征压缩
称为特征脸空间。
特征值与特征图像 ORL 20人×10幅
特征脸空间
特征值
特征提取-LDA
• 线性判别分析:LinearDiscriminantAnalysis (LDA) Fisher(1936)
• ������ 在线性判别函数一章,我们讲过Fisher线性判 别函数。它的思想是,找一个方向作投影,使得 投影后的数据类间距尽可能大,类内距尽可能小。 这实际上是两类数据的特征提取,提取的特征数 是1。这一思想可以推广到任意类数据,提取任 意多个特征。
形式,得到M个维向量 1, 2 , M
② 均值
1 M
M
n
n1
差值
③图像集的协方差矩阵 C
n n n
1 M
M

n

T n
n 1

AAT
特征值 i (i , 1,2, , M ) 特征向量 ui (i 1,2, , M )
④可以从以上求得的M个特征向量中取出对构造图像影响最大的m个, 这样就可以构造了一个原始图像空间的m维子空间,这个m维子空间
➢ 拉普拉斯特征映射(Laplacian Eigenmap).
M. Belkin, P. Niyogi, Laplacian Eigenmaps for Dimensionality Reduction and Data Representation. Neural Computation, Vol. 15, Issue 6, pp. 1373 –1396, 2003 .
Y的各分量之间将具有最小的相关性.
L:x y

x
y ju j
j 1
y j uTj x
离散K-L变换的均方误差
特征 提取
用有限项估计x :
相关文档
最新文档