七年级下册数学期中考试试卷

合集下载

七年级数学下册期中考试题(及参考答案)

七年级数学下册期中考试题(及参考答案)

七年级数学下册期中考试题(及参考答案) 班级: 姓名: 一、选择题(本大题共10小题,每题3分,共30分)1.估计7+1的值在( )A .2和3之间B .3和4之间C .4和5之间D .5和6之间2.下列图形中,不是轴对称图形的是( )A .B .C .D .3.如图,直线,a b 被,c d 所截,且//a b ,则下列结论中正确的是( )A .12∠=∠B .34∠=∠C .24180∠+∠=D .14180∠+∠=4.4的算术平方根是( )A .-2B .2C .2±D .25.一列数,按一定规律排列:-1,3,-9.27,-81,…,从中取出三个相邻的数,若三个数的和为a ,则这三个数中最大的数与最小的数的差为( )A .87aB .87|a|C .127|a|D .127a 6.如图,要把河中的水引到水池A 中,应在河岸B 处(AB ⊥CD )开始挖渠才能使水渠的长度最短,这样做依据的几何学原理是( )A .两点之间线段最短B .点到直线的距离C.两点确定一条直线D.垂线段最短7.如图,下列各三角形中的三个数之间均具有相同的规律,根据此规律,最后一个三角形中y与n之间的关系是()A.y=2n+1 B.y=2n+n C.y=2n+1+n D.y=2n+n+187+1的值()A.在1和2之间B.在2和3之间C.在3和4之间D.在4和5之间9.已知x a=3,x b=4,则x3a-2b的值是()A.278B.2716C.11 D.1910.若x﹣m与x+3的乘积中不含x的一次项,则m的值为()A.3 B.1 C.0 D.﹣3二、填空题(本大题共6小题,每小题3分,共18分)1.8 的立方根是__________.2.袋中装有6个黑球和n个白球,经过若干次试验,发现“若从袋中任摸出一个球,恰是黑球的概率为34”,则这个袋中白球大约有________个.3.如图,在△ABC中,∠A=60°,BD、CD分别平分∠ABC、∠ACB,M、N、Q分别在DB、DC、BC的延长线上,BE、CE分别平分∠MBC、∠BCN,BF、CF分别平分∠EBC、∠ECQ,则∠F=________.4.己知三角形三边长分别为6,6,23,则此三角形的最大边上的高等于________.5.若数轴上表示互为相反数的两点之间的距离是16,则这两个数是______.6.如图,在△ABC 中,∠BAC =33°,将△ABC 绕点A 按顺时针方向旋转50°,对应得到△AB ′C ′,则∠B ′AC 的度数为________.三、解答题(本大题共6小题,共72分)1.解方程:(1)()43203x x --= (2)23211510x x -+-=2.若关于x 、y 的二元一次方程组2133x y m x y -=+⎧⎨+=⎩的解满足x +y >0,求m 的取值范围.3.如图①,△ABC 中,AB =AC ,∠B 、∠C 的平分线交于O 点,过O 点作EF ∥BC 交AB 、AC 于E 、F .(1)图①中有几个等腰三角形?猜想:EF与BE、CF之间有怎样的关系.(2)如图②,若AB≠AC,其他条件不变,图中还有等腰三角形吗?如果有,分别指出它们.在第(1)问中EF与BE、CF间的关系还存在吗?(3)如图③,若△ABC中∠B的平分线BO与三角形外角平分线CO交于O,过O 点作OE∥BC交AB于E,交AC于F.这时图中还有等腰三角形吗?EF与BE、CF 关系又如何?说明你的理由.4.如图,∠1=∠ACB,∠2=∠3,求证:∠BDC+∠DGF=180°.5.现有甲、乙、丙等多家食品公司在某市开设蛋糕店,该市蛋糕店数量的扇形统计图如图所示,其中统计图中没有标注相应公司数量的百分比.已知乙公司经营150家蛋糕店,请根据该统计图回答下列问题:(1)求甲公司经营的蛋糕店数量和该市蛋糕店的总数;(2)甲公司为了扩大市场占有率,决定在该市增设蛋糕店数量达到全市的20%,求甲公司需要增设的蛋糕店数量.6.某汽车租赁公司要购买轿车和面包车共10辆,其中轿车至少要购买3辆,轿车每辆7万元,面包车每辆4万元,公司可投入的购车款不超过55万元.(1)符合公司要求的购买方案有几种?请说明理由;(2)如果每辆轿车的日租金为200元,每辆面包车的日租金为110元,假设新购买的这10辆车每日都可租出,要使这10辆车的日租金不低于1500元,那么应选择以上哪种购买方案?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、B2、A3、B4、B5、C6、D7、B8、C9、B10、A二、填空题(本大题共6小题,每小题3分,共18分)1、-22、23、15°45、-8、86、17°三、解答题(本大题共6小题,共72分)1、(1)x=9;(2)x=8.52、m>﹣23、(1)△AEF、△OEB、△OFC、△OBC、△ABC共5个,EF=BE+FC;(2)有,△EOB、△FOC,存在;(3)有,EF=BE-FC.4、略5、(1)甲蛋糕店数量为100家,该市蛋糕店总数为600家;(2)甲公司需要增设25家蛋糕店.6、(1) 有三种购买方案,理由见解析;(2)为保证日租金不低于1500元,应选择方案三,即购买5辆轿车,5辆面包车。

七年级数学下册期中考试题【及答案】

七年级数学下册期中考试题【及答案】

七年级数学下册期中考试题【及答案】 班级: 姓名:一、选择题(本大题共10小题,每题3分,共30分)1.把多项式x 2+ax+b 分解因式,得(x+1)(x-3),则a 、b 的值分别是( ) A .a=2,b=3B .a=-2,b=-3C .a=-2,b=3D .a=2,b=-32.如图,点O 在直线AB 上,射线OC 平分∠DOB .若∠COB =35°,则∠AOD 等于( ).A .35°B .70°C .110°D .145°3.如图,直线,a b 被,c d 所截,且//a b ,则下列结论中正确的是( )A .12∠=∠B .34∠=∠C .24180∠+∠=D .14180∠+∠=4.一副三角板按如图方式摆放,且∠1的度数比∠2的度数大50°,若设∠1=x °,∠2=y °,则可得到方程组为A .x y 50{x y 180=-+=B .x y 50{x y 180=++=C .x y 50{x y 90=++=D .x y 50{x y 90=-+=5.点A在数轴上,点A所对应的数用21a+表示,且点A到原点的距离等于3,则a的值为()A.2-或1 B.2-或2 C.2-D.16.在平面直角坐标系中,将点A(1,﹣2)向上平移3个单位长度,再向左平移2个单位长度,得到点A′,则点A′的坐标是()A.(﹣1,1)B.(﹣1,﹣2) C.(﹣1,2)D.(1,2)7.已知关于x的不等式组320x ax->⎧⎨->⎩的整数解共有5个,则a的取值范围是()A.﹣4<a<﹣3 B.﹣4≤a<﹣3 C.a<﹣3 D.﹣4<a<3 28.2019-=()A.2019 B.-2019 C.12019D.12019-9.一副直角三角板如图放置,点C在FD的延长线上,AB//CF,∠F=∠ACB=90°,则∠DBC的度数为( )A.10°B.15°C.18°D.30°10.下列四个不等式组中,解集在数轴上表示如图所示的是()A.23xx≥⎧⎨>-⎩B.23xx≤⎧⎨<-⎩C.23xx≥⎧⎨<-⎩D.23xx≤⎧⎨>-⎩二、填空题(本大题共6小题,每小题3分,共18分)1.一个n边形的内角和为1080°,则n=________.2.如图所示,计划把河水引到水池A中,先作AB⊥CD,垂足为B,然后沿AB 开渠,能使所开的渠道最短,这样设计的依据是___________________.3.如图,将△AOB 绕点O 按逆时针方向旋转45°后得到△COD ,若∠AOB=15°,则∠AOD=________度.4.方程()()()()32521841x x x x +--+-=的解是_________.5.如图,在△ABC 和△DEF 中,点B 、F 、C 、E 在同一直线上,BF = CE ,AC ∥DF ,请添加一个条件,使△ABC ≌△DEF ,这个添加的条件可以是________.(只需写一个,不添加辅助线)6.如图,AB ∥CD ,∠1=50°,∠2=110°,则∠3=___________度.三、解答题(本大题共6小题,共72分)1.(1)解方程组:425x y x y -=⎧⎨+=⎩(2)解不等式:2132x x ->-2.解不等式组20{5121123x x x ->+-+≥①②,并把解集在数轴上表示出来.3.如图,AD平分∠BAC交BC于点D,点F在BA的延长线上,点E在线段CD 上,EF 与AC相交于点G,∠BDA+∠CEG=180°.(1)AD与EF平行吗?请说明理由;(2)若点H在FE的延长线上,且∠EDH=∠C,则∠F与∠H相等吗,请说明理由.4.如图,已知直线AB∥CD,直线EF分别与AB,CD相交于点O,M,射线OP在∠AOE的内部,且OP⊥EF,垂足为点O.若∠AOP=30°,求∠EMD的度数.5.学校开展“书香校园”活动以来,受到同学们的广泛关注,学校为了解全校学生课外阅读的情况,随机调查了部分学生在一周内借阅图书的次数,并制成如图不完整的统计表.学生借阅图书的次数统计表借阅图书的次数0次1次2次3次4次及以上人数7 13 a 10 3 请你根据统计图表中的信息,解答下列问题:()1a=______,b=______.()2该调查统计数据的中位数是______,众数是______.()3请计算扇形统计图中“3次”所对应扇形的圆心角的度数;()4若该校共有2000名学生,根据调查结果,估计该校学生在一周内借阅图书“4次及以上”的人数.6.在东营市中小学标准化建设工程中,某学校计划购进一批电脑和电子白板,经过市场考察得知,购买1台电脑和2台电子白板需要3.5万元,购买2台电脑和1台电子白板需要2.5万元.(1)求每台电脑、每台电子白板各多少万元?(2)根据学校实际,需购进电脑和电子白板共30台,总费用不超过30万元,但不低于28万元,请你通过计算求出有几种购买方案,哪种方案费用最低.参考答案一、选择题(本大题共10小题,每题3分,共30分)1、B2、C3、B4、C5、A6、A7、B8、A9、B10、D二、填空题(本大题共6小题,每小题3分,共18分)1、82、垂线段最短.3、30°4、3x=.5、AC=DF(答案不唯一)6、60三、解答题(本大题共6小题,共72分)1、(1)31xy=⎧⎨=-⎩;(2)x>125.2、﹣1≤x<2.3、略4、60°5、()117、20;()22次、2次;()372;()4120人.6、(1)每台电脑0.5万元,每台电子白板1.5万元(2)见解析。

七年级数学下册期中试卷(加答案)

七年级数学下册期中试卷(加答案)

七年级数学下册期中试卷(加答案) 班级: 姓名:一、选择题(本大题共10小题,每题3分,共30分)1.若()286m n a b a b =,那么22m n -的值是 ( ) A .10 B .52 C .20 D .322.如图,过△ABC 的顶点A ,作BC 边上的高,以下作法正确的是( )A .B .C .D .3.如图,∠1=68°,直线a 平移后得到直线b ,则∠2﹣∠3的度数为( )A .78°B .132°C .118°D .112°4.若a x =6,a y =4,则a 2x ﹣y 的值为( )A .8B .9C .32D .405.如图所示,点P 到直线l 的距离是( )A .线段PA 的长度B .线段PB 的长度C .线段PC 的长度D .线段PD 的长度6.如图,在△ABC 中,∠ABC ,∠ACB 的平分线BE ,CD 相交于点F ,∠ABC =42°,∠A =60°,则∠BFC 的度数为( )A .118°B .119°C .120°D .121°7.如图,下列各组角中,互为对顶角的是( )A .∠1和∠2B .∠1和∠3C .∠2和∠4D .∠2和∠58.满足方程组35223x y m x y m+=+⎧⎨+=⎩的x ,y 的值的和等于2,则m 的值为( ).A .2B .3C .4D .59.估计10+1的值应在( )A .3和4之间B .4和5之间C .5和6之间D .6和7之间10.如图,△ABC 中,AD 为△ABC 的角平分线,BE 为△ABC 的高,∠C=70°,∠ABC=48°,那么∠3是( )A .59°B .60°C .56°D .22°二、填空题(本大题共6小题,每小题3分,共18分)1.若0abc >,化简ac b abc a b c abc +++结果是________. 2.如图,点O 是直线AD 上一点,射线OC ,OE 分别平分∠AOB 、∠BOD .若∠AOC =28°,则∠BOE =________.3.如图,点E 是AD 延长线上一点,如果添加一个条件,使BC ∥AD ,则可添加的条件为__________.(任意添加一个符合题意的条件即可)4.27的立方根为________.5.如图,所有三角形都是直角三角形,所有四边形都是正方形,已知S 1=4,S 2=9,S 3=8,S 4=10,则S=________.6.已知一组从小到大排列的数据:2,5,x ,y ,2x ,11的平均数与中位数都是7,则这组数据的众数是________.三、解答题(本大题共6小题,共72分)1.解下列方程:(1)2(x +3)=5(x -3) 2123x -()=435x --x2.已知22(4)(2)80m x m x --++=是关于未知数x 的一元一次方程,求代数式199()(2)m x m x m -+-+的值.3.如图,四边形ABCD 中,AD ∥BC ,点E 在CD 上,EA ,EB 分别平分∠DAB 和∠CBA ,设AD =x ,BC =y 且(x ﹣3)2+|y ﹣4|=0.求AB 的长.4.如图,已知AB∥CD,AD∥BC,∠DCE=90°,点E在线段AB上,∠FCG=90°,点F在直线AD上,∠AHG=90°.(1)找出图中与∠D相等的角,并说明理由;(2)若∠ECF=25°,求∠BCD的度数;(3)在(2)的条件下,点C(点C不与B,H两点重合)从点B出发,沿射线BG的方向运动,其他条件不变,求∠BAF的度数.5.中央电视台的“朗读者”节目激发了同学们的读书热情,为了引导学生“多读书,读好书”,某校对七年级部分学生的课外阅读量进行了随机调查,整理调查结果发现,学生课外阅读的本书最少的有5本,最多的有8本,并根据调查结果绘制了不完整的图表,如下所示:(1)统计表中的a=________,b=___________,c=____________;(2)请将频数分布表直方图补充完整;(3)求所有被调查学生课外阅读的平均本数;(4)若该校七年级共有1200名学生,请你分析该校七年级学生课外阅读7本及以上的人数.6.某学校为改善办学条件,计划采购A、B两种型号的空调,已知采购3台A 型空调和2台B型空调,需费用39000元;4台A型空调比5台B型空调的费用多6000元.(1)求A型空调和B型空调每台各需多少元;(2)若学校计划采购A、B两种型号空调共30台,且A型空调的台数不少于B 型空调的一半,两种型号空调的采购总费用不超过217000元,该校共有哪几种采购方案?(3)在(2)的条件下,采用哪一种采购方案可使总费用最低,最低费用是多少元?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、A2、A3、D4、B5、B6、C7、A8、C9、B10、A二、填空题(本大题共6小题,每小题3分,共18分)1、4或02、62°3、∠A+∠ABC=180°或∠C+∠ADC=180°或∠CBD=∠ADB或∠C=∠CDE4、35、316、5三、解答题(本大题共6小题,共72分)1、(1)x=7;(2)x=1 2.2、15943、74、(1)与∠D相等的角为∠DCG,∠ECF,∠B(2)155°(3)25°或155°5、(1)a=10,b=0.28,c=50;(2)补图见解析;(3)6.4本;(4)528人.6、(1)A型空调和B型空调每台各需9000元、6000元;(2)共有三种采购方案,方案一:采购A型空调10台,B型空调20台,方案二:采购A型空调11台,B型空调19台,案三:采购A型空调12台,B型空调18台;(3)采购A型空调10台,B型空调20台可使总费用最低,最低费用是210000元.。

七年级下册数学期中试卷(含答案)完整

七年级下册数学期中试卷(含答案)完整

七年级下册数学期中试卷(含答案)完整一、选择题1.1.96的算术平方根是()A .0.14B .1.4C .0.14-D .±1.42.下列各组图形可以通过平移互相得到的是( )A .B .C .D .3.下列各点在第二象限的是( )A .()3,4B .()4,3-C .()4,3-D .()3,4-- 4.下列说法中,真命题的个数为( )①两条平行线被第三条直线所截,同位角相等;②在同一平面内,如果两条直线都与第三条直线垂直,那么这两条直线互相平行; ③过一点有且只有一条直线与这条直线平行;④点到直线的距离是这一点到直线的垂线段;A .1个B .2个C .3个D .4个5.如图,直线AB ,CD 被直线ED 所截,//AB CD ,1140∠=︒,则D ∠的度数为( ).A .40°B .60°C .45°D .70°6.如图,下列各数中,数轴上点A 表示的可能是( )A .4的算术平方根B .4的立方根C .8的算术平方根D .8的立方根 7.如图,ABC 中,AE 平分BAC ∠,BE AE ⊥于点E ,//ED AC ,34BAE ∠=︒,则BED ∠的度数为( )A .134°B .124°C .114°D .104°8.如图,已知A 1(1,0),A 2(1,1),A 3(﹣1,1),A 4(﹣1,﹣1),A 5(2,﹣1)……则点A 2021的坐标为( )A .(505,﹣504)B .(506,﹣505)C .(505,﹣505)D .(﹣506,506)二、填空题9.已知3x ++|3x +2y ﹣15|=0,则x y +=_____.10.平面直角坐标系中,点(3,1)--关于y 轴的对称点的坐标为________.11.如图,AE 是△ABC 的角平分线,AD ⊥BC 于点D ,若∠BAC =130°,∠C =30°,则∠DAE 的度数是__________.12.如图所示,直线AB ,BC ,AC 两两相交,交点分别为A ,B ,C ,点D 在直线AB 上,过点D 作DE ∥BC 交直线AC 于点E ,过点E 作EF ∥AB 交直线BC 于点F ,若∠ABC =50°,则∠DEF 的度数___.13.如图所示是一张长方形形状的纸条,1105∠=︒,则2∠的度数为__________.14.规定:[x]表示不大于x 的最大整数,(x )表示不小于x 的最小整数,[x )表示最接近x 的整数(x≠n+0.5,n 为整数),例如:[2.3]=2,(2.3)=3,[2.3)=2.当﹣1<x <1时,化简[x]+(x )+[x )的结果是_____.15.在平面直角坐标系中,点P 的坐标为()22,1a ---,则点P 在第________象限.16.如图,一个点在第一象限及x 轴、y 轴上运动,且每秒移动一个单位,在第1秒钟,它从原点运动到(0,1),然后接着按图中箭头所示方向运动[即(0,0)→(0,1)→(1,1)→(1,0)→…],那么第42秒时质点所在位置的坐标是______.三、解答题17.计算:(1)利用平方根意义求x 值:()2136x -=(2)()235832-----18.已知:215a ab +=,210b ab +=,1a b -=,求下列各式的值:(1)a b +的值;(2)22a b +的值.19.如图,已知3A ∠=∠,DE BC ⊥,AB BC ⊥,求证:DE 平分CDB ∠.证明:DE BC ⊥,AB BC ⊥ (已知)90DEC ABC ∴∠=∠=︒(垂直的定义)//DE AB ∴( )23∴∠=∠( )1∠= (两直线平行,同位角相等)又3A ∠=∠(已知)∴ ( )DE ∴平分CDB ∠(角平分线的定义)20.如图,在平面直角坐标系中,已知P (a ,b )是△ABC 的边AC 上一点,△ABC 经平移后点P 的对应点为P 1(a +6,b +2).(1)请画出上述平移后的△A 1B 1C 1,并写出点A 1,C 1的坐标;(2)写出平移的过程;(3)求出以A ,C ,A 1,C 1为顶点的四边形的面积.21.例如∵479.<<即273<<,∴7的整数部分为2,小数部分为72-,仿照上例回答下列问题;(1)17介于连续的两个整数a 和b 之间,且a <b ,那么a = ,b = ; (2)x 是172+的小数部分,y 是171-的整数部分,求x = ,y = ; (3)求(17)y x -的平方根.22.学校要建一个面积是81平方米的草坪,草坪周围用铁栅栏围绕,现有两种方案:有人建议建成正方形,也有人建议建成圆形,如果从节省铁栅栏费用的角度考虑(栅栏周长越小,费用越少),你选择哪种方案?请说明理由.(π取3)23.已知直线AB //CD ,点P 、Q 分别在AB 、CD 上,如图所示,射线PB 按逆时针方向以每秒12°的速度旋转至PA 便立即回转,并不断往返旋转;射线QC 按逆时针方向每秒3°旋转至QD 停止,此时射线PB 也停止旋转.(1)若射线PB 、QC 同时开始旋转,当旋转时间10秒时,PB '与QC '的位置关系为 ; (2)若射线QC 先转15秒,射线PB 才开始转动,当射线PB 旋转的时间为多少秒时,PB ′//QC ′.24.如图所示,已知射线//,//,100CB OA AB OC C OAB ︒∠=∠=.点E 、F 在射线CB 上,且满足FOB AOB ∠=∠,OE 平分COF ∠(1)求EOB ∠的度数;(2)若平行移动AB ,那么:OBC OFC ∠∠的值是否随之发生变化?如果变化,找出变化规律.若不变,求出这个比值;(3)在平行移动AB 的过程中,是否存在某种情况,使OEC OBA ∠=∠?若存在,求出其度数.若不存在,请说明理由.【参考答案】一、选择题1.B解析:B【分析】根据算术平方根的定义:一般地,如果一个正数x 的平方等于a ,即x 2=a ,那么这个正数x 叫做a 的算术平方根即可得出答案.【详解】解:∵21.4 1.96=,∴1.96的算术平方根是1.4,故选:B .【点睛】本题考查了算术平方根,掌握算术平方根的定义是解题的关键,如果一个正数x 的平方等于a ,即x 2=a ,那么这个正数x 叫做a 的算术平方根.2.C【分析】根据平移不改变图形的形状和大小,平移变换中对应线段平行(或在同一直线上)且相等,从而得出答案.【详解】解:观察图形可知图案C 通过平移后可以得到.故选:C .【点睛】本题考查的是解析:C【分析】根据平移不改变图形的形状和大小,平移变换中对应线段平行(或在同一直线上)且相等,从而得出答案.【详解】解:观察图形可知图案C 通过平移后可以得到.故选:C .【点睛】本题考查的是平移变换及其基本性质,掌握以上知识是解题的关键.3.C【分析】根据各象限内点的坐标特征对各选项分析判断即可得解.【详解】解:A .()3,4在第一象限,故本选项不合题意;B .()4,3-在第四象限,故本选项不合题意;C .()4,3-在第二象限,故本选项符合题意.D .()3,4--在第三象限,故本选项不合题意;故选:C .【点睛】本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(﹣,+);第三象限(﹣,﹣);第四象限(+,﹣).4.B【分析】根据平行线的性质与判定,点到直线的距离的定义逐项分析判断即可【详解】①两条平行线被第三条直线所截,同位角相等,故①是真命题;②在同一平面内,如果两条直线都与第三条直线垂直,那么这两条直线互相平行,故②是真命题;③在同一平面内,过直线外一点有且只有一条直线与这条直线平行,故③不是真命题, ④点到直线的距离是这一点到直线的垂线段的长度,故④不是真命题,故真命题是①②,故选B【点睛】本题考查了判断真假命题,平行线的性质与判定,点到直线的距离的定义,掌握相关性质定理是解题的关键.5.A【分析】根据平行线的性质得出∠2=∠D ,进而利用邻补角得出答案即可.【详解】解:如图,∵AB∥CD,∴∠2=∠D,∵∠1=140°,∴∠D=∠2=180°−∠1=180°−140°=40°,故选:A.【点睛】此题考查平行线的性质,关键是根据两直线平行,内错角相等解答.6.C【详解】解:由题意可知4的算术平方根是2,43434的算术平方根是22<22,8的立方根是2,故根据数轴可知,故选C7.B【分析】已知AE平分∠BAC,ED∥AC,根据两直线平行,同旁内角互补可知∠DEA的度数,再由周角为360°,求得∠BED的度数即可.【详解】解:∵AE平分∠BAC,∴∠BAE=∠CAE=34°,∵ED∥AC,∴∠CAE+∠AED=180°,∴∠DEA=180°-34°=146°,∵BE⊥AE,∴∠AEB=90°,∵∠AEB+∠BED+∠AED=360°,∴∠BED=360°-146°-90°=124°,故选:B.【点睛】本题考查了平行线的性质和周角的定义,熟记两直线平行,同旁内角互补是解题的关键.8.B【分析】求在平面直角坐标系中的位置,经观察分析所有点,除外,其他所有点按一定的规律分布在四个象限,且每个象限的点满足:角标÷4=循环次数+余数,余数0,1,2,3确定相应的象限,由此确定点在第解析:B【分析】求2021A 在平面直角坐标系中的位置,经观察分析所有点,除1A 外,其他所有点按一定的规律分布在四个象限,且每个象限的点满足:角标÷4=循环次数+余数,余数0,1,2,3确定相应的象限,由此确定点2021A 在第四象限,根据推导可得出结论;【详解】由题可知,第一象限的点:2A ,6A …角标除以4余数为2;第二象限的点:3A ,7A ,…角标除以4余数为3;第三象限的点:4A ,8A ,…角标除以4余数为0;第四象限的点:5A ,9A ,…角标除以4余数为1;由上规律可知:20214=5051÷,∴点2021A 在第四象限,又∵5(2,1)A -,9(3,2)A -,即横坐标为正数,数字为角标除以4的商加1;纵坐标为负数,数字为角标除以4的商, ∴2021(506,505)A -.故选:B .【点睛】本题主要考查了点的坐标规律,准确理解是解题的关键.二、填空题9.3【分析】直接利用非负数的性质得出x ,y 的值进而得出答案.【详解】∵+|3x+2y ﹣15|=0,∴x+3=0,3x+2y-15=0,∴x=-3,y=12,∴=.故答案是:3.【点睛解析:3【分析】直接利用非负数的性质得出x ,y 的值进而得出答案.【详解】∵+|3x+2y﹣15|=0,∴x+3=0,3x+2y-15=0,∴x=-3,y=12,∴3.故答案是:3.【点睛】考查了非负数的性质,正确得出x,y的值是解题关键.10.(3,-1)【分析】让纵坐标不变,横坐标互为相反数可得所求点的坐标.【详解】解:∵-3的相反数为3,∴所求点的横坐标为3,纵坐标为-1,故答案为(3,-1).【点睛】本题考查关于y轴解析:(3,-1)【分析】让纵坐标不变,横坐标互为相反数可得所求点的坐标.【详解】解:∵-3的相反数为3,∴所求点的横坐标为3,纵坐标为-1,故答案为(3,-1).【点睛】本题考查关于y轴对称的点特点;用到的知识点为:两点关于y轴对称,横坐标互为相反数,纵坐标不变.11.5°【分析】根据直角三角形两锐角互余求出∠CAD,再根据角平分线定义求出∠CAE,然后根据∠DAE=∠CAE-∠CAD,代入数据进行计算即可得解.【详解】∵AD⊥BC,∠C=30°,∴∠C解析:5°【分析】根据直角三角形两锐角互余求出∠CAD,再根据角平分线定义求出∠CAE,然后根据∠DAE=∠CAE-∠CAD,代入数据进行计算即可得解.【详解】∵AD⊥BC,∠C=30°,∴∠CAD=90°-30°=60°,∵AE是△ABC的角平分线,∠BAC=130°,∴∠CAE=12∠BAC=12×130°=65°,∴∠DAE=∠CAE-∠CAD=65°-60°=5°.故答案为:5°.【点睛】本题考查了三角形的内角和定理,三角形的角平分线,高线的定义,准确识图,找出各角度之间的关系并求出度数是解题的关键.12.130°.【分析】先求出∠ABC=∠ADE=50°,再求出∠DEF=180°﹣50°=130°即可.【详解】解:∵DE∥BC,∴∠ABC=∠ADE=50°(两直线平行,同位角相等),∵E解析:130°.【分析】先求出∠ABC=∠ADE=50°,再求出∠DEF=180°﹣50°=130°即可.【详解】解:∵DE∥BC,∴∠ABC=∠ADE=50°(两直线平行,同位角相等),∵EF∥AB,∴∠ADE+∠DEF=180°(两直线平行,同旁内角互补),∴∠DEF=180°﹣50°=130°.故答案为:130°.【点睛】本题考查了平行线线段的性质,熟练掌握平行线的性质定理是解题关键.13.5°【分析】根据平行线的性质可得∠3的度数,再根据邻补交的性质可得∠2=(180°-∠3)÷2进行计算即可.【详解】解:∵AB∥CD,∴∠1+∠3=180°,∵∠1=105°,解析:5°【分析】根据平行线的性质可得∠3的度数,再根据邻补交的性质可得∠2=(180°-∠3)÷2进行计算即可.【详解】解:∵AB∥CD,∴∠1+∠3=180°,∵∠1=105°,∴∠3=180°-105°=75°,∴∠2=(180°-75°)÷2=52.5°,故答案为:52.5°.【点睛】此题主要考查了平行线的性质,关键是找准折叠后哪些角是对应相等的.14.﹣2或﹣1或0或1或2.【分析】有三种情况:①当时,[x]=-1,(x)=0,[x)=-1或0,∴[x]+(x)+[x)=-2或-1;②当时,[x]=0,(x)=0,[x)=0,∴[x]解析:﹣2或﹣1或0或1或2.【分析】有三种情况:①当10x-<<时,[x]=-1,(x)=0,[x)=-1或0,∴[x]+(x)+[x)=-2或-1;x=时,[x]=0,(x)=0,[x)=0,②当0∴[x]+(x)+[x)=0;③当01<<时,[x]=0,(x)=1,[x)=0或1,x∴[x]+(x)+[x)=1或2;综上所述,化简[x]+(x)+[x)的结果是-2或﹣1或0或1或2.故答案为-2或﹣1或0或1或2.点睛:本题是一道阅读理解题.读懂题意并进行分类讨论是解题的关键.请在此输入详解!15.三【分析】先判断出点P的纵坐标的符号,再根据各象限内点的符号特征判断点P所在象限即可.【详解】解:∵a2为非负数,∴-a2-1为负数,∴点P的符号为(-,-)∴点P在第三象限.故答案解析:三【分析】先判断出点P的纵坐标的符号,再根据各象限内点的符号特征判断点P所在象限即可.【详解】解:∵a2为非负数,∴-a2-1为负数,∴点P的符号为(-,-)∴点P在第三象限.故答案为:三.【点睛】本题考查了点的坐标.解题的关键是掌握象限内的点的符号特点,注意a2加任意一个正数,结果恒为正数.牢记点在各象限内坐标的符号特征是正确解答此类题目的关键.四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).16.(6,6)【分析】根据质点移动的各点的坐标与时间的关系,找出规律即可解答.【详解】由题意可知质点移动的速度是1个单位长度╱秒,到达(1,0)时用了3秒,到达(2,0)时用了4秒,从(2,解析:(6,6)【分析】根据质点移动的各点的坐标与时间的关系,找出规律即可解答.【详解】由题意可知质点移动的速度是1个单位长度╱秒,到达(1,0)时用了3秒,到达(2,0)时用了4秒,从(2,0)到(0,2)有四个单位长度,则到达(0,2)时用了4+4=8秒,到(0,3)时用了9秒, 从(0,3)到(3,0)有六个单位长度,则到(3,0)时用了9+6=15秒,以此类推到(4,0)用了16秒,到(0,4)用了16+8=24秒,到(0,5)用了25秒,到(5,0)用了25+10=35秒,故第42秒时质点到达的位置为(6,6),故答案为:(6,6).【点睛】本题主要考查了点的坐标的变化规律,得出运动变化的规律进而得出第42秒时质点所在位置的坐标是解题关键.三、解答题17.(1)或 (2)【分析】(1)由平方根的定义可得答案,(2)先化简二次根式,求解立方根与绝对值,再合并即可得到答案.【详解】解:(1) ,是的平方根,或(2)【点睛解析:(1)7x =或 5.x =- (2)5【分析】(1)由平方根的定义可得答案,(2)先化简二次根式,求解立方根与绝对值,再合并即可得到答案.【详解】解:(1) ()2136x -=, 1x ∴-是36的平方根,16,16,x x ∴-=-=-7x ∴=或 5.x =-(225(2)2=--522=+-5=【点睛】本题考查的是平方根的定义,实数的运算,求解算术平方根,立方根,绝对值的化简,掌握以上知识是解题的关键.18.(1)±5;(2)13【分析】(1)将已知两式相减,再利用完全平方公式得到,可得结果;(2)根据完全平方公式可得=,代入计算即可【详解】解:(1)∵①,②,①+②得:,即,∴;(2)解析:(1)±5;(2)13【分析】(1)将已知两式相减,再利用完全平方公式得到()225a b +=,可得结果;(2)根据完全平方公式可得22a b +=()()2212a b a b ⎡⎤++-⎣⎦,代入计算即可 【详解】解:(1)∵215a ab +=①,210b ab +=②,①+②得:22225a b ab ++=,即()225a b +=,∴5a b +=±;(2)∵1a b -=,∴22a b +=()()2212a b a b ⎡⎤++-⎣⎦=()221512⎡⎤±+⎣⎦=13. 【点睛】本题主要考查了完全平方公式的变式应用,熟练应用完全平方公式的变式进行计算是解决本题的关键.19.见解析【分析】应用平行线的判定与性质进行求解即可得出答案.【详解】解:证明:∵DE ⊥BC ,AB ⊥BC (已知),∴∠DEC=∠ABC=90°(垂直的定义).∴DE ∥AB (同位角相等,两直线解析:见解析【分析】应用平行线的判定与性质进行求解即可得出答案.【详解】解:证明:∵DE ⊥BC ,AB ⊥BC (已知),∴∠DEC =∠ABC =90°(垂直的定义).∴DE ∥AB (同位角相等,两直线平行).∴∠2=∠3(两直线平行,内错角相等),∠1=∠A (两直线平行,同位角相等).又∵∠A =∠3(已知),∴∠1=∠2(等量代换).∴DE 平分∠CDB (角平分线的定义).【点睛】本题主要考查了平行线的判定与性质,熟练应用平行线的判定与性质进行求解是解决本题的关键.20.(1)图见详解;;(2)平移过程为先向右平移6个单位长度,再向上平移2个单位长度;(3)以A ,C ,A1,C1为顶点的四边形的面积为14.【分析】(1)根据点P 的对应点P1(a+6,b+2)可分别解析:(1)图见详解;()()113,4,4,2A C ;(2)平移过程为先向右平移6个单位长度,再向上平移2个单位长度;(3)以A ,C ,A 1,C 1为顶点的四边形的面积为14.【分析】(1)根据点P 的对应点P 1(a +6,b +2)可分别得出A 、B 、C 的对应点A 1,B 1,C 1的坐标,然后连接即可得出图象;(2)由(1)可直接进行求解;(3)由(1)的图象可直接利用割补法进行求解面积.【详解】解:(1)由点P 的对应点P 1(a +6,b +2)可得如图所示图象:∴由图象可得()()113,4,4,2A C ;(2)由图象可得:平移过程为先向右平移6个单位长度,再向上平移2个单位长度; (3)连接11,,AA CC ,如图所示:∵点()()13,2,4,2A C -,∴点1,A C 在同一条直线上,且与x 轴平行, ∴1111272142AC C ACC A S S =⨯=⨯=四边形.【点睛】本题主要考查平移的性质及坐标与图形,熟练掌握坐标的平移是解题的关键. 21.(1),;(2);(3)【分析】(1)根据的范围确定出、的值;(2)求出,的范围,即可求出、的值,代入求出即可;(3)将代入中即可求出.【详解】解:(1),,,,故答案是:,;(解析:(1)4a =,5b =;(2)174,3x y =;(3)8±【分析】(117a 、b 的值;(2172171的范围,即可求出x 、y 的值,代入求出即可;(3)将174,3x y ==代入(17)y x 中即可求出.【详解】解:(1)161725<4175∴<<,4a ∴=,5b =,故答案是:4a =,5b =;(2)4175<,61727∴<,31714<<,2264-,1的整数部分为:3;故答案是:4,3x y =;(3)174,3x y ==,3)464y x ∴==,)y x ∴的平方根为:8=±.【点睛】本题考查了估算无理数的大小的应用、求平方根,解题的关键是读懂题意及求出45<.22.选择建成圆形草坪的方案,理由详见解析【分析】根据正方形的面积公式、算术平方根的概念求出正方形的边长,求出正方形的周长,根据圆的面积公式、算术平方根的概念求出圆的半径,求出圆的周长,比较大小得到答解析:选择建成圆形草坪的方案,理由详见解析【分析】根据正方形的面积公式、算术平方根的概念求出正方形的边长,求出正方形的周长,根据圆的面积公式、算术平方根的概念求出圆的半径,求出圆的周长,比较大小得到答案.【详解】解:选择建成圆形草坪的方案,理由如下:设建成正方形时的边长为x 米,由题意得:x 2=81,解得:x =±9,∵x >0,∴x =9,∴正方形的周长为4×9=36,设建成圆形时圆的半径为r 米,由题意得:πr 2=81.解得:=r ∵r >0.∴=r∴圆的周长=2π≈ ∵56<,∴3036<,∴建成圆形草坪时所花的费用较少,故选择建成圆形草坪的方案.【点睛】本题考查的是算术平方根的应用,掌握算术平方根概念是解题的关键.23.(1)PB′⊥QC′;(2)当射线PB旋转的时间为5秒或25秒或45秒时,PB′∥QC′【分析】(1)求出旋转10秒时,∠BPB′和∠CQC′的度数,设PB′与QC′交于O,过O作OE∥AB,根解析:(1)PB′⊥QC′;(2)当射线PB旋转的时间为5秒或25秒或45秒时,PB′∥QC′【分析】(1)求出旋转10秒时,∠BPB′和∠CQC′的度数,设PB′与QC′交于O,过O作OE∥AB,根据平行线的性质求得∠POE和∠QOE的度数,进而得结论;(2)分三种情况:①当0<t≤15时,②当15<t≤30时,③当30<t<45时,根据平行线的性质,得出角的关系,列出t的方程便可求得旋转时间.【详解】解:(1)如图1,当旋转时间30秒时,由已知得∠BPB′=10°×12=120°,∠CQC′=3°×10=30°,过O作OE∥AB,∵AB∥CD,∴AB∥OE∥CD,∴∠POE=180°﹣∠BPB′=60°,∠QOE=∠CQC′=30°,∴∠POQ=90°,∴PB′⊥QC′,故答案为:PB′⊥QC′;(2)①当0<t≤15时,如图,则∠BPB′=12t°,∠CQC′=45°+3t°,∵AB∥CD,PB′∥QC′,∴∠BPB′=∠PEC=∠CQC′,即12t=45+3t,解得,t=5;②当15<t≤30时,如图,则∠APB′=12t﹣180°,∠CQC'=3t+45°,∵AB∥CD,PB′∥QC′,∴∠BPB′=∠BEQ=∠CQC′,即12t﹣180=45+3t,解得,t=25;③当30<t≤45时,如图,则∠BPB′=12t﹣360°,∠CQC′=3t+45°,∵AB∥CD,PB′∥QC′,∴∠BPB′=∠BEQ=∠CQC′,即12t﹣360=45+3t,解得,t=45;综上,当射线PB旋转的时间为5秒或25秒或45秒时,PB′∥QC′.【点睛】本题主要考查了平行线的性质,第(1)题关键是作平行线,第(2)题关键是分情况讨论,运用方程思想解决几何问题.24.(1)40°;(2)的值不变,比值为;(3)∠OEC=∠OBA=60°.【分析】(1)根据OB 平分∠AOF ,OE 平分∠COF ,即可得出∠EOB=∠EOF+∠FOB=∠COA ,从而得出答案;(2解析:(1)40°;(2):OBC OFC ∠∠的值不变,比值为12;(3)∠OEC=∠OBA=60°.【分析】(1)根据OB 平分∠AOF ,OE 平分∠COF ,即可得出∠EOB=∠EOF+∠FOB=12∠COA ,从而得出答案;(2)根据平行线的性质,即可得出∠OBC=∠BOA ,∠OFC=∠FOA ,再根据∠FOA=∠FOB+∠AOB=2∠AOB ,即可得出∠OBC :∠OFC 的值为1:2.(3)设∠AOB=x ,根据两直线平行,内错角相等表示出∠CBO=∠AOB=x ,再根据三角形的一个外角等于与它不相邻的两个内角的和表示出∠OEC ,然后利用三角形的内角和等于180°列式表示出∠OBA ,然后列出方程求解即可.【详解】(1)∵CB ∥OA∴∠C+∠COA=180°∵∠C=100°∴∠COA=180°-∠C=80°∵∠FOB=∠AOB ,OE 平分∠COF∴∠FOB+∠EOF=12(∠AOF+∠COF )=12∠COA=40°;∴∠EOB=40°;(2)∠OBC :∠OFC 的值不发生变化∵CB ∥OA∴∠OBC=∠BOA ,∠OFC=∠FOA∵∠FOB=∠AOB∴∠FOA=2∠BOA∴∠OFC=2∠OBC∴∠OBC :∠OFC=1:2(3)当平行移动AB 至∠OBA=60°时,∠OEC=∠OBA .设∠AOB=x ,∵CB ∥AO ,∴∠CBO=∠AOB=x ,∵CB ∥OA ,AB ∥OC ,∴∠OAB+∠ABC=180°,∠C+∠ABC=180°∴∠OAB=∠C=100°.∵∠OEC=∠CBO+∠EOB=x+40°,∠OBA=180°-∠OAB-∠AOB=180°-100°-x=80°-x,∴x+40°=80°-x,∴x=20°,∴∠OEC=∠OBA=80°-20°=60°.【点睛】本题主要考查了平行线、角平分线的性质以及三角形内角和定理,熟记各性质并准确识图理清图中各角度之间的关系是解题的关键.。

沪科版七年级下册数学期中考试试题含答案

沪科版七年级下册数学期中考试试题含答案

沪科版七年级下册数学期中考试试卷一、单选题1.下列实数中,属于无理数的是()A .3.1415926B .227C D .()1π-2.下列各式的计算中,正确的是()A .551a a ÷=B .235a a a = C .()239a a =D .235a a a +=3.某生物兴趣小组在恒温箱中培养两种菌种,甲种菌种生长的温度在34~37C C ︒︒之间,乙种菌种生长的温度是3538C C ︒︒ 之间,那么恒温箱的温度t C ︒应该设定的范围是()A .34~38C C︒︒B .35~37C C︒︒C .3435C C︒︒ D .3738C C︒︒ 4.如果a b >,下列各式中不正确的是()A .11a b ->-B .22a b>C .33a b -<-D .1212a b->-5)A .点PB .点QC .点MD .点N6.不等式组102x x ->⎧⎨-≥-⎩的解集正确的是()A .1<x ≤2B .x ≥2C .x <1D .无7.下列关系式中,正确的是()A .()()22333a b a b a b +-=-B .()()22339a b a b a b-+-=--C .()()2233 9a b a b a b---=-+D .()()23339a b a b a b --+=-8.若多项式281x nx ++是一个整式的平方,则n 的值是()A .9B .18C .9±D .18±9.已知3,5a b x x ==,则2a b x -的值为()A .35B .65C .95D .110.如图,从边长为(a+1)cm 的正方形纸片中剪去一个边长为(a ﹣1)cm 的正方形(a >1),剩余部分沿虚线又剪拼成一个矩形(不重叠无缝隙),则该矩形的面积是()A .2cm 2B .2acm 2C .4acm 2D .(a 2﹣1)cm 2二、填空题119_____.12. 2.5PM 颗粒物(指大气中直径小于或等于2.5微米的颗粒物)是形成雾霾的罪魁祸首.将2.5微米换算成你熟悉的单位米(1米=1000000微米),用科学记数法表示2.5微米=__________.13.如果不等式组0x a x b ->⎧⎨+<⎩的解集是12x -<<,那么b a =__________.14.计算()2018201980.125⨯-=_____.15.计算:()()321244ab a b ab ⎛⎫÷= ⎪⎝⎭__________.16.若()22a b +加上一个单项式后等于()22a b -,则这个单项式为_____________。

浙江省温州市2023-2024学年七年级下学期期中学业质量检测数学试卷(含答案)

浙江省温州市2023-2024学年七年级下学期期中学业质量检测数学试卷(含答案)

七年级期中学业质量检测(数学)考生须知:1.本卷评价内容范围是《数学》七年级下册第一章至第三章3.5节,全卷满分100分; 2.考试时间90分钟,不可以使用计算器. 温馨提示:请仔细审题,细心答题,相信你一定会有出色的表现!一、选择题(本题有10小题,每小题3分,共30分.每小题只有一个正确选项) 1.下列方程是二元一次方程的是( ▲ )A .320x B .232x x C .11y xD .31x y2.将如图所示的图案通过平移后可以得到的图案是( ▲ )A.B .C .D .3.如图,∠B 的同旁内角是( ▲ )A .∠4B .∠3C .∠2D .∠14.计算34[-10]()的结果是( ▲ )A .710B .710C .1210D .1210 5.下列运算中,计算结果正确的是( ▲ )A .235a a a B .236a a a C .236(2)6a a D .459236a a a6.下列各式中,不能..用平方差公式计算的是( ▲ ) A .()()a b a b B .()()a b b a C .()()a b a b D .()()a b b a 7.如图所示,点E 在AC 的延长线上,下列条件中能判断AB ∥CD 的是( ▲ )A .34 B .12 C .ECD D D .0180ABD A 8.若关于x ,y 的二元一次方程组2425x y x y ,的解也是方程3x y k 的解,则k 的值为( ▲ )A .2B .1C .1D .2(第2题)(第3题)(第7题)9. 某兴趣小组组织野外活动,男生戴蓝色帽子,女生戴红色帽子,如果每位男生看到蓝色帽子比红色帽子多2个,每位女生看到蓝色帽子是红色帽子的2倍,则该兴趣小组男女生分别有多少人?设男生有x 人,女生有y 人,则下列方程正确的是( ▲ ) A .122-1x y x y ()B .122x y x yC .122-1x y xy D .22x y xy10.如图,正方形AEIJ ,正方形EFGH ,正方形LMCK依次放在长为6,宽为4的长方形ABCD 中,要求出 图中阴影两部分的周长之差,只需要知道下列哪条线 段的长( ▲ )A .AEB .EFC .CMD .NL二、填空题(本题有8小题,每小题3分,共24分) 11.已知方程2x y ,用含x 的代数式表示y ,则y ▲ .12.计算:2(1)a ▲ .13.已知1x a y ,是方程53=+y x 的一组解,则a 的值为 ▲ .14.计算:4413=3(-) ▲ .15. 如图,将两块含30角的三角板ABC 和含45角的三角板BDE 按如图所示的位置放置,若BE AC ∥,则DBA 的度数为 ▲ °.16.已知2(231)x y 与431x y 的值互为相反数,则x y 的值为 ▲ .17.已知240m n ,则42m n ▲ .18.如图1,将一张长方形纸片ABCD 右端沿着EF 折叠成如图2,再将纸片左端沿着GH折叠成如图3,GD 恰好经过点F ,且GF 平分∠HFB .在图3中,若2∠GHF +∠BFE =135°,则∠BFE 的度数为 ▲ ° .三、解答题(本题有6小题,共46分.解答需写出必要的文字说明、演算步骤或证明过程) 19.(本题6分)化简(1)23(21)x xy y (2)(2)(2)(1)x x x x图1图2 图 3(第18题)(第15题)45°30°EDACB(第10题)20.(本题8分)解方程组 (1)3210y x x y (2)327465x y x y21.(本题6分)如图是由边长为1的小正方形构成的8×8网格,线段AB 端点和点P 均在格点上.(1)将线段AB 向上平移1格,再向右平移2格,请在图甲中作出经上述两次平移后所得的线段CD .(2)请在图乙中找一格点E ,连结PB ,PE ,使得∠PBA=∠EPB .22.(本题8分)如图,在△ABC 中,点D 在BC 上,DE ∥AB 交AC 于点E ,点F 在AB 上,∠BFD =∠DEC .(1)说明DF 与AC 平行的理由.理由如下://DE AB ( ▲ ), BFD FDE ( ▲ ). BFD DEC ,FDE▲ .//DF AC ( ▲ ).(2)若∠B +∠C =120°,求∠FDE 的度数.(第22题)图甲图乙(第21题)23.(本题8分) 某校为了喜迎新春,开展了“巧制花灯,福满校园”的活动,如图1为学生制作的其中一种花灯样式,它的四面是由四个完全相同的平面模板(如图2)折叠拼接而成的.模板是由2个长方形A 、2个长方形C 、1个长方形D 和4个等腰梯形B 构成的,其中尺寸如图2所示:长方形A 的宽为,长为,等腰梯形的高与长方形A 的宽大小一样,长方形C 的长为(4)n ,宽为( 1.5)m ,模板总高为32cm . (1)请用含的代数式表示模板的面积(结果需化简). (2)当221n m 时,请求出花灯模板的面积.24.(本题10分)探究学校校服订购的方案.素材1:天气转热,不少学生的夏季校服有损坏或丢失,故学校联系了厂商订制一批校素材2:本届七年级使用的是改版后的校服,每件新版衣服和裤子的价格均比旧版多10元.为保证各年级段校服统一,学校要求七年级学生购买新版,八、九年级学生购买旧版.【任务1】分别求出旧版衣服和旧版裤子的单价.【任务2】依据往年八、九年级的数据统计,衣服数量不超过80件,裤子数量不超过50件.若学校恰好用了4900元为八、九年级购买旧版校服,则衣服和裤子各买了多少件?【任务3】学校统计各班的订购意向后,最终花费9200元订购这批校服.已知七年级订购的衣服数量占所有衣服和裤子总数量的14,且少于50件,则八、九年级订购的裤子共有 ▲ 件.(请直接写出答案)m n m n ,单位:cm图2图1(第23题)七年级期中学业质量检测数学参考答案及评分标准一、选择题(本题有10小题,每小题3分,共30分)二、填空题(本题有8小题,每小题3分,共24分)11.2x −+. 12.221a a −+. 13.2. 14.1. 15. 15. 16.0. 17.16. 18.22.5.三、解答题(本题有6小题,共46分) 19. (本题6分)(1)23(21)x xy y −+22=363x y xy x −+解:原式 ..................(3分)(2)(2)(2)(1)x x x x +−−−22=4x x x −−+解:原式4x =− ..................(3分)20.(本题8分) (1)3210y x x y =⎧⎨+=⎩①②解:将①代入②得:2310x x += 解得:2x = 将2x =代入①得:6y =所以原方程组的解是=2...........(4)6x y ⎧⎨=⎩分(2)327465x y x y −=⎧⎨+=⎩①②解: 3⨯①+②得:1326x =解得:2x =将2x =代入①得: 12y =−所以原方程组的解是=2............(4)12x y ⎧⎪⎨=−⎪⎩分(1)(2)22.(本题8分) (1)理由如下://DE AB ( 已知 ), BFDFDE ( 两直线平行,内错角相等 ).BFD DEC ,FDE∠DEC .//DF AC ( 内错角相等,两直线平行 ).………….(4分)(2)解:∵//DF AC∴FDB C ∠=∠ ∵//DE AB ∴EDC B ∠=∠ ∵120B C ∠+∠=° ∴120FDB EDC ∠+∠=°∴FDE ∠=180°()60FDB EDC −∠+∠=° ..................(4分) (其它正确答案酌情给分)(1)[]124(4)2( 1.5)(4)3262( 1.5)2mn m n n m n n m m +⨯−++−−+−−− =163212m n −++ ...........................(5分)(其它正确答案酌情给分)(2)当221n m −=时原式=163212m n −++=162)12m n −++( =162112⨯+=348 .................................(3分)24.(本题10分):任务1 设一件旧版衣服x 元,一件旧版裤子y 元.由题意,得100807300120607500x y x y解得4535x y答:一件旧版衣服45元,一件旧版裤子35元. .................(4分)任务2 设购买衣服m 件,裤子n 件.由题意,得45m +35n =4900, 化简,得91407n m .∵m ≤80,n ≤50且m ,n 均为正整数, ∴7050m n 或7741m n答:衣服70件、裤子50件或衣服77件、裤子41件.............(4分)任务3 11. .................(2分)设新版衣服a 件,旧版裤子b 件.则所有衣服和裤子共4a 件,旧版衣服和新版裤子共(3a -b )件.由题意,得55a +45(3a -b )+35b =9200, 化简,得b =19a - 920. ∵a <50,且a ,b 均为正整数, ∴a =49,b =11.。

七年级数学下册期中考试卷【附答案】

七年级数学下册期中考试卷【附答案】

七年级数学下册期中考试卷【附答案】 班级: 姓名:一、选择题(本大题共10小题,每题3分,共30分)1.已知243m -m-10m -m -m 2=+,则计算:的结果为( ).A .3B .-3C .5D .-52.下列分解因式正确的是( )A .24(4)x x x x -+=-+B .2()x xy x x x y ++=+C .2()()()x x y y y x x y -+-=-D .244(2)(2)x x x x -+=+-3.下列说法正确的是( )A .一个数的绝对值一定比0大B .一个数的相反数一定比它本身小C .绝对值等于它本身的数一定是正数D .最小的正整数是14.长方形如图折叠,D 点折叠到的位置,已知∠FC =40°,则∠EFC =( )A .120°B .110°C .105°D .115°5.下列说法,正确的是( )A .若ac bc =,则a b =B .两点之间的所有连线中,线段最短C .相等的角是对顶角D .若AC BC =,则C 是线段AB 的中点6.下列说法中,错误的是( )A .不等式x <5的整数解有无数多个B .不等式x >-5的负整数解集有有限个C .不等式-2x <8的解集是x <-4D .-40是不等式2x <-8的一个解7.数轴上A 、B 、C 三点所代表的数分别是a 、1、c ,且11c a a c ---=-.若下列选项中,有一个表示A 、B 、C 三点在数轴上的位置关系,则此选项为何?( )A .B .C .D . 8.计算()22b a a -⨯的结果为( ) A .bB .b -C . abD .b a 9.一次函数满足,且随的增大而减小,则此函数的图象不经过( )A .第一象限B .第二象限C .第三象限D .第四象限 10.若不论k 取什么实数,关于x 的方程2136kx a x bk +--=(a 、b 是常数)的解总是x=1,则a+b 的值是( )A .﹣0.5B .0.5C .﹣1.5D .1.5二、填空题(本大题共6小题,每小题3分,共18分)1.分解因式:x 2-2x+1=__________.2.如图,AB //CD BED 110BF ,,∠=平分ABE DF ∠,平分CDE ∠,则BFD ∠=________.3.如图,将一副三角板和一张对边平行的纸条按下列方式摆放,两个三角板的一直角边重合,含30°角的直角三角板的斜边与纸条一边重合,含45°角的三角板的一个顶点在纸条的另一边上,则∠1的度数是________4.如图,圆柱形玻璃杯高为14cm ,底面周长为32cm ,在杯内壁离杯底5cm 的点B 处有一滴蜂蜜,此时一只蚂蚁正好在杯外壁,离杯上沿3cm 与蜂蜜相对的点A 处,则蚂蚁从外壁A 处到内壁B 处的最短距离为_____cm (杯壁厚度不计).525.36 5.036,253.6=15.906253600=__________.6.把5×5×5写成乘方的形式__________.三、解答题(本大题共6小题,共72分)1.解方程组:2313424()3(2)17x y x y x y ⎧-=⎪⎨⎪--+=⎩2.在解方程组2628mx y x ny +=⎧⎨+=⎩时,由于粗心,小军看错了方程组中的n ,得解为7323x y ⎧=⎪⎪⎨⎪=⎪⎩,小红看错了方程组中的m ,得解为24x y =-⎧⎨=⎩ (1)则m ,n 的值分别是多少?(2)正确的解应该是怎样的?3.如图,A (4,3)是反比例函数y=k x在第一象限图象上一点,连接OA ,过A 作AB ∥x 轴,截取AB=OA (B 在A 右侧),连接OB ,交反比例函数y=k x的图象于点P .(1)求反比例函数y=k x的表达式;(2)求点B的坐标;(3)求△OAP的面积.4.如图,已知直线AB∥CD,直线EF分别与AB,CD相交于点O,M,射线OP在∠AOE的内部,且OP⊥EF,垂足为点O.若∠AOP=30°,求∠EMD的度数.5.某商场为了吸引顾客,设立了可以自由转动的转盘(如图,转盘被均匀分为20份),并规定:顾客每购买200元的商品,就能获得一次转动转盘的机会.如果转盘停止后,指针正好对准红色、黄色、绿色区域,那么顾客就可以分别获得200元、100元、50元的购物券,凭购物券可以在该商场继续购物.如果顾客不愿意转转盘,那么可以直接获得购物券30元.(1)求转动一次转盘获得购物券的概率;(2)转转盘和直接获得购物券,你认为哪种方式对顾客更合算?6.小明用的练习本可以到甲、乙两家商店购买,已知两商店的标价都是每本2元,甲商店的优惠条件是购买10本以上,从第11本开始按标价的70%出售;乙商店的优惠条件是,从第一本起按标价的80%出售.(1)设小明要购买x(x>10)本练习本,则当小明到甲商店购买时,须付款元,当到乙商店购买时,须付款元;(2)买多少本练习本时,两家商店付款相同?(3)小明准备买50本练习本,为了节约开支,应怎样选择哪家更划算?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、A2、C3、D4、B5、B6、C7、A8、A9、A10、A二、填空题(本大题共6小题,每小题3分,共18分)1、(x-1)2.2、1253、15°4、205、503.66、35三、解答题(本大题共6小题,共72分)1、1.52 xy=-⎧⎨=-⎩2、(1) m=2;n=3;(2)方程组正确的解为12. xy=⎧⎨=⎩3、(1)反比例函数解析式为y=12x;(2)点B的坐标为(9,3);(3)△OAP的面积=5.4、60°5、(1)P(转动一次转盘获得购物券)=12;(2)选择转转盘对顾客更合算.6、(1)10×2+(x-10)×2×0.7 ;2x×0.8(2)买30本时两家商店付款相同(3)甲商店更划算。

人教版数学七年级下册《期中考试题》及答案解析

人教版数学七年级下册《期中考试题》及答案解析

人 教 版 数 学 七 年 级 下 学 期期 中 测 试 卷学校________ 班级________ 姓名________ 成绩________一、选择题(共10小题)1. 方程3x ﹣1=5的解是( ) A. 43x = B. 53x = C. x =18 D. x =2 2. 下列方程变形中属于移项的是( ) A 由2x =﹣1得x =﹣12 B. 由2x =2得x =4 C. 由5x +b =0得5x =﹣b D. 由4﹣3x =0得﹣3x +4=03. 由132x y -=,可以得到用表示的式子( ) A 223x y =- B. 2133x y =- C. 223x y -= D. 223x y =- 4. 解方程2x =3x 时,两边都除以x ,得2=3,其错误原因是( )A. 方程本身是错的B. 方程无解C. 两边都除以了0D. 2x 小于3x 5. 下列说法正确的是( )A. 方程4+x =8和不等式4+x >8的解是一样的B. x =2不是不等式4x >5的解C. x =2是不等式4x >15的一个解D. 不等式x ﹣2<6的两边都减去3,则此不等式仍成立6. 把方程0.10.20.510.30.4x x ---=的分母化成整数后,可得方程( ) A. 0.10.20.5134x x ---= B. 12510134x x ---= C. 125101034x x ---= D.120.5134x x ---= 7. 不等式325132x x ++≤-的解集表示在数轴上是( )A. B. C. D.8. 每瓶A 种饮料比每瓶B 种饮料少元,小峰买了2瓶A 种饮料和3瓶B 种饮料,一共花了13元,如果设每瓶A 种饮料为x 元,那么下面所列方程正确的是( )A. ()21313x x -+=B. ()21313x x ++=C. ()23113x x ++=D. ()23113x x +-=9. 如图,射线OC 的端点O 在直线AB 上,∠AOC 的度数比∠BOC 的2倍多10度.设∠AOC 和∠BOC 的度数分别为x ,y ,则下列正确的方程组为( )A. 18010x y x y +=⎧⎨=+⎩B. 180210x y x y +=⎧⎨=+⎩C. 180102x y x y +=⎧⎨=-⎩D. 180210x y y x +=⎧⎨=-⎩ 10. 小华在某月的日历上圈出相邻的四个数,算出这四个数的和是36,那么这个数阵的形式可能是( ) A. B. C. D.二、填空题(每小题3分,共15分)11. 若2x ﹣3与1互为相反数,则x =_____.12. 在公式S =12n (a +b )中,已知S =5,n =2,a =3,那么b 的值是_____. 13. 一个两位数,两个数位上数字一个是另一个的2倍,若把此两位数的两个数字对调,所得新数比原数大27,则此两位数是_____.14. 对有理数a ,b 规定运算“*”的意义为a *b =a +2b ,比如:5*7=5+2×7,则方程3x *14=2﹣x 的解为_____. 15. 如图,足球的表面是有一些黑颜色五边形和白颜色六边形的皮块缝合而成的,共计有32块,请观察图形,根据黑块五边形和白块六边形的边数之间的关系计算黑颜色五边形和白颜色六边形的皮块数分别是_____.三、解答题(本大题有8个小题,满分55分)16. 解方程:3(2x﹣1)﹣2(1﹣x)=0.17. 解不等式52x+﹣1<322x+,小兵的解答过程是这样的.解:去分母,得x+5﹣1<3x+2①.移项,得x﹣3x<2﹣5+1②.合并同类项,得﹣2x<﹣2③.系数化1,得x<1④.(1)请问:小兵同学的解答是否正确?如果错误,请指出错误步骤的标号,简述原因?(2)给出正确的解答过程.18. 用加减消元法解方程组:433 3215x yx y+=⎧⎨-=⎩.19. 已知关于x的方程a﹣5x=﹣6与方程3x﹣6=4x﹣5有相同的解,求a的值.20. 如图1,在边长为a的大正方形中剪去一个边长为b的小正方形,再将图中的阴影剪拼成一个长方形,如图2,这个拼成的长方形的长为30,宽为20.求图2中第Ⅱ部分的面积.21. 小明在解方程21134x x m-+=-,方程两边都乘以各分母的最小公倍数去分母时,漏乘了不含分母的项﹣1,得到方程的解是x=3,请你帮助小明求出m的值和原方程正确的解.22. 阅读以下例题:解方程:|3x|=1,解:①当3x≥0时,原方程可化为一元一次方程3x=1,解这个方程得x=13;②当3x<0时,原方程可化一元一次方程﹣3x=1,解这个方程得x=﹣13.所以原方程的解是x=13或x=﹣13.(1)仿照例题解方程:|2x+1|=3.(2)探究:当b为何值时,方程|x﹣2|=b+1满足:①无解;②只有一个解;③有两个解.23. 某家商店进行装修,若请甲、乙两个装修组同时施工,8天可以完成,需付两组费用共3520元,若先请甲组单独做6天,再请乙单独做12天可以完成,需付费用3480元.(1)甲、乙两组工作一天,商店各应付多少钱?(2)已知甲组单独完成需12天,乙组单独完成需24天,单独请哪个组,商店所付费用较少?(3)在(2)的条件下,现有三种施工方案:①单独请甲组装修;②单独请乙组装修;③请甲、乙两组合做.若装修过程中,商店不但要支付装修费用,而且每天因装修损失收入200元,你认为如何安排施工更有利于商店?请你帮助商店决策.(可用(1)(2)问的条件及结论)答案与解析一、选择题(共10小题)1. 方程3x ﹣1=5的解是( ) A. 43x = B. 53x = C. x =18 D. x =2[答案]D[解析][分析]先移项,再合并同类项,最后系数化为1即可得出答案.[详解]3x -1=5,移项得,3x =5+1,合并同类项得,3x =6,系数化为1得,x =2.故选D.[点睛]本题考查了一元一次方程的解法.熟练掌握解一元一次方程的步骤是解题的关键.2. 下列方程变形中属于移项的是( )A. 由2x =﹣1得x =﹣12B. 由2x =2得x =4 C. 由5x +b =0得5x =﹣bD. 由4﹣3x =0得﹣3x +4=0 [答案]C[解析][分析]根据一元一次方程的解法直接进行排除选项即可.[详解]A 、由2x =﹣1得:x =12-,不符合题意; B 、由2x =2得:x =4,不符合题意; C 、由5x +b =0得5x =﹣b ,符合题意;D 、由4﹣3x =0得﹣3x +4=0,不符合题意.故选:C .[点睛]本题主要考查一元一次方程的解法,熟练掌握一元一次方程的解法是解题的关键.3. 由132x y -=,可以得到用表示的式子( ) A. 223x y =- B. 2133x y =- C. 223x y -= D. 223x y =- [答案]A[解析][分析] 只需把含有y 的项移到方程的左边,其它的项移到另一边,然后合并同类项、系数化为1就可用含x 的式子表示y .[详解]解:移项,得123y x =-, 系数化为1,得223x y =-. 故选:A .[点睛]本题考查的是方程的基本运算技能,移项、合并同类项、系数化为1等.4. 解方程2x =3x 时,两边都除以x ,得2=3,其错误原因是( )A. 方程本身是错的B. 方程无解C. 两边都除以了0D. 2x 小于3x[答案]C[解析][分析]出错的地方为:方程两边除以x ,没有考虑x 为0的情况,据此判断即可.[详解]解:错误的地方为:方程两边都除以x ,没有考虑x 是否为0,正确解法为:移项得:2x ﹣3x =0,合并得:﹣x =0,系数化为1得:x =0.故选:C .[点睛]本题考查了解一元一次方程,熟练掌握运算法则是解题的关键.5. 下列说法正确的是( )A. 方程4+x =8和不等式4+x >8的解是一样的B. x =2不是不等式4x >5的解C. x=2是不等式4x>15的一个解D. 不等式x﹣2<6的两边都减去3,则此不等式仍成立[答案]D[解析][分析]根据不等式的解法及不等式解集的概念直接进行排除选项即可.[详解]A、方程的解只有一个,而不等式的解有无数个;故本选项不合题意.B、不等式4x>5的解集是x>54,故本选项不合题意.C、不等式4x>15的解集是x>154不包括2,故本选项不合题意.D、不等式x﹣2<6的两边都减去3,则此不等式仍成立,正确,依据是不等式的基本性质.故选:D.[点睛]本题主要考查一元一次不等式的解集及解法,熟练掌握一元一次不等式的解集及解法是解题的关键.6. 把方程0.10.20.510.30.4x x---=的分母化成整数后,可得方程( )A. 0.10.20.5134x x---= B.12510134x x---=C. 125101034x x---= D.120.5134x x---=[答案]B[解析][分析]本题方程两边都含有分数系数,在变形的过程中,利用分数的性质将分数的分子、分母同时扩大或缩小相同的倍数,将小数方程变为整数方程,把含分母的项的分子与分母都扩大原来的10倍.[详解]解:把原方程的分母化为整数得,12510134x x ---=故选B.[点睛]分母化成整数的过程的依据是分数的性质,掌握相关知识是解题的关键.7. 不等式325132x x++≤-的解集表示在数轴上是( )A. B.C.D.[答案]B[解析][分析] 根据一元一次不等式的解法,去分母,去括号,移项,合并同类项,系数化为1即可得解.[详解]解:去分母,得,2(3x +2)≤3(x +5)﹣6,去括号,得6x +4≤3x +15﹣6,移项、合并同类项,得3x ≤5,系数化为1,得,x ≤53, 在数轴上表示为:故选:B .[点睛]本题考查了解一元一次不等式,以及在数轴上表示不等式的解集,>向右画,<向左画,≤与≥用实心圆点,<与>用空心圆圈.8. 每瓶A 种饮料比每瓶B 种饮料少元,小峰买了2瓶A 种饮料和3瓶B 种饮料,一共花了13元,如果设每瓶A 种饮料为x 元,那么下面所列方程正确的是( )A. ()21313x x -+=B. ()21313x x ++=C. ()23113x x ++=D. ()23113x x +-=[答案]C[解析][分析]设每瓶A 种饮料为x 元,则每瓶B 种饮料为()1x +元,由买了2瓶A 种饮料和3瓶B 种饮料,一共花了13元,列方程即可得到答案.[详解]解:设每瓶A 种饮料为x 元,则每瓶B 种饮料为()1x +元,所以:()23113x x ++=,故选C .[点睛]本题考查的是一元一次方程的应用,掌握利用相等关系列一元一次方程是解题的关键.9. 如图,射线OC 端点O 在直线AB 上,∠AOC 的度数比∠BOC 的2倍多10度.设∠AOC 和∠BOC 的度数分别为x ,y ,则下列正确的方程组为( )A. 18010x y x y +=⎧⎨=+⎩B. 180210x y x y +=⎧⎨=+⎩C. 180102x y x y +=⎧⎨=-⎩D. 180210x y y x +=⎧⎨=-⎩[答案]B[解析][分析]根据∠AOC 的度数比∠BOC 的2倍多10°,得方程x =2y +10;然后由平角可建立方程组,则问题得解.[详解]解:根据∠AOC 的度数比∠BOC 的2倍多10°,得方程x =2y +10;根据∠AOC 和∠BOC 组成了平角,得方程x +y =180.列方程组为180210x y x y +=⎧⎨=+⎩. 故选:B .[点睛]本题主要考查二元一次方程组的应用,熟练掌握二元一次方程组的应用是解题的关键.10. 小华在某月的日历上圈出相邻的四个数,算出这四个数的和是36,那么这个数阵的形式可能是( ) A.B. C. D. [答案]C[解析][分析]可设第一个数为x ,根据已知对每个选项计算讨论得出.[详解]设第一个数为x,根据已知:A:得x+x+6+x+7+x+8=36,则x=6.25不是整数,故本选项不可能.B:得x+x+1+x+8+x+9=36,则x=4.5不是整数,故本选项不可能.C:得x+x+1+x+7+x+8=36,则x=5,为正数符合题意.D:得x+x+1+x+6+x+7=36,则x=5.5不是整数,故本选项不可能.故选C.[点睛]此题考查的是一元一次方程的应用,关键是根据题意对每个选项列出方程求解论证.二、填空题(每小题3分,共15分)11. 若2x﹣3与1互为相反数,则x=_____.[答案]1.[解析][分析]根据互为相反数的关系直接进行求解即可.[详解]解:根据题意得:2x﹣3+1=0,移项合并得:2x=2,解得:x=1.故答案:1.[点睛]本题主要考查相反数的定义,熟练掌握相反数的定义是解题的关键.12. 在公式S=12n(a+b)中,已知S=5,n=2,a=3,那么b的值是_____.[答案]2.[解析][分析]求公式中的一个字母b的值,把已知其它字母的值代入,转化为关于b大的方程,解之即可.[详解]∵S=12n(a+b)中,且S=5,n=2,a=3,∴5=12×2×(3+b),解得:b=2.故答案为:2.[点睛]本题考查从公式中求某个字母值问题,关键是把给的已知字母的值代入,转化为某字母为未知数的方程.13. 一个两位数,两个数位上的数字一个是另一个的2倍,若把此两位数的两个数字对调,所得新数比原数大27,则此两位数是_____.[答案]36[解析][分析]设十位数字为x ,个位数字为y ,由题意可进行列方程组进行求解即可.[详解]解:设十位数字为x ,个位数字为y ,由题意得:2101027y x y x x y =⎧⎨+=++⎩, 解得:36x y =⎧⎨=⎩, 原两位数是36,即:原两位数是36.故答案是:36.[点睛]本题主要考查二元一次方程组的应用,熟练掌握二元一次方程组的应用是解题的关键.14. 对有理数a ,b 规定运算“*”的意义为a *b =a +2b ,比如:5*7=5+2×7,则方程3x *14=2﹣x 的解为_____. [答案]38. [解析][分析]已知等式利用题中的新定义化简,计算即可求出解.[详解]解:根据题中的新定义化简得:3x +12=2﹣x , 去分母得:6x +1=4﹣2x ,解得:x =38. 故答案为:38. [点睛]本题考查了解一元一次方程,以及有理数的混合运算,弄清题中的新定义是解题的关键.15. 如图,足球的表面是有一些黑颜色五边形和白颜色六边形的皮块缝合而成的,共计有32块,请观察图形,根据黑块五边形和白块六边形的边数之间的关系计算黑颜色五边形和白颜色六边形的皮块数分别是_____.[答案]12和20[解析][分析]足球缝合规律:五边形的5条边都与六边形缝合,六边形只有3条边与五边形缝合,所以五边形的个数乘以5应该等于六边形的个数乘以3,据此设足球有黑色五边形皮块x 个,列方程求解即可[详解]设足球有黑色五边形皮块x 个,则有白色六边形皮块(32-x)个,由题意得,5x=3(32-x)解得:x=12所以白色皮块数为20,黑色皮块数为12.故答案为:12和20.[点睛]本题主要考查一元一次方程应用,熟练掌握一元一次方程的应用是解题的关键.三、解答题(本大题有8个小题,满分55分)16. 解方程:3(2x ﹣1)﹣2(1﹣x )=0.[答案]x =58 [解析][分析]先去括号合并同类项,然后直接解一元一次方程即可.[详解]解:()()321210x x ---=去括号,得6x ﹣3﹣2+2x =0,移项,得6x +2x =3+2,合并同类项,得8x =5,系数化为1,得x =58. [点睛]本题主要考查一元一次方程的解法,熟练掌握一元一次方程的解法是解题的关键.17. 解不等式52x +﹣1<322x +,小兵的解答过程是这样的. 解:去分母,得x +5﹣1<3x +2①.移项,得x ﹣3x <2﹣5+1②.合并同类项,得﹣2x <﹣2③.系数化为1,得x<1④.(1)请问:小兵同学的解答是否正确?如果错误,请指出错误步骤的标号,简述原因?(2)给出正确的解答过程.[答案](1)解法错误,①去分母时,漏乘了没有分母的项,④系数化为1时不等号的方向没有改变,(2)正确的解答过程见解析,x>12.[解析][分析](1)根据解一元一次不等式的步骤,逐一判断即可得出结论;(2)根据解一元一次不等式的步骤,解不等式即可.[详解](1)解法错误,①去分母时,漏乘了没有分母的项,④系数化为1时不等号的方向没有改变,(2)正确的解答是:去分母得(x+5)﹣2<3x+2,移项,得x﹣3x<2+2﹣5,合并同类项,得﹣2x<﹣1,系数化为1,得x>12.[点睛]此题考查的是解一元一次不等式,掌握解一元一次不等式的步骤是解题关键.18. 用加减消元法解方程组:433 3215x yx y+=⎧⎨-=⎩.[答案]33 xy=⎧⎨=-⎩.[解析][分析]先把方程组标号①②,把两个方程同一未知数的系数变绝对值相等的数,同号两式相减,异号两式相加,消去一个未知数,转化为一元一次方程,得解后再代入①或②,求另一未知数,把两个解联立起来即可.[详解]433 3315x yx y+=⎧⎨-=⎩①②,①×2得:8x+6y=6③,②×3得:9x﹣6y=45④,③+④得:17x=51,解得:x=3,把x=3代入①,得4×3+3y=3, 解得:y=﹣3,所以原方程组的解是33 xy=⎧⎨=-⎩.[点睛]本题考查加减消元法解方程组,关键是要变方程一未知数系数绝对值相等,同号两式相减,异号两式相加.19. 已知关于x的方程a﹣5x=﹣6与方程3x﹣6=4x﹣5有相同的解,求a的值.[答案]a=﹣11.[解析][分析]两个方程中,有一个只有一个未知数,先解这个方程,求出后,代入第二个方程解之即可.[详解]解方程.3x﹣6=4x﹣5,移项,得3x﹣4x=﹣5+6,合并同类项,得﹣x=1,系数化为1得:x=﹣1,把x=﹣1代入方程a﹣5x=﹣6,得a﹣5×(﹣1)=﹣6.解得a=﹣11.[点睛]本题考查用方程确定参数问题,关键是观察两个方程中有一个方程直接求解.20. 如图1,在边长为a大正方形中剪去一个边长为b的小正方形,再将图中的阴影剪拼成一个长方形,如图2,这个拼成的长方形的长为30,宽为20.求图2中第Ⅱ部分的面积.[答案]图2中第Ⅱ部分的面积为100.[解析][分析]根据在边长为a的大正方形中剪去一个边长为b的小正方形,以及长方形的长为30,宽为20,得出a+b=30,a-b=20,进而得出答案.[详解]解:根据题意得出:3020b a a b +=⎧⎨-=⎩, 解得:255a b =⎧⎨=⎩, 故图2中Ⅱ部分的面积是:5×20=100, 答:第Ⅱ部分的面积为100.[点睛]本题考查了正方形的性质以及二元一次方程组的应用,根据已知得出a+b=30,a-b=20是解题的关键. 21. 小明在解方程21134x x m -+=-,方程两边都乘以各分母的最小公倍数去分母时,漏乘了不含分母的项﹣1,得到方程的解是x =3,请你帮助小明求出m 的值和原方程正确的解.[答案]m =4,x =45 [解析][分析]根据题意进行“将错就错”,即把方程的解是x =3代入()()42131x x m -=+-中求解m 的值,最后代入原方程进行求解即可.[详解]解:根据题意,x =3是方程()()42131x x m -=+-的解,将x =3代入得4×(2×3﹣1)=3(3+m )﹣1,解得m =4, 所以原方程为214134x x -+=-, 解方程得x =45. [点睛]本题主要考查分式方程的解及分式方程的解法,熟练掌握分式方程的解及分式方程的解法是解题的关键.22. 阅读以下例题:解方程:|3x |=1,解:①当3x ≥0时,原方程可化一元一次方程3x =1,解这个方程得x =13;②当3x<0时,原方程可化为一元一次方程﹣3x=1,解这个方程得x=﹣13.所以原方程的解是x=13或x=﹣13.(1)仿照例题解方程:|2x+1|=3.(2)探究:当b为何值时,方程|x﹣2|=b+1满足:①无解;②只有一个解;③有两个解.[答案](1)x=1或x=﹣2;(2)当b<﹣1时,方程无解;当b=﹣1时,方程只有一个解;当b>﹣1时,方程有两个解.[解析][分析](1)仿照例题分情况讨论:①当2x+1≥0时,②当2x+1<0时,化简绝对值,解关于x的一元一次方程即可求解;(2)|x﹣2|≥0恒成立,①若无解,则b+1<0,解不等式即可求解;②若只有一个解,则b+1=0,求解即可;③若有两个解,则b+1>0,解不等式即可求解.[详解]解:(1)①当2x+1≥0时,原方程可化为一元一次方程2x+1=3,解这个方程得x=1;②当2x+1<0时,原方程可化为一元一次方程﹣2x﹣1=3,解这个方程得x=﹣2;所以原方程的解是x=1或x=﹣2;(2)因为|x﹣2|≥0,所以①当b+1<0,即b<﹣1时,方程无解;②当b+1=0,即b=﹣1时,方程只有一个解;③当b+1>0,即b>﹣1时,方程有两个解.[点睛]本题考查解绝对值方程,理解题意是解题的关键.23. 某家商店进行装修,若请甲、乙两个装修组同时施工,8天可以完成,需付两组费用共3520元,若先请甲组单独做6天,再请乙单独做12天可以完成,需付费用3480元.(1)甲、乙两组工作一天,商店各应付多少钱?(2)已知甲组单独完成需12天,乙组单独完成需24天,单独请哪个组,商店所付费用较少?(3)在(2)的条件下,现有三种施工方案:①单独请甲组装修;②单独请乙组装修;③请甲、乙两组合做.若装修过程中,商店不但要支付装修费用,而且每天因装修损失收入200元,你认为如何安排施工更有利于商店?请你帮助商店决策.(可用(1)(2)问的条件及结论)[答案](1)甲组工作一天商店应付300元,乙组工作一天商店应付140元;(2)单独请乙组,商店所付费用较少;(3)安排甲、乙两个装修组同时施工更有利于商店.[解析][分析](1)设甲组工作一天商店应付元,乙组工作一天商店应付元,根据“若请甲、乙两个装修组同时施工,8天可以完成,需付两组费用共3520元,若先请甲组单独做6天,再请乙单独做12天可以完成,需付费用3480元”,即可得出关于,的二元一次方程组,解之即可得出结论;(2)根据总费用每天需支付的费用工作时间,可分别求出单独请甲组和单独请乙组施工所需费用,比较后即可得出结论;(3)分单独请甲组施工、单独请乙组施工和请甲、乙两组合做施工三种情况考虑,利用损失的总钱数施工费用因装修损失收入,分别求出三种情况下损失的钱数,比较后即可得出结论.[详解](1)设甲组工作一天商店应付x元,乙组工作一天商店应付y元,依题意,得:883520 6123480x yx y+=⎧⎨+=⎩,解得:300140xy=⎧⎨=⎩.答:甲组工作一天商店应付300元,乙组工作一天商店应付140元.(2)单独请甲组需要的费用为300×12=3600(元);单独请乙组需要的费用为140×24=3360(元).∵3600>3360,∴单独请乙组,商店所付费用较少.(3)单独请甲组施工,需费用3600元,少盈利200×12=2400(元),相当于损失6000元;单独请乙组施工,需费用3360元,少盈利200×24=4800(元),相当于损失8160元;请甲、乙两组合做施工,需费用3520元,少盈利200×8=1600(元),相当于损失5120元.∵5120<6000<8160,∴甲、乙合做损失费用最少.答:安排甲、乙两个装修组同时施工更有利于商店.[点睛]本题考查了二元一次方程组的应用,解题的关键是找准等量关系,正确列出二元一次方程组.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

七年级下数学期中考试试题
班级 姓名
一.填空题(每小题3分,共30分) 1.列不等式组:x 与3的和小于4,且x 与6的差是负数 2. 不等式组: 2x + 3 ﹥7 3x — 5﹤4 的解集是
3.方程组 x + 2y = 7
2x + y = 7 的解是
4. 请你写出一个二元一次方程组,使它的解是 x=2 y=3 5.不等式组: x ﹥—3 的整数解是
x ﹤2 x=2 ax + by =3 6. 若 y=–1 是方程组 bx + ay =2 的解,则a = b =
7.如果x >y ,用不等号连接:5x 5
y 8.计算:18027\35\\ + 24037\43\\ =
9.一个角的余角是这个角的补角的51
,则这个角的度数为
10.如图,已知AB//CD ,∠ABP=340,∠DCP=270 那么∠BPC= A B
D P C
二.选择题(每小题3分,共30分)
11.下列是二元一次方程的是( )
A .x+y B. x+3y >8 C.x
1 + y 1 =3 D.3x+y=35 12.某工程队共有27人, 每天每人可挖土4方,或运土5方,为使挖出的土及时运走,
应分配挖土和运土的人分别是( )
A .12人,15人 B. 14人,13人 C. 15人, 12人 D.13人,14人
13.代数式1–x 的值大于–1,而又不大于3, 则x 的取值范围是( )
A .–1<x ≤3 B. –3≤x <1 C. –2≤x <2 D. –2<x ≤2 x >m
14.已知不等式组 x <5 有解,则m 的取值范围是( )
A .m >5 B. m ≥5 C. m <5 D. m ≤5 4x+3y=1
15.若方程组 ax+(a –1)y=3 的解x 与y 的值相等, 则a = ( )
A .25 B.14 C.16 D.11
x >–4
16.若x 满足不等式组 x >3 则化简 x+3 - x – 2 得( )
A. 2x+1
B. 2x+5
C.5
D.1
17.过平面上三点可以作几条直线? ( )
A. 1条
B. 2条
C.3条
D.1条或3条
18.如果∠a = 360, 那么∠a 的余角等于( )
A.540
B.640
C.1440
D.1340
19. 如图,已知AB//CD , ∠DAB=600, ∠B=800, AC 是 ∠DAB 的平分线, 那么∠ACE
的度数为( ) A .800 B.600 C.1100 D.1200 E
D C
A B
20. 将∠ABC 平移后得到 ∠DEF,如果∠AB C=800 那么∠DEF=( )
A . 1000 B.1600 C. 900 D. 800
三. 解不等式组, 并把解集在数轴上表示出来. (每小题7分,共14分)
21、2x –1>x+122、
42
3+
x>
21
-
x
x+8 <4x–14x–3≤3x–2
四.解方程组(每小题7分,共14分)
23.3x+2y=5 24. 2x–15y=14 y=2x–1 4x+5y=98
五.解答下列各题。

(每小题8分,共32分)
25.幼儿园有一些玩具,分给小朋友,如果每人分3件,那么还余59件。

如果每人分5件,那么最后一个小朋友还少几件。

求这个幼儿园有多少
件玩具?有多少个小朋友?
26.一项工程,甲﹑乙两人合做8天可以完成任务,需要费用 352元。

若甲单独做6天后剩下的工程由乙单独做,还需12天才能完成,这样
的费用需要348元。

问甲﹑乙两人单独完成此工程每天各需费用多少
元?
27.填空:
如图,已知∠B =∠C 且 AB// EF 试说明:∠B G F =∠C 解:因为:∠B =∠C ( 已知 )
所以: AB//CD ( )
又因为:AB// EF ( 已知 )
所以: CD // EF ( )
所以:∠B G F =∠C ( )
E A C
G B D
F
28. 如图,在△ABC中,CD⊥AB于点D,F G⊥AB 于点G,
E D//BC。

试说明:∠EDC =∠B FG
A D E
G B F C。

相关文档
最新文档