热学习题集-3
热学习题集

4.5.2分别通过下列过程把标准状态下的0.14kg氮气压缩为原体积的一半:(1)等温过程;(2)绝热过程;(3)等压过程。试分别求出在这些过程中气体内能的改变,传递的热量和外界对气体所做的功,设氮气可看做理想气体,且 。
2.6.9已知温度为T的理想气体在重力场中处于平衡状态时的分布函数为
其中z为由地面算起的高度。(1)试求出系数A。(2)试写出一个分子其x、y坐标可任意取,z坐标处于 ,其速度处于 、 、 间的概率。(3)试写出一个分子其x、y、z坐标及 、 均可任取,但 处于 间的概率。(4)一个分子 、 、 及x、y坐标均可任取,其高度处于 间的概率是多少?
2.4.2分子质量为m的气体在温度T处于热平衡,若以vx、vy及vz分别表示分子速度的x、y、z三个分量及其速率,试求下述平均值:(1) ;(2) ;(3) ;(4) ;(5)
2.4.5求麦克斯韦速度分布中速度分量 大于 的分子数占总分子数的比率。
2.5.2一容器被一隔板分成两部分,其中气体的压强分别为 和 ,两部分气体的温度均为T,摩尔质量均为M,试证明:如果隔板上有一面积为A的小孔,则每秒通过小孔的气体质量为
第五章
5.1.2试用反证法证明两绝热线不能相交(注意:不一定是理想气体)。
5.3.1如图5.16(a)所示,1mol氢气(理想气体)在1点的状态参量为V1=0.02m3,T1=300K;3点的状态参量为V3=0.04m3,T3=300K。图中1—3为等温线,1—4为绝热线,1—2和4—3为等压线,2—3为等体线,试分别用如下三条路径计算S3—S1:(1)1—2—3;(2)1—3;(3)1—4—3.
物理选修3-3热学 固体、液体、气体 练习题含答案

固体+液体+气体!"如图所示!两端开口的弯折玻璃管竖直放置!左管有一段高为$!的水银柱!中间一段水银柱$'将管内空气分为两段!右管有一段高为=的水银柱!三段水银柱均静止!则右管内水银柱的高度=为$ %#"$!3$'$"$'1$!%"$!3$''&"$'1$!''"$!%下列说法中正确的是"#"同种物质可能以晶体和非晶体两种不同的形态出现$"从微观角度看!气体的压强仅取决于分子的平均动能%"液体具有流动性!说明液体分子间作用力比固体分子间作用力小&"物体的内能只与物体的体积有关$'%如图所示!一定质量的理想气体从状态%先后经过等压+等容和等温过程完成一个循环!%+&+8状态参量如图所示!气体在状态%的温度为'-W !求($气体在状态&的温度C &'%气体从% &8状态变化过程中与外界交换的总热量4"("如图所示为内径均匀的X 形管!其内部盛有水银!右端封闭空气柱长!'</!左端被一重力不计的轻质活塞封闭一段长!)</的空气柱"当环境温度"!*'-W 时!两侧水银面的高度差为'</"当环境温度变为"'时!两侧水银面的高度相等"已知大气压强7)*-0</R 9!求($!%温度"'的数值'$'%左端活塞移动的距离"+"如图所示!用轻质活塞在气缸内封闭一定质量理想气体!活塞与气缸壁间摩擦忽略不计!开始时活塞距气缸底高度$!*)"0)/"给气缸加热!活塞缓慢上升到距离气缸底$'*)"2)/处!同时缸内气体吸收4*+0)L 的热量"已知活塞横截面积H *0")M !)1(/'!大气压强7)*!")M !)0H B "求($!%缸内气体对活塞所做的功N '$'%此过程中缸内气体增加的内能#G "0"如图所示!导热材料制成的截面积相等!长度均为+0</的气缸%+&通过带有阀门的管道连接*初始时阀门关闭!厚度不计的光滑活塞8位于&内左侧!在%内充满压强7%*'"2M !)0H B 的理想气体!&内充满压强7&*!"+M !)0H B 的理想气体!忽略连接气缸的管道体积!室温不变"现打开阀门!求($!%平衡后活塞向右移动的距离和&中气体的压强'$'%自打开阀门到平衡!&内气体是吸热还是放热$简要说明理由%"."如图甲!一导热性能良好+内壁光滑的气缸水平放置!横截面积为H *'")M !)1(/'+质量为-*+69厚度不计的活塞与气缸底部之间封闭了一部分气体!此时活塞与气缸底部之间的距离为'+</!在活塞的右侧!'</处有一对与气缸固定连接的卡环!气体的温度为())Y !大气压强7)*!")M !)0H B "现将气缸缓慢转动到开口向下竖直放置!如图乙所示!取#*!)/&,'"求($!%活塞与气缸底部之间的距离'$'%图乙中!要使活塞下降到与卡环接触位置则封闭气体的温度至少为多少)$(%加热缸中气体到0+)Y 时封闭气体的压强为多少)固体 液体 气体!"%!命题立意 本题考查气体的压强 平衡问题"难度中等" 解题思路 设大气压强为:) 则左侧高为A !的水银柱上方的气体压强为:左*:)1""A ! 右侧高为B 的水银柱下方的气体压强为:右*:)+""B "根据中间水银柱受力平衡 可得:左+""A $*:右 联立以上各式得B *A $1A !%正确"$" ! #'$ 解 #$到%过程是等压变化有1$,$*1%,%代入数据得,%*0))Y ($,X$根据热力学第一定律有!I *7+G 其中G *1$:)1)解得7*$:)1) 吸热命题立意 本题考查晶体 气体及物体的内能等概念 液体表面张力的意义 气体的实验定律 热力学第一定律"难度中等"解题思路 !晶体和非晶体在不同的条件下可相互转化 选项#正确 气体的压强不仅取决于分子的平均动能 还与单位体积内的分子数有关 选项%错误 由固体和液体的特点可知 选项'正确 物体的内能不仅与物体的体积有关 还与温度 质量等有关 选项&错误" $在水收缩过程中水的体积减小 表面张力做正功 表面张力能减小"("解 设Z 形管的截面积为L !对右端封闭空气柱有:!*,,92R I !1!*!$L !,!*())Y !:$*,.92R I !1$*!!L 由:!1!,!*:$1$,$解得,$*$06Y !即#$*1.X $对左端封闭空气柱1+!*!)L !,D !*())Y !,D $*$06Y !1+$*)+$L 由1+!,+!*1+$,+$解得)+$*6"492故活塞移动的距离!(* !)+!16"4 92*$"!92命题立意 本题考查的是理想气体状态方程"难度中等"3"解 !活塞缓慢上升 视为等压过程则气体对活塞做功G *'!A *:)L !A *!.)E $ 根据热力学定律!I *1G +7*())E命题立意 本题考查分子动理论基本概念的应用 油膜法估算分子的直径 热力学第一定律"难度中等"."解 ! 活塞向右运动后 对$气体 有:$)L *: )+( L 对%气体 有:%)L *: )1( L得(*!.92:*$0!5!).[? $活塞;向右移动 对%中气体做功 而气体作等温变化 内能不变 故%内气体放热命题立意 本题考查的是气体的等温变化和热力学第一定律"难度中等"0"解 ! :!*:)*!")5!).[?!1!*$3L 1$*)$L !:$*:)1/"L * !")5!).13)$5!)1( [?*)"65!).[?气体作等温变化 有:!1!*:$1$得)$*:!1!:$L *!0)5!).5$3L )065!).L 92*()92 $ 设活塞刚到卡环时温度为,(此时1(*(0L 由于等压变化 有1$,$*1(,(得,(*1(1$,$*(0L ()L5())Y *(0)Y ( 由(0)Y 到.3)Y 为等容变化由:(,(*:3,3和:(*:$得:3*,3,(:(*.3)(0)5)"65!).[?*!"$5!).[? 命题立意 本题考查等容变化 等温变化 等压变化"难度中等"。
热力学练习题全解

热力学练习题全解热力学是研究热能转化和热力学性质的科学,它是物理学和化学的重要分支之一。
在热力学中,我们通过解决一系列练习题来巩固和应用所学知识。
本文将为您解答一些热力学练习题,帮助您更好地理解和应用热力学的基本概念和计算方法。
1. 练习题一题目:一个理想气体在等体过程中,吸收了50 J 的热量,对外界做了30 J 的功,求该气体内能的变化量。
解析:根据热力学第一定律,内能变化量等于热量和功之和。
即ΔU = Q - W = 50 J - 30 J = 20 J。
2. 练习题二题目:一摩尔理想气体从A状态经过两个等温过程和一段绝热过程转变为B状态,A状态和B状态的压强和体积分别为P₁、P₂和V₁、V₂,已知 P₂ = 4P₁,V₁ = 2V₂,求这个过程中气体对外界做的总功。
解析:由两个等温过程可知,气体对外界做的总功等于两个等温过程的功之和。
即 W = W₁ + W₂。
根据绝热过程的特性,绝热过程中气体对外做功为零。
因此,只需要计算两个等温过程的功即可。
根据理想气体的状态方程 PV = nRT,结合已知条件可得:P₁V₁ = nRT₁①P₂V₂ = nRT₂②又已知 P₂ = 4P₁,V₁ = 2V₂,代入式①和式②可得:8P₁V₂ = nRT₁③4P₁V₂ = nRT₂④将式③和式④相减,可得:4P₁V₂ = nR(T₁ - T₂) ⑤由于这两个等温过程温度相等,即 T₁ = T₂,代入式⑤可得:4P₁V₂ = 0所以,这个过程中气体对外界做的总功 W = 0 J。
通过以上两个练习题的解答,我们可以看到在热力学中,我们通过应用热力学第一定律和理想气体的状态方程等基本原理,可以解答各种热力学问题。
熟练掌握这些计算方法,有助于我们更深入地理解热力学的基本概念,并应用于实际问题的解决中。
总结:本文对两道热力学练习题进行了详细解答,分别涉及了等体过程和等温过程。
通过这些例题的解析,读者可以理解和掌握热力学的基本计算方法,并将其应用于实际问题的求解中。
(完整word版)高考选修3-3热学训练计算题

热学训练一解答热学计算题的基础知识1、热学计算题考查对象:一定质量的理想气体。
气体的研究对象一般为“一定质量”的“理想气体”。
理想气体具备以下特点:(1)气体分子本身无大小,可以认为是质点;(2)分子间的碰撞看成弹性碰撞,分子间除碰撞外不计分子间的相互作用力;(3)没有分子势能,只有分子动能,气体的热力学能(内能)是分子动能,只与温度有关;(4)满足三个实验定律和理想气体状态方程.2、近几年高考的热学计算题围绕理想气体的状态即体积、温度和压强的变化关系来考查,同时考查理想气体的内能变化与做功和热传递的关系。
3、描述理想气体状态的物理量:(1)体积V :气体没有固定的体积,气体的体积由容器决定,容器的体积就是气体的体积(注意:气体可以充满整个容器,只要容器连通,气体都能扩散到每个空间,所以气体体积是连通的容器的总体积)。
若气体体积不变,那么气体分子密度不变、外界对气体做功为零(或不做功);气体膨胀,体积增大,分子密度变小,对外做功;气体收缩,体积较小,分子密度增大,外界对气体做功。
(2)气体的温度:指气体的热力学温度,是气体平均动能的标志,同时也是内能的唯一决定因素(因为气体没有分子势能),温度越高,分子运动越激烈;(3)气体的压强:容器内气体压强处处相等,都是由于大量气体分子频繁撞击气壁产生的,与气体重力无关;两个容器只要有通道,气体分子可以自由流过,两个容器的压强一定相等;只要气体与大气相通,压强一定为大气压,气体和液体接触表面,压强相等。
液体的压强gh P ρ=,ρ表密度,g 表重力加速度,h 表液体的高度;对于水银来说,0P =76cmHG 代入上式刚好等于一个标准大气压;液体内部同一高度的地方,压强都相等;液体与气体相接触的地方压强也相等。
液体上部与大气相通,深为h 的地方压强gh P P ρ+=0。
固体的压强SF P =,F 表压力,S 表面积。
4、四个过程 指气体状态变化的四个过程:等温过程、等容过程、等压过程、绝热过程。
高中物理3-3热学练习题(含答案)

高中物理选修3-3热学(复习)试题一、单项选择题1、在测定分子大小的油膜实验中,下面的假设与该实验无关的是()A.油膜的体积等于总的分子体积之和B.油膜为单层分子且都是球形C.分子是一个挨一个排列,它们间的间隙可忽略D.油膜中分子沿直线排列2、关于分子的热运动,下述正确的是()A.分子的热运动就是布朗运动B.布朗运动是悬浮在液体中微粒的分子的无规则运动,它反映微粒分子的无规则运动C.温度越高,悬浮微粒越小,布朗运动越激烈D.物体的速度越大,内部分子的热运动越激烈3、右图为两分子系统的势能E p与两分子间距离r的关系曲线。
下列说法正确的是()A.当r大于r1时,分子间的作用力表现为引力B.当r小于r1时,分子间的作用力表现为斥力C.当r等于r1时,分子间的作用力为零D.在r由r1变到r2的过程中,分子间的作用力做负功4、气体的温度升高了30℃,在热力学温标中,温度升高了()A. 30KB. 273+30KC. 243KD. 303K5、下列关于内能的说法中,正确的是()A.不同的物体,若温度相等,则内能也相等B.物体速度增大,则分子动能增大,内能也增大C.对物体做功或向物体传热,都可能改变物体的内能D.冰熔解成水,温度不变,则内能也不变6、某汽车后备箱内安装有撑起箱盖的装置,它主要由汽缸和活塞组成。
开箱时,密闭于气缸内的压缩气体膨胀,将箱盖顶起,如图所示。
在此过程中,若缸内气体与外界无热交换,忽略气体分子间相互作用,则缸内气体()A.对外做正功,内能增大B.对外做正功,分子的平均动能减小C.对外做负功,分子的平均动能增大D.对外做负功,内能减小7、一定质量的气体,在体积不变时,温度每升高1℃,它的压强增加量()A. 相同B. 逐渐增大C. 逐渐减小D. 成正比例增大8、已知理想气体的内能与温度成正比。
如图,实线是汽缸内一定质量的理想气体由状态1到状态2的变化曲线,则在整个过程中汽缸内气体的内能()A、先增大后减小B、先减小后增大C、单调变化D、保持不变9、两个容器A、B用截面均匀的水平玻璃管相通,如图所示,A、B中所装气体温度分别为100ºC和200ºC,水银柱在管中央平衡,如果两边温度都升高100ºC,则水银将()A.向左移动 B.向右移动C.不动 D.无法确定10、在密闭的四壁绝热的房间里,使房里长期没工作的电冰箱开始工作,并打开电冰箱的门,经过一段较长时间之后()A.房间内的温度将降低 B.房间内的温度将不变C.房间内的温度将升高 D.无法判断房间内温度的变化,铝的摩尔质量为M,铝的密度为ρ,则下列说法13、已知阿伏伽德罗常数为NA正确的是( )A.1kg铝所含原子数为ρN A B.1个铝原予的质量为M/N A/(ρM) D.1个铝原子所占的体积为M/(ρN A) C.1m3铝所含原子数为NA14、一个物体沿粗糙斜面匀速滑下,则下列说法正确的是()A.物体机械能减小,内能增大B.物体机械能减小,内能不变C.机械能与内能总量减小D.机械能与内能总量不变15、下列说法正确的是()A.第二类永动机与第一类永动机一样违背了能量守恒定律B.自然界中的能量是守恒的,所以能量永不枯竭,不必节约能源C.热力学第二定律反映了自然界中任何宏观过程都具有方向性D.不可能让热量由低温物体传递给高温物体而不引起其它任何变化16、如图所示,绝热气缸中间用固定栓将可无摩擦移动的导热隔板固定,隔板质量不计,左右两室分别充有一定量的氢气和氧气(视为理想气体)。
人教版高二物理选修3-3《热学》选择题专项练习题(含答案).doc

人教版高二物理选修3-3《热学》选择题专项练习题(含答案)人教版高二物理选修3-3《热学》选择题专项练习题(含答案)1.下列说法中正确的是 A. 当分子间作用力表现为斥力时,分子势能随分子间距离的增大而增大B. 气体压强的大小跟气体分子的平均动能有关,与分子的密集程度无关C. 食盐晶体的物理性质沿各个方向都是一样的D. 由于液体表面分子间距离大于液体内部分子间的距离,液面分子间表现为引力,所以液体表面具有收缩的趋势2.下列关于布朗运动的说法,正确的是 A. 布朗运动反映了分子在永不停息地做无规则运动 B. 布朗运动是指在显微镜中看到的液体分子的无规则运动C. 悬浮颗粒越大,同一时刻与它碰撞的液体分子越多,布朗运动越显著D. 当物体温度达到0°C 时,物体分子的热运动就会停止3.如图所示描述了封闭在某容器里的理想气体在温度aT 和bT 下的速率分布情况,下列说法正确的是A. a b T TB. 随着温度升高,每一个气体分子的速率都增大C. 随着温度升高,气体分子中速率大的分子所占的比例会增加D. 若从a T 到 bT 气体的体积减小,气体一定从外界吸收热量4.由于分子间存在着分子力,而分子力做功与路径无关,因此分子间存在与其相对距离有关的分子势能。
如图所示为分子势能E p随分子间距离r变化的图象,取r趋近于无穷大时E p为零。
通过功能关系可以从分子势能的图象中得到有关分子力的信息,则下列说法正确的是A. 假设将两个分子从r = r2处释放,它们将开始远离B. 假设将两个分子从r=r2处释放,它们将相互靠近C. 假设将两个分子从r=r1处释放,它们的加速度先增大后减小D. 假设将两个分子从r=r1处释放,当r=r2时它们的速度最大5.如图所示,一导热性能良好.....的金属气缸静放在水平面上,活塞与气缸壁间的摩擦不计。
气缸内封闭了一定质量的气体,气体分子间的相互作用不计。
现缓慢地逐渐向活塞上倒一定质量的沙土,忽略环境温度的变化,在此过程中A. 气体的内能增大B. 气缸内分子的平均动能增大C. 单位时间内撞击气缸壁单位面积上的分子数一定增多D. 因为外界对气体做了功,所以气体的温度是升高的7.下列说法中正确的是A. 物体的温度升高时,其内部每个分子热运动的动能一定增大B. 气体压强的产生是大量气体分子对器壁持续频繁的碰撞引起的C. 物体的机械能增大,其内部每个分子的动能一定增大D. 分子间距离减小,分子间的引力和斥力一定减小8.关于热现象,下列说法不正确的是A. 若一定质量的理想气体在膨胀的同时放出热量,则气体分子的平均动能减小B. 悬浮在液体中的颗粒越小、温度越高,布朗运动越剧烈C. 液晶与多晶体一样具有各向同性D. 当分子间的引力与斥力平衡时,分子势能最小9.下列改变物体内能的物理过程中,不属于对物体做功来改变物体内能的有A. 用锯子锯木料,锯条温度升高B. 阳光照射地面,地面温度升高C. 锤子敲击钉子,钉子变热D. 擦火柴时,火柴头燃烧起来10.下列说法中正确的是A. 物体甲自发传递热量给物体乙,说明甲物体的内能一定比乙物体的内能大B. 温度相等的两个物体接触,它们各自的内能不变且内能也相等C. 若冰熔化成水时温度不变且质量也不变,则内能是增加的D. 每个分子的内能等于它的势能和动能之和11.快递公司用密封性好、充满气体的塑料袋包裹易碎品,如图所示,假设袋内气体与外界没有热交换,当充气袋的四周被挤压时A. 外界对袋内气体做功,气体内能增大,温度升高B. 外界对袋内气体做功,气体内能减小,温度降低C. 袋内气体对外界做功,气体内能增大,温度不变D. 袋内气体对外界做功,气体内能减小,温度降低12.下列说法正确的是A. 常温常压下,一定质量的气体,保持体积不变,压强将随温度的增大而增大B. 用活塞压缩气缸里的空气,对空气做功3.5×105J同时空气的内能增加了2.5×105J,则空气从外界吸收热量1×105JC. 物体的温度为0℃时,分子的平均动能为零D. 热量从低温物体传到高温物体是不可能的13.下列说法中正确的是A. 当两分子间距离大于平衡距离r0时,分子间的距离越大,分子势能越小B. 叶面上的小露珠呈球形是由于液体表面张力的作用C. 在空气中一定质量的100ºC的水吸收热量后变成100ºC的水蒸汽,则吸收的热量大于增加的内能D. 对一定质量的气体做功,气体的内能不一定增加E. 热量不可以从低温物体向高温物体传递14.关于热现象,下列说法中正确的是A. 显微镜下观察到墨水中的小炭粒在不停地做无规则运动,这反映了液体分于运动的无规则性B. 扩散现象说明分子之间存在空隙,同时分子在永不停息地做无规则运动C. 自然界中所有宏现过程都具有方向性D. 可利用高科技手段、将流散的内能全部收集加以利用,而不引起其他变化E. 对大量事实的分析表明,不论技术手段如何先进,热力学零度最终不可能达到15.下列说法中,表述正确的是A. 气体的体积指的是气体的分子所能够到达的空间的体积,而不是该气体所有分子的体积之和.B. 理论上,第二类永动机并不违背能量守恒定律,所以随着人类科学技术的进步,第二类永动机是有可能研制成功的C. 外界对气体做功时,其内能可能会减少D. 给自行车打气,越打越困难主要是因为胎内气体压强增大,而与分子间的斥力无关16.关于布朗运动,下列说法中正确的是A. 布朗运动是分子的运动,牛顿运动定律不再适用B. 布朗运动是分子无规则运动的反映C. 悬浮在液体中的固体小颗粒的无规则运动是布朗运动D. 布朗运动的激烈程度跟温度有关,所以布朗运动也叫做热运动E. 布朗运动的明显程度与颗粒的体积和质量大小有关17.下列说法中正确的是A. 只知道水蒸气的摩尔体积和水分子的体积,不能计算出阿伏加德罗常数B. 硬币或者钢针能够浮于水面上,是由于液体表面张力的作用C. 晶体有固定的熔点,具有规则的几何外形,物理性质具有各向异性D. 影响蒸发快慢以及人们对干爽与潮湿感受的因素是空气中水蒸气的压强与同一气温下水的饱和汽压的差距E. 随着科技的发展,可以利用高科技手段,将散失在环境中的内能重新收集起来加以利用而不引起其他变化18.18.一定量的理想气体从状态a开始,经历三个过程ab、bc、ca回到原状态。
高三复习高中物理重点知识习题 选修3-3热学 - (含答案)
第十三章 选修3-3 热学1、(2018·全国卷Ⅱ,33)(1)(5分)对于实际的气体,下列说法正确的是________。
(选对1个得2分,选对2个得4分,选对3个得5分。
每选错1个扣3分,最低得分为0分)A.气体的内能包括气体分子的重力势能B.气体的内能包括气体分子之间相互作用的势能C.气体的内能包括气体整体运动的动能D.气体的体积变化时,其内能可能不变E.气体的内能包括气体分子热运动的动能(2)(10分)如图,一竖直放置的汽缸上端开口,汽缸壁内有卡口a 和b ,a 、b 间距为h ,a 距缸底的高度为H ;活塞只能在a 、b 间移动,其下方密封有一定质量的理想气体。
已知活塞质量为m ,面积为S ,厚度可忽略;活塞和汽缸壁均绝热,不计它们之间的摩擦。
开始时活塞处于静止状态,上、下方气体压强均为p 0,温度均为T 0。
现用电热丝缓慢加热汽缸中的气体,直至活塞刚好到达b 处。
求此时汽缸内气体的温度以及在此过程中气体对外所做的功。
重力加速度大小为g 。
答案 (1)BDE (2)()1+h H ()1+mg p 0S T 0 (p 0S +mg )h 解析 (1)实际气体的内能包括气体分子间相互作用的势能和分子热运动的动能,当气体体积变化时影响的是气体的分子势能,内能可能不变,所以B 、D 、E 正确,A 、C 错误。
(2)开始时活塞位于a 处,加热后,汽缸中的气体先经历等容过程,直至活塞开始运动。
设此时汽缸中气体的温度为T 1,压强为p 1,根据查理定律有p 0T 0=p 1T 1①根据力的平衡条件有p 1S =p 0S +mg ②联立①②式可得T 1=()1+mg p 0S T 0③ 此后,汽缸中的气体经历等压过程,直至活塞刚好到达b 处,设此时汽缸中气体的温度为T 2;活塞位于a 处和b 处时气体的体积分别为V 1和V 2。
根据盖-吕萨克定律有V 1T 1=V 2T 2④式中V 1=SH ⑤V 2=S (H +h )⑥联立③④⑤⑥式解得T 2=()1+h H ()1+mg p 0S T 0⑦ 从开始加热到活塞到达b 处的过程中,汽缸中的气体对外做的功为W =(p 0S +mg )h ⑧ 2.(1)(5分)下列说法正确的是________。
热学习题参考答案
热学习题参考答案热学习题参考答案热学习题是学习热力学过程中常见的一种形式,通过解答这些题目可以帮助我们更好地理解和应用热力学知识。
下面将针对一些常见的热学习题进行参考答案的解析,希望能对大家的学习有所帮助。
1. 一个理想气体在等容过程中,温度从300K升高到600K,求气体对外界做的功。
根据等容过程的特点,气体在此过程中体积保持不变,因此对外界做的功为0。
2. 一个物体的质量为2kg,它的比热容为0.5J/g·℃,将其从20℃加热到80℃,求所需的热量。
首先需要将物体的质量转换成克,即2kg=2000g。
然后可以利用热量公式Q=mcΔT来计算所需的热量。
其中,m为物体的质量,c为物体的比热容,ΔT为温度变化。
代入数据,可得Q=2000g×0.5J/g·℃×(80℃-20℃)=2000g×0.5J/g·℃×60℃=60000J=60kJ。
所以,所需的热量为60kJ。
3. 一个容器内有1mol的理想气体,初始温度为300K,压强为2atm。
气体发生等压过程,最终温度为600K,求气体对外界做的功。
根据等压过程的特点,气体在此过程中压强保持不变,因此可以利用功的计算公式W=PΔV来计算气体对外界做的功。
其中,P为气体的压强,ΔV为气体的体积变化。
由于气体为理想气体,可以利用理想气体状态方程PV=nRT来计算气体的体积变化。
其中,n为气体的摩尔数,R为气体常数,T为气体的温度。
初始状态下,PV=nRT,即2atm×V=1mol×R×300K。
最终状态下,PV=nRT,即2atm×V'=1mol×R×600K。
将两个方程相除,可得V'/V=600K/300K=2。
由于等压过程中气体的体积变化与温度变化成正比,因此V'/V=2,代表气体的体积增加了一倍。
代入公式W=PΔV,可得W=2atm×V=2atm×(V'-V)=2atm×V=2atm×(2V-V)=2atm×V=2atm×V=4atm×V。
九年级物理热学练习题及答案
九年级物理热学练习题及答案一、选择题1. 在几种颜色的纱袋中装有相同重量的冰块,将它们放在阳光下照射,哪种纱袋内的冰块首先融化?A) 白色纱袋 B) 黑色纱袋 C) 红色纱袋 D) 蓝色纱袋2. 在热学实验中,如何准确测量一个物体表面的温度?A) 用红外线温度计测量 B) 用普通温度计测量 C) 用热敏电阻测量 D) 用热电偶测量3. 将等质量的水和同温度的脂肪油放在火中加热,哪个液体温度上升较快?A) 水 B) 脂肪油 C) 两者一样快 D) 无法确定4. 在哪个状态下,物质的热容量最大?A) 气体 B) 液体 C) 固体 D) 无所谓5. 以下哪种方式不会传热?A) 热辐射 B) 热传导 C) 热对流 D) 以上都会传热二、填空题6. 一个物体的质量为500克,温度上升10摄氏度,所吸收的热量为_____________。
7. 烧杯中加热100克的水,温度由25摄氏度升高到80摄氏度,热量为_____________。
8. 一个物体受到10焦耳的热量,温度上升2摄氏度,这个物体的热容量为_____________。
9. 某物体质量为2千克,比热容为4000焦耳/千克摄氏度,将其温度由20摄氏度升高到50摄氏度,所吸收的热量为_____________。
10. 若将1克物质从固体状态加热融化成液体所需的热量为Q,将该物质从液体状态加热蒸发成气体所需的热量为3Q,则该物质的熔化热为_____________。
三、解答题11. 什么是热传导?简述其在实际生活中的应用。
12. 请解释热对流的原理,并给出一个例子说明。
13. 熔化热和沸点是物质的两个重要性质,请说明二者的定义及计量单位。
14. 隔热材料的作用是什么?请给出三个常见的隔热材料。
15. 一台空调在夏天的使用中,主要通过什么方式降低室内的温度?简要阐述其工作原理。
答案:1. B2. A3. A4. A5. D6. 250焦耳7. 27000焦耳8. 5焦耳/摄氏度9. 48000焦耳10. Q11. 热传导是物质内部因分子振动传递的能量。
热学教程习题参考解(第三章)
《热学教程》习题参考答案第三章 习 题3-1. 在掷两颗骰子时,组成总点数为2,3,4,5,6,7,8,9,10,11,12的概率各为多少? 并用所得结果检验归一化条件.(答: P 2=P 12=361,P 3= P 11=181,P 4= P 10=121,P 5= P 9=91,P 6=P 8=365,P 7=1;1P 122=∑=i i )解:每个骰子有六个面,在条件完全等同的情况下掷骰子,出现每个面的概率都相等,等于()61,满足等概率原理. 当掷两个骰子时,出现任意一种组合的概率为()361. 考虑到骰子的六个面形成三组对称面,分别为1-6,2-5,3-4. 故出现两颗骰子总数为2的概率与出现总数为12的概率相等;同理出现总数为3与总数为11的概率相等,故一般情况下出现总数为i 和()i -14的概率满足关系式:i i P P =-14,12,,3,2 =i .因此, 可以写出:()361122==P P ,()181113==P P ,为什么掷两个骰子时出现总数为3的概率比总数为2的概率大一倍?这是因为形成总数为2时的两骰子,只有一种组合()1,1;而形成总数为3时的两骰子,可以有两种组合:()1,2 或 ()2,1. 作类似分析可知:()121104==P P ,两面的可能组合为()2,2,()1,3,()3,1;()195==P P ,组合为()4,1,()1,4,()3,2,()2,3;()586==P P ,组合为()3,3,()4,2,()2,4, ()5,1,()1,5;()617=P ,组合为()6,1,()1,6,()5,2,()2,5,()4,3,()3,4.不难看出总概率之和满足归一条件:1122=∑=i i P ,这结果说明,只要掷两个骰子一次,总会出现各种可能组合中的一种组合,事件总是会发生的.3-2. 从一副扑克的52张牌中,任意抽取两张,问都是红桃的概率有多大?( 答: 5.88 %) 解:3-3 甲、乙两个高射炮手同时射击一入侵敌机,甲和乙分别击中敌机的概率为60% 和50%,问敌机被击落的概率为多少? ( 答:80% ) 解:3-4. 计算300K 时氧分子的最概然、平均和方均根速率.(答:395 m/s,446 m/s,483 m/s) 解: 氧分子的最概然、平均和方均根速率分别为:13s m 395103230031.822--⋅=⨯⨯⨯==μRTv p , 13s m 446103214.330031.888--⋅=⨯⨯⨯⨯==μπRTv , 132s m 483103230031.833--⋅=⨯⨯⨯==μRTv . 3-5. 气体分子速率与最概然速率之差不超过1%的分子数目占全部分子数目的百分之几? (答:1.66 %)解: 应用麦克斯韦速率分布律,可得:(),%66.10166.002.042exp 24B 2p 23B 2p p ==⨯⨯==∆⎪⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛=∆ev T k mv T k m v Nv N πππ其中的 p 02.0v v =∆;m T k v B p 2=.3-6. 试就下列几种情况,求气体分子数目占总分子数目的比率:(1) 速率在区间p p ~v v 1.01内;(2) 速度分量x v 在区间p p ~v v 1.01内;(3) 速度分量x v ,z y v v ,同时在区间p p ~v v 1.01内.(答:8.3×103-;2.08×103-;9×109-) 解: (1)();103.801.0401.02ex p 243p B 2p 3B 2p -⨯=⨯⨯=⨯⎪⎪⎭⎫⎝⎛-⎪⎪⎭⎫⎝⎛=∆e v T k mv T k m v Nv N p πππ (2)();1008.201.001.02ex p 23p B 2p 21B p -⨯=⨯=⨯⎪⎪⎭⎫⎝⎛-⎪⎪⎭⎫⎝⎛=∆e v T k mv T k m N v N ππ (3)()932363p 6B 2p 23B p 1094.8101023ex p 2---⨯=⨯=⨯⎪⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫⎝⎛=∆e v T k mv T k m N v N ππ 3-7. 设有一群粒子具有下列速率分布:试求:(1)平均速率v ;(2)方均根速率2v ;(3)最概然速率p v .(答:(1)318m/s ;(2)337m/s ;(3)400m/s) 解:(1);s m 31820806040205002040080300602004010020=++++⨯+⨯+⨯+⨯+⨯==∑∑iiiii N v N v(2)s m 33722==∑∑iiii i N v N v ;(3)s m 400p =v .3-8. 设氢气的温度为300K,求速率在3000~3010m/s 之间的分子数1n 与速率在最概然速率附近10~p p +v v m/s 之间的分子数2n 之比.(答:26.5 %)解: 应用麦克斯韦速率分布律,可得两种速率区间内气体分子数之比为:()()⎪⎪⎭⎫⎝⎛--⎪⎪⎭⎫ ⎝⎛=∆∆=2p 2p212p 21p p 11p 1ex p v v v v v v v f v v f n n , 已知式中的 ;m 157910230031.822,s m 30003p 1=⨯⨯⨯===-μRT v v,s m 10p 1=∆=∆v v 故可求得()%5.26265.0p 1==n n .3-9. 证明: 若以最概然速率为度量气体分子速率的单位,用u 表示此相对速率,则速率处于u u u d ~+之间的分子数与气体的温度无关.解: 以最概然速率m T k v B p 2=为单位,衡量气体分子的速率,可以引进无量纲速 率()p v v u =,从而可写出无量纲的麦克斯韦速率分布律及其分布函数:()()u u f N u N d d =, ()()22ex p 4u u u f -=π. 不难看出,无量纲的麦克斯韦速率分布律仍然满足归一条件,而且与温度明显无关.3-10. 根据麦克斯韦速率分布律,求速率倒数的平均值 v / 1,并与速率平均值v 的倒数相比较.(答:T k m B 2π)解: 应用麦克斯韦速率分布律,可得:()21B 20B 223B 02d 2ex p 22d 11⎪⎪⎭⎫⎝⎛=⎪⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛==⎰⎰∞∞T k m v T k mv T k m v v f v v πππ,显然它较之平均速率的倒数 21B 81⎪⎪⎭⎫⎝⎛=T k m v π要大. 3-11. 用泻流分离从天然铀中将同位素U 235浓缩到99.5%,需作几级泻流?(答:2395)解: 应用能计算泻流使轻组元较之种组元相对富集的公式2122121''β⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛m m n n n n ,式中的‘1’和‘2’分别表示泻流气体中的轻组元6235F U 和重组元6238F U ;1m 和2m 分别是轻和重组元的分子质量,即它们的摩尔质量分别为/m ol kg 349.0A 11==N m μ和kg/mol 352.0A 22==N m μ,这里的A N 是阿伏伽德罗常数;1n ,'1n 和2n ,'2n 分别表示轻和重组元在泻流前和经过β次泻流后的丰度,由题意可知:%7.01=n ,%3.992=n 和%5.99'1=n ,%5.0'2=n .故可求得泻流级数为:2395349352ln 5.07.03.995.99ln 2ln ln 22112'2'1=⎭⎬⎫⎩⎨⎧⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛⨯⨯=⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧⎪⎪⎭⎫ ⎝⎛⎥⎥⎦⎤⎢⎢⎣⎡⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛=m m n n n n β. 3-12. N 个气体分子满足如图所示的速率分布,试(1)由N 和0v 求a ;(2)求速率在1.500~v v 2.0之间的分子数目;(3)求分子的平均速率.(答:(1) 032v N ;(2)3N ;(3)9110v )解:(1) 由归一条件可得:()()()N v v f N v v f N v v f N v v v =+=⎰⎰⎰∞0200d d d ,按题意可知:()()a v f N v v v av v f N v v =>=≤,;,000,故得()N av av v v a v v f N ==⎪⎪⎭⎫ ⎝⎛+⨯=⎰∞232d 002000, 032v Na =; 习题3-12图(2)气体分子速率在000.2~5.1v v 之间的分子数目为()35.0d d 00.25.10.25.10N v a v a v v f N v v v v===⎰⎰; (3)气体分子的平均速率为()020000911d 32d d 000v v v v v v N v a vv v f v v v v v =+==⎰⎰⎰∞。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第三章热力学第一定律
一.填空题
1、内能是系统内和的总和
2、如果利用节流致冷效应来液化气体,必须将其温度先降到上转换温度以下。
根据下列数据,通常氮气、氧气等在常温常压下,发生
3
体膨胀可近似为理想气体准静态绝热膨胀过程,其结果是内能,温度
4、和是改变系统内能(状态)的两种方式
5、能量守恒定律告诉我们,能量既不能创生,也不能消灭,只能从
,或从,在转化或转移过程中能量守恒
6、在P-V空间中,一个点表示一个,一条线表示一个
7、我们若将心脏输运血液过程视为准静态过程,人的心脏大约每分钟跳动60次,每次输运血液约为80ml,人血压的平均值约为1.6x104Pa。
则人的心脏功率为
8、对于热机,一般其低温热源T2是。
因此,提高热机效率,可行的途径是通过提高来实现
9、Joule和Gay-Lussac在气体绝热自由膨胀过程都没有观测到系统温度的变化,似乎说明气体内能与体积无关,仅是温度的函数。
事实上,由于,即便气体的温度有了少许变化,也难以观测到水温的变化10、对于制冷机,一般其高温热源T1是。
若使制冷温度T2愈低,制冷系数ε ,制冷过程愈长,耗能愈多
11、在高温T1=900K和低温T2=300K之间工作的热机,其热机效率最大值为
二.概念与定理定律解释
1、热力学第一定律
2、准静态过程
3、定体热容量
4、定压热容量
5、热机
6、热机效率
7、制冷系数
8、绝热过程
三.论述题
1、根据分子运动的统计力学观点,论述理想气体分子在绝热膨胀过程中压强变化的原因。
2、根据分子运动的统计力学理论,论述理想气体分子在等温过程中压强变化的原因?
四.证明题(必要的文字说明)
1、根据热力学第一定律和理想气体方程,推证绝热过程方程:
2、证明卡诺循环的热机效率:
3、由于空气的热传导系数很小(常温下,0.027 W/mK),大气对流层中暖气流缓慢上升时,气体膨胀可近似为理想气体准静态绝热膨胀过程,温度降低。
根据大气绝热模型,证明大气对流层的温度随高度变化规律:
dT/dz = - (γ-1)M mol g/γR,取空气的绝热指数γ= C P/C V=1.4、M mol = 29 g /mol,计算出大气绝热递减率。
五.综合题(必要的说明和数学过程)
1、我们设计一个由热机和制冷机构成的理想的双效循环装置。
热机通过燃烧燃料,向供暖系统中的水放热,同时带动制冷机工作;制冷机从食品储藏室中吸热,也向供暖系统放热。
其中锅炉的温度为210℃,储藏室的温度为15℃,供暖系统的温度为60℃,煤的燃料值为
3.34x107J/kg. 如果热机和制冷机的循环均视为理想气体的Carnot 循环过程,那么,每燃烧1kg煤,供暖系统吸收的热量为多少?
2、卡诺热机在高温热源T1和低温热源T2之间工作,提高高温热源△T 或降低低温热源△T,均可以提高热机效率,请通过计算比较二者结果的大小,并从实际可行性讨论哪一种途径更有效?
3、海尔电冰箱工作时,其冷冻室中的温度为﹣10℃,冷藏室为5℃。
若按理想卡诺制冷循环计算,其制冷系数为多少?常温下,电冰箱工作时每消耗一度电,可以从冷冻室中吸收热量?
4、Newton根据声波的波动方程解出声波的波速公式:C S=,并认为声波的波动是等温过程,由此计算的声速为C S=298m/s。
Laplace认为声波是弹性纵波,波动过程要引起弹性介质的温度和压强变化;由于空气的
热传导系数很小,声波的波动应是绝热过程。
请根据绝热过程方程解出绝热模型声波的波速公式,计算标准状态下空气的声速值,并请作必要的说明。
(实际测定的声速值为346m/s;空气的主要成分是76%的N2和23%的O2,二者都是双原子分子,在常温下C v mol多数为5R/2)
5、质量为6.4×10-2kg的氧气,在气温为27℃时,体积为3×10-3m3。
计算下列各过程中气体所做的功。
(1)气体绝热膨胀至体积为1.5×10-
2m3;(2)气体等温膨胀至体积为1.5×10-2m3, 然后再等冷却,直到温度等于绝热膨胀后达到最后温度为止,并解释这两种过程中做功不同的原因。
6、一卡诺热机的低温热源的温度为7℃,效率为40%,若要将其效率提高到50%,问高温热源的温度应提高多少?
7、热泵实际上是利用制冷机来“制热”,由于制冷系数通常大于1。
因此,从节能的角度来看,是一种高效的热源。
一个热泵从-23℃的室外吸收热量,传递给室温为17℃卧室。
若按理想的卡诺循环计算,热泵工作时每消耗一度电,可以向卧室放出多少热量?
8、热力发电厂是通过锅炉、汽轮机、发电机,将热能转换为电能。
若发电厂的平均输出功率为50兆瓦(MW),其锅炉内的高温热源为1000K,低温热源就是大气温度,取300K。
若按理想的卡诺循环计算,热机效率为多少?若实际的热机效率仅为卡诺循环热机效率的70%,每秒钟需要提供多少热量?
9、理想气体的状态方程为PV n=常数,利用热力学第一定律求:(1)理想气体的热容量C;(2)图示热容量C随n的变化情况;(3)能否实现系统升温,同时系统放出热量这样的过程,如果能实现指出n的大小;如果不能,说明为什么。
(哈尔滨工业大学,2003)。