人教版七年级数学期中试卷及答案

合集下载

人教版数学七年级下学期《期中检测试卷》有答案解析

人教版数学七年级下学期《期中检测试卷》有答案解析

人 教 版 数 学 七 年 级 下 学 期期 中 测 试 卷学校________ 班级________ 姓名________ 成绩________一、选择题(每小题 3 分,共 24 分)1. 如果长春市 2020 年 4 月 30 日最高气温是 23℃,最低气温是 12℃,则当天长春市气温 t (℃)的变化范围是( )A. t >23B. t ≤23C. 12<t <23D. 12≤t ≤23 2. 若一个二元一次方程的一个解为21x y =⎧⎨=-⎩,则这个方程可以是( ) A. 1y x -= B. 1x y -=C. 1x y +=D. 21x y += 3. 用代入法解方程组124y x x y =-⎧⎨-=⎩时消去y ,下面代入正确的是( ) A. 24x x --= B. 224x x --= C. 24x x -+= D. 224x x -+= 4. 如图,△ABC 中,点D 是AB 边上的中点,点E 是BC 边上的中点,若S ∆ABC =12,则图中阴影部分的面积是( )A. 6B. 4C. 3D. 25. 已知21x y =⎧⎨=⎩是方程组14ax by bx ay +=⎧⎨+=-⎩的解,则a +b 的值是( ) A. ﹣1 B. 1 C. ﹣5 D. 56. 如图所示的图形中,能够用一个图形镶嵌整个平面的有( )个A. 1B. 2C. 3D. 47. 下列不等式变形错误的是( )A. 若 a >b ,则 1﹣a <1﹣bB. 若 a <b ,则 ax 2≤bx 2C. 若 ac >bc ,则 a >bD. 若 m >n ,则21m x +>21n x + 8. 如图,在△ABC 中,∠A=α,点D ,E ,F 分别在BC ,AB ,AC 上,且∠1+∠2=120°,则∠EDF 度数为( )A. 120°+αB. 120°-αC. 240°-αD. α-60°二、填空题(每小题 3 分,共 18 分)9. 不等式2x -1 > 3x -1 的解集为_____.10. 若三角形的两边长分别为 2cm 和 4cm ,且第三条边为偶数,那么这个三角形的周长为______cm . 11. 关于 x 的不等式-2 < x -1≤ 3 的所有整数解的和为_____.12. 某商品进价1000元,售价为1500元.为促销,商店决定降价出售,但保证利润率不低于5%,则商店最多降____元出售商品.13. 有一个两位数,其个位数字比十位数字大 2,且这个两位数大于 20 且小于 30,那么这个两位数是_____.14. 如图,七边形ABCDEFG 中,AB ,ED 的延长线交于点O ,若l ∠,2∠,3∠,4∠的外角和等于210,则BOD ∠的度数为______.三、解答题(共 78 分)15. 解不等式:(1) 3(x -1) < 4x + 4 ;(2)342523x x-++≥.16. 解下列方程组:(1)2 2314 m nm n-=⎧⎨+=⎩;(2)3(1)4(2) 231y xx y+=+⎧⎨-=+⎩.17. 解不等式组:(1)513(1)182x xx x->+⎧⎨-≤-⎩;(2)2+53(2)123x xx x≤+⎧⎪+⎨<⎪⎩.18. “雷神山”病床安装突击队有22 名队员,按要求在规定时间内要完成340 张病床安装,其中高级工每人能安装20 张,初级工每人能安装15 张. 问该突击队高级工与初级工各多少人?19. 甲乙两辆汽车同时从A、B 两地相向开出,甲车每小时行56 千米,乙车每小时行48 千米,两车在距A、B 两地的中点32 千米处相遇.求甲乙两地相距多少千米?20. 如图,在△ABC 中,∠B=26°,∠BAC=30°,过点A 作BC 边上的高,交BC 的延长线于点D,CE 平分∠ACD,交AD 于点E.求∠AEC 的度数.21. 甲、乙两家药店销售的额温枪和口罩的质量和价格一致,已知每支额温枪标价为200 元,每个口罩的标价为4 元.甲、乙两家药店推出各自的销售方案,甲药店:买一支额温枪赠送10 个口罩;乙药店:额温枪和口罩全部按标价的9 折优惠.现某公司要购买20 支额温枪和若干个口罩,若购买的口罩为x 个(x>200).(1)分别用含x 的式子表示到甲、乙两家药店购买额温枪和口罩所需的金额.到甲药店购买需要金额为元;到乙药店购买需要金额为元.(2)购买的口罩至少为多少个时到乙药店购买更合算?22. 某中学为打造书香校园,计划购进甲、乙两种规格书柜放置新购进的图书,调查发现,若购买一个乙种书柜比购买一个甲种书柜贵60元,若购买甲种书柜1个、乙种书柜2个,共需资金660元.(1)甲、乙两种书柜每个的价格分别是多少元?(2)若该校计划购进这两种规格的书柜共20个,其中乙种书柜的数量不少于甲种书柜的数量,学校至多能够提供资金4320元,请问学校有哪几种购买方案.23. (1)如图(1),在△ABC 中,∠BAC=70°,点D 在BC 延长线上,三角形的内角∠ABC 与外角∠ACD 的角平分线BP,CP 相交于点P,求∠P 的度数.(写出完整的解答过程)[感知]:图(1)中,若∠BAC=m°,那么∠P= °(用含有m 代数式表示)[探究]:如图(2)在四边形MNCB 中,设∠M=α,∠N=β,α+β>180°,四边形的内角∠MBC与外角∠NCD 的角平分线BP,CP 相交于点P.为了探究∠P 的度数与α 和β 的关系,小明同学想到将这个问题转化图(1)的模型,因此,他延长了边BM 与CN,设它们的交点为点A,如图( 3 ),则∠A= (用含有α 和β 的代数式表示),因此∠P= .(用含有α 和β 的代数式表示)[拓展]:将(2)中的α+β>180°改为α+β<180°,四边形的内角∠MBC 与外角∠NCD 的角平分线所在的直线相交于点P,其它条件不变,请直接写出∠P=.(用α,β的代数式表示)答案与解析一、选择题(每小题 3 分,共 24 分)1. 如果长春市 2020 年 4 月 30 日最高气温是 23℃,最低气温是 12℃,则当天长春市气温 t (℃)的变化范围是( )A. t >23B. t ≤23C. 12<t <23D. 12≤t ≤23 [答案]D[解析][分析]最高气温是23℃,即气温小于或等于23℃,最低气温是12℃,即气温大于或等于12℃,据此写出即可.[详解]解:如果长春市2020年4月30日最高气温是23℃,最低气温是12℃,则当天长春市气温 t (℃)的变化范围是:12≤t ≤23.故选:D .[点睛]本题考查了由实际问题抽象出不等式组,解题的关键是抓住关键词,正确理解最高和最低的含义. 2. 若一个二元一次方程的一个解为21x y =⎧⎨=-⎩,则这个方程可以是( ) A. 1y x -=B. 1x y -=C. 1x y +=D. 21x y += [答案]C[解析][分析]直接利用二元一次方程解的定义求解即可解答.[详解]解:∵一个二元一次方程的一个解为21x y =⎧⎨=-⎩∴.x+y=1,x-y=3,y-x=-3,x+2y=0.故C 正确.故答案为C.[点睛]本题考查了二元一次方程的解.理解二元一次方程的解就是指示方程等号两边的值相等的两个未知数的值是解答本题的关键. 3. 用代入法解方程组124y x x y =-⎧⎨-=⎩时消去y ,下面代入正确的是( ) A. 24x x --=B. 224x x --=C. 24x x -+=D. 224x x -+=[答案]D[解析][分析]方程组利用代入消元法变形得到结果,即可作出判断.[详解]用代入法解方程组124y x x y =-⎧⎨-=⎩时, 把y=1-x 代入x-2y=4,得:x-2(1-x )=4,去括号得:224x x -+=,故选:D .[点睛]本题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法. 4. 如图,△ABC 中,点D 是AB 边上的中点,点E 是BC 边上的中点,若S ∆ABC =12,则图中阴影部分的面积是( )A. 6B. 4C. 3D. 2[答案]C[解析][分析] 作CF AB ⊥交AB 于点F ,作DG BC ⊥交BC 于点G ,利用中点的性质即可求出BCD △的面积,同理可求出阴影部分面积.[详解]解:作CF AB ⊥交AB 于点F ,作DG BC ⊥交BC 于点G ,点D 是AB 边上的中点12BD AB ∴= 1111112622222BCD ABC S BD CF AB CF S ∴=⋅=⨯⋅==⨯= 点E 是BC 边上的中点 12CE BC ∴= 111116322222CED BCD S CE DG BC DG S ∴=⋅=⨯⋅==⨯= 所以阴影部分的面积为3.故选:C.[点睛]本题考查了和中点有关的三角形的面积,灵活的利用中点的性质表示三角形的面积间的关系是解题的关键.5. 已知21x y =⎧⎨=⎩是方程组14ax by bx ay +=⎧⎨+=-⎩的解,则a +b 的值是( ) A. ﹣1B. 1C. ﹣5D. 5[答案]A[解析][分析]把x 与y 的值代入方程组求a +b 的值即可. [详解]解:把21x y =⎧⎨=⎩代入方程组14ax by bx ay +=⎧⎨+=-⎩, 得:2124a b b a +=⎧⎨+=-⎩①②, ①+②得:3(a +b )=3-,则a +b =.故选:A .[点睛]此题考查了二元一次方程组的解,方程组的解即为能使方程组中两方程都成立的未知数的值. 6. 如图所示的图形中,能够用一个图形镶嵌整个平面的有( )个A. 1B. 2C. 3D. 4[答案]C[解析][分析]几何图形镶嵌成平面的关键是:围绕一点拼在一起的多边形的内角加在一起恰好组成一个周角,据此逐一判断即可.[详解]解:等腰三角形的内角和是180°,能被360°整除,放在同一顶点处能够用一种图形镶嵌整个平面; 四边形的内角和是360°,能被360°整除,放在同一顶点处能够用一种图形镶嵌整个平面;正六边形的每个内角是120°,能被360°整除,能够用一种图形镶嵌整个平面;正五边形的每个内角是108°,不能被360°整除,放在同一顶点处不能够用一种图形镶嵌整个平面; 圆不能够用一种图形镶嵌整个平面;综上所述,能够用一种图形镶嵌整个平面的有3个.故选:C .[点睛]本题考查了平面镶嵌(密铺),掌握几何图形镶嵌成整个平面的关键是解题的钥匙.7. 下列不等式变形错误的是( )A. 若 a >b ,则 1﹣a <1﹣bB. 若 a <b ,则 ax 2≤bx 2C. 若 ac >bc ,则 a >bD. 若 m >n ,则21m x +>21n x + [答案]C[解析][分析]根据不等式基本性质,逐项判断即可.[详解]A 、∵a >b ,∴﹣a <-b ,1﹣a <1﹣b∴选项A 不符合题意;B 、∵a <b ,x 2≥0∴ax 2≤bx 2,∴选项B 不符合题意;C 、∵ac >bc ,c 是什么数不明确,∴a >b 不正确,∴选项C 符合题意;D 、∵m >n ,∴21m x +>21n x +, ∴选项D 不符合题意.故选:C .[点睛]此题主要考查了不等式的基本性质.解题的关键是掌握不等式的基本性质:(1)不等式的两边同时乘以(或除以)同一个正数,不等号的方向不变;(2)不等式的两边同时乘以(或除以)同一个负数,不等号的方向改变;(3)不等式的两边同时加上(或减去)同一个数或同一个含有字母的式子,不等号的方向不变. 8. 如图,在△ABC 中,∠A=α,点D ,E ,F 分别在BC ,AB ,AC 上,且∠1+∠2=120°,则∠EDF 的度数为( )A. 120°+αB. 120°-αC. 240°-αD. α-60°[答案]B[解析][分析]连接AD ,则∠1与∠2分别是△ADE 和△ADF 的外角,由三角形的外角性质即可解决问题.[详解]连接AD ,如图所示,则∠1与∠2分别是△ADE 和△ADF 的外角,∴∠1=∠EAD+∠EDA ,∠2=∠FAD+∠FDA∴∠1+∠2=∠EAD+∠EDA+∠FAD+∠FDA=∠EDF+∠EAF=∠EDF+α=120°∴∠EDF=120°-α故选:B.[点睛]本题考查三角形外角的性质,解题的关键是学会作辅助线构造三角形即可解决问题.二、填空题(每小题 3 分,共 18 分)9. 不等式2x -1 > 3x -1 的解集为_____.[答案]x<0[解析][分析]根据一元一次不等式的解法解答即可.[详解]解:移项,得2x-3x>1-1,即﹣x>0,解得:x<0.故答案为:x<0.[点睛]本题考查了一元一次不等式的解法,属于基础题型,熟练掌握解一元一次不等式的方法是解题关键.10. 若三角形的两边长分别为2cm 和4cm,且第三条边为偶数,那么这个三角形的周长为______cm.[答案]10[解析][分析]先根据三角形的三边关系确定第三边的范围,再由第三条边为偶数即可确定其具体的数值,进而可得答案.[详解]解:记这个三角形的第三边为c cm,则4-2<c<4+2,即2<c<6,∵c为偶数,∴c=4,∴这个三角形的周长=2+4+4=10cm.故答案为:10.[点睛]本题考查了三角形的三边关系和三角形的周长计算,属于基础题型,熟练掌握三角形的三边关系是解题的关键.11. 关于x 的不等式-2 <x -1≤ 3 的所有整数解的和为_____.[答案]10[解析][分析]此题可先根据一元一次不等式组解出x的取值,根据x是整数解得出x的可能取值即可得解.[详解]不等式-2 <x-1≤ 3可以化简为-1<x≤4,适合不等式-1<x≤4的所有整数解0、1,2,3,4.所以,所有整数解的和为:0+1+2+3+4=10.故答案为:10.[点睛]此题考查是一元一次不等式组的解法,根据x的取值范围,得出x的整数解.求不等式组的解集,应遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.12. 某商品进价是1000元,售价为1500元.为促销,商店决定降价出售,但保证利润率不低于5%,则商店最多降____元出售商品.[答案]450元[解析][分析][详解]试题分析:设商店降x%出售商品,根据“进价是1000元,售价是1500元,利润率不低于5%”即可列不等式求解.设商店降x%出售商品,由题意得15001100x ⎛⎫⨯- ⎪⎝⎭≥1000×(1+5%) 解得x≥30则商店最多降30%出售商品.考点:一元一次不等式的应用点评:解题的关键是读懂题意,找到不等关系,正确列不等式求解.13. 有一个两位数,其个位数字比十位数字大 2,且这个两位数大于 20 且小于 30,那么这个两位数是_____.[答案]24[解析][分析]设这个两位数的十位数字为x ,则个位数字为x +2,然后用含x 的代数式表示出这个两位数,根据这个两位数大于20且小于30即可列出关于x 的不等式组,解不等式组求出x 的范围后结合x 为正整数即可确定x 的值,进一步即可求得答案.[详解]解:设这个两位数的十位数字为x ,则个位数字为x +2,那么这个两位数为10x +x +2,根据题意得:20<10x +x +2<30,解得:18281111x <<. ∵x 为正整数,∴x =2,∴10x +x +2=24,则这个两位数是24.故答案为:24.[点睛]本题考查了一元一次不等式组的应用,属于常考题型,正确理解题意、列出不等式组是解题关键. 14. 如图,七边形ABCDEFG 中,AB ,ED 的延长线交于点O ,若l ∠,2∠,3∠,4∠的外角和等于210,则BOD ∠的度数为______.[答案]30[解析][分析]由外角和内角的关系可求得∠1、∠2、∠3、∠4的和,由五边形内角和可求得五边形OAGFE 的内角和,则可求得∠BOD .[详解]1∠、2∠、3∠、4∠的外角的角度和为210,12342104180∠∠∠∠∴++++=⨯,1234510∠∠∠∠∴+++=,五边形OAGFE 内角和()52180540=-⨯=,1234BOD 540∠∠∠∠∠∴++++=,BOD 54051030∠∴=-=.故答案为30[点睛]本题主要考查多边形的内角和,利用内角和外角的关系求得∠1、∠2、∠3、∠4的和是解题的关键.三、解答题(共 78 分) 15. 解不等式:(1) 3(x -1) < 4x + 4 ;(2)342523x x -++≥. [答案](1)7x >-;(2)2x ≥-[解析][分析](1)先去小括号,然后依次移项、合并同类项、系数化为1即可得;(2)根据解一元一次不等式基本步骤:去分母、去括号、移项、合并同类项、系数化为1可得.[详解](1) 3(x -1) < 4x + 4 ;3344-<+x x3434-<+x x7-<x∴7x>-;(2)342523 x x-++≥3(34)302(2)x x-+≥+9123024x x-+≥+9212430x x-≥+-714x≥-∴2x≥-[点睛]本题主要考查解一元一次不等式的基本能力,严格遵循解不等式的基本步骤是关键,尤其需要注意不等式两边都乘以或除以同一个负数不等号方向要改变.16. 解下列方程组:(1)2 2314 m nm n-=⎧⎨+=⎩;(2)3(1)4(2) 231y xx y+=+⎧⎨-=+⎩.[答案](1)42mn⎧=⎨=⎩;(2)17213xy⎧=⎪⎨⎪=⎩.[解析][分析](1)根据代入消元法求解即可;(2)先化简原方程组,再利用加减消元法解答.[详解]解:(1)22314m nm n-=⎧⎨+=⎩①②,由①得:m =2+n ③,把③代入②,得()22314n n ++=,解得:n =2,把n =2代入③,得:m =4,所以原方程组的解是:42m n ⎧=⎨=⎩;(2)原方程组即:25443x y x y ⎧⎨-=-=⎩-①②, ②×2,得4x -2y =8③,③-①,得y =13,把y =13代入②,得2x -13=4, 解得:172x =, 所以原方程组的解是:17213x y ⎧=⎪⎨⎪=⎩. [点睛]本题考查了二元一次方程组的解法,属于基础题型,熟练掌握代入消元法和加减消元法解二元一次方程组的方法是解题关键.17. 解不等式组:(1)513(1)182x x x x ->+⎧⎨-≤-⎩; (2)2+53(2)123x x x x ≤+⎧⎪+⎨<⎪⎩. [答案](1)2<x ≤3;(2)无解.[解析][分析](1)分别求出每个不等式的解集,再取它们的公共部分即可得解;(2)分别求出每个不等式的解集,再取它们的公共部分即可得解.[详解](1)513(1)182x x x x ->+⎧⎨-≤-⎩①②; 解不等式①得,x >2解不等式②得,x ≤3,所以,不等式组的解集为:2<x ≤3;(2)2+53(2)1 23x x x x ≤+⎧⎪⎨+<⎪⎩①② 解不等式①得,x ≥-1;解不等式②得,x <-3;所以,不等式组无解.[点睛]本题考查的是解一元一次不等式组,正确求出每个不等式的解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.18. “雷神山”病床安装突击队有 22 名队员,按要求在规定时间内要完成 340 张病床安装,其中高级工每人能安装 20 张,初级工每人能安装 15 张. 问该突击队高级工与初级工各多少人?[答案]该突击队有高级工2人,初级工20人.[解析][分析]设该突击队高级工有x 人,则初级工有y 人,根据高级工+初级工=22人,x 名高级工安装的病床数+y 名初级工安装的病床数=340即可列出方程组,解方程组即得结果.[详解]解:设该突击队高级工有x 人,则初级工有y 人,根据题意,得:222015340x y x y +=⎧⎨+=⎩,解得:220x y =⎧⎨=⎩, 答:该突击队有高级工2人,初级工20人.[点睛]本题考查了二元一次方程组的应用,属于基本题型,正确理解题意、找准相等关系是解题关键. 19. 甲乙两辆汽车同时从 A 、B 两地相向开出,甲车每小时行 56 千米,乙车每小时行 48 千米,两车在距 A 、B 两地的中点 32 千米处相遇.求甲乙两地相距多少千米?[答案]甲乙两地相距832千米[解析][分析]设甲乙两地相距x 千米,根据两车相遇,所用时间相等即可列出一元一次方程,求解方程即可.[详解]甲乙两地相距x 千米,根据题意得,3232225648x x +-= 解得,x=832所以,甲乙两地相距832千米[点睛]此题考查了列一元一次方程解决问题,关键是找出等量关系.20. 如图,在△ABC 中,∠B =26°,∠BAC =30°,过点 A 作 BC 边上的高,交 BC 的延长线于点 D , CE 平分∠ACD ,交 AD 于点 E .求∠AEC 的度数.[答案]118°[解析][分析]由三角形外角的性质求出∠ACD=56°,由角平分线定义求出∠ECD=28°,最后由外角性质得出∠AEC=118°.[详解]∵∠B =26°,∠BAC =30°,∴∠ACD=∠B +∠BAC =56°,∵CE 平分∠ACD ,∴∠DCE=12∠ACD=28° 又∠ADC=90°∴∠AEC=∠DCE+∠CDE=28°+90°=118°.[点睛]此题主要考查了三角形外角性质,灵活运用三角形外角的性质是解答本题的关键.21. 甲、乙两家药店销售的额温枪和口罩的质量和价格一致,已知每支额温枪标价为 200 元,每个口罩的标价为 4 元.甲、乙两家药店推出各自的销售方案,甲药店:买一支额温枪赠送 10 个口罩;乙药店:额温枪和口罩全部按标价的 9 折优惠.现某公司要购买 20 支额温枪和若干个口罩,若购买的口罩为 x 个(x >200).(1)分别用含 x 的式子表示到甲、乙两家药店购买额温枪和口罩所需的金额.到甲药店购买需要金额为 元;到乙药店购买需要金额为 元.(2)购买的口罩至少为多少个时到乙药店购买更合算?[答案](1)4x+3200;3.6x+3600;(2)购买口罩至少为1001个时到乙药店购买更合算[解析][分析](1)根据甲、乙两家药店推出各自的销售方案,列出代数式即可;(2)根据购买的口罩到乙药店购买更合算列出不等式进行计算即可.[详解](1)到甲药店购买所需金额:20×200+4(x-200)=4x+3200,到乙药店购买所需金额:(20×200+4x)×0.9=3.6x+3600,故答案为:4x+3200;3.6x+3600;(2)∵到乙药店购买更合算∴3.6x+3600<4x+3200解得x>1000∴购买的口罩至少为1001个时到乙药店购买更合算[点睛]此题主要考查了一元一次不等式的应用,关键是正确理解题意,找出题目中的不等关系,列出不等式.22. 某中学为打造书香校园,计划购进甲、乙两种规格的书柜放置新购进的图书,调查发现,若购买一个乙种书柜比购买一个甲种书柜贵60元,若购买甲种书柜1个、乙种书柜2个,共需资金660元.(1)甲、乙两种书柜每个的价格分别是多少元?(2)若该校计划购进这两种规格的书柜共20个,其中乙种书柜的数量不少于甲种书柜的数量,学校至多能够提供资金4320元,请问学校有哪几种购买方案.[答案](1)甲种书柜每个的价格为180元,乙种书柜每个的价格为240元;(2)学校的购买方案有以下三种:方案一:甲种书柜8个,乙种书柜12个;方案二:甲种书柜9个,乙种书柜11个;方案三:甲种书柜10个,乙种书柜10个.[解析][分析](1)设甲种书柜每个的价格为x元,乙种书柜每个的价格为y元,根据“若购买一个乙种书柜比购买一个甲种书柜贵60元;若购买甲种书柜1个,乙种书柜2个,共需资金660元”,即可得出关于x,y的二元一次方程组,解之即可得出结论;(2)设购买甲种书柜m个,则购买乙种书柜(20-m)个,根据乙种书柜的数量不少于甲种书柜的数量且学校至多能够提供资金4320元,即可得出关于m的一元一次不等式组,解之即可得出m的取值范围,再结合m为整数即可得出各购买方案.[详解](1)设甲种书柜每个的价格为x元,乙种书柜每个的价格为y元,依题意,得:602660y x x y ⎨⎩-+⎧==, 解得:180240x y ⎧⎨⎩==. 答:甲种书柜每个的价格为180元,乙种书柜每个的价格为240元.(2)设购买甲种书柜m 个,则购买乙种书柜(20-m )个,依题意,得:()20180240204320m m m m -≥+-≤⎧⎨⎩, 解得:8≤m≤10.∵m 为整数,∴m 可以取的值为:8,9,10.∴学校的购买方案有以下三种:方案一:甲种书柜8个,乙种书柜12个;方案二:甲种书柜9个,乙种书柜11个;方案三:甲种书柜10个,乙种书柜10个.[点睛]本题考查了二元一次方程组的应用以及一元一次不等式组的应用,解题的关键是:(1)找准等量关系,正确列出二元一次方程组;(2)根据各数量之间的关系,正确列出一元一次不等式组.23. (1)如图(1),在△ABC 中,∠BAC =70°,点 D 在 BC 延长线上,三角形的内角∠ABC 与外角∠ACD 的角平分线 BP ,CP 相交于点 P ,求∠P 的度数.(写出完整的解答过程)[感知]:图(1)中,若∠BAC =m °,那么∠P = °(用含有 m 的代数式表示)[探究]:如图(2)在四边形 MNCB 中,设∠M =α,∠N =β,α+β>180°,四边形的内角∠MBC 与外角∠NCD 的角平分线 BP ,CP 相交于点 P .为了探究∠P 的度数与 α 和 β 的关系,小明同学想到将这个问题转化图(1)的模型,因此,他延长了边 BM 与 CN ,设它们的交点为点 A , 如图( 3 ), 则∠ A = (用含有 α 和 β 的代数式表示), 因此∠P = .(用含有 α 和 β 的代数式表示)[拓展]:将(2)中的 α+β>180°改为 α+β<180°,四边形的内角∠MBC 与外角∠NCD 的角平分线所在的直线相交于点P,其它条件不变,请直接写出∠P=.(用α,β的代数式表示)[答案](1)35°;感知:12m°,探究:α+β-180°,12(α+β)-90°;拓展:90°-12α-12β[解析] [分析](1)根据角平分线的定义可得∠CBP=12∠ABC,根据三角形的一个外角等于与它不相邻的两个内角的和和角平分线的定义表示出∠DCP,然后整理即可得到∠P=12∠A,代入数据计算即可得解.[感知]求∠P度数的方法同(1)[探究] 添加辅助线,利用(1)中结论解决问题即可;根据四边形的内角和定理表示出∠BCN,再表示出∠DCN,然后根据角平分线的定义可得∠PBC=12∠ABC,∠PCD=∠DCN,三角形的一个外角等于与它不相邻的两个内角的和可得∠P+∠PBC=∠PCD,然后整理即可得解;拓展:同探究的思路求解即可[详解](1)∵BP平分∠ABC,∴∠CBP=12∠ABC,∵CP平分△ABC的外角,∴∠DCP=12∠ACD=12(∠A+∠ABC)=12∠A+12∠ABC,在△BCP中,由三角形的外角性质,∠DCP=∠CBP+∠P=12∠ABC+∠P,∴12∠A+12∠ABC=12∠ABC+∠P,∴∠P=12∠A=12×70°=35°.感知:由(1)知∠P=12∠A∵∠BAC=m°,∴∠P=12 m°,故答案为:12 m°,探究:延长BM交CN的延长线于A.∵∠A=180°-∠AMN-∠ANM=180°-(180°-α)-(180°-β)=α+β-180°,由(1)可知:∠P=12∠A,∴∠P=12(α+β)-90°;故答案为:α+β-180°,12(α+β)-90°;[拓展] 如图③,延长MB交NC的延长线于A.∵∠A=180°-α-β,∠P=12∠A,∴∠P=12(180°-α-β)=90°-12α-12β故答案为:90°-12α-12β[点睛]本题考查三角形综合题,三角形内角和定理、四边形内角和定理等知识,解题的关键是灵活运用所学知识解决问题,学会利用已知结论解决问题.。

【人教版】七年级下册数学《期中考试题》附答案解析

【人教版】七年级下册数学《期中考试题》附答案解析

人教版七年级下册数学期中测试卷学校________ 班级________ 姓名________ 成绩________一、选择题1. 下列方程组中,属于二元一次方程组的是( )A. 31x y x z +=-⎧⎨+=-⎩B. 32x y y +=⎧⎨=⎩ C. 233x y x y +=⎧⎨-=-⎩ D. 32x y xy +=⎧⎨=-⎩2. 若关于x 的不等式组的解在数轴上如图所示,则这个不等式组的解是( )A. x 2≤B. x 1>C. 1x 2≤<D. 1x 2<≤ 3. 下面四个图形中,线段BD 是△ABC 的高的是( ) A. B. C. D.4. 如图,三角形ABC 中,D 为BC 上的一点,且S △ABD =S △ADC ,则AD 为( )A. 高B. 角平分线C. 中线D. 不能确定 5. 如图,AE 是△ABC 的角平分线,AD ⊥BC 于点D ,若∠BAC=76°,∠C=64°,则∠DAE 的度数是()A. 10°B. 12°C. 15°D. 18°6. 如图,已知点A 、D 、C 、F 在同一条直线上,AB=DE ,BC=EF ,要使△ABC≌△DEF,还需要添加一个条件是( )A . ∠BCA=∠F;B. ∠B=∠E;C. BC∥EF ;D. ∠A=∠EDF 7. 如图,在△ABC 和△CDE 中,若∠ACB=∠CED=90°,AB =CD ,BC =DE ,则下列结论中不正确的是( )A. △ABC≌△CDEB. CE =ACC. AB⊥CDD. E 为BC 的中点 8. 如图,在三角形模板ABC 中,∠A=60°,D 、E 分别为AB 、AC 上的点,则∠1+∠2的度数为( ) A . 180°B. 200°C. 220°D. 240° 9. 若从一多边形的一个顶点出发,最多可引10条对角线,则它是( )A 十三边形 B. 十二边形 C. 十一边形 D. 十边形10. 如图,BE 和CE 分别为△ABC 的内角平分线和外角平分线,BE ⊥AC 于点H ,CF 平分∠ACB 交BE 于点F 连接AE .则下列结论:①∠ECF=90°;②AE=CE ;③1902BFC BAC ∠=︒+∠;④∠BAC=2∠BEC ;⑤∠AEH=∠BCF ,正确的个数为( )A 2个 B. 3个 C. 4个 D. 5个二、填空题11. 已知12xy=⎧⎨=⎩是关于x、y的二元一次方程3210mx y--=的解,则m=__________.12. 不等式2x﹣1>3的解集为_____.13. A、B两个码头相距140千米,一艘轮船在其间航行,顺流用了7小时,逆流用了10小时,则这艘轮船在静水中的速度是每小时__________千米.14. 把一些书分给几名同学,如果每人分3本,那么余8本,如果前面的每名同学分5本,那么最后一人分不到3本,那么这些书共有____本.15. 如图,在△ABC中,点D在AC上,点E在BD上,若∠A=70°,∠ABD=22°,∠DCE=25°,则∠BEC 的度数为__________.16. 一个多边形的内角和是1440°,则这个多边形是__________边形.17. 如图,在Rt三角形ABC中,∠ACB=90°,AC=BC,BE⊥CE于点E,AD⊥CE于点D,若AD=8cm,BE=3cm,则DE=__________cm.18. 如图,在△ABC中,AD为∠BAC的平分线,DE⊥AB于点E,DF⊥AC于点F,若△ABC的面积为21cm2,AB=8cm,AC=6cm,则DE的长为__________cm.19. 已知△ABC中,∠B=40°,AD是△ABC的高,且∠CAD=10°,则∠BAC的度数为__________.20. 如图,在Rt△ABC中,∠ACB=90°,AC=BC,CH为△ABC斜边上的中线,点F为CH上一点,连接BF并延长交AC于点D,过点A作AE⊥AC,连接CE和DE,若∠ACE=2∠ABF,CE=13,CD=8,则△CDE 的面积为__________.三、解答题21. 解方程组及不等式组(1)25 437 x yx y+=-⎧⎨+=-⎩(2)211841x xx x->+⎧⎨+<-⎩22. 正方形网格中,小格的顶点叫做格点.小华按下列要求作图:①在正方形网格的三条不同的实线上各取一个格点,使其中任意两点不在同一条实线上;②连结三个格点,使之构成直角三角形.小华在左边的正方形网格中作出了Rt⊿ABC.请你按照同样的要求,在右边的两个正方形网格中各画出一个直角三角形,并使三个网格中的直角三角形互不全等.23. 四川雅安发生地震后,某校学生会向全校1900名学生发起了”心系雅安”捐款活动,为了解捐款情况,学会生随机调查了部分学生的捐款金额,并用得到的数据绘制了如下统计图①和图②,请根据相关信息,解答下列是问题:(1)本次接受随机抽样调查的学生人数为,图①中m的值是;(2)求本次调查获取的样本数据的平均数、众数和中位数;(3)根据样本数据,估计该校本次活动捐款金额为10元的学生人数.24. 如图,在△ABC中,BD,CE分别是AC,AB边上的高,在BD上截取BF=AC,延长CE至点G使CG=AB,连接AF,AG.(1)如图1,求证:AG=AF;(2)如图2,若BD恰好平分∠ABC,过点G作GH⊥AC交CA的延长线于点H,请直接写出图中所有的全等三角形并用全等符号连接.25. “双11”期间,某个体户在淘宝网上购买某品牌A、B两款羽绒服来销售,若购买3件A,4件B需支付2400元,若购买2件A,2件B,则需支付1400元.(1)求A、B两款羽绒服在网上的售价分别是多少元?(2)若个体户从淘宝网上购买A、B两款羽绒服各10件,均按每件600元进行零售,销售一段时间后,把剩下的羽绒服全部6折销售完,若总获利不低于3800元,求个体户让利销售的羽绒服最多是多少件?26. 如图,△ABC中,点E和点F在边BC上,连接AE,AF,使得∠EAC=∠ECA,∠BAE=2∠CAF.(1)如图1,求证:∠BAF=∠BFA;(2)如图2,在过点C且与AE平行的射线上取一点D,连接DE,若∠AED=∠B,求证:BE=CD;27. 如图,在平面直角坐标系中,点A 在第一象限,点B(a ,0),点C(0,b)分别在x 轴,y 轴上,其中a ,b 是二元一次方程534a b -=的解,且a 为不等式312133a a -+≤的最大整数解. (1)证明:OB=OC ;(2)如图1,连接AB ,过点A 作AD ⊥AB 交y 轴于点D ,在射线AD 上截取AE=AB ,连接CE ,取CE 的中点F ,连接AF 并延长至点G ,使FG=AF ,连接CG ,OA .当点A 在第一象限内运动(AD 不经过点C )时,证明:∠OAF 的大小不变;答案与解析一、选择题1. 下列方程组中,属于二元一次方程组的是( )A. 31x y x z +=-⎧⎨+=-⎩B. 32x y y +=⎧⎨=⎩C. 233x y x y +=⎧⎨-=-⎩D. 32x y xy +=⎧⎨=-⎩【答案】B【解析】【分析】 根据二元一次方程组的定义判断即可.【详解】A.31x y x z ,方程组中有三个未知数,不是二元一次方程组; B. 32x y y ,是二元一次方程组;C.233x y x y ,方程组中未知数的最高次是2,不是二元一次方程组;D. 32x y xy ,方程组中2xy =-不是二元一次方程,所以原方程组不是二元一次方程组;故选:B .【点睛】本题考查的是二元一次方程组的判别,熟悉二元一次方程的定义是解题的关键.2. 若关于x 的不等式组的解在数轴上如图所示,则这个不等式组的解是( )A. x 2≤B. x 1>C. 1x 2≤<D. 1x 2<≤【答案】D【解析】【分析】不等式组的解集在数轴上表示的方法:把每个不等式的解集在数轴上表示出来(>,≥向右画;<,≤向左画),数轴上的点把数轴分成若干段,如果数轴的某一段上面表示解集的线的条数与不等式的个数一样,那么这段就是不等式组的解集.有几个就要几个.【详解】解:在表示解集时”≥”,”≤”要用实心圆点表示;”<”,”>”要用空心圆点表示.因此,这个不等式<≤.组的解是1x2故选D.3. 下面四个图形中,线段BD是△ABC的高的是()A. B.C. D.【答案】D【解析】【分析】根据三角形高的定义,过点B向AC边作垂线,点B和垂足D之间的线段是△ABC的高,逐项判断即可.【详解】∵由三角形的高线定义可知:过点B作BD⊥AC,垂足为D,则线段BD为△ABC的高;∴选项A、B、C图形中垂足不正确,都不符合题意,只有选项D符合题意.故选:D.【点睛】本题考查三角形的高线,正确理解三角形的高线是解题关键.4. 如图,三角形ABC中,D为BC上的一点,且S△ABD=S△ADC,则AD为()A. 高B. 角平分线C. 中线D. 不能确定【答案】C【解析】试题分析:三角形ABD和三角形ACD共用一条高,再根据S△ABD=S△ADC,列出面积公式,可得出BD=CD.解:设BC边上的高为h,∵S△ABD=S△ADC,∴,故BD=CD ,即AD 是中线.故选C .考点:三角形的面积;三角形的角平分线、中线和高.5. 如图,AE 是△ABC 的角平分线,AD ⊥BC 于点D ,若∠BAC=76°,∠C=64°,则∠DAE 的度数是( )A. 10°B. 12°C. 15°D. 18°【答案】B【解析】【分析】 根据直角三角形两锐角互余求出CAD ∠,再根据角平分线定义求出CAE ∠,然后根据DAE CAE CAD ∠=∠-∠,代入数据进行计算即可得解.【详解】解:AD BC ⊥,64C ∠=︒, 906426CAD ,AE ∵是ABC ∆的角平分线,76BAC, 11763822CAE BAC ,382612DAE CAE CAD .故选:B .【点睛】本题考查了三角形的内角和定理,三角形的角平分线,高线的定义,准确识图,找出各角度之间的关系并求出度数是解题的关键.6. 如图,已知点A 、D 、C 、F 在同一条直线上,AB=DE ,BC=EF ,要使△ABC≌△DEF,还需要添加一个条件是( )A. ∠BCA=∠F;B. ∠B=∠E;C. BC∥EF ;D. ∠A=∠EDF【答案】B【解析】全等三角形的判定方法SAS 是指有两边对应相等,且这两边的夹角相等的两三角形全等,已知AB=DE ,BC=EF ,其两边的夹角是∠B 和∠E,只要求出∠B=∠E 即可.解:A 、根据AB=DE ,BC=EF 和∠BCA=∠F 不能推出△ABC≌△DEF,故本选项错误;B 、∵在△ABC 和△DEF 中,AB=DE ,∠B=∠E,BC=EF ,∴△ABC≌△DEF(SAS ),故本选项正确;C 、∵BC∥EF,∴∠F=∠BCA,根据AB=DE ,BC=EF 和∠F=∠BCA 不能推出△ABC≌△DEF,故本选项错误;D 、根据AB=DE ,BC=EF 和∠A=∠EDF 不能推出△ABC≌△DEF,故本选项错误.故选B .7. 如图,在△ABC 和△CDE 中,若∠ACB=∠CED=90°,AB =CD ,BC =DE ,则下列结论中不正确的是( )A. △ABC≌△CDEB. CE =ACC. AB⊥CDD. E 为BC 的中点【答案】D【解析】【分析】 首先证明△ABC ≌△CDE ,推出CE=AC ,∠D=∠B ,由∠D+∠DCE=90°,推出∠B+∠DCE=90°,推出CD ⊥AB ,即可一一判断.【详解】在Rt △ABC 和Rt △CDE 中,AB CD BC DE =⎧⎨=⎩, ∴△ABC ≌△CDE ,∴CE =AC ,∠D =∠B ,90D DCE ∠+∠=,90B DCE ∴∠+∠=,∴CD ⊥AB ,D :E 为BC 的中点无法证明故A 、B 、C.正确,故选. D【点睛】本题考查全等三角形的判定和性质、解题的关键是熟练掌握全等三角形的判定和性质,属于基础题.8. 如图,在三角形模板ABC 中,∠A=60°,D 、E 分别为AB 、AC 上的点,则∠1+∠2的度数为( )A. 180°B. 200°C. 220°D. 240°【答案】D 【解析】 【分析】根据三角形内角和定理求出B C ∠+∠,根据多边形内角和定理求出即可. 【详解】解:60A ∠=︒,180120B C A , 12360360120240BC,故选:D .【点睛】本题考查了三角形内角和定理和多边形内角和定理,能熟记知识点的内容是解此题的关键,注意:三角形的内角和等于180︒,四边形的内角和等于360︒.9. 若从一多边形的一个顶点出发,最多可引10条对角线,则它是( ) A. 十三边形 B. 十二边形C. 十一边形D. 十边形【答案】A 【解析】试题分析:根据多边形的对角线的定义可知,从n 边形的一个顶点出发,可以引(n ﹣3)条对角线,由此可得到答案.解:设这个多边形是n 边形.依题意,得n ﹣3=10, ∴n=13.故这个多边形是13边形. 故选A .考点:多边形的对角线.10. 如图,BE 和CE 分别为△ABC 的内角平分线和外角平分线,BE ⊥AC 于点H ,CF 平分∠ACB 交BE 于点F 连接AE .则下列结论:①∠ECF=90°;②AE=CE ;③1902BFC BAC ∠=︒+∠;④∠BAC=2∠BEC ;⑤∠AEH=∠BCF ,正确的个数为( )A. 2个B. 3个C. 4个D. 5个【答案】D 【解析】 【分析】根据AE 平分ACD ∠,CF 平分ACB ∠,可得12ACEECDACD ,12ACF BCFACB 则易证90ECF ∠=,可判断①正确;根据BE 平分ABC ∠,BE AC ⊥于点H ,可证()ABHHBC ASA ,得到AH CH =,可证()AHE CHE SAS ,则有AE CE =,可判断②正确;根据BE 平分ABC ∠,CF 平分ACB∠,得到12ABHHBCABC ,12ACF BCFACB ,则利用BFCFHCACFABH BAC ACF 可以判断③;根据90FCHHCE,90HECHCE,得到FCHHEC ,利用ABHHBC ,CF 平分ACB ∠,得22BAC BCA FCH HEC ,可以判断④正确;根据AHECHE ,CF 平分ACB ∠,得到AHEHEC ,BCF FCH ,FCHHEC ,AEHBCF ,故可以判断⑤正确;【详解】解:∵AE 平分ACD ∠,CF 平分ACB ∠,∴12ACE ECD ACD ,12ACF BCF ACB ∴1111180902222ECF ACFACEACB ACD ACBACD,故①正确;∵BE 平分ABC ∠,BE AC ⊥于点H , ∴ABH HBC ,90AHB CHB,∴()ABHHBC ASA ,∴AH CH =, ∵90AHE CHE,HEHE ,∴()AHECHE SAS ,∴AE CE =,故②正确;∵BE 平分ABC ∠,CF 平分ACB ∠, ∴12ABH HBCABC ,12ACF BCFACB 又∵BFC FHCACFABH BAC ACF即有:1122BFCABC BAC ACB 12ABCACB BAC 11802BACBAC1902BAC ,故③正确; ∵90FCH HCE,90HECHCE∴FCH HEC ,又∵ABHHBC ,CF 平分ACB ∠,∴AB BC =, ∴22BAC BCAFCHHEC即:2BAC BEC ,故④正确;∵AHE CHE,CF平分ACB∠,∴AHE HEC,BCF FCH,FCH HEC,∴AEH BCF,故⑤正确;综上所述,正确的有:①②③④⑤,共5个,故选:D.【点睛】本题主要考查了全等三角形、角平分线的性质,能熟练应用相关性质是解题的关键.二、填空题11. 已知12xy=⎧⎨=⎩是关于x、y的二元一次方程3210mx y--=的解,则m=__________.【答案】5 3【解析】【分析】把x与y的值代入方程计算即可求出m的值.【详解】解:把12xy=⎧⎨=⎩代入二元一次方程3210mx y--=,得:32210m,解得:53 m=.故答案为:5 3【点睛】此题考查了二元一次方程的解,方程的解即为能使方程左右两边相等的未知数的值.12. 不等式2x﹣1>3的解集为_____.【答案】x>2 【解析】【分析】【详解】解:移项得:2x>3+1,合并同类项得:2x>4,不等式的两边都除以2得x>2,∴不等式2x﹣1>3的解集为x>2.13. A、B两个码头相距140千米,一艘轮船在其间航行,顺流用了7小时,逆流用了10小时,则这艘轮船在静水中的速度是每小时__________千米.【答案】17【解析】【分析】设这艘船在静水中的速度和水流速度分别为x千米/小时,y千米/小时,由于A、B两个码头相距140千米,一艘轮船在其间航行,顺流用了7小时,逆流用了10小时,由此即可方程组解决问题.【详解】解:设这艘船在静水中的速度和水流速度分别为x千米/小时,y千米/小时,依题意得771401010140x yx y,解之得:173xy=⎧⎨=⎩,∴这艘船在静水中的速度和水流速度分别为17千米/小时,3千米/小时,故答案为:17.【点睛】此题是一个行程问题,关键是知道如何求顺流和逆流的速度,如何根据速度、路程、时间即可列出方程组解决问题.14. 把一些书分给几名同学,如果每人分3本,那么余8本,如果前面的每名同学分5本,那么最后一人分不到3本,那么这些书共有____本.【答案】26【解析】【分析】设共有x名学生,根据每人分3本,那么余8本,可得图书共有(3x+8)本,再由每名同学分5本,那么最后一人就分不到3本,可得出不等式,解出即可.【详解】解:设共有x名学生,则图书共有(3x+8)本,由题意得,0<3x+8−5(x−1)<3,解得:5<x<6.5,∵x为非负整数,∴x=6.∴书的数量为:3×6+8=26.故答案为26.【点睛】本题考查了列一元一次不等式组解实际问题的运用,一元一次不等式组的解法的运用,解答时根据题意中的不相等关系建立不等式组是关键.15. 如图,在△ABC 中,点D 在AC 上,点E 在BD 上,若∠A=70°,∠ABD=22°,∠DCE=25°,则∠BEC 的度数为__________.【答案】117︒ 【解析】 【分析】两次利用三角形的一个外角等于与它不相邻的两个内角的和,列式进行计算即可得解. 【详解】解:在ABD ∆中,70A ∠=︒,22ABD ∠=︒,702292CDE A ABD, 2592117BECDCECDE.故答案为:117︒.【点睛】本题主要考查了三角形的外角性质,三角形的一个外角等于与它不相邻的两个内角的和,两次利用性质是解题的关键.16. 一个多边形的内角和是 1440°,则这个多边形是__________边形. 【答案】十 【解析】 【分析】利用多边形的内角和定理:n 边形的内角和为()2180n -⨯︒ 便可得. 【详解】∵n 边形的内角和为()2180n -⨯︒ ∴()21801440n -⨯︒=,28,10n n -==. 故答案为:十边形.【点睛】本题考查多边形的内角和公式,掌握n 边形内角和定理为本题的关键.17. 如图,在Rt 三角形ABC 中,∠ACB=90°,AC=BC ,BE ⊥CE 于点E ,AD ⊥CE 于点D ,若AD=8cm ,BE=3cm ,则DE=__________cm .【答案】4 【解析】 【分析】易证CAD BCE ∠=∠,即可证明CDA BEC ,可得CD BE =,CE AD =,根据DE CE CD =-,即可解题. 【详解】解:90ACB ∠=︒,BE CE ⊥于点E ,AD CE ⊥于点D ,90ACD BCE ∴∠+∠=︒,90ACD CAD ∠+∠=︒, CAD BCE ∴∠=∠,在CDA ∆和BEC ∆中, 90CDA BEC CAD BCEACBC,()CDA BEC AAS ,CD BE ∴=,AD CE =,DECE CD ,DE AD BE ∴=-,7AD cm ,3BE cm =, 734DEcm cmcm .故答案为:4.【点睛】本题主要考查全等三角形的判定和性质,掌握全等三角形的判定方法和性质(全等三角形的对应边、对应角相等)是解题的关键.18. 如图,在△ABC 中,AD 为∠BAC 的平分线,DE ⊥AB 于点E ,DF ⊥AC 于点F ,若△ABC 的面积为21cm 2,AB=8cm ,AC=6cm ,则DE 的长为__________cm .【答案】3 【解析】 【分析】根据角平分线上的点到角的两边的距离相等可得DE DF =,再根据三角形的面积公式列式计算即可得解. 【详解】解:AD 为BAC ∠的平分线,DE AB ⊥,DF AC ⊥,DE DF ∴=,ABC ∆面积112122AB DEAC DF,即11862122DE DE ,解得3DE =. 故答案为:3.【点睛】本题考查了角平分线上的点到角的两边的距离相等的性质,根据三角形的面积公式列出方程是解题的关键.19. 已知△ABC 中,∠B=40°,AD 是△ABC 的高,且∠CAD=10°,则∠BAC 的度数为__________. 【答案】40︒或60︒. 【解析】 【分析】在Rt ABD ∆中,B 与BAD ∠互余,而20CAD ∠=︒,故有BAC BADCAD .【详解】解:90D ∠=︒,40B ∠=︒,50BAD ∴∠=︒,10CAD ,当△ABC 如图一所示时:501060BAC BAD CAD ,当△ABC 如图二所示时:501040BAC BAD CAD ,故答案为:40︒或60︒.【点睛】本题考查了直角三角形的性质和三角形的内角和,熟悉相关性质是解题的关键.20. 如图,在Rt △ABC 中,∠ACB=90°,AC=BC ,CH 为△ABC 斜边上的中线,点F 为CH 上一点,连接BF 并延长交AC 于点D ,过点A 作AE ⊥AC ,连接CE 和DE ,若∠ACE=2∠ABF ,CE=13,CD=8,则△CDE 的面积为__________.【答案】20 【解析】 【分析】延长BD 交CE 于G 点,作AKGD 交CE 于K ,交GD 于O ,设ABF α∠=,则2ACE,根据90ACB ∠=︒,AC BC =,可得45CBG ,902BCG ,可证CBG CGB ∠=∠,则CGCBCA,根据ASA 易证明CAKCGD,利用CK CD ,9045135CKACDG DCB CBD ,可证EK EA ,可得5EA =,再利用三角形的面积公式即可求解.【详解】解:如图示:延长BD 交CE 于G 点,作AKGD 交CE 于K ,交GD 于O ,设ABF α∠=,则2ACE,∵90ACB ∠=︒,AC BC =, ∴45ABC ∠=︒, ∴45CBG CBA ABF , 902BCGACB ACE ∴1801809024545CGB BCGCBG,∴CBG CGB ∠=∠ ∴CGCBCA在Rt△ADO 和Rt△BDC 中, ADOBDC ,90AODBCD,∴DAO DBC ,则有CAK CGD在△CAK 和△CGD 中, CAKCGD ,CA CG =,ACK GCD∴()CAK CGD ASA∴CK CD ,9045135CKACDG DCB CBD∴18018013545EKACKA又∵904545EAKEAC CAK 即有EK EA , ∴1385EAEK CE CK CE CD ∴11852022CDE S CD EA , 故答案为:20.【点睛】本题考查等腰直角三角形的性质,全等三角形的判定,解题的关键是正确寻找全等三角形解决问题.三、解答题21. 解方程组及不等式组(1)25437x y x y +=-⎧⎨+=-⎩ (2)211841x x x x ->+⎧⎨+<-⎩【答案】(1)43x y =-⎧⎨=⎩;(2)3x >. 【解析】【分析】(1)把第一个方程乘以2然后和第二个方程进行计算,利用加减消元法求解即可;(2)先求出两个不等式的解集,再求其公共解.【详解】解:(1)25437x y x y ①②, 将2①得:4210x y③,将②-③得:3y = 把3y =代入①得,235x +=-,解之得:4x =-所以,方程组的解是43x y =-⎧⎨=⎩;(2)211841x xx x①②,由①得,2x>,由②得,3x>,所以,不等式组的解集是3x>.【点睛】本题考查的是二元一次方程组的解法,一元一次不等式组解集的解集,熟悉相关解法是解题得关键.22. 正方形网格中,小格的顶点叫做格点.小华按下列要求作图:①在正方形网格的三条不同的实线上各取一个格点,使其中任意两点不在同一条实线上;②连结三个格点,使之构成直角三角形.小华在左边的正方形网格中作出了Rt⊿ABC.请你按照同样的要求,在右边的两个正方形网格中各画出一个直角三角形,并使三个网格中的直角三角形互不全等.【答案】可以是:【解析】【分析】画的直角三角形的三边应符合两直角边的平方和等于斜边的平方.第一个图形和第二个图形的面积可让两条直角边的积÷2即可.【详解】解:画图如下:易得图1三边长为10、10、20=25,符合两边和的平方等于第三边的平方,图2中三边长分别为2、18=32、20=25符合两边和的平方等于第三边的平方,第三个图中,三边长分别为8=22、8=22、16=4符合两边和的平方等于第三边的平方,【点睛】本题考查直角三角形的格点画法需满足的条件;直角三角形的三边应符合两直角边的平方和等于斜边的平方.23. 四川雅安发生地震后,某校学生会向全校1900名学生发起了”心系雅安”捐款活动,为了解捐款情况,学会生随机调查了部分学生的捐款金额,并用得到的数据绘制了如下统计图①和图②,请根据相关信息,解答下列是问题:(1)本次接受随机抽样调查的学生人数为,图①中m的值是;(2)求本次调查获取的样本数据的平均数、众数和中位数;(3)根据样本数据,估计该校本次活动捐款金额为10元的学生人数.【答案】(1)50;32;(2)16;10;15;(3)608人.【解析】【分析】(1)根据条形统计图即可得出样本容量:4+16+12+10+8=50(人);根据扇形统计图得出m的=----=;值:m100202416832(2)利用平均数、中位数、众数的定义分别求出即可.(3)根据样本中捐款10元的百分比,从而得出该校本次活动捐款金额为10元的学生人数.【详解】解:(1)根据条形图4+16+12+10+8=50(人),m=100-20-24-16-8=32;故答案为:50; 32.(2)∵1x 541016151220103081650=⨯+⨯+⨯+⨯+⨯=(), ∴这组数据的平均数为:16.∵在这组样本数据中,10出现次数最多为16次,∴这组数据的众数为:10.∵将这组样本数据按从小到大的顺序排列,其中处于中间的两个数都是15,∴这组数据的中位数为:()11515152+=, (3)∵在50名学生中,捐款金额为10元的学生人数比例为32%,∴由样本数据,估计该校1900名学生中捐款金额为10元的学生人数有1900×32%=608人.∴该校本次活动捐款金额为10元的学生约有608人.【点睛】此题主要考查了平均数、众数、中位数的统计意义以及利用样本估计总体等知识.找中位数要把数据按从小到大的顺序排列,位于最中间的一个数或两个数的平均数为中位数;众数是一组数据中出现次数最多的数据,注意众数可以不止一个;平均数是指在一组数据中所有数据之和再除以数据的个数.24. 如图,在△ABC 中,BD ,CE 分别是AC ,AB 边上的高,在BD 上截取BF=AC ,延长CE 至点G 使CG=AB ,连接AF ,AG .(1)如图1,求证:AG=AF ;(2)如图2,若BD 恰好平分∠ABC ,过点G 作GH ⊥AC 交CA 的延长线于点H ,请直接写出图中所有的全等三角形并用全等符号连接.【答案】(1)证明见解析;(2)ABD CBD ∆≅∆,AGC FAB ∆≅∆,HGA DAF ∆≅∆.【解析】【分析】(1)根据BD 、CE 分别是AC 、AB 两条边上的高,BF=AC ,CG=AB ,利用SAS 可证AGC FAB ∆≅∆,则可证AG AF =;(2)利用等腰三角形的对称性,可得ABD CBD ∆≅∆;根据AGC FAB ∆≅∆易证90GAF ∠=︒,则可得90HAG FAD ,即有HGA DAF ,利用AAS 可证HGA DAF ∆≅∆.【详解】(1)证明:∵BD 、CE 分别是AC 、AB 两条边上的高,90ADB AEC ∴∠=∠=︒,90ABDBAD ACE CAE ,ABD ACG , 在AGC ∆与FAB ∆中,CABF GCAABF GC AB , ()AGC FAB SAS ,∴AG AF =;(2)∵BD 平分∠ABC ,BD 是AC 边上的高,则BD 为△ABC 中三线合一的线,即△ABC 为等腰三角形,BD 为△ABC 的对称轴,根据对称性,有ABD CBD ∆≅∆AGC FAB ;AG AF ∴=,G BAF ∠=∠,90G GAE , 90BAF GAE ,90GAF ∴∠=︒,∴90HAG FAD∵GH AC ⊥,∴90HAG HGA∴HGA DAF 在HGA 与DAF ∆中,90GHAADF HGADAFGA AF ,()HGA DAF AAS ,综上所述,全等三角形有ABD CBD ∆≅∆,AGC FAB ∆≅∆,HGA DAF ∆≅∆.【点睛】本题考查了全等三角形的判定和性质,等腰三角形的性质和判定和对称的性质,正确的识别图形是解题的关键.25. “双11”期间,某个体户在淘宝网上购买某品牌A 、B 两款羽绒服来销售,若购买3件A ,4件B 需支付2400元,若购买2件A ,2件B ,则需支付1400元.(1)求A 、B 两款羽绒服在网上的售价分别是多少元?(2)若个体户从淘宝网上购买A 、B 两款羽绒服各10件,均按每件600元进行零售,销售一段时间后,把剩下的羽绒服全部6折销售完,若总获利不低于3800元,求个体户让利销售的羽绒服最多是多少件?【答案】最多让利5件.【解析】【分析】(1)设设A 款a 元,B 款b 元,根据题意列方程组求解;(2)设让利的羽绒服有x 件,总获利不低于3800元,列不等式,求出最大整数解.【详解】解:(1)设A 款a 元,B 款b 元,可得:342400221400a b a b +=⎧⎨+=⎩, 解得:400300a b =⎧⎨=⎩, 答:A 款400元,B 款300元.(2)设让利的羽绒服有x 件,则已售出的有(20﹣x )件600 (20﹣x )+600×60% x ﹣400×10﹣30×10≥3800,解得x≤5,答:最多让利5件.考点:一元一次不等式的应用;二元一次方程组的应用.26. 如图,在△ABC 中,点E 和点F 在边BC 上,连接AE ,AF ,使得∠EAC=∠ECA ,∠BAE=2∠CAF . (1)如图1,求证:∠BAF=∠BFA ;(2)如图2,在过点C 且与AE 平行的射线上取一点D ,连接DE ,若∠AED=∠B ,求证:BE=CD ;【答案】(1)证明见解析;(2)证明见解析.【解析】【分析】(1)设CAF α∠=,则2BAE α∠=,可得EAF EAC ,EFA EAC ,易证BAF BFA ∠=∠; (2)根据//AE CD ,EAC ECA ∠=∠,则有AED D ,AEB DCE ,AE EC =,利用AAS 可证AEB ECD ,则有BE DC =. 【详解】解:(1)设CAF α∠=,则2BAE α∠=,∴EAF EAC ,EFA ECA EAC , 22BAF EAF EAC EAC∴BAF BFA ∠=∠;(2)//AE CD ,EAC ECA ∠=∠∴AED D ,AEB DCE ,AE EC =又∵AED B ∠=∠,∴D B ∠=∠,∴()AEB ECD AAS ,∴BE DC =;【点睛】本题考查了三角形的外角,平行线的性质和三角形全等的证明,熟悉相关性质是解题的关键. 27. 如图,在平面直角坐标系中,点A 在第一象限,点B(a ,0),点C(0,b)分别在x 轴,y 轴上,其中a ,b 是二元一次方程534a b -=的解,且a 为不等式312133a a -+≤的最大整数解. (1)证明:OB=OC ;(2)如图1,连接AB ,过点A 作AD ⊥AB 交y 轴于点D ,在射线AD 上截取AE=AB ,连接CE ,取CE 的中点F ,连接AF 并延长至点G ,使FG=AF ,连接CG ,OA .当点A 在第一象限内运动(AD 不经过点C )时,证明:∠OAF 的大小不变;【答案】(1)证明见解析;(2)证明见解析.【解析】【分析】(1)根据a 为不等式312133a a -+≤的最大整数解,求解不等式,利用534ab -=推出a b =即可; (2)求出TAO 为等腰直角三角形即可;【详解】(1)解:解不等式312133a a -+≤得2a ≤ ∵a 为不等式312133a a -+≤的最大整数解 2a ∴=,将2a =代入方程534a b -=得2b =, a b ∴=,OB OC ∴=;(2)证明:连接GO ,F 为CE 中点,CF EF ∴=,在GCF ∆和AEF ∆中CF EFCFG FEAFG FAGCF AEF SAS,()CG EA,GCF AEF,GC AD,//GCD CDA,=,AB AEGC AB,⊥,⊥,OB OCAD ABCOB BAD,90ABO ADO,180ADO ADC,180ADC ABO,GCD CDA,GCD ABO,∆中在GCO和ABOGC ABGCO ABOOC OBGCO ABO SAS,()GO AO,GOC AOB,AOB AOC,90GOC AOC,90GAO为等腰直角三角形,∠的大小不变;OAF,即OAF45【点睛】本题是三角形综合题,主要考查了解不等式,全等三角形判定和性质,等腰三角形的判定和性质,添加恰当的辅助线构造全等三角形是本题的关键.。

初一下学期期中考试数学试卷含答案(共3套,人教版)

初一下学期期中考试数学试卷含答案(共3套,人教版)

七年级第二学期期中考试试卷数 学一、选择题(本大题共8小题,共24分)1. 下列各图中,∠1与∠2是对顶角的是( ) A. B. C. D.2. 4的平方根是( ) A. 2 B. C.2 D.±23. 在下列所给出坐标的点中,在第二象限的是( )A. (2,3)B. (-2,3)C. (-2,-3)D. (2,3)4. 在实数5,227,38-,0,,2π,36,0.1010010001中,无理数有( )A. 2个B. 3个C. 4个D. 5个5.如图,直线AB ,CD 被直线EF 所截,则∠3的同旁内角是( )A.∠1B.∠2C.∠4D.∠56. 若a ,b 为实数,且229943a a b a -+-=++,则a b +的值为( )A .-1B .1C .1或7D .77. 已知∠AOB,P是任一点,过点P画一条直线与OA平行,则这样的直线()A. 有且仅有一条B. 有两条C. 不存在D. 有一条或不存在8. 下列语句中是命题的有()①如果两个角都等于70°,那么这两个角是对顶角; ②三角形内角和等于180°;③画线段AB=3 cm.A、0个B、1个C、2个D、3个二、填空题(本大题共8小题,共24分)9.若3m-12与12-3m都有平方根,则m的平方根为10.如图,直线AB,CD,EF交于点O,OG平分,且,,则∠DOG= 。

11.把9的平方根和立方根按从小到大的顺序排列为______.12.从新华书店向北走100 m,到达购物广场,从购物广场向西走250 m到达体育馆,若体育馆所在位置的坐标是(-250,0),则选取的坐标原点是_ __13.在如图所示的长方体中,与AB垂直且相交的棱有__ _条.14.如果,其中为有理数,则a+b=______.15.若两个连续整数x,y满足,则x+y的值是_____16.如图,在平面直角坐标系中,一动点从原点O出发,按向上,向右,向下,向右的方向不断地移动,每次移动一个单位,得到点,,,,那么点为自然数的坐标为______用n表示.三、解答题(本大题共9小题,共72分)17.计算:(每小题4分,共8分)求下列各式中x的值:(每小题4分,共8分)(1)2x2=4;;(2)64x3+27=019.如图,直线a∥b,点B在直线b上,AB⊥BC,∠1=55°,求∠2的度数.(6分)20.完成下面的证明(8分)如图,点E 在直线DF 上,点B 在直线AC 上,若∠AGB=∠EHF, ∠C=∠D .求证:∠A=∠F .证明:∵∠AGB=∠EHF∠AGB =______对顶角相等∴∠EHF=∠DGF∴DB∥EC ( )∴∠ =∠DBA ( )又∵∠C=∠D ∴∠DBA=∠DDF ∥ ( )∴∠A=∠F( )21.已知a+2的立方根是3,3a+b-1算术平方根是4,c 是 整数部分.(9分) (1)求a,b,c 的值;(2)求3a - b+c 的平方根。

人教版数学七年级下册《期中检测试题》附答案解析

人教版数学七年级下册《期中检测试题》附答案解析

人 教 版 数 学 七 年 级 下 学 期期 中 测 试 卷学校________ 班级________ 姓名________ 成绩________一、选择题(本大题共有10小题,每小题3分,共30分)1. 如图,1∠与2∠是对顶角的是( ) A. B. C. D.2. 下列计算正确的是( )A. x 6÷x 3=x 2B. 2x 3﹣x 3=2C. x 2•x 3=x 6D. (x 3)3=x 9 3. 把0.00000156用科学记数法表示为( )A. 815610⨯B. 715.610C. 1.56×10-5D. 61.5610-⨯ 4. 一个角度数是40°,那么它的余角的补角度数是( )A. 130°B. 140°C. 50°D. 90°5. 等腰三角形的两边长分别为4和9,则它的周长 ( )A. 17B. 22C. 17或22D. 216. 下列乘法中,不能运用平方差公式进行运算的是( )A. ()()x a x a +-B. ()()a b a b +--C. ()()x b x b ---D. ()()b m m b +-7. 如图,用直尺和圆规作一个角等于已知角,能得出A O B AOB '''∠=∠的依据是( )A. SASB. SSSC. ASAD. AAS 8. 在下列长度的三条线段中,能组成三角形的是( )A. 3cm ,5cm ,8cmB. 8cm ,8cm ,18cmC. 1cm , 1cm ,1cmD. 3cm ,4cm ,8cm 9. 已知a+b=﹣5,ab=﹣4,则a 2﹣ab+b 2=( )A. 29B. 37C. 21D. 3310. 某人骑车上路,一开始以某一速度行进,途中车子发生故障,只好停下来修车,车修好后,因怕耽误上路时间,于是就加快了车速.如图s 表示此人离家距离,t 表示时间,在下面给出的四个表示s 与t 的关系的图象中,符合以上情况的是( ) A. B. C. D.二.填空题(本大题共有8小题,每小题4分,共32分)11. 计算(-2a 2b)(3ab)=____________________.12. 对于圆的周长公式c=2πr ,其中自变量是______,因变量是______.13. 如图,在△ABC 中,∠A=40°,点D 是∠ABC 和∠ACB 角平分线的交点,则∠BDC 为________14. 一辆汽车以35千米/时的速度匀速行驶,行驶路程S (千米)与行驶时间t (时)之间的关系式为_______ 15. 如图,已知AB=AD ,那么添加下列一个条件后,能利用“SSS”判定△ABC ≌△ADC 的是_____.16. 若102m =,103n =,则210m n +=_________.17. 若226m n -=,且3m n -=,则m n +=___.18. 观察下列等式①223415-⨯=,②225429-⨯=,③2274313-⨯=,…根据上述规律,第n 个等式是________________.(用含有n 的式子表示)三、解答题19. 如图,在ΔABC 中,D 是AB 边上一点.(1)求作:∠ADE=∠ABC ,交AC 边于点E .(要求:尺规作图,不写作法,保留作图痕迹)(2)DE 与BC 位置关系是______________20. 计算:(1)022120182()2-+- (2)()()32231223a b ab a b -÷-⋅ (3)()()()2122m m m m -+-- (4)()()22a b a b +++-21. 一个角与它的补角的度数之比为1:8,求这个角的余角的度数.22. 请将下列证明过程补充完整:已知:∠1=∠E ,∠B =∠D . 求证:AB ∥CD证明:∵ ∠1=∠E ( 已知 )∴ ∥ ( )∴ ∠D +∠2=180°( ) ∵ ∠B =∠D ( 已知 )∴ ∠B + ∠2= 180°( ) ∴ AB ∥CD ( )23. 如图表示玲玲骑自行车离家的距离与时间的关系.她9点离开家,15点回到家,请根据图象回答下列问题:(1)玲玲到达离家最远的地方是什么时间?她离家多远?(2)她何时开始第一次休息?休息了多长时间?(3)第一次休息时,她离家多远?(4)11点~12点她骑车前进了多少千米?24. 如图,AB=DE,AC=DF,点E、C在直线BF上,且BE=CF.试说明AB∥DE.25. 已知如图,A、E、F、C四点共线,BF=DE,AB=CD.(1)请你添加一个条件,使△DEC≌△BFA;(2)在(1)基础上,求证:DE∥BF.26. 如图:BD平分∠ABC,∠ABD=∠ADB,∠ABC=50°,请问:(1)∠BDC+∠C 度数是多少?并说明理由.(2)若P点是BC上的一动点(B点除外),∠BDP与∠BPD之和是一个确定的值吗?如果是,求出这个确定的值.如果不是,说明理由.27. 如图1是一个长为2m、宽为2n的长方形,沿图中虚线用剪刀均分成四块小长方形,然后按图2的形状拼成一个正方形.(1)你认为图2中的阴影部分的正方形的边长等于多少?(2)请用两种不同的方法求图2中阴影部分的面积:(3)观察图2你能写出下列三个代数式之间的等量关系吗?代数式:(m+n)2,(m-n)2,mn.(4)根据第(3)问题中的等量关系,解决如下问题:若a+b=7,ab=5,则(a-b)2的值是多少?答案与解析一、选择题(本大题共有10小题,每小题3分,共30分)1. 如图,1∠与2∠是对顶角的是( ) A. B. C. D.[答案]B[解析][分析]根据对顶角的定义进行判断:两条直线相交后所得的只有一个公共顶点且两个角的两边互为反向延长线,这样的两个角叫做对顶角,依次判定即可得出答案.[详解]解: A.∠1与∠2有一条边在同一条直线上,另一条边不在同一条直线上,不是对顶角;B.∠1与∠2的两边互为反向延长线, 只有一个公共顶点,是对顶角;C.∠1与∠2有两个公共顶点,不是对顶角;D. ∠1与∠2有一条边在同一条直线上,另一条边不在同一条直线上,不是对顶角;故选B .[点睛]本题主要考查了对顶角的定义,对顶角是相对与两个角而言,是指的两个角的一种位置关系..它是在两直线相交的前提下形成的.2. 下列计算正确的是( )A. x 6÷x 3=x 2B. 2x 3﹣x 3=2C. x 2•x 3=x 6D. (x 3)3=x 9[答案]D[解析][分析]根据同底数幂相除,底数不变指数相减;合并同类项,只把系数相加减,字母与字母的次数不变;同底数幂相乘,底数不变指数相加;幂的乘方,底数不变指数相乘,对各选项计算后利用排除法求解.[详解]A 、应x 6÷x 3=x 3,故本选项错误;B 、应为2x 3﹣x 3=x 3,故本选项错误;C 、应为x 2•x 3=x 5,故本选项错误;D 、(x 3)3=x 9,正确.[点睛]本题考查同底数幂的除法,合并同类项法则,同底数幂的乘法,幂的乘方,熟练掌握运算性质和法则是解题的关键.3. 把0.00000156用科学记数法表示为( )A. 815610⨯B. 715.610C. 1.56×10-5D. 61.5610-⨯[答案]D[解析][分析]科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>1时,n 是正数;当原数的绝对值<1时,n 是负数.[详解]0.00000156的小数点向右移动6位得到1.56,所以0.00000156用科学记数法表示为1.56×10-6,故选D .[点睛]本题考查科学记数法的表示方法.科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.4. 一个角的度数是40°,那么它的余角的补角度数是( )A. 130°B. 140°C. 50°D. 90° [答案]A[解析][分析]若两个角的和为90°,则这两个角互余;若两个角的和等于180°,则这两个角互补.依此求出度数.[详解]40°角的余角是:90°−40°=50°,50°角的补角是:180°−50°=130°.故选:A.[点睛]考查余角与补角的相关计算,掌握余角与补角的定义是解题的关键.5. 等腰三角形的两边长分别为4和9,则它的周长 ( )A. 17B. 22C. 17或22D. 21 [答案]B[解析]由题意分该等腰三角形的腰长分别为4和9两种情况结合三角形三边间的关系进行讨论,然后再根据三角形的周长公式进行计算即可.详解:由题意分以下两种情况进行讨论:(1)当该等腰三角形的腰长为4时,因为4+4<9,围不成三角形,所以这种情况不成立;(2)当该等腰三角形的腰长为9时,因为4+9>9,能够围成三角形,此时该等腰三角形的周长=9+9+4=22. 综上所述,该等腰三角形的周长为22.故选B.点睛:当已知等腰三角形其中两边长,求第三边长或周长时,通常要分“已知两边分别为等腰三角形的腰长”两种情况,结合三角形三边间的关系进行讨论.6. 下列乘法中,不能运用平方差公式进行运算的是( )A. ()()x a x a +-B. ()()a b a b +--C. ()()x b x b ---D. ()()b m m b +-[答案]B[解析][分析]根据平方差公式的特点:两个二项式相乘,并且这两个二项式中有一项完全相同,另一项互为相反数解答.[详解]解:、、符合平方差公式的特点,故能运用平方差公式进行运算;、两项都互为相反数,故不能运用平方差公式进行运算.故选:.[点睛]本题主要考查了平方差公式的结构.注意两个二项式中有一项完全相同,另一项互为相反数,并且相同的项和互为相反数的项必须同时具有.7. 如图,用直尺和圆规作一个角等于已知角,能得出A O B AOB '''∠=∠的依据是( )A. SASB. SSSC. ASAD. AAS[答案]B我们可以通过其作图的步骤来进行分析,作图时满足了三条边对应相等,于是我们可以判定是运用SSS ,答案可得.[详解]解:作图的步骤:①以为圆心,任意长为半径画弧,分别交OA 、OB 于点、;②任意作一点,作射线O A '',以为圆心,OC 长为半径画弧,交O A ''于点;③以为圆心,CD 长为半径画弧,交前弧于点D ';④过点D '作射线O B ''.所以AOB ∠'''就是与AOB ∠相等的角; 在OCD ∆与△OCD ''',O C OC ''=,O D OD ''=,C D CD ''=,OCD ∴∆≅△()O C D SSS ''',AO B AOB ∴∠'''=∠,显然运用的判定方法是SSS .故选B .[点睛]本题考查了全等三角形的判定与性质;由全等得到角相等是用的全等三角形的性质,熟练掌握三角形全等的性质是正确解答本题的关键.8. 在下列长度的三条线段中,能组成三角形的是( )A. 3cm ,5cm ,8cmB. 8cm ,8cm ,18cmC. 1cm , 1cm ,1cmD. 3cm ,4cm ,8cm[答案]C[解析][分析]根据三角形的三边关系进行判断.[详解]A 、 3+5=8 ,不能组成三角形;B 、 8+8<18,不能组成三角形;C 、 1+1>1 ,能组成三角形;D 、 3+4<8 ,不能组成三角形;故选:C .[点睛]本题考查三角形的三边关系,一般用两条较短的线段相加,如果大于最长那条就能够组成三角形. 9. 已知a+b=﹣5,ab=﹣4,则a 2﹣ab+b 2=( )A. 29B. 37C. 21D. 33 [答案]B先根据完全平方公式进行变形,再代入求出即可.[详解]∵a+b=−5,ab=−4,∴a2−ab+b2=(a+b)2−3ab=(−5)2−3×(−4)=37,故选:B.[点睛]本题考查完全平方公式,能灵活运用完全平方公式进行变形是解此题的关键.10. 某人骑车上路,一开始以某一速度行进,途中车子发生故障,只好停下来修车,车修好后,因怕耽误上路时间,于是就加快了车速.如图s表示此人离家的距离,t表示时间,在下面给出的四个表示s与t的关系的图象中,符合以上情况的是( )A. B. C. D.[答案]C[解析][分析]根据修车时,路程没变化,可得答案.[详解]∵停下修车时,路程没变化,观察图象,A、B、D的路程始终都在变化,故错误;C、修车是的路程没变化,故C正确;故选:C.[点睛]本题考查函数图象,观察图象是解题关键,注意修车时路程没有变化.二.填空题(本大题共有8小题,每小题4分,共32分)11. 计算(-2a2b)(3ab)=____________________.[答案]-6a3b2[解析][分析]根据单项式与单项式相乘的运算法则进行计算即可得到答案.[详解]解:(-2a2b)(3ab)=-6a3b2.故答案为-6a3b2.[点睛]本题考查单项式乘单项式,解题的关键是掌握单项式乘单项式的运算法则.12. 对于圆的周长公式c=2πr,其中自变量是______,因变量是______.[答案] (1). r (2). c[解析]试题解析:∵圆的周长随着圆的半径的变化而变化,∴对于圆的周长公式2πC r ,其中自变量是,因变量是 .故答案为,.r C13. 如图,在△ABC 中,∠A=40°,点D 是∠ABC 和∠ACB 角平分线的交点,则∠BDC 为________[答案]110°[解析][分析]由D 点是∠ABC 和∠ACB 角平分线的交点可推出∠DBC +∠DCB =70°,再利用三角形内角和定理即可求出∠BDC 的度数.[详解]解:∵D 点是∠ABC 和∠ACB 角平分线的交点,∴∠CBD =∠ABD =12∠ABC ,∠BCD =∠ACD =12∠ACB , ∵∠A=40°,∴∠ABC +∠ACB =180°−40°=140°,∴∠DBC +∠DCB =70°,∴∠BDC =180°−70°=110°,故答案为:110°.[点睛]此题主要考查学生对角平分线性质,三角形内角和定理,熟记三角形内角和定理是解决问题的关键. 14. 一辆汽车以35千米/时的速度匀速行驶,行驶路程S (千米)与行驶时间t (时)之间的关系式为_______[答案]S=35t[解析][分析]根据路程=速度×时间列出函数关系式即可.[详解]解:根据路程=速度×时间得:汽车所走的路程S (千米)与所用的时间t (时)的关系表达式为:s=35t . 故答案为:S=35t .[点睛]本题考查函数关系式,解题的关键是明确路程=速度×时间,据此表示出关系式.15. 如图,已知AB=AD ,那么添加下列一个条件后,能利用“SSS”判定△ABC ≌△ADC 的是_____.[答案]CB =CD[解析][分析]要判定△ABC ≌△ADC ,已知AB =AD ,AC 是公共边,具备了两组边对应相等,则由题意根据SSS 可添加CB =CD .[详解]已知AB =AD ,AC 是公共边,具备了两组边对应相等,则由题意根据SSS 能判定△ABC ≌△ADC ,则需添加CB =CD ,故答案为:CB =CD .[点睛]本题考查三角形全等的判定方法,解题的关键是掌握判定两个三角形全等的一般方法(SSS ). 16. 若102m =,103n =,则210m n +=_________.[答案][解析]∵10m =2,10n =3,∴10m+2n =10m •102n =2×32=18.故答案是:18.17. 若226m n -=,且3m n -=,则m n +=___.[答案]2[解析][分析]将m 2−n 2 利用平方差公式变形,将m-n=3代入计算即可求出m+n 的值.[详解]解:∵m 2-n 2=(m+n)(m-n)=6,且m-n=3,∴m+n=2.故答案为:2.[点睛]本题考查利用平方差公式因式分解,熟练掌握公式及法则是解本题的关键.18. 观察下列等式①223415-⨯=,②225429-⨯=,③2274313-⨯=,…根据上述规律,第n 个等式是________________.(用含有n 的式子表示)[答案](2n+1) −4×n=4n+1.[解析][分析]由①②③三个等式可得,被减数是从3开始连续奇数的平方,减数是从1开始连续自然数的平方的4倍,计算的结果是被减数的底数的2倍减1,由此规律得出答案即可.[详解]由题意知, ①223415-⨯=,②225429-⨯=,③2274313-⨯=,则第④个等式为9−4×4=17,故第n 个等式为(2n+1) −4×n=4n+1左边=4n+4n+1−4n=4n+1=右边,∴(2n+1) −4×n=4n+1故答案为(2n+1) −4×n=4n+1.[点睛]此题考查规律型:数字的变化类,解题关键在于理解题意找到规律. 三、解答题19. 如图,在ΔABC 中,D 是AB 边上一点.(1)求作:∠ADE=∠ABC ,交AC 边于点E .(要求:尺规作图,不写作法,保留作图痕迹)(2)DE 与BC 的位置关系是______________[答案](1)见解析;(2)DE 平行BC.理由见解析.[解析][分析](1)由题意作∠ADE=∠ABC ,DE 与AC 边交于点E ,即可得到图形;(2)根据同位角两直线平行进行判定即可得到答案.[详解](1)作∠ADE=∠ABC ,DE 与AC 边交于点E ,如图所示:∠ADE 即为所求;(2)DE 平行BC.理由:由(1)可知∠ADE=∠ABC ,根据同位角相等,两直线平行可得DE 平行BC.[点睛]本题考查作图—基本作图和平行线的判定,解题的关键是掌握作图基本方法和平行线的判定方法. 20. 计算:(1)022120182()2-+- (2)()()32231223a b ab a b -÷-⋅ (3)()()()2122m m m m -+-- (4)()()22a b a b +++-[答案](1)1;(2)43a 7b 5;(3)-m ²+3m−2;(4)a ²+2ab+b ²-4; [解析][分析](1)直接利用负整数指数幂的性质以及零指数幂的性质分别化简得出答案;(2)先算括号里面的,再根据单项式乘单项式的运算法则计算,然后合并同类项即可;(3)根据多项式乘多项式和单项式乘多项式的运算法则并合并同类项计算即可;(4)把a+b 当成一项,根据平方差公式计算,在展开合并化简即可. [详解](1)原式=1+14−14=1; (2)原式=-8a 6b 3÷(-2ab)13a ²b 3=43a 7b 5; (3)原式=m ²−m−2−2m ²+4m=-m ²+3m−2;(4)原式=(a+b)²-4=a ²+2ab+b ²-4.[点睛]本题考查了整式混合运算,熟练掌握整式的混合运算是解题的关键,计算时要注意符号的正确处理. 21. 一个角与它的补角的度数之比为1:8,求这个角的余角的度数.[答案]70°[解析]分析]设这个角是x ,表示出它的补角为(180°−x ),然后列出方程求出x ,再根据余角的定义计算即可得解.[详解]设这个角是x ,则它的补角=180°−x ,根据题意得,x ∶(180°−x)=1∶8,解得x =20°,90°−20°=70°.答:这个角的余角是70°.[点睛]本题考查了余角和补角,熟记定义并表示这个角的补角,然后列出方程是解题的关键.22. 请将下列证明过程补充完整:已知:∠1=∠E,∠B=∠D.求证:AB∥CD证明:∵∠1=∠E(已知)∴∥()∴∠D+∠2=180°()∵∠B=∠D(已知)∴∠B+ ∠2= 180° ( )∴AB∥CD()[答案]∵∠1=∠E(已知),∴AD∥BE(内错角相等,两直线平行),∴∠D+∠2=180°(两直线平行,同旁内角互补);∵∠B=∠D(已知),∴∠B+∠2=180°(等量代换)∴AB∥CD(同旁内角互补,两直线平行)[解析][分析]根据∠1=∠E可判定AD∥BE,可得∠D和∠2为同旁内角互补;结合∠B=∠D,可推得∠2和∠B也互补,从而判定AB平行于CD.[详解]证明:∵∠1=∠E(已知),∴AD∥BE(内错角相等,两直线平行),∴∠D+∠2=180°(两直线平行,同旁内角互补);∵∠B=∠D(已知),∴∠B+∠2=180°,∴AB∥CD.[点睛]本题考查了平行线的性质和平行线的判定,同学们要熟练掌握.23. 如图表示玲玲骑自行车离家的距离与时间的关系.她9点离开家,15点回到家,请根据图象回答下列问题:(1)玲玲到达离家最远的地方是什么时间?她离家多远?(2)她何时开始第一次休息?休息了多长时间?(3)第一次休息时,她离家多远?(4)11点~12点她骑车前进了多少千米?[答案](1) 30千米;(2)10时30分,休息了半小时;(3) 17.5千米;(4) 12.5千米.[解析]试题分析:(1)(3)小题,观察图象,结合题意即可得到对应的答案;(4)观察图象可得:11点时,玲玲距家17.5km,12点时玲玲距家30km,由此可得1112点玲玲骑车前进了30-17.5=12.5(km).试题解析:(1)观察图象可得:玲玲是在12点时到达距家最远的地方的,此时她距家30km;(2)观察图象可得:玲玲10点30分开始第一次休息,休息了30分钟;(3)观察图象可得:玲玲第一次休息时,距家17.5km;(4)观察图象可得:11点时,玲玲距家17.5km,12点时玲玲距家30km,∴11点12点,玲玲骑车行驶了:30-17.5=12.5(km).点睛:解答这类题的关键有以下两点:(1)弄清图象中点的横坐标和纵坐标所代表的量的意义;(2)弄清图象中各个转折点(如图中的点C、D、E、F)的意义.24. 如图,AB=DE,AC=DF,点E、C在直线BF上,且BE=CF.试说明AB∥DE.[答案]见解析[解析][分析]证明△ABC ≌△DEF 得到∠B=∠DEF ,即可推出AB ∥DE.[详解]∵BE=CF ,∴BE+CE=CF+CE,即BC=EF ,在△ABC 和△DEF 中,AB DE AC DF BC EF =⎧⎪=⎨⎪=⎩,∴△ABC ≌△DEF,∴∠B=∠DEF ,∴AB ∥DE.[点睛]此题考查三角形全等的判定及性质,根据题中的已知条件证得△ABC ≌△DEF 是解题的关键. 25. 已知如图,A 、E 、F 、C 四点共线,BF=DE ,AB=CD .(1)请你添加一个条件,使△DEC ≌△BFA ;(2)在(1)的基础上,求证:DE ∥BF .[答案](1)添加的条件为:AE=CF (答案不唯一);(2)证明见解析;[解析][分析](1)添加的条件AE=CF ,因此可得AF=CE ,即可证明△DEC ≌△BFA ;(2) 由(1)知△DEC ≌△BFA ,得到∠DEC=∠BFA ,根据直线平行的判定,即可证明;[详解]解:(1)添加的条件为:AE=CF ,证明:∵AE=CF ,∴AE+EF=CF+EF ,即:AF=CE ,又∵BF=DE ,AB=CD ,∴在△DEC 和△BFA 中,AB CD BF DE AF CE =⎧⎪=⎨⎪=⎩∴△DEC ≌△BFA (SSS );(2)由(1)知△DEC ≌△BFA ,∴∠DEC=∠BFA(全等三角形对应角相等),∴DE ∥BF (内错角相等,两直线平行).[点睛]本题主要考查了三角形全等的判定以及三角形全等的性质、直线平行的·判定,掌握内错角相等两直线平行是解题的关键.26. 如图:BD 平分∠ABC ,∠ABD=∠ADB ,∠ABC=50°,请问:(1)∠BDC +∠C 度数是多少?并说明理由.(2)若P 点是BC 上的一动点(B 点除外),∠BDP 与∠BPD 之和是一个确定的值吗?如果是,求出这个确定的值.如果不是,说明理由.[答案](1)∠BDC+∠C=155°,理由见解析,(2)∠BDP 与∠BPD 之和是一个确定的值,∠BDP+∠BPD=155°,理由见解析.[解析][分析](1)由BD 平分∠ABC ,∠ABD=∠ADB ,可得出AD ∥BC ,在△BCD 中,∠DBC=25°,从而可得答案,(2)因为∠DBC 大小固定,ADB ∠的大小就固定,所以无论P 点如何移动,∠BDP 与∠BPD 之和为一定值.[详解]解:(1)∠BDC+∠C=155°. 理由如下:∵BD 平分∠ABC ,∠ABC=50°,∴∠ABD=∠CBD=25°; 又∠ABD=∠ADB=25°,∠BDC+∠C=180°-∠CBD=155°.(2)是确定的值. 理由如下:∵∠ADB=∠CBD ,∴AD∥BC,∴∠ADP+∠BPD=180°;∴∠BDP+∠BPD=180°-∠ADB=155°.[点睛]本题考查的是角平分线的性质,三角形的内角和定理,平行线的判定与性质,熟练掌握平行线的判定定理及性质和三角形内角和公式是解题的关键.27. 如图1是一个长为2m、宽为2n的长方形,沿图中虚线用剪刀均分成四块小长方形,然后按图2的形状拼成一个正方形.(1)你认为图2中的阴影部分的正方形的边长等于多少?(2)请用两种不同的方法求图2中阴影部分的面积:(3)观察图2你能写出下列三个代数式之间的等量关系吗?代数式:(m+n)2,(m-n)2,mn.(4)根据第(3)问题中的等量关系,解决如下问题:若a+b=7,ab=5,则(a-b)2的值是多少?[答案](1)m-n;(2)(m-n)(m-n)=(m-n)2,(m+n)2-4mn=(m-n)2;(3)(m+n)2-4mn=(m-n)2;(4)29[解析][分析](1)观察得到长为m,宽为n的长方形的长宽之差即为阴影部分的正方形的边长;(2)可以用大正方形的面积减去4个长方形的面积得到图2中的阴影部分的正方形面积;也可以直接利用正方形的面积公式得到;(3)利用(2)中图2中的阴影部分的正方形面积得到(m+n)2-4mn=(m-n)2;(4)根据(3)的结论得到(a-b)2=(a+b)2-4ab,然后把a+b=7,ab=5代入计算.[详解]解:(1)观察图形可得正方形的边长=m-n;(2)方法一:(m-n)(m-n)=(m-n)2 ;方法二:(m+n)2-4mn=(m-n)2 ;(3)利用(2)中的方法二可得:(m+n)2-4mn=(m-n)2 ;⨯=.(4)根据(3)的结论可得:(a-b)2=(a+b)2-4ab=27-4529[点睛]本题考查了完全平方公式与图形之间的关系,从几何的图形来解释完全平方公式的意义.解此类题目的关键是正确的分析图列,找到组成图形的各个部分,并用面积的两种求法作为相等关系列式子.。

人教版七年级数学下册期中测试卷(及答案)

人教版七年级数学下册期中测试卷(及答案)

人教版七年级数学下册期中测试卷(及答案) 班级: 姓名: 一、选择题(本大题共10小题,每题3分,共30分)1.如果y =2x -+2x -+3,那么y x 的算术平方根是( ) A .2 B .3 C .9 D .±3 2.某种衬衫因换季打折出售,如果按原价的六折出售,那么每件赔本40元;按原价的九折出售,那么每件盈利20元,则这种衬衫的原价是( )A .160元B .180元C .200元D .220元3.若229x kxy y -+是一个完全平方式,则常数k 的值为( )A .6B .6-C .6±D .无法确定4.若x ,y 的值均扩大为原来的3倍,则下列分式的值保持不变的是( )A .2x x y +-B .22y xC .3223y xD .222()y x y - 5.如图所示,点P 到直线l 的距离是( )A .线段PA 的长度B .线段PB 的长度C .线段PC 的长度D .线段PD 的长度6.如图,∠1=70°,直线a 平移后得到直线b ,则∠2-∠3( )A .70°B .180°C .110°D .80°7.把1a a -根号外的因式移入根号内的结果是( ) A .a - B .a -- C .a D .a -8.设[x]表示最接近x 的整数(x ≠n+0.5,n 为整数),则[1]+[2]+[3]+…+[36]=( )A .132B .146C .161D .6669.若|abc |=-abc ,且abc ≠0,则||||b a c a b c ++=( ) A .1或-3B .-1或-3C .±1或±3D .无法判断 10.计算()233a a ⋅的结果是( )A .8aB .9aC .11aD .18a 二、填空题(本大题共6小题,每小题3分,共18分)1.三角形三边长分别为3,2a 1-,4.则a 的取值范围是________.2.如图所示,把半径为2个单位长度的圆形纸片放在数轴上,圆形纸片上的A 点对应原点,将圆形纸片沿着数轴无滑动地逆时针滚动一周,点A 到达点A ′的位置,则点A ′表示的数是_______.3.在关于x 、y 的方程组2728x y m x y m +=+⎧⎨+=-⎩中,未知数满足x ≥0,y >0,那么m 的取值范围是_________________.4.如图,直线a ∥b ,且∠1=28°,∠2=50°,则∠ABC =_______.5.若方程组x y 73x 5y 3+=⎧⎨-=-⎩,则()()3x y 3x 5y +--的值是________.6.近年来,国家重视精准扶贫,收效显著,据统计约65000000人脱贫,65000000用科学记数法可表示为________.三、解答题(本大题共6小题,共72分)1.解下列方程组(1)257320x y x y -=⎧⎨-=⎩ (2)33255(2)4x y x y +⎧=⎪⎨⎪-=-⎩2.在解方程组2628mx y x ny +=⎧⎨+=⎩时,由于粗心,小军看错了方程组中的n ,得解为7323x y ⎧=⎪⎪⎨⎪=⎪⎩,小红看错了方程组中的m ,得解为24x y =-⎧⎨=⎩ (1)则m ,n 的值分别是多少?(2)正确的解应该是怎样的?3.如图,在四边形OBCA 中,OA ∥BC ,∠B=90°,OA=3,OB=4.(1)若S 四边形AOBC =18,求BC 的长;(2)如图1,设D 为边OB 上一个动点,当AD ⊥AC 时,过点A 的直线PF 与∠ODA 的角平分线交于点P ,∠APD=90°,问AF 平分∠CAE 吗?并说明理由;(3)如图2,当点D 在线段OB 上运动时,∠ADM=100°,M 在线段BC 上,∠DAO 和∠BMD 的平分线交于H 点,则点D 在运动过程中,∠H 的大小是否变化?若不变,求出其值;若变化,说明理由.4.如图,在△ABC和△ADE中,AB=AC,AD=AE,且∠BAC=∠DAE,点E在BC 上.过点D作DF∥BC,连接DB.求证:(1)△ABD≌△ACE;(2)DF=CE.5.某软件科技公司20人负责研发与维护游戏、网购、视频和送餐共4款软件.投入市场后,游戏软件的利润占这4款软件总利润的40%.如图是这4款软件研发与维护人数的扇形统计图和利润的条形统计图.根据以上信息,网答下列问题(1)直接写出图中a,m的值;(2)分别求网购与视频软件的人均利润;(3)在总人数和各款软件人均利润都保持不变的情况下,能否只调整网购与视频软件的研发与维护人数,使总利润增加60万元?如果能,写出调整方案;如果不能,请说明理由.6.江海化工厂计划生产甲、乙两种季节性产品,在春季中,甲种产品售价50千元/件,乙种产品售价30千元/件,生产这两种产品需要A、B两种原料,生产甲产品需要A种原料4吨/件,B种原料2吨/件,生产乙产品需要A种原料3吨/件,B种原料1吨/件,每个季节该厂能获得A种原料120吨,B种原料50吨.(1)如何安排生产,才能恰好使两种原料全部用完?此时总产值是多少万元?(2)在夏季中甲种产品售价上涨10%,而乙种产品下降10%,并且要求甲种产品比乙种产品多生产25件,问如何安排甲、乙两种产品,使总产值是1375千元,A,B两种原料还剩下多少吨?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、B2、C3、C4、D5、B6、C7、B8、B9、A10、B二、填空题(本大题共6小题,每小题3分,共18分)1、1a4<<2、-4π3、-2≤m<34、78°5、24.6、76.510⨯三、解答题(本大题共6小题,共72分)1、(1)55xy⎧=⎨=⎩;(2)25xy⎧=⎪⎨=⎪⎩2、(1) m=2;n=3;(2)方程组正确的解为12. xy=⎧⎨=⎩3、(1)6;(2)略;(3)略.4、(1)证明略;(2)证明略.5、(1)a=20,m=960;(2)网购软件的人均利润为160元/人,视频软件的人均利润为140元/人;(3)安排9人负责网购、安排1人负责视频可以使总利润增加60万元.6、(1)生产甲种产品15件,生产乙种产品20件才能恰好使两种原料全部用完,此时总产值是135万元;(2)安排生产甲种产品25件,使总产值是1375千元,A种原料还剩下20吨,B种原料正好用完,还剩下0吨.。

人教版数学七年级下册《期中考试试卷》(含答案)

人教版数学七年级下册《期中考试试卷》(含答案)
A. (﹣1,﹣3)B. (3,1)C. (1,3)D. (﹣3,﹣1)
【答案】D
【解析】
分析】
直接利用已知点坐标建立平面直角坐标系,进而得出答案.
【详解】解:如图所示:邮局位置的点的坐标是(﹣3,﹣1).
故选:D.
【点睛】本题主要考查了坐标确定位置,正确建立平面直角坐标系是解题关键.
8.如图,直线CE∥DF,∠CAB=125°,∠ABD=85°,则∠ECA+∠BDF=( )
(1)求点A、B、C、D的坐标;
(2)在x轴上是否存在点P,使三角形PBC的面积等于平行四边形ABDC的面积?若存在,求出点P的坐标;若不存在,请说明理由;
(3)如图(2),点E在y轴的负半轴上,且∠BAE=∠DCB.求证:AE∥BC.
答案与解析
一.选择题(共8小题)
1.下列实数中,属于无理数的是( )
【解析】
【分析】
命题由题设和结论两部分组成,通常写成“如果…那么…”的形式.“如果”后面接题设,“那么”后面接结论.
【详解】命题可以改写为:如果两条直线都与第三条直线平行,那么这两条直线也互相平行.
【点睛】任何一个命题都可以写成“如果…那么…”的形式.“如果”后面接题设,“那么”后面接结论.在改写过程中,不能简单地把题设部分、结论部分分别塞在“如果”、“那么”后面,要适当增减词语,保证句子通顺而不改变原意.
A.30°B.35°C.36°D.40°
【答案】A
【解析】
【分析】
首先由直线 ,根据两直线平行,同旁内角互补,求得 ,然后由 , ,利用三角形外角的性质,求得答案.
【详解】如图,∵CE∥DF,
∴∠CEA+∠F=180°,
∵∠CAB=125°,∠ABD=85°,

人教版七年级数学下学期期中测试卷含答案

七年级数学下学期期中测试卷一、选择题(本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一个选项是符合题目要求的)1、两条直线的位置关系有()A、相交、垂直B、相交、平行C、垂直、平行D、相交、垂直、平行2、如图所示,是一个“七”字形,与∠1是同位角的是()A、∠2B、∠3C、∠4D、∠53、经过一点A画已知直线a的平行线,能画()A、0条B、1条C、2条D、不能确定4、如图4,下列条件中,不能判断直线a//b的是()A、∠1=∠3B、∠2=∠3C、∠4=∠5D、∠2+∠4=180°5、下列图形中有稳定性的是()A.正方形 B.长方形 C.直角三角形 D.平行四边形6、一个正数x的平方根是2a-3与5-a,则x的值是()。

A.64B.36C.81D.497、如图,已知:∠1=∠2,∠3=∠4,∠A=80°,则∠BOC等于()A、95°B、120°C、130°D、无法确定8、若a*=1.1062,b*=0.947是经过舍入后作为的近似值,问a*+b*有几位有效数字?()A、4B、5C、6D、79、下列说法正确的是()A、符号相反的数互为相反数B、符号相反绝对值相等的数互为相反数C、绝对值相等的数互为相反数D、符号相反的数互为倒数10、在平面直角坐标系中,已知点A(-4,0)、B(0,2),现将线段AB向右平移,使A 与坐标原点0重合,则B平移后的坐标是()。

A.(0,-2)B.(4,2)C.(4,4)D.(2,4)二、填空题(本大题共7小题,每小题4分,共28分)11、用科学记数法表示9349000(保留2个有效数字)为________________.12、如图1直线AB,CD,EF相交与点O,图中∠AOE的对顶角是_________,∠COF的补角是__________。

13、如图2,要把池中的水引到D处,可过C点引CD⊥AB于D,然后沿CD开渠,可使所开渠道最短,试说明设计的依据:______________________________14、多项式4x²+4mx+36是一个完全平方式,则m=_____________.15、如图,AC平分∠BAD,∠DAC=∠DCA,填空:因为AC平分∠BAD,所以∠DAC= _______,又因为∠DAC=∠DCA,所以∠DCA= _______,所以AB∥_______。

人教版数学七年级下册《期中考试卷》(含答案)

人 教 版 数 学 七 年 级 下 学 期期 中 测 试 卷学校________ 班级________ 姓名________ 成绩________一、选择题(本题共计10个小题,每题4分,共计40分)1.下列方程是二元一次方程的是( )A. 2x-y=3B. x+1=2C. 335y x +=D. x y z 6++= 2.下列运算正确的是( )A. 224a a a +=B. 3412a a a ⋅=C. 3412()a a =D. 22()ab ab = 3.若=8,=4,则2m n +=( )A. 12B. 4C. 32D. 24.用加减消元法解方程3210415x y x y -=⎧⎨-=⎩①②时,最简捷的方法是( ) A. ②×2+①,消去B. ②×2-①,消去C. ①×4-②×3,消去D. ①×4+②×3,消去5.若12x y =-⎧⎨=⎩是关于x 、y 的方程2x ﹣y+2a =0的一个解,则常数a 为( ) A. 1 B. 2 C. 3 D. 46.若关于x y 、的一元二次方程组5323x y x y p +=⎧⎨+=⎩的解满足1x y -=-,则的值为( ) A. 3 B. 3- C. 6 D. 6-7.如果2n 3273⨯=,则n 的值为( )A. 6B. 1C. 5D. 8 8.计算(13)2019×32020 的结果为 ( ). A. 1 B. 3 C. 13 D. 20209.已知关于,方程组35,4522x y ax by -=⎧⎨+=-⎩和234,8x y ax by +=-⎧⎨-=⎩有相同解,则,的值分别为( ) A. ,3 B. 2,3 C. ,3- D. 2,3-10.《孙子算经》中有一道题,原文是:“今有木,不知长短.引绳度之,余绳四尺五寸;屈绳量之,不足一尺.木长几何?”意思是:用一根绳子去量一根长木,绳子还剩余4.5尺;将绳子对折再量长木,长木还剩余1尺,问木长多少尺,设木长为尺,绳子长为尺,则下列符合题意方程组是( ) A. 4.5112y x y x =+⎧⎪⎨=+⎪⎩ B. 4.5112y x y x =+⎧⎪⎨=-⎪⎩ C. 4.5112y x y x =-⎧⎪⎨=+⎪⎩ D. 4.5112y x y x =-⎧⎪⎨=-⎪⎩ 二、填空题(本题共计8个小题,每题4分,共计32分)11.已知方程3x +5y -3=0,用含x 的代数式表示y,则y=________.12.写出一个以13x y =-⎧⎨=⎩为解的二元一次方程______. 13.已知则3632x y y x -=⎧⎨-=⎩,则x y +的值为______. 14.已知4m a =,3n a =,则2m n a +=__________.15.已知2m a =,32n b =,,为正整数,则3102m n +=_________.16.若21x y =⎧⎨=⎩是关于x 、y 的方程组27ax by bx ay +=⎧⎨+=⎩的解,则(a+b )(a-b )的值为_________. 17.三元一次方程组1,2,3x y y z x z +=⎧⎪+=⎨⎪+=⎩的解是______.18.某体育场环行跑道长400米,甲、乙同时从同一起点分别以一定的速度练习长跑和骑自行车.如果反向而行,那么他们每隔30秒相遇一次.如果同向而行,那么每隔80秒乙就追上甲一次.甲、乙的速度分别是多少?设甲的速度是x 米/秒,乙的速度是y 米/秒.则列出的方程组是_____.三、解答题(本题共计7个小题,共计78分)19.解方程组:(1)102x y x y +=⎧⎨-=⎩ (2)293217x y x y -=⎧⎨+=⎩20.计算:(1)()()24576332x x x x x ⋅+⋅-+ (2)2324251(3)()()2a b a b -⋅-⋅-21.(1)已知a m =2,a n =3,求a m +n 值;(2)已知3x +1=81,求x.22.已知2a =3,2b =6,2c =12,试问a ,b ,c 之间有怎样的关系?请说明理由.23.对于实数、,定义关于“”的一种运算:2a b a b ⊗=+,例如132135⊗=⨯+=.(1)求()43⊗-的值;(2)若()2x y ⊗-=-,()21y x ⊗=-,求x y +的值.24.已知方程组51542ax y x by +=⎧⎨+=-⎩①②由于甲看错了方程①中a ,得到方程组的解为31x y =-⎧⎨=-⎩乙看错了方程②中的b ,得到方程组的解为52x y =⎧⎨=⎩试求出a ,b 的值.25.一家商店要进行装修,若请甲、乙两个装修组同时施工,8天可以完成,需付两组费用共3520元;若先请甲组单独做6天,再请乙组单独做12天可完成,需付两组费用共3480元,问:(1)甲、乙两组工作一天,商店应各付多少元?(2)已知甲组单独做需12天完成,乙组单独做需24天完成,单独请哪组,商店所付费用最少?答案与解析一、选择题(本题共计10个小题,每题4分,共计40分)1.下列方程是二元一次方程的是( )A. 2x-y=3B. x+1=2C. 335y x +=D. x y z 6++=[答案]A[解析][分析]根据二元一次方程的定义对各选项进行逐一分析即可.[详解]解: A.符合二元一次方程的定义,故是二元一次方程,故本选项正确;B.含有一个未知数,是一元一次方程,故本选项错误;C.是分式方程,故本选项错误;D.是三元一次方程,故本选项错误.故选A .[点睛]本题考查了二元一次方程的定义,即含有两个未知数,并且含有未知数的项的次数都是1,像这样的方程叫做二元一次方程.2.下列运算正确的是( )A. 224a a a +=B. 3412a a a ⋅=C. 3412()a a =D. 22()ab ab = [答案]C[解析][分析]分别计算出各项的结果,再进行判断即可.[详解]A.2222a a a +=,故原选项错误;B. 322223x x y xy x y xy y ++---,故原选项错误;C. 3412()a a =,计算正确;D. 222()ab a b =,故原选项错误.故选C[点睛]本题主要考查了合并同类项,同底数幂的乘法,幂的乘方以及积的乘方,熟练掌握运算法则是解题的关键.3.若=8,=4,则2m n+=()A. 12B. 4C. 32D. 2[答案]C[解析][分析]根据同底数幂的乘法法则:同底数幂相乘,底数不变,指数相加,可得22•2m n m n,据此用8乘以4,求出2m n+的值是多少即可.[详解]解:2?228432m n m n,故选:C.[点睛]此题主要考查了同底数幂的乘法法则:同底数幂相乘,底数不变,指数相加,要熟练掌握,解答此题的关键是判断出:22•2m n m n.4.用加减消元法解方程3210415x yx y-=⎧⎨-=⎩①②时,最简捷的方法是()A. ②×2+①,消去B. ②×2-①,消去C. ①×4-②×3,消去D. ①×4+②×3,消去[答案]B[解析][分析]把②×2-①,即可消去.[详解]把②×2-①,得5x=20,故选B.[点睛]本题运用了加减消元法求解二元一次方程组,需要注意的是运用这种方法需满足其中一个未知数的系数相同或互为相反数,若不具备这种特征,则根据等式的性质将其中一个方程变形或将两个方程都变形,使其具备这种形式.5.若12x y =-⎧⎨=⎩是关于x 、y 的方程2x ﹣y+2a =0的一个解,则常数a 为( ) A. 1B. 2C. 3D. 4[答案]B[解析][分析] 将12x y =-⎧⎨=⎩代入2x ﹣y+2a =0解方程即可求出a.[详解]将x=-1,y=2代入方程2x-y+2a=0得:-2-2+2a=0,解得:a=2.故选B .6.若关于x y 、的一元二次方程组5323x y x y p +=⎧⎨+=⎩的解满足1x y -=-,则的值为( ) A. 3B. 3-C. 6D. 6- [答案]C[解析][分析]先消元用表示出方程组的解,再代入已知条件,即可求得.[详解]因为5323x y x y p+=⎧⎨+=⎩, 故可得23325232p x p y -⎧=⎪⎪⎨-⎪=⎪⎩, 代入1x y -=-,则424p =解得6p .故选:C.[点睛]本题考查二元一次方程组的求解,属基础题.7.如果2n 3273⨯=,则n 的值为( )A. 6B. 1C. 5D. 8 [答案]C[解析]∵2n 3273⨯=,∴23n 333⨯=,∴5n 33=,∴n =5.故选C.8.计算(13)2019×32020 的结果为 ( ). A. 1B. 3C. 13D. 2020[答案]B[解析][分析]直接利用积的乘方运算法则将原式变形求出答案. [详解]解:20192020201911()3(3)333⨯=⨯⨯ =3.故选:B .[点睛]此题主要考查了积的乘方运算,正确利用积的乘方法则将原式变形是解题关键.9.已知关于,的方程组35,4522x y ax by -=⎧⎨+=-⎩和234,8x y ax by +=-⎧⎨-=⎩有相同解,则,的值分别为( )A. ,3B. 2,3C. ,3-D. 2,3-[答案]B[解析][分析] 将两个方程组中的3x-y=5与2x+3y=-4组合成新的方程组求出x 及y ,代入另两个方程得到关于a 与b 的方程组,解方程组求解即可.[详解]由题意解方程组35234x y x y -=⎧⎨+=-⎩,解得12x y =⎧⎨=-⎩, 将12x y =⎧⎨=-⎩代入4522ax by +=-及ax-by=8中,得到 4102228a b a b -=-⎧⎨+=⎩,解得23a b =⎧⎨=⎩, 故选:B.[点睛]此题考查特殊法解方程组,由两个方程组的解相同,故将含有相同字母的方程重新组合进行求解,由此解决问题.10.《孙子算经》中有一道题,原文是:“今有木,不知长短.引绳度之,余绳四尺五寸;屈绳量之,不足一尺.木长几何?”意思是:用一根绳子去量一根长木,绳子还剩余4.5尺;将绳子对折再量长木,长木还剩余1尺,问木长多少尺,设木长为尺,绳子长为尺,则下列符合题意的方程组是( ) A. 4.5112y x y x =+⎧⎪⎨=+⎪⎩ B. 4.5112y x y x =+⎧⎪⎨=-⎪⎩ C. 4.5112y x y x =-⎧⎪⎨=+⎪⎩ D. 4.5112y x y x =-⎧⎪⎨=-⎪⎩ [答案]B[解析][分析] 根据题意可以列出相应的二元一次方程组,从而本题得以解决.[详解]用一根绳子去量一根长木,绳子还剩余4.5尺,则 4.5y x =+,将绳子对折再量长木,长木还剩余1尺,则11 2y x=-,∴4.5 112y xy x=+⎧⎪⎨=-⎪⎩,故选B.[点睛]本题考查由实际问题抽象出二元一次方程组,解题的关键是明确题意,列出相应的二元一次方程组.二、填空题(本题共计8个小题,每题4分,共计32分)11.已知方程3x+5y-3=0,用含x的代数式表示y,则y=________.[答案]335x -;[解析]分析: 将x看作已知数求出y即可. 详解:方程3x+5y-3=0,解得:y=335x -.故答案为335x -.点睛: 此题考查了解二元一次方程,解题的关键是将x看作已知数求出y.12.写出一个以13xy=-⎧⎨=⎩为解的二元一次方程______.[答案]x+y=2[解析][分析]先由-1和3列出一个算式:-1+3=2,即可得出x=-1,y=3为x+y=2解,得到正确答案.[详解]根据题意得:x+y=2.故答案为:x+y=2.[点睛]此题考查二元一次方程的解,解题关键在于掌握方程的解即为能使方程左右两边相等的未知数的值.13.已知则3632x yy x-=⎧⎨-=⎩,则x y+的值为______.[答案][解析][分析]将两个方程相加得到2x+2y=8,再两边同时除以2即可得到答案.[详解]3632x y y x -=⎧⎨-=⎩①②, 由①+②,得2x+2y=8,∴x+y=4,故答案为:4.[点睛]此题考查解二元一次方程组,求方程组中两个未知数的其他关系式时,可根据方程组中两个方程的关系直接求值.14.已知4m a =,3n a =,则2m n a +=__________.[答案]48[解析][分析]利用幂的运算中同底数幂相乘,底数不变指数相加的运算方法,先将2m n a +分解成几个数相乘的形式,即可得出结果.[详解]解:244348m n m m n a a a a +=⨯⨯=⨯⨯=故答案为:48.[点睛]本题主要考查是幂的运算中同底数幂相乘的运算法则,掌握同底数幂相乘,底数不变指数相加是解题的关键.15.已知2m a =,32n b =,,为正整数,则3102m n +=_________.[答案]32a b[解析][分析]逆用幂的乘方运算法则以及同底数幂的乘法运算法则将原式变形得出答案.[详解]解:2m a =,32n b =,,为正整数,52n b ∴=,3103522(2)(2)m n m n +∴=⨯32a b =.故答案为:32a b .[点睛]此题主要考查了幂的乘方运算以及同底数幂的乘法运算,正确掌握运算法则是解题关键. 16.若21x y =⎧⎨=⎩是关于x 、y 的方程组27ax by bx ay +=⎧⎨+=⎩的解,则(a+b )(a-b )的值为_________. [答案]-15[解析][分析]把方程组的解代入方程组可得到关于a 、b 的方程组,解方程组可求出a ,b 的值,再代入代数式(a+b)(a-b)计算即可.[详解]解:∵21x y =⎧⎨=⎩是关于x 、y 的方程组27ax by bx ay +=⎧⎨+=⎩的解, 2227a b b a +=⎧∴⎨+=⎩, 解得:14a b =-⎧⎨=⎩, ∴(a+b )(a-b )=(-1+4)×(-1-4)=-15.故选:B .[点睛]本题考查二元一次方程组的解和解二元一次方程组.理解方程组的解满足方程组中的每一个方程是解题的关键.17.三元一次方程组1,2,3x y y z x z +=⎧⎪+=⎨⎪+=⎩的解是______.[答案]1,0,2.x y z =⎧⎪=⎨⎪=⎩[解析][分析]根据解三元一次方程组的方法解方程即可.[详解]解:1,2,3,x y y z x z +=⎧⎪+=⎨⎪+=⎩①②③,++①②③得2()6x y z ++=,所以3x y z ++=④.把①代入④,得2z =.把②代入④,得1x =.把③代入④,得0y =.所以原方程组的解为1,0,2.x y z =⎧⎪=⎨⎪=⎩[点睛]本题考查解三元一次方程组,解题的关键是通过加减消元法或代入消元法消去未知数,从而达到解方程的目的.18.某体育场的环行跑道长400米,甲、乙同时从同一起点分别以一定的速度练习长跑和骑自行车.如果反向而行,那么他们每隔30秒相遇一次.如果同向而行,那么每隔80秒乙就追上甲一次.甲、乙的速度分别是多少?设甲的速度是x 米/秒,乙的速度是y 米/秒.则列出的方程组是_____.[答案]30()40080()400x y y x +=⎧⎨-=⎩ [解析]分析]此题中的等量关系有反向而行,则两人30秒共走400米;②同向而行,则80秒乙比甲多跑400米[详解]解:①根据反向而行,得方程为30(x+y )=400;②根据同向而行,得方程为80(y ﹣x )=400.那么列方程组30()40080()400x y y x +=⎧⎨-=⎩.[点睛]此题考查由实际问题抽象出二元一次方程组,解题关键在于列出方程组三、解答题(本题共计7个小题,共计78分)19.解方程组:(1)102x y x y +=⎧⎨-=⎩ (2)293217x y x y -=⎧⎨+=⎩[答案](1)64x y =⎧⎨=⎩;(2)51x y =⎧⎨=⎩ [解析][分析](1)方程组利用加减消元法求出解即可;(2)方程组利用加减消元法求出解即可.[详解]解:(1)102x y x y +=⎧⎨-=⎩①② ①+②得:2x =12,解得:x =6,把x =6代入①得:y =4,则方程组的解为64x y =⎧⎨=⎩; (2)293217x y x y -=⎧⎨+=⎩①②①×2+②得:7x =35,解得:x =5,把x =5代入①得:y =1,则方程组的解为51x y =⎧⎨=⎩. [点睛]此题考查了二元一次方程组的解法,利用了消元的思想,消元的方法有:代入消元法与加减消元法. 20.计算:(1)()()24576332x x x x x ⋅+⋅-+ (2)2324251(3)()()2a b a b -⋅-⋅-[答案](1)412x ;(2)14132716a b [解析][分析] (1)先算幂的乘方、同底数幂相乘、再算加减;(2)先算积的乘方再算同底数幂乘法;[详解]解:(1)()()24576332x x x x x ⋅+⋅-+ =1266122x x x x +⋅+=1212122x x x ++=412x(2)2324251(3)()()2a b a b -⋅-⋅- =63810127()16a b a b -⋅⋅- =14132716a b [点睛]考核知识点:同底数幂乘法、幂的乘方、积的乘方.掌握相关运算法则是关键.21.(1)已知a m =2,a n =3,求a m +n 的值;(2)已知3x +1=81,求x.[答案](1)6.(2)x =3.[解析]试题分析:(1)用同底数幂的乘法法则,底数不变,指数相加;(2)逆用同底数幂的乘法法则,将3x +1转化为3x ×3,再求解.试题解析:(1)a m +n =a m ·a n =2×3=6.(2)因为3x +1=3x ×3=81,所以3x =27=33.所以x =3.22.已知2a =3,2b =6,2c =12,试问a ,b ,c 之间有怎样的关系?请说明理由.[答案]2b =a +c ,理由见解析.[解析][分析]由62=3×12,可得()22222b a c a c +=⨯=,即可求得a,b,c 之间的关系. [详解]解:(答案不唯一)方法一:∵2326212a b c ===,,,且2666312⨯==⨯,∴()22222a c a c b +=⨯=,∴2b =a +c .方法二:∵2b =6=3×2=2a ×2=2a +1,∴b =a +1.① 又∵2c =12=6×2=2b ×2=2b +1,∴c =b +1.② ①-②,得2b =a +c[点睛]考查幂的乘方与积的乘方,同底数幂的乘法,比较基础,找出等量关系是解题的关键.23.对于实数、,定义关于“”的一种运算:2a b a b ⊗=+,例如132135⊗=⨯+=.(1)求()43⊗-的值;(2)若()2x y ⊗-=-,()21y x ⊗=-,求x y +的值.[答案](1)5;(2)1x y +=-[解析][分析](1)利用题目中的新定义进行计算即可;(2)根据新定义,对式子进行化简后得到二元一次方程,求解该方程组即可.[详解]解:(1)根据题中的新定义得:原式=()243835⨯+-=-=;故答案为:5. (2)根据题中的新定义化简得:2241x y x y -=-⎧⎨+=-⎩, 两式相加得:333x y +=-,则1x y +=-.故答案为:.[点睛]本题借助新定义题型考查了二元一次方程组的解法,新定义题型就按照题目的意思来进行计算即可,本质还是要熟练掌握二元一次方程的解法.24.已知方程组51542ax yx by+=⎧⎨+=-⎩①②由于甲看错了方程①中的a,得到方程组的解为31xy=-⎧⎨=-⎩乙看错了方程②中的b,得到方程组的解为52xy=⎧⎨=⎩试求出a,b的值.[答案]110 ab=⎧⎨=-⎩[解析] [分析]根据方程组解的定义,31xy=-⎧⎨=-⎩应满足方程②,52xy=⎧⎨=⎩应满足方程①,将它们分别代入方程②①,就可得到关于a,b的方程,解得a,b的值.[详解]解:根据题意31xy=-⎧⎨=-⎩是②方程的解,52xy=⎧⎨=⎩是①方程的解,∴4(3)(1)2 55215ba⨯-+⨯-=-⎧⎨+⨯=⎩解得110 ab=⎧⎨=-⎩[点睛]此题主要考查了二元一次方程组解的定义,解决本题的关键是二元一次方程组解的定义.25.一家商店要进行装修,若请甲、乙两个装修组同时施工,8天可以完成,需付两组费用共3520元;若先请甲组单独做6天,再请乙组单独做12天可完成,需付两组费用共3480元,问:(1)甲、乙两组工作一天,商店应各付多少元?(2)已知甲组单独做需12天完成,乙组单独做需24天完成,单独请哪组,商店所付费用最少?[答案](1)甲、乙两组工作一天,商店各应付300元和140元;(2)单独请乙组需要的费用少.[解析][分析](1)本题的等量关系是:甲做8天需要的费用+乙作8天需要的费用=3520元.甲组6天需付的费用+乙做12天需付的费用=3480元,由此可得出方程组求出解.(2)根据(1)得出的甲乙每工作一天,商店需付的费用,然后分别计算出甲单独做12天需要的费用,乙单独做24天需要的费用,让两者进行比较即可.[详解]解:(1)设:甲组工作一天商店应付x元,乙组工作一天商店付y元.由题意得883520 6123480x yx y+=⎧⎨+=⎩解得300140 xy=⎧⎨=⎩答:甲、乙两组工作一天,商店各应付300元和140元.(2)单独请甲组需要的费用:300×12=3600元.单独请乙组需要的费用:24×140=3360元.答:单独请乙组需要的费用少.[点睛]本题主要考查二元一次方程组的实际问题的应用,解题的关键是读懂题目的意思,根据题目给出的条件,设出未知数,分别找出甲组和乙组对应的工作时间,找出合适的等量关系,列出方程组,再求解.。

人教版数学七年级下学期《期中检测试卷》附答案

人 教 版 数 学 七 年 级 下 学 期期 中 测 试 卷学校________ 班级________ 姓名________ 成绩________一、选择题:每小题只有一个选项是符合题意的1.计算23()m m -⋅结果是( )A. 5m -B. 5mC. 6m -D. 6m2.下列计算正确的是( )A. 236()()()a a a a ---=B. ()3235626m n m n -=-C. 1025x x x ÷=D. 03226-⨯=- 3.下列各式中能用平方差公式计算的是( )A. (32)(32)a b b a +-B. (21)(21)x x -+--C. ()()x y x y --+D. 1122x x ⎛⎫⎛⎫--+ ⎪⎪⎝⎭⎝⎭4.如图,AB 与CD 交于点,OE AB ⊥.下列说法错误的是( )A. AOC ∠与BOD ∠相等B. BOD ∠与DOE ∠互余C. AOC ∠与AOD ∠互补D. AOE ∠与BOC ∠对顶角 5.计算结果为256x x --的是( )A. ()()23x x -+B. ()()61x x +-C. ()()23x x +-D. ()()61x x -+ 6.如图,AB AC ⊥,AD BC ⊥,垂足分别为,,则图中能表示点到直线的距离的线段共有( )A. 2条B. 3条C. 4条D. 5条7.小颖妈妈在防疫期间从家里出发,用了10分钟快速走到一个离家800米的药店,在药店排队10分钟买到了预约的口罩,然后步行回到家.下列图象能正确表示小颖妈妈所走的路程与时间关系的是( ) A. B. C. D. 8.多项式A B ÷的计算结果是21x -+,已知21B x =+,由此可知多项式是( )A. 241x +B. 214x -C. 4x -D. 241x -二、填空题9.2020年2月21日,国家卫生健康委决定将“新型冠状病毒肺炎”英文名称修订为“COVID-19”,新型冠状病毒的直径约60220nm -,60nm 用科学记数法表示为________.10.一个长方体长是5210cm ⨯,宽是31.510cm ⨯,高是41.310cm ⨯,则它的体积是________3m .11.如图所示,随着剪刀两个把手之间夹角(DOC ∠)的增大,剪刀刀刃之间的夹角(AOB ∠)________(填“增大”“减小”或“不变”),理由是________________.12.下表反映的是某水果店销售的草莓数量(kg )与销售总价(元)之间的关系,它可以表示为________. 销售数量(kg )1 2 3 4 … 销售总价(元)6.5 125 18.5 245 …13.计算101(2)2π-⎛⎫--- ⎪⎝⎭的结果是________.14.如图,在两条方向相同的南北公路之间要修一条笔直的公路AB ,从地测得公路的走向是南偏西50°,则从地测公路的走向是________.15.已知有理数,满足2213a b --=,则33()()a b a b +-的值是________.16.根据如图所示阴影部分的面积可以写出的一个等式是________.三、解答题17.计算:(1)()32328x x y xy ⋅÷; (2)3(2)(3)9a a a a -⋅--÷;(3)()2(1)(1)1x x x -++.18.求下列各式的值:(1)2(31)(32)(23)x x x x +-+-,其中2x =-;(2)222()()22m n m n mn mn ⎡⎤+--+÷⎣⎦,其中1m =,12n =-. 19.数学活动课上,小亮把两个含30°角的三角板按照如图所示方式摆放,点,,,在同一条直线上,他让小明判断直线AB 与CD 的位置关系,小明很快说出了答案并讲出了判断的依据.请你猜猜小明的答案和理由.20.如图,已知α∠,β∠.求作:AOB ∠,使AOB αβ∠=∠-∠.(尺规作图,保留作图痕迹,不写作法)21.防疫期间的某天上午9:00,社区工作人员小孙从社区办公室出发,上门为本社区两户隔离人员家庭送生活用品,同时了解隔离人员的健康状况,她先去了距离社区较近的张家,稍作停留简单询问了情况后,又去了稍远一点的李家,这家人口较多,了解情况时间稍长一些,由于社区还有其它事情等待处理,结束工作后她快速返回社区办公室.已知小孙距离社区办公室的距离(米)与离开办公室的时间(分)之间的关系如图所示.请根据图象回答下列问题:(1)图中点表示的意义是什么?(2)小孙从李家出来后步行的速度是多少?(3)小孙在李家停留了几分钟?小孙几点回到社区办公室?22.如图,已知//AB CE ,点,,在同一条直线上.(1)已知40B ∠=︒,求DCE ∠的度数;(2)已知60A ∠=︒,40B ∠=︒,求ACD ∠的度数;(3)当A ∠,B 的度数变化时,A ∠,B ,ACD ∠之间的数量关系会变化吗?如果不变,请写出它们之间的数量关系.答案与解析一、选择题:每小题只有一个选项是符合题意的1.计算23()m m -⋅的结果是( )A. 5m -B. 5mC. 6m -D. 6m[答案]B[解析][分析] 根据积的乘方和同底数幂的乘法计算即可.[详解]解:23()m m -⋅=23m m ⋅=5m故选B .[点睛]此题考查的是幂的运算性质,掌握积的乘方和同底数幂的乘法是解决此题的关键.2.下列计算正确的是( )A. 236()()()a a a a ---=B. ()3235626m n m n -=- C 1025x x x ÷=D. 03226-⨯=- [答案]A[解析][分析]根据同底数幂的乘法、积的乘方、幂的乘方、同底数幂的除法、零指数幂的性质和负指数幂的性质逐一判断即可.[详解]A.2312366()()()()()a a a a a a ++---=-==-,故本选项正确;B.()3236928m n m n -=-,故本选项错误;C.1018202x x x x -÷==,故本选项错误;D.031122188-⨯=⨯=,故本选项错误. 故选A . [点睛]此题考查的是幂的运算性质,掌握同底数幂的乘法、积的乘方、幂的乘方、同底数幂的除法、零指数幂的性质和负指数幂的性质是解决此题的关键.3.下列各式中能用平方差公式计算的是( )A. (32)(32)a b b a +-B. (21)(21)x x -+--C. ()()x y x y --+D. 1122x x ⎛⎫⎛⎫--+ ⎪⎪⎝⎭⎝⎭[答案]B[解析][分析]根据平方差公式对各选项进行逐一计算即可. [详解]解:A 、不符合两个数的和与这两个数的差相乘,不能用平方差公式,故本选项错误;B 、符合平方差公式,故本选项正确;C 、原式=()2x y -+,故本选项错误; D 、原式=212x ⎛⎫-- ⎪⎝⎭,故本选项错误. 故选:B .[点睛]本题考查平方差公式,熟知两个数的和与这两个数的差相乘,等于这两个数的平方差是解题的关键. 4.如图,AB 与CD 交于点,OE AB ⊥.下列说法错误的是( )A. AOC ∠与BOD ∠相等B. BOD ∠与DOE ∠互余C. AOC ∠与AOD ∠互补D. AOE ∠与BOC ∠是对顶角[解析][分析]根据对顶角的性质、补角和余角的定义即可解题.[详解]解:A.∠AOC 与∠BOD 是对顶角,所以∠AOC=∠BOD ,故正确;B.∠BOD 和∠DOE 互为余角,故正确;C.AOC ∠与AOD ∠互补,故正确;D.AOE ∠与BOC ∠不是对顶角,故错误.故选D .[点睛]本题考查了对顶角的性质、补角和余角的定义,属于简单题,熟悉概念和性质是解题关键. 5.计算结果为256x x --的是( )A. ()()23x x -+B. ()()61x x +-C. ()()23x x +-D. ()()61x x -+[答案]D[解析][分析]运用十字相乘的方法来分解即可.[详解]解:256x x --=(x-6)(x+1)故选D[点睛]本题考查了运用十字相乘的方法来分解因式,熟练掌握该方法是解决本题的关键.6.如图,AB AC ⊥,AD BC ⊥,垂足分别为,,则图中能表示点到直线的距离的线段共有( )A. 2条B. 3条C. 4条D. 5条[答案]D[分析]根据点到直线的距离的定义:从直线外一点到这直线的垂线段的长度叫做点到直线的距离,即可得出结论.[详解]解:AD的长度表示点A到直线BC的距离;BD的长度表示点B到直线AD的距离;CD的长度表示点C到直线AD的距离;CA的长度表示点C到直线AB的距离;BA的长度表示点B到直线AC的距离;综上:图中能表示点到直线的距离的线段共有5条故选D.[点睛]此题主要考查了点到直线的距离,解题关键是明确点到直线的距离是这个点到直线的垂线段的长,因此要找到垂直的特点即可.7.小颖妈妈在防疫期间从家里出发,用了10分钟快速走到一个离家800米的药店,在药店排队10分钟买到了预约的口罩,然后步行回到家.下列图象能正确表示小颖妈妈所走的路程与时间关系的是()A. B. C. D.[答案]A[解析][分析]根据小颖妈妈所走的路程与时间关系分析图象即可.[详解]解:小颖妈妈用了10分钟快速走到一个离家800米的药店,此时各个选项均符合题意;在药店排队10分钟买到了预约口罩,即这10分钟走的路程为0,故可排除B和D;然后步行回到家,即此时小颖妈妈又行驶了800米,故可排除C,选A.故选A.[点睛]此题考查的是根据题意,选择正确的图象,掌握图象横纵坐标表示的实际意义是解决此题的关键.8.多项式A B ÷的计算结果是21x -+,已知21B x =+,由此可知多项式是( )A. 241x +B. 214x -C. 4x -D. 241x -[答案]B[解析][分析]根据A B ÷的计算结果是21x -+,可得A=B (-2x+1),将21B x =+代入计算即可.[详解]解:∵A B ÷的计算结果是21x -+,∴A=B (2x+1)=(2x+1)(-2x+1)=-(2x+1)(2x-1)=214x -.故选:B .[点睛]本题考查了整式的乘除,关键是掌握整式的乘除运算法则,平方差公式,在计算时要注意结果的符号. 二、填空题9.2020年2月21日,国家卫生健康委决定将“新型冠状病毒肺炎”英文名称修订为“COVID-19”,新型冠状病毒的直径约60220nm -,60nm 用科学记数法表示为________.[答案]8610-⨯[解析][分析]绝对值小于1的正数也可以利用科学记数法表示,一般形式为10n a -⨯,与较大数的科学记数法不同的是其所使用的是负整数指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.[详解]解:∵1nm=1×10-9m ∴60nm=6×10-8m . 故答案为:6×10-8. [点睛]本题考查用科学记数法表示较小的数,一般形式为10n a -⨯,其中1||10a <,为由原数左边起第一个不为零的数字前面的0的个数所决定.本题也考查了纳米与米之间的单位换算:1nm=1×10-9m . 10.一个长方体的长是5210cm ⨯,宽是31.510cm ⨯,高是41.310cm ⨯,则它的体积是________3m .[答案]63.910⨯[解析][分析]先进行单位换算,再计算长方体的体积[详解]53210cm=210m ⨯⨯,311.510cm=1.510m ⨯⨯,421.310cm=1.310m ⨯⨯故它的体积是:33126210 1.510 1.310 3.1m 90⨯⨯⨯⨯⨯=⨯.故答案为:63.910⨯[点睛]此题主要考查了单项式乘以单项式以及科学记数法的表示方法,单位换算和正确计算是解题关键. 11.如图所示,随着剪刀两个把手之间夹角(DOC ∠)的增大,剪刀刀刃之间的夹角(AOB ∠)________(填“增大”“减小”或“不变”),理由是________________.[答案] (1). 增大 (2). 对顶角相等[解析][分析]根据对顶角的性质即可得出结论.[详解]解:∵∠AOB 和∠DOC 为对顶角∴∠AOB=∠DOC∴随着剪刀两个把手之间夹角(DOC ∠)的增大,剪刀刀刃之间的夹角(AOB ∠)增大理由为对顶角相等.故答案为:增大;对顶角相等.[点睛]此题考查的是对顶角性质的应用,掌握对顶角相等是解决此题的关键.12.下表反映的是某水果店销售的草莓数量(kg )与销售总价(元)之间的关系,它可以表示为________. 销售数量(kg ) 1 2 3 4 …[答案]60.5y x =+[解析][分析] 由图表可知,当销售数量为1kg 时,销售总价为6.5元,销售数量每增加1kg ,销售总价就增加6元,从而求出y 与x 的函数关系式.[详解]解:由图表可知,当销售数量为1kg 时,销售总价为6.5元,销售数量每增加1kg ,销售总价就增加6元, ∴y=6.5+6(x -1)=60.5x +故答案为:60.5y x =+.[点睛]此题考查的是求函数解析式,掌握实际问题中的等量关系是解决此题的关键.13.计算101(2)2π-⎛⎫--- ⎪⎝⎭的结果是________.[答案]-3[解析][分析]按照负指数幂和零指数幂运算法则分别计算后,进行有理数加减法运算即可. [详解]解:101(2213)2π-⎛⎫---=-- ⎪⎭=-⎝ 故答案为:-3[点睛]本题考查了负指数幂、零指数幂和有理数加减运算的运算法则,解答关键是按照法则进行计算.14.如图,在两条方向相同的南北公路之间要修一条笔直的公路AB ,从地测得公路的走向是南偏西50°,则从地测公路的走向是________.[答案]北偏东50°[解析][分析]首先计算2∠的度数,再根据方向角来描述乙地所修公路的走向.[详解]解:如图所示:150∠=︒,//AC BD ,2150∴∠=∠=︒,乙地所修公路的走向是北偏东50︒,故答案为:北偏东50︒.[点睛]此题主要考查了方向角,关键是掌握以正北,正南方向为基准,来描述物体所处的方向.15.已知有理数,满足2213a b --=,则33()()a b a b +-的值是________.[答案]127[解析][分析]根据平方差公式和负指数幂的性质可得()()13a b a b +-=,然后根据积的乘方的逆用即可求出结论.[详解]解:∵2213a b --=∴()()13a b a b +-=∴33()()a b a b +-=[]3()()a b a b +- =313⎡⎤⎢⎥⎣⎦=127故答案为:127. [点睛]此题考查的是平方差公式、负指数幂的性质和积的乘方的逆用,掌握平方差公式、负指数幂的性质和积的乘方的逆用是解决此题的关键.16.根据如图所示阴影部分的面积可以写出的一个等式是________.[答案]22()()4a b a b ab +=-+[解析]分析]由图可知:图中大正方形的边长为a +b ,其面积为2()a b +;空白正方形的边长为a -b ,其面积为2()a b -;阴影部分由4个矩形组成,每个矩形的长为a ,宽为b ,每个矩形的面积为ab ;然后根据大正方形的面积=空白正方形的面积+4个矩形的面积即可得出结论.[详解]解:由图可知:图中大正方形边长为a +b ,其面积为2()a b +; 空白正方形的边长为a -b ,其面积为2()a b -;阴影部分由4个矩形组成,每个矩形的长为a ,宽为b ,每个矩形的面积为ab ;∴22()()4a b a b ab +=-+故答案为:22()()4a b a b ab +=-+.[点睛]此题考查的是完全平方公式变形的几何意义,利用大正方形的面积=空白正方形的面积+4个矩形的面积得出等式是解决此题的关键.三、解答题17.计算:(1)()32328x x y xy ⋅÷; (2)3(2)(3)9a a a a -⋅--÷;(3)()2(1)(1)1x x x -++.[答案](1)623xy (2)2a (3)41x - [解析][分析](1)先计算单项式的乘方,再进行单项式乘法,最后进行单项式除法即可;(2)先计算单项式的乘方,再进行单项式乘除法,最后加减;(3)直接利用平方差公式计算得出答案.[详解]解:(1)()32328x x y xy ⋅÷=63388x x y xy ⋅÷=623x y ;(2)3(2)(3)9a a a a -⋅--÷=232(27)9a a a ---÷=222+3a a -=2a ;(3)()2(1)(1)1x x x -++=()22(1)1x x -+=41x -.[点睛]本题考查整式的混合运算,正确掌握相关运算法则是解题关键.18.求下列各式的值:(1)2(31)(32)(23)x x x x +-+-,其中2x =-;(2)222()()22m n m n mn mn ⎡⎤+--+÷⎣⎦,其中1m =,12n =-. [答案](1)76x +;-8 ; (2)2n +;32[解析][分析] (1)利用多项式乘以多项式和单项式乘以多项式计算法则进行计算,再合并同类项,化简后,再代入的值可得答案.(2)首先利用完全平方公式计算括号里面的乘法,再合并同类项,然后再利用多项式除以单项式计算除法,化简后,再代入、的值计算即可.[详解]解:(1)原式2(31)(32)(23)x x x x +-+-2262(6946)x x x x x =+--+-22626946x x x x x =+-+-+76x =+,当2x =-时,原式2768=-⨯+=-;(2)原式222()()22m n m n mn mn ⎡⎤=+--+÷⎣⎦222222(2)22m mn n m mn n mn mn ⎡⎤=++--++÷⎣⎦22222(222)2m mn n m mn n mn mn =++-+-+÷2(42)2mn mn mn =+÷24222mn mn mn mn =÷+÷2n =+,当1m =,12n =-时,原式13222=-+=. [点睛]此题主要考查了整式的混合运算--化简求值,关键是掌握有乘方、乘除的混合运算中,要按照先乘方后乘除的顺序运算,其运算顺序和有理数的混合运算顺序相似.19.数学活动课上,小亮把两个含30°角的三角板按照如图所示方式摆放,点,,,在同一条直线上,他让小明判断直线AB 与CD 的位置关系,小明很快说出了答案并讲出了判断的依据.请你猜猜小明的答案和理由.[答案]//AB CD ,理由:内错角相等,两直线平行[解析][分析]根据三角尺的摆放方式,比较容易找到一组相等的内错角,从而证明两条直线平行.[详解]//AB CD ,理由:内错角相等,两直线平行[点睛]本题考查了平行线的判定方法,熟练掌握平行线的判定定理是解题的关键.20.如图,已知α∠,β∠.求作:AOB ∠,使AOB αβ∠=∠-∠.(尺规作图,保留作图痕迹,不写作法)[答案]图见解析[解析][分析]作∠AOC=α∠,然后在∠AOC 内部作∠BOC=β∠,即可得到AOB αβ∠=∠-∠.[详解]解:作∠AOC=α∠,然后在∠AOC 内部作∠BOC=β∠,即可得到AOB αβ∠=∠-∠,如下图所示,∠AOB 即为所求.[点睛]此题考查的是基本作图,掌握利用尺规作图作一个角等于已知角是解决此题的关键.21.防疫期间的某天上午9:00,社区工作人员小孙从社区办公室出发,上门为本社区两户隔离人员家庭送生活用品,同时了解隔离人员的健康状况,她先去了距离社区较近的张家,稍作停留简单询问了情况后,又去了稍远一点的李家,这家人口较多,了解情况时间稍长一些,由于社区还有其它事情等待处理,结束工作后她快速返回社区办公室.已知小孙距离社区办公室的距离(米)与离开办公室的时间(分)之间的关系如图所示.请根据图象回答下列问题:(1)图中点表示的意义是什么?(2)小孙从李家出来后步行的速度是多少?(3)小孙在李家停留了几分钟?小孙几点回到社区办公室?[答案](1)点表示小孙从社区办公室出发5分钟后到达距社区办公室200米的张家;(2)80(米/分);(3)10分钟,9:40.[解析][分析](1)根据题意和图象中A点对应的(米)与(分)解答即可;(2)根据“速度时间路程”解答即可;(3)根据图象中(米)与(分)解答即可.[详解]解:(1)由图象可知,点表示小孙从社区办公室出发5分钟后到达距社区办公室200米张家;(2)800(4030)80÷-=(米分).故小孙从李家出来后步行的速度是80米分;(3)由图象可知,小孙在李家停留了()302010-=分钟,小孙9:00出发,到经过40分钟回到社区办公室, 9:40回到社区办公室.故:小孙在李家停留了10分钟,小孙9:40回到社区办公室.[点睛]此题主要考查了看函数图象,解决本题的关键是读懂图意,然后根据图象信息找到所需要的数量关系,利用数量关系即可解决问题.22.如图,已知//AB CE ,点,,在同一条直线上.(1)已知40B ∠=︒,求DCE ∠的度数;(2)已知60A ∠=︒,40B ∠=︒,求ACD ∠的度数;(3)当A ∠,B 的度数变化时,A ∠,B ,ACD ∠之间的数量关系会变化吗?如果不变,请写出它们之间的数量关系.[答案](1)40DCE ∠=︒(2)100ACD ∠=︒(3)不变 ACD A B ∠=∠+∠[解析][分析](1)直接利用两直线平行,同位角相等即可得出答案;(2)利用三角形外角的性质可知ACD A B ∠=∠+∠,然后代入相应的角度即可求出答案;(3)利用三角形外角的性质可知ACD A B ∠=∠+∠,从而得出答案.[详解](1)//AB CE ,40DCE B ∴∠=∠=︒;(2)60A ∠=︒,40B ∠=︒,∴6040100ACD A B ∠=∠+∠=︒+︒=︒;(3)不变,根据三角形外角的性质可知,ACD A B ∠=∠+∠.[点睛]本题主要考查平行线的性质和三角形外角的性质,掌握平行线的性质和三角形外角的性质是解题的关键.。

人教版七年级下册数学《期中检测试题》(附答案解析)

10. 7张如图1的长为a,宽为b(a>b)的小长方形纸片,按图2的方式不重叠地放在矩形ABCD内,未被覆盖的部分(两个矩形)用阴影表示.设左上角与右下角的阴影部分的面积的差为S,当BC的长度变化时,按照同样的放置方式,S始终保持不变,则a,b满足【 】
A.a= bB. a=3bC.a= bD. a=4b
∴阴影部分面积之差 .
∵S始终保持不变,∴3b﹣a=0,即a=3b.
故选B.
【点睛】此题考查了整式的混合运算,熟练掌握运算法则是解本题的关键.
二、填空题(本题有8小题,每小题3分,共24分)
11. =______.
【答案】
【解析】
【分析】
根据整式的混合运算法则进行计算即可.
【详解】
故答案为: .
【点睛】本题考查了整式的运算问题,掌握整式的混合运算法则是解题的关键.
A.a= bB. a=3bC.a= bD. a=4b
二、填空题(本题有8小题,每小题3分,共24分)
11. =______.
12.已知 是方程ax-y=3的解,则a的值为________.
13.已知方程 ,用含x的代数式表示y,则 _______.
14.若已知公式.若二元一次方程3x﹣y=7,2x+3y=1,y=kx﹣9有公共解,则k的取值为______.
A.(x﹣y)2=x2﹣y2B.(a+2)(a﹣3)=a2﹣6
C.(a+2b)2=a2+4ab+4b2D.(2x﹣y)(2x+y)=2x2﹣y2
8.如图,从边长为( )cm的正方形纸片中剪去一个边长为( )cm的正方形( ),剩余部分沿虚线又剪拼成一个矩形(不重叠无缝隙),则矩形的面积为( )
A. B. C. D.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

编号: 时间: 知识宝库34 页码:第1页 共26页

第 1 页 共 26 页 人教版七年级数学期中试卷及答案

人教版七年级数学下期中试题 一、选择题共10小题,每小题3分,满分30分 1.在平面直角坐标系中,点P﹣3,4位于 A.第一象限 B.第二象限 C.第三象限 D.第四象限 2.下列调查中,适合用全面调查方式的是 A.了解我国东海水域是否受到日本核辐射污染 B.了解我们班50名同学上次月考数学成绩 C.了解一批节能灯泡的使用寿命 D.了解一批我国最新生产的核弹头的杀伤半径 3.如图,表示下列某个不等式的解集,其中正确的是 A.x 2 B.x 2 C.x≥2 D.x≤﹣2 4.若图示的两架天平都保持平衡,则对a、b、c三种物体的重量判断正确的是 A.a c B.a 5.不等式组 的解集在数轴上的表示是 A. B. 编号: 时间: 知识宝库34 页码:第2页 共26页

第 2 页 共 26 页 C. D. 6.大课间活动在我市各校蓬勃开展.某班大课间活动抽查了20名学生每分钟跳绳次数,获得如下数据单位次50,63,77,83,87,88,89,91,93,100,102,111,117,121,130,133,146,158,177,188.则跳绳次数在90﹣110这一组的频数是 A.2 B.4 C.6 D.14 7.平面直角坐标系中,点A﹣2,a位于x轴的上方,则a的值可以是 A.0 B.﹣1 C. D.±3 8.线段CD是由线段AB平移得到的.点A﹣1,4的对应点为C4,7,则点B﹣4,﹣1的对应点D的坐标为 A.2,9 B.5,3 C.1,2 D.﹣9,﹣4 9.如图,在正方形网格中,A点坐标为﹣1,0,B点坐标为0,﹣2,则C点坐标为 A.1,1 B.﹣1,﹣1 C.﹣1,1 D.1,﹣1 10.如图,矩形BCDE的各边分别平行于x轴或y轴,物体甲和物体乙分别由点A2,0同时出发,沿矩形BCDE的边作环绕运动,物体甲按逆时针方向以1个单位/秒匀速运动,物体乙按顺时针方向以2个单位/秒匀速运动,则两个物体运动后的第2021次相遇地点的坐标是 A.2,0 B.﹣1,1 C.﹣2,1 D.﹣1,﹣1 二、填空题 编号: 时间: 知识宝库34 页码:第3页 共26页

第 3 页 共 26 页 11.要使 有意义,则x的取值范围是. 12.当a时,式子15﹣7a的值是正数. 13.点Q ,﹣2在第象限. 14.若x+2y+3z=10,4x+3y+2z=15,则x+y+z的值是. 15.不等式4x≤8的正整数解为. 16.若方程组 的解满足方程x+y+a=0,则a的值为 17.若点Ma﹣3,a+4在x轴上,则点M的坐标是. 18.若2x2a﹣b﹣1﹣3y3a+2b﹣16=10是关于x,y的二元一次方程,则a+b=. 19.下表为吉安市某中学七1班学生将自己的零花钱捐给“春雷计划”的数目,老师将学生捐款数目按10元组距分段,统计每个分数段出现的频数,则a=,b=,全班总人数为个. 钱数目元 5≤x≤15 15≤x≤25 25≤x≤35 35≤x≤45 45≤x≤55 频数 2 a 20 14 3 百分比 0.040 0.220 b 0.350 0.075 20.设[x表示大于x的最小整数,如[3=4,[﹣1.2=﹣1, 则下列结论中正确的是.填写所有正确结论的序号 ①[0=0;②[x﹣x的最小值时0;③[x﹣x的最大值是1;④存在实数x,使[x﹣x=0.5成立. 三、解答题共60分 21.解方程组 编号: 时间: 知识宝库34 页码:第4页 共26页

第 4 页 共 26 页 1 ; 2 . 22.解下列不等式组 1 ﹣2 ; 2 . 23.已知不等式5x﹣2+8 6x﹣1+7的最小整数解为方程2x﹣ax=3的解,求a的值. 24.某校为了进一步丰富学生的课外体育活动,欲增购一些体育器材,为此该校对一部分学生进行了一次题为“你最喜欢的体育活动”的问卷调查2021•宁德某刊物报道“2021年12月15日,两岸海上直航、空中直航和直接通邮启动,‘大三通’基本实现.‘大三通’最直接好处是省时间和省成本,据测算,空运平均每航次可节省4小时,海运平均每航次可节省22小时,以两岸每年往来合计500万人次计算,则共可为民众节省2900万小时…”根据文中信息,求每年采用空运和海运往来两岸的人员各有多少万人次. 26.已知关于x,y的二元一次方程组 的解满足二元一次方程 ,求m的值. 27.如图,在边长均为1个单位的正方形网格图中,建立了直角坐标系xOy,按要求解答下列问题 1写出△ABC三个顶点的坐标; 编号: 时间: 知识宝库34 页码:第5页 共26页

第 5 页 共 26 页 2画出△ABC向右平移6个单位后的图形△A1B1C1; 3求△ABC的面积. 28.某房地产开发公司计划建A、B两种户型的经济适用住房共80套,该公司所筹资金不少于2090万元,但不超过2096万元,且所筹资金全部用于建房,两种户型的建房成本和售价如下表 A B 成本万元/套 25 28 售价万元/套 30 34 1该公司对这两种户型住房有哪几种建房方案? 2若该公司所建的两种户型住房可全部售出,则采取哪一种建房方案获得利润最大? 3根据市场调查,每套A型住房的售价不会改变,每套B型住房的售价将会降低a万元0 p=""

人教版七年级数学下期中试卷参考答案 一、选择题共10小题,每小题3分,满分30分 1.在平面直角坐标系中,点P﹣3,4位于 A.第一象限 B.第二象限 C.第三象限 D.第四象限 【考点】点的坐标. 【专题】计算题. 编号: 时间: 知识宝库34 页码:第6页 共26页

第 6 页 共 26 页 【分析】根据点的横纵坐标特点,判断其所在象限,四个象限的符号特点分别是第一象限+,+;第二象限﹣,+;第三象限﹣,﹣;第四象限+,﹣. 【解答】解△点﹣3,4的横纵坐标符号分别为﹣,+, △点P﹣3,4位于第二象限. 故选B. 【点评】本题考查了各象限内点的坐标的符号,记住各象限内点的坐标的符号是解决的关键. 2.下列调查中,适合用全面调查方式的是 A.了解我国东海水域是否受到日本核辐射污染 B.了解我们班50名同学上次月考数学成绩 C.了解一批节能灯泡的使用寿命 D.了解一批我国最新生产的核弹头的杀伤半径 【考点】全面调查与抽样调查. 【分析】根据普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似解答. 【解答】解了解我国东海水域是否受到日本核辐射污染适合用抽样调查; 了解我们班50名同学上次月考数学成绩适合用全面调查; 了解一批节能灯泡的使用寿命适合用抽样调查; 了解一批我国最新生产的核弹头的杀伤半径适合用抽样调查; 编号: 时间: 知识宝库34 页码:第7页 共26页

第 7 页 共 26 页 故选B. 【点评】本题考查的是抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查. 3.如图,表示下列某个不等式的解集,其中正确的是 A.x 2 B.x 2 C.x≥2 D.x≤﹣2 【考点】在数轴上表示不等式的解集. 【分析】根据数轴上不等式的解集得出选项即可. 【解答】解从数轴可知x 2, 故选B. 【点评】本题考查了在数轴上表示不等式的解集的应用,能够读图是解此题的关键. 4.若图示的两架天平都保持平衡,则对a、b、c三种物体的重量判断正确的是 A.a c B.a 【考点】不等式的定义. 编号: 时间: 知识宝库34 页码:第8页 共26页

第 8 页 共 26 页 【分析】找出不等关系是解决本题的关键. 【解答】解由图一可知2a=3b,a b;由图二可知2b=3c,b c. 故a b c. 故选A. 【点评】解决问题的关键是读懂图意,进而列出正确的不等式. 5.不等式组 的解集在数轴上的表示是 A. B. C. D. 【考点】解一元一次不等式组;在数轴上表示不等式的解集. 【分析】分别把两条不等式解出来,然后判断哪个选项表示的正确. 【解答】解由1式x 2, 由2x ﹣1, 所以﹣1 p=""

故选C. 编号: 时间: 知识宝库34 页码:第9页 共26页

第 9 页 共 26 页 【点评】本题考查不等式组的解法和在数轴上的表示法,如果是表示大于或小于号的点要用空心,如果是表示大于等于或小于等于号的点用实心. 6.大课间活动在我市各校蓬勃开展.某班大课间活动抽查了20名学生每分钟跳绳次数,获得如下数据单位次50,63,77,83,87,88,89,91,93,100,102,111,117,121,130,133,146,158,177,188.则跳绳次数在90﹣110这一组的频数是 A.2 B.4 C.6 D.14 【考点】频数与频率. 【专题】计算题. 【分析】根据频数的定义,从数据中数出在90~110这一组的频数即可. 【解答】解跳绳次数在90~110之间的数据有91,93,100,102四个,故频数为4. 故选B. 【点评】本题考查了频数的定义.频数是指每个对象出现的次数,一般称落在不同小组中的数据个数为该组的频数. 7.平面直角坐标系中,点A﹣2,a位于x轴的上方,则a的值可以是 A.0 B.﹣1 C. D.±3 【考点】点的坐标.

相关文档
最新文档