最新七年级下册数学试题及答案
最新人教版初中数学七年级下册第8章《二元一次方程组》单元测试题(含答案解析)(1)

人教版七年级数学下册第 8 章《二元一次方程组》单元检测题人教版七年级下册第八章二元一次方程组单元检测题考试时间: 100 分钟; 满分: 120 分班级:姓名:学号:分数:一、选择题(本题共 10 个小题,每题 3 分,共 30 分) 1.以下各式是二元一次方程的是()A .1b2 B . 2m3n5C . 2x+3=5D . xy3a2.若x2是方程 ax -3y=2 的一个解,则 a 为 ()y 7A .8B. 23C.-23D .-192223.解方程组 4x 3 y 7时,较为简单的方法是()4x3y 5A .代入法B.加减法 C .试值法 D .没法确立4.方程组2xy的解为x2,则被掩盖的两个数分别为()x y3yA .1,2 B.1,3C .5,1(D) 2,4 5.以下方程组,解为x1是()y2A . x y 1B . x y 1C . x y 3D .x y33x y53x y53xy 1 3x y56.买钢笔和铅笔共 30 支,此中钢笔的数目比铅笔数目的 2 倍少 3 支.若设买钢笔 x 支,铅笔 y 支,依据题意,可得方程组()A . x y 30B . x y 30C . x y 30D .x y 30 y 2x 3y 2x 3x 2 y 3x 2 y 37.已知 x 、y 知足方程组x 2y8,则 x +y 的值是( )2x y 7A .3B .5C .7D .98.已知 3x m n y m n 与- 9x 7-m y 1+n 的和是单项式,则 m ,n 的值分别是()5A .m=- 1, n=-7B .m=3,n=1C .m=29, n=6D.m=5,n=- 210 549.依据图中供给的信息,可知一个杯子的价钱是( )A .51 元B .35元C .8 元D .7.5 元10.已知二元一次方程 3x +y =0 的一个解是xa,此中 a ≠ 0,那么( )y bA.b>0B.b=0C.b< 0D. 以上都不对aaa二、填空题(本题共 6 个小题,每题 4 分,共 24 分)11.请你写出一个有一解为的二元一次方程:.12.已知方程 3x +5y - 3=0,用含 x 的代数式表示 y ,则 y=________..若 x a-b-2-2y a + b是二元一次方程,则 a=________ , b=________.13 =314.方程 4x +3y =20 的全部非负整数解为:.15.某商品成本价为 t 元,商品上架前订价为 s 元,按订价的 8 折销售后赢利 45元。
最新华东师大版七年级数学下册单元测试题及答案

最新华东师大版七年级数学下册单元测试题及答案1.下列四组等式变形中,正确的是()。
A。
由=2,得x=2B。
由5x=7,得x=7/5C。
由5x+7=0,得5x=-7D。
由2x-3=0,得2x=32.下列各题的“移项”正确的是()。
A。
由2x=3y-1得-1=3y-2xB。
由6x+4=3-x得6x+x=3-4C。
由8-x+4x=7得-x=7-4xD。
由x+9=3x-7得2x=163.在下列方程中,解是2的方程是()。
A。
3x=x+3B。
-x+3=0C。
2x=6D。
5x-2=84.汽车队运送一批货物,若每辆车装4吨,还剩下8吨未装;若每辆车装4.5吨,恰好装完,求这个车队有多少辆车?设这个车队有x辆车,可列方程为()。
A。
4x-8=4.5xB。
4x+8=4.5xC。
4(x-8)=4.5xD。
4(x+8)=4.5x5.已知关于x的方程2x-3m-12=0的解是x=3,则m的值为()。
A。
-2B。
2C。
-6D。
66.若方程4x-1=3x+1和2m+x=1的解相同,则m的值为()。
A。
-3B。
1C。
0D。
27.XXX存入银行2500元,定期一年到期后扣除20%的利息税后得到本息和为2650元,若这种储蓄的年利率为x,那么可得方程()。
A。
2500(1+x)-2500(1+x)×0.2=2650B。
2500(1+x/100)-2500(1+x/100)×0.2=2650C。
2500(1+0.8x)-2500=2650D。
2500(1+0.2x)-2500=26508.如图是某月的月历表,从表的竖列任取三个数相加,不可能得到的是()。
A。
33B。
42C。
55D。
549.朵朵幼儿园的阿姨给小朋友分苹果,如果每人3个还少3个,如果每人2个又多2个,请问共有多少个小朋友?()。
A。
4个B。
5个C。
10个D。
12个10.XXX在做解方程作业时,不小心将方程中的一个常数弄脏了而看不清楚,被弄脏的方程是(- =1+x),这该怎么办呢?他想了一想,然后看了一下书后面的答案,知道此方程的解是x=5,于是,他很快便补好了这个常数,并迅速地做完了作业。
最新北师大版七年级下册数学第二章相交线和平行线第1章节两条直线的位置关系知识点+测试试题以及答案

七年级下册第二章 第一小节两条直线的位置关系测试试题1、在同一平面内,两条直线的位置关系分为相交和平行两种。
平行线:在同一平面内,不相交的两条直线叫做平行线。
若两条直线只有一个公共点,我们称这两条直线为相交线。
2、一个角的两边分别是另一个角的两边的反向延长线,这两个角叫做对顶角。
3、对顶角的性质:对顶角相等。
5、对顶角是从位置上定义的,对顶角一定相等,但相等的角不一定是对顶角。
6、如果两个角的和是直角,那么称这两个角互为余角,简称为互余,称其中一个角是另一个角的余角。
7、如果两个角的和是平角,那么称这两个角互为补角,简称为互补,称其中一个角是另一个角的补角。
8、互余和互补是指两角和为直角或两角和为平角,它们只与角的度数有关,与角的位置无关。
9、余角和补角的性质:同角或等角的余角相等,同角或等角的补角相等。
10、余角和补角的性质用数学语言可表示为:(1)则(同角的余角(或补角)相等)。
00001290(180),1390(180),∠+∠=∠+∠=23∠=∠(2)且则(等角的余角(或补角)相等)。
1、下列说法正确的是 。
A 、不相交的两条直线是平行线 B 、同一个平面内,不相交的两条射线叫平行线C 、同一平面内,两条直线不相交就重合 D 、同一平面内,没有公共点的两条直线是平行线2、如图所示,直线a ,b ,c 两两相交,∠1=2∠3,∠2=68°,则∠1= ,∠4= 。
(2题) (3题)3、下面四个图形中,∠1与∠2是对顶角的图形有( )A .0个B .1个C .2个D .3个 4、如图所示,已知O 是直线AB 上一点,∠1=40°,OD 平分∠BOC,则∠2= 。
.(4题) (8题) (9题)5、下面角的图示中,能与30°角互补的是 。
A .B .C .D .6、下列语句错误的有( )个.00001290(180),3490(180),∠+∠=∠+∠=14,∠=∠23∠=∠(1)两个角的两边分别在同一条直线上,这两个角互为对顶角(2)有公共顶点并且相等的两个角是对顶角(3)如果两个角相等,那么这两个角互补(4)如果两个角不相等,那么这两个角不是对顶角A.1 B.2 C.3 D.47、小明做了四道练习题:①有公共顶点的两个角是对顶角②两个直角互为补角③一个三角板中两个锐角互为余角④一个角的两边与另一个角的两边分别在同一直线上,这两个角是对顶角,其中正确的有。
最新人教版初中数学七年级下册第8章《二元一次方程组》单元测试及答案(1)

人教版七年级数学下册第八章 二元一次方程组 单元测试卷一、选择题(共 10 小题,每题 3 分,共 30 分) 1. 以下各方程组中,属于二元一次方程组的是()3x 2y 72x y 1xy 15 y 1C .32D . x 3 2A .5B .2xyx z3x 4 y 2x 2 y 32 方程组3x 2 y 7).4x y 的解是(13x 1 B .x 3 x3 x 1A .3y-1C .1D .-3yyy 3.假如 2x-7y=8, 那么用含 y 的代数式表示x 正确的选项是()8 2 xB . y2x 8C . x8 7 yD . x8 7yA . y7722x 3是二元一次方程 3xmy 5 的一组解,则 m 的值为 ()4.已知2 yA . -2B . 2C . -0.5D . 0.55. 方程 2 x y 8 的正整数解的个数是()A . 4B . 3C . 2D . 16. 若方程 ax3y2x 6 是对于 x , y 的二元一次方程,则a 一定知足()A. a ≠ 2B. a ≠-2C. a=2D. a=07.若 3x 2 y 7 0 ,则 6 y 9x 6 的值为 ()A . 15B . -27C . -15D .没法确立x 2 ax by 5b 的值是 (8.已知是方程组bx ay的解,则 a)y11A. -1B. 2C. 3D. 49.假如方程 x 2y 4,2 xy7, y kx 9 0 有公共解,则 k 的解是()A .-3B . 3C .6D . -610. 甲、乙两人练习跑步,假如乙先跑 10 米,则甲跑 5 秒便可追上乙;假如乙先跑 2 秒,则甲跑 4 秒便可追上乙,若设甲的速度为 x 米 /秒,乙的速度为 y 米 /秒,可列方程组正确的选项是()5x 5 y 10B .5x5y105x+10 5 y5x 5 y 10A .C.D.4x 2 4y 4x 4 y 2 y4x 2 y 4 y4x 4 y 2二、填空题(每题 3 分,共 18 分)11.已知方程5x3y40 ,用含x的代数式表示y 的形式,则 y=__________________ 。
(完整版)七年级下册数学实数试卷及答案(人教版)

一、选择题1.对一组数(x,y)的一次操作变换记为P 1(x,y),定义其变换法则如下:P 1(x,y)=(x+y,x-y),且规定P n (x,y)=P 1(P n-1(x,y))(n 为大于1的整数),如:P 1(1,2)=(3,-1),P 2(1,2)= P 1(P 1(1,2))= P 1(3,-1)=(2,4),P 3(1,2)= P 1(P 2(1,2))= P 1(2,4)=(6,-2),则P 2017(1,-1)=( ). A .(0,21008) B .(0,-21008) C .(0,-21009) D .(0,21009)2.定义一种新运算“*”,即()*23m n m n =+⨯-,例如()2*322339=+⨯-=.则()6*3-的值为( ) A .12 B .24 C .27 D .30 3.若29x =,|y |=7,且0x y ->,则x +y 的值为( )A .﹣4或10B .﹣4或﹣10C .4或10D .4或﹣104.以下11个命题:①负数没有平方根;②内错角相等;③同旁内角互补,两直线平行;④一个正数有两个立方根,它们互为相反数;⑤无限不循环小数是无理数;⑥数轴上的点与实数有一一对应关系;⑦过一点有且只有一条直线和已知直线垂直;⑧不相交的两条直线叫做平行线;⑨从直线外一点到这条直线的垂线段,叫做这点到直线的距离.⑩开方开不尽的数是无理数;⑪相等的两个角是对顶角;其中真命题的个数为( ) A .5B .6C .7D .85.数轴上A ,B ,C ,D 四点中,两点之间的距离最接近于6的是( )A .点C 和点DB .点B 和点CC .点A 和点CD .点A 和点B6.如图,四个有理数m ,n ,p ,q 在数轴上对应的点分别为M ,N ,P ,Q ,若n+p=0,则m ,n ,p ,q 四个有理数中,绝对值最大的一个是( )A .pB .qC .mD .n7.观察下列各等式:231-+=-5-6+7+8=4-10-l1-12+13+14+15=9 -17-18-19-20+21+22+23+24=16……根据以上规律可知第11行左起第11个数是( ) A .-130B .-131C .-132D .-1338.如图,点A 表示的数可能是( )A .21+B .6C .11D .179.下列说法中,正确的个数是( ).(1)64-的立方根是4-;(2)49的算术平方根是7±;(3)2的立方根为32;(4)7是7的平方根. A .1B .2C .3D .410.如图,数轴上,A B 两点表示的数分别为1,2--,点B 关于点A 的对称点为点C ,则点C 所表示的数是( )A .12-B .21-C .22-D .22-二、填空题11.请先在草稿纸上计算下列四个式子的值:①31;②3312+;③333123++;④33331234+++,观察你计算的结果,用你发现的规律直接写出下面式子的值333312326++++=__________.12.用⊕表示一种运算,它的含义是:1(1)(1)x A B A B A B ⊕=++++,如果5213⊕=,那么45⊕=__________.13.某校数学课外小组利用数轴为学校门口的一条马路设计植树方案如下:第k 棵树种植在点k x 处,其中11x =,当2k ≥时,112()()55k k k k x x T T ---=+-,()T a 表示非负实数a 的整数部分,例如(26)2T .=,(02)0T .=. 按此方案,第6棵树种植点6x 为________;第2011棵树种植点2011x ________.14.a ※b 是新规定的这样一种运算法则:a ※b=a+2b ,例如3※(﹣2)=3+2×(﹣2)=﹣1.若(﹣2)※x=2+x ,则x 的值是_____.15.如图,按照程序图计算,当输入正整数x 时,输出的结果是161,则输入的x 的值可能是__________.16.对于正整数a ,我们规定:若a 为奇数,则()f a 3a 1=+;若a 为偶数,则()af a .2=例如()f 15315146=⨯+=,()8f 842==,若1a 16=,()21a f a =,()32a f a =,()43a f a =,⋯,依此规律进行下去,得到一列数1a ,2a ,3a ,4a ,⋯,n a ,(n ⋯为正整数),则1232018a a a a +++⋯+=______.17.将1,2,3,6按如图方式排列.若规定(m ,n )表示第m 排从左向右第n 个数,如(5,4)表示的数是2(即第5排从左向右第4个数),那么(2021,1011)所表示的数是 ___.18.将1,2,3,6按如图方式排列.若规定m ,n 表示第m 排从左向右第n 个数,则()7,3所表示的数是___________.19.已知M 是满足不等式27a <N 52M N +的平方根为__________.20.规定:用符号[x ]表示一个不大于实数x 的最大整数,例如:[3.69]=3,3=2,[﹣2.56]=﹣3,[3=﹣2.按这个规定,[131]=_____.三、解答题21.我们知道,正整数按照能否被2整除可以分成两类:正奇数和正偶数,小华受此启发,按照一个正整数被3除的余数把正整数分成了三类:如果一个正整数被3除余数为1,则这个正整数属于A 类,例如1,4,7等;如果一个正整数被3除余数为2,则这个正整数属于B 类,例如2,5,8等;如果一个正整数被3整除,则这个正整数属于C 类,例如3,6,9等.(1)2020属于 类(填A ,B 或C );(2)①从A 类数中任取两个数,则它们的和属于 类(填A ,B 或C ); ②从A 、B 类数中任取一数,则它们的和属于 类(填A ,B 或C );③从A 类数中任意取出8个数,从B 类数中任意取出9个数,从C 类数中任意取出10个数,把它们都加起来,则最后的结果属于 类(填A ,B 或C );(3)从A 类数中任意取出m 个数,从B 类数中任意取出n 个数,把它们都加起来,若最后的结果属于C 类,则下列关于m ,n 的叙述中正确的是 (填序号). ①2m n +属于C 类;②m n -属于A 类;③m ,n 属于同一类.22.如图1,把两个边长为1的小正方形沿对角线剪开,所得的4个直角三角形拼成一个面积为2的大正方形.由此得到了一种能在数轴上画出无理数对应点的方法. (1)图2中A 、B 两点表示的数分别为___________,____________;(2)请你参照上面的方法:①把图3中51⨯的长方形进行剪裁,并拼成一个大正方形.在图3中画出裁剪线,并在图4的正方形网格中画出拼成的大正方形,该正方形的边长a=___________.(注:小正方形边长都为1,拼接不重叠也无空隙)②在①的基础上,参照图2的画法,在数轴上分别用点M、N表示数a以及3a-.(图中标出必要线段的长)23.阅读材料:求2320192020122222++++++的值.解:设2320192020122222S=++++++①,将等式①的两边同乘以2,得234202020212222222S=++++++②,用②-①得,2021221S S-=-即202121S=-.即2320192020202112222221++++++=-.请仿照此法计算:(1)请直接填写231222+++的值为______;(2)求231015555+++++值;(3)请直接写出202123452019202010 110101*********11-+-+-+-+-的值.24.先阅读下面的材料,再解答后面的各题:现代社会会保密要求越来越高,密码正在成为人们生活的一部分,有一种密码的明文(真实文)按计算机键盘字母排列分解,其中,,,,,Q W E N M这26个字母依次对应1,2,3,,25,26这26个自然数(见下表).Q W E R T Y U I O P A S D 12345678910111213 F G H J K L Z X C V B N M给出一个变换公式:(126,3)3217(126,31)318(126,32)3J J J xx x x x x x x x x x x x x x ⎧=≤≤⎪⎪+⎪=+≤≤⎨⎪+⎪=+≤≤⎪⎩是自然数,被整除是自然数,被除余是自然数,被除余 将明文转成密文,如4+24+17=193⇒,即R 变为L :11+111+8=123⇒,即A 变为S .将密文转成成明文,如213(2117)210⇒⨯--=,即X 变为P :133(138)114⇒⨯--=,即D 变为F .(1)按上述方法将明文NET 译为密文.(2)若按上方法将明文译成的密文为DWN,请找出它的明文. 25.先阅读然后解答提出的问题:设a 、b 是有理数,且满足3=-a b a 的值. 解:由题意得(3)(0-++=a b ,因为a 、b 都是有理数,所以a ﹣3,b+2也是有理数, a-3=0,b+2=0, 所以a=3,b=﹣2, 所以3(2)8=-=-a b .问题:设x 、y 都是有理数,且满足2210x y -=+x+y 的值. 26.a 是不为1的有理数,我们把11a-称为a 的差倒数.如:2的差倒数是1112=--,现已知a 1=12,a 2是a 1的差倒数,a 3是a 2的差倒数,a 4是a 3的差倒数,… (1)求a 2,a 3,a 4的值;(2)根据(1)的计算结果,请猜想并写出a 2016•a 2017•a 2018的值; (3)计算:a 33+a 66+a 99+…+a 9999的值. 27.观察下列各式:21131222-=⨯;21241333-=⨯;21351444-=⨯;……根据上面的等式所反映的规律, (1)填空:21150-=______;2112019-=______; (2)计算:2222111111112342019⎛⎫⎛⎫⎛⎫⎛⎫---⋅⋅⋅- ⎪⎪⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭28.(阅读材料)数学家华罗庚在一次出国访问途中,看到飞机上邻座的乘客阅读的杂志上有一道智力题:求59319的立方根.华罗庚脱口而出:“39”.邻座的乘客十分惊奇,忙间其中计算的奥妙.你知道怎样迅速准确的计算出结果吗?请你按下面的步骤试一试:第一步:∵10=100,1000593191000000<<,∴10100<<.∴能确定59319的立方根是个两位数. 第二步:∵59319的个位数是9,39729= ∴能确定59319的立方根的个位数是9.第三步:如果划去59319后面的三位319得到数59,34<<,可得3040<<, 由此能确定59319的立方根的十位数是3,因此59319的立方根是39. (解答问题)根据上面材料,解答下面的问题 (1)求110592的立方根,写出步骤.(2=__________.29.小学的时候我们已经学过分数的加减法法则:“同分母分数相加减,分母不变,分子相加减;异分母分数相加减,先通分,转化为同分母分数,再加减.”如:1132321123232323236--=-===⨯⨯⨯⨯,反之,这个式子仍然成立,即:1132321162323232323-===-=-⨯⨯⨯⨯. (1)问题发现 观察下列等式: ①1212111121212122-==-=-⨯⨯⨯⨯, ②13232112323232323-==-=-⨯⨯⨯⨯, ③14343113434342334-==-=-⨯⨯⨯⨯,…, 猜想并写出第n 个式子的结果:1(1)n n =+ .(直接写出结果,不说明理由) (2)类比探究将(1)中的的三个等式左右两边分别相加得: 1111111113111223342233444++=-+-+-=-=⨯⨯⨯, 类比该问题的做法,请直接写出下列各式的结果: ①111112233420192020++++=⨯⨯⨯⨯ ;②1111122334(1)n n ++++=⨯⨯⨯+ ; (3)拓展延伸 计算:111113355799101++++⨯⨯⨯⨯.30.请观察下列等式,找出规律并回答以下问题. 111122=-⨯,1112323=-⨯,1113434=-⨯,1114545=-⨯,…… (1)按照这个规律写下去,第5个等式是:______;第n 个等式是:______. (2)①计算:11111223344950⨯⨯⨯⨯++++.②若a 0=,求: ()()()()()()()()111111122339797ab a b a b a b a b +++++++++++++.【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D【解析】分析:用定义的规则分别计算出P 1,P 2,P 3,P 4,P 5,P 6,观察所得的结果,总结出规律求解.详解:因为P 1(1,-1)=(0,2); P 2(1,-1)=P 1(P 1(1,-1))=P 1(0,2)=(2,-2); P 3(1,-1)=P 1(P 2(2,-2))=(0,4); P 4(1,-1)=P 1(P 3(0,4))=(4,-4); P 5(1,-1)=P 1(P 4(4,-4))=(0,8); P 6(1,-1)=P 1(P 5(0,8))=(8,-8); ……P 2n-1(1,-1)=……=(0,2n ); P 2n (1,-1)=……=(2n ,-2n ). 因为2017=2×1009-1, 所以P 2017=P 2×1009-1=(0,21009). 故选D.点睛:对于新定义,要理解它所规定的运算规则,再根据这个规则进行相关的计算;探索数字的变化规律通常用列举法,按照一定的顺序列举一定数量的运算过程和结果,从运算过程和结果中归纳出运算结果或运算结果的规律.2.C解析:C 【分析】根据新定义的公式代入计算即可. 【详解】∵()*23m n m n =+⨯-, ∴()6*3-=()623(3)27+⨯--=, 故选C . 【点睛】本题考查了新定义下的实数计算,准确理解新定义公式是解题的关键.3.B解析:B 【分析】先根据平方根、绝对值运算求出,x y 的值,再代入求值即可得. 【详解】解:由29x =得:3x =±, 由7y =得:7y =±,0x y ->, x y ∴>,37x y =-⎧∴⎨=-⎩或37x y =⎧⎨=-⎩, 则3(7)10x y +=-+-=-或3(7)4x y +=+-=-, 故选:B . 【点睛】本题考查了平方根、绝对值等知识点,熟练掌握各运算法则是解题关键.4.A解析:A 【分析】根据相关知识逐项判断即可求解. 【详解】解:①“负数没有平方根”,是真命题②“内错角相等”,缺少两直线平行这一条件,是假命题;③“同旁内角互补,两直线平行”,是真命题;④“一个正数有两个立方根,它们互为相反数”,一个正数有一个立方根,是假命题;⑤“无限不循环小数是无理数”,是真命题;⑥“数轴上的点与实数有一一对应关系”,是真命题;⑦“过一点有且只有一条直线和已知直线垂直”,缺少在同一平面内条件,是假命题;⑧“不相交的两条直线叫做平行线”,缺少在同一平面内条件,是假命题;⑨“从直线外一点到这条直线的垂线段,叫做这点到直线的距离”,应为“从直线外一点到这条直线的垂线段的长度,叫做这点到直线的距离”,是假命题.⑩“开方开不尽的数是无理数”,是真命题;⑪“相等的两个角是对顶角”,相等的角有可能是对顶角,但不一定是对顶角,是假命题. 所以真命题有5个. 故选:A 【点睛】本题考查判断真假命题、平方根、立方根、平行线的判定、无理数、实数与数轴关系、直线外一点到直线的距离、对顶角等知识,综合性较强,熟知相关知识点是解题关键.5.A解析:A【分析】的范围,结合数轴可得答案.【详解】解:∵4<6<9,∴2<3,∴的是点C和点D.故选:A.【点睛】本题考查的是实数与数轴,熟知实数与数轴上各点是一一对应关系是解答此题的关键.6.B解析:B【分析】根据n+p=0可以得到n和p互为相反数,原点在线段PN的中点处,从而可以得到绝对值最大的数.【详解】解:∵n+p=0,∴n和p互为相反数,∴原点在线段PN的中点处,∴绝对值最大的一个是Q点对应的q.故选B.【点睛】本题考查了实数与数轴及绝对值.解题的关键是明确数轴的特点.7.C解析:C【分析】通过观察发现:每一行等式右边的数就是行数的平方,故第n行右边的数就是n的平方,而左起第一个数的绝对值比右侧的数大1,并且左边的项数是行数的2倍,前一半的符号为负,后一半的符号为正.【详解】解:第一行:211=;第二行:224=;第三行:239=;第四行:2416=;……第n行:2n;∴第11行:211121=.∵左起第一个数的绝对值比右侧的数大1,并且左边的项数是行数的2倍,前一半的符号为负,后一半的符号为正.∴第11行左起第1个数是-122,第11个数是-132. 故选:C . 【点睛】此题主要考查探索数与式的规律,正确找出规律是解题关键.8.C解析:C 【分析】先确定点A 表示的数在3、4之间,再根据夹逼法逐项判断即得答案. 【详解】解:点A 表示的数在3、4之间,A 、因为12<,所以213<<,故本选项不符合题意;B 23<<,故本选项不符合题意;C ,所以34<,故本选项符合题意;D ,所以45<<,故本选项不符合题意; 故选:C . 【点睛】本题考查了实数与数轴以及无理数的估算,属于常见题型,正确理解题意、熟练掌握基本知识是解题的关键.9.C解析:C 【详解】4-,故(1)对;根据算术平方根的性质,可知49的算术平方根是7,故(2)错; 根据立方根的意义,可知23)对;7的平方根.故(4)对; 故选C.10.D解析:D 【分析】设点C 的坐标是x ,根据题意列得12x=-,求解即可. 【详解】解:∵点A 是B ,C 的中点. ∴设点C 的坐标是x ,=-,1则2x=-∴点C表示的数是2-.故选:D.【点睛】此题考查数轴上两点的中点的计算公式:两点的中点所表示的数等于两点所表示的数的平均数,正确掌握计算公式是解题的关键.二、填空题11.351【分析】先计算题干中四个简单式子,算出结果,找出规律,根据规律得出最后式子的的值.【详解】=1=3=6=10发现规律:1+2+3+∴1+2+3=351故答案为:351【点解析:351【分析】先计算题干中四个简单式子,算出结果,找出规律,根据规律得出最后式子的的值.【详解】+3++=1+2+3+nn∴3+=35126++=1+2+326故答案为:351【点睛】本题考查找规律,解题关键是先计算题干中的4个简单算式,得出规律后再进行复杂算式的求解.12.【分析】按照新定义的运算法先求出x ,然后再进行计算即可.【详解】解:由解得:x=8故答案为.【点睛】本题考查了新定义运算和一元一次方程,解答的关键是根据定义解一元一次方程,求得x 的 解析:1745【分析】按照新定义的运算法先求出x ,然后再进行计算即可.【详解】 解:由1521=21(21)(11)3x ⊕=++++ 解得:x=818181745==45(41)(51)93045⊕=+++++ 故答案为1745. 【点睛】本题考查了新定义运算和一元一次方程,解答的关键是根据定义解一元一次方程,求得x 的值.13.403【解析】当k=6时,x6=T (1)+1=1+1=2,当k=2011时,=T()+1=403.故答案是:2,403.【点睛】本题考查了坐标确定位置,读懂题目信息,理解xk 的表达解析:403【解析】当k=6时,x 6=T (1)+1=1+1=2,当k=2011时,2011 x =T(20105)+1=403. 故答案是:2,403.【点睛】本题考查了坐标确定位置,读懂题目信息,理解xk的表达式并写出用T表示出的表达式是解题的关键.14.4【解析】根据题意可得(﹣2)※x=﹣2+2x,进而可得方程﹣2+2x=2+x,解得:x=4.故答案为:4.点睛:此题是一个阅读理解型的新运算法则题,解题关键是明确新运算法则的特点,然后直接根解析:4【解析】根据题意可得(﹣2)※x=﹣2+2x,进而可得方程﹣2+2x=2+x,解得:x=4.故答案为:4.点睛:此题是一个阅读理解型的新运算法则题,解题关键是明确新运算法则的特点,然后直接根据新定义的代数式计算即可.15.、、、.【详解】解:∵y=3x+2,如果直接输出结果,则3x+2=161,解得:x=53;如果两次才输出结果:则x=(53-2)÷3=17;如果三次才输出结果:则x=(17-2)÷3=5;解析:53、17、5、1.【详解】解:∵y=3x+2,如果直接输出结果,则3x+2=161,解得:x=53;如果两次才输出结果:则x=(53-2)÷3=17;如果三次才输出结果:则x=(17-2)÷3=5;如果四次才输出结果:则x=(5-2)÷3=1;则满足条件的整数值是:53、17、5、1.故答案为53、17、5、1.点睛:此题的关键是要逆向思维.它和一般的程序题正好是相反的.16.4728【分析】先求出,,,,寻找规律后即可解决问题.【详解】由题意,,,,,,,,从开始,出现循环:4,2,1,,,,故答案为4728.【点睛】本题考查了规律型——数字的变解析:4728【分析】先求出1a ,2a ,3a ,⋯,寻找规律后即可解决问题.【详解】由题意1a 16=,2a 8=,3a 4=,4a 2=,5a 1=,6a 4=,7a 2=,8a 1=⋯,, 从3a 开始,出现循环:4,2,1,()201823672-÷=,2018a 1∴=,1232018a a a a 16867274728∴+++⋯+=++⨯=,故答案为4728.【点睛】本题考查了规律型——数字的变化类问题,解题的关键是从一般到特殊,寻找规律,利用规律解决问题.17.1【分析】所给一系列数是4个数一循环,看是第几个数,除以4,根据余数得到相应循环的数即可.【详解】解:前2020排共有的个数是:,表示的数是第个数,,第2021排的第1011个数为1.解析:1【分析】所给一系列数是4个数一循环,看(2021,1011)是第几个数,除以4,根据余数得到相应循环的数即可.【详解】解:前2020排共有的个数是:(20201)20201234202020412102+⨯++++⋯⋯+==, (2021,1011)∴表示的数是第204121010112042221+=个数,204222151055541=⨯+,∴第2021排的第1011个数为1.故答案为:1.【点睛】本题考查算术平方根与规律型:数字的变化类,根据规律判断出是第几个数是解本题的关键.18.【分析】根据数的排列方法可知,第一排:1个数,第二排2个数.第三排3个数,第四排4个数,…第m-1排有(m-1)个数,从第一排到(m-1)排共有:1+2+3+4+…+(m-1)个数,根据数的排列【分析】根据数的排列方法可知,第一排:1个数,第二排2个数.第三排3个数,第四排4个数,…第m-1排有(m-1)个数,从第一排到(m-1)排共有:1+2+3+4+…+(m-1)个数,根据数的排列方法,每四个数一个轮回,根据题目意思找出第m排第n个数到底是哪个数后再计算.【详解】解:(7,3)表示第7排从左向右第3个数,可以看出奇数排最中间的一个数都是1,1+2+3+4+5+6+3=24,24÷4=6,则(7,3,.【点睛】此题主要考查了数字的变化规律,这类题型在中考中经常出现.判断出所求的数是第几个数是解决本题的难点;得到相应的变化规律是解决本题的关键.19.±3【分析】先通过估算确定M、N的值,再求M+N的平方根.【详解】解:∵,∴,∵,∴,∵,∴,∴a的整数值为:-1,0,1,2,M=-1+0+1+2=2,∵,∴,N=7解析:±3【分析】先通过估算确定M 、N 的值,再求M+N 的平方根.【详解】解:∵< ∴221, ∵∴23<,∵a <∴23a -<<,∴a 的整数值为:-1,0,1,2,M=-1+0+1+2=2, ∵∴78<,N=7,M+N=9,9的平方根是±3;故答案为:±3.【点睛】本题考查了算术平方根的估算,用“夹逼法”估算算术平方根是解题关键.20.-5【详解】∵3<<4,∴−4<−<−3,∴−5<−−1<−4,∴[−−1]=−5.故答案为−5.点睛:本题考查了估算无理数的大小的应用,解决此题的关键是求出的范围. 解析:-5【详解】∵,∴,∴,∴故答案为−5..三、解答题21.(1)A;(2)①B;②C;③B;(3)①③.【分析】÷,结合计算结果即可进行判断;(1)计算20203(2)①从A类数中任取两个数进行计算,即可求解;②从A、B两类数中任取两个数进行计算,即可求解;③根据题意,从A类数中任意取出8个数,从B类数中任意取出9个数,从C类数中任意取出10个数,把它们的余数相加,再除以3,即可得到答案;(3)根据m,n的余数之和,举例,观察即可判断.【详解】解:(1)根据题意,÷=,∵202036731∴2020被3除余数为1,属于A类;故答案为:A.(2)①从A类数中任取两个数,如:(1+4)÷3=1…2,(4+7)÷3=3…2,……∴两个A类数的和被3除余数为2,则它们的和属于B类;②从A、B类数中任取一数,与①同理,如:(1+2)÷3=1,(1+5)÷3=2,(4+5)÷3=3,……∴从A、B类数中任取一数,则它们的和属于C类;③从A类数中任意取出8个数,从B类数中任意取出9个数,从C类数中任意取出10个数,把它们的余数相加,则⨯+⨯+=,8192026÷=,∴26382∴余数为2,属于B类;故答案为:①B;②C;③B.(3)从A类数中任意取出m个数,从B类数中任意取出n个数,余数之和为:m×1+n×2=m+2n,∵最后的结果属于C类,∴m+2n能被3整除,即m+2n属于C类,①正确;②若m=1,n=1,则|m-n|=0,不属于B类,②错误;③观察可发现若m+2n属于C类,m,n必须是同一类,③正确;综上,①③正确.故答案为:①③.【点睛】本题考查了新定义的应用和有理数的除法,解题的关键是熟练掌握新定义进行解答.22.(1);(2)①②见解析【分析】(1)根据图1得到小正方形的对角线长,即可得出数轴上点A和点B表示的数(2)根据长方形的面积得正方形的面积,即可得到正方形的边长,再画出图象即可;(3)从原点开始画一个长是2,高是1的长方形,对角线长即是a,再用圆规以这个长度画弧,交数轴于点M,再把这个长方形向左平移3个单位,用同样的方法得到点N.【详解】(1)由图1知,小正方形的对角线长是2,∴图2中点A表示的数是2-,点B表示的数是2,故答案是:2-,2;(2)①长方形的面积是5,拼成的正方形的面积也应该是5,∴正方形的边长是5,如图所示:故答案是:5;②如图所示:【点睛】本题考查无理数的表示方法,解题的关键是理解题意,模仿题目中给出的解题方法进行求解.23.(1)15;(2)11514-;(3)111.【分析】(1)先计算乘方,即可求出答案;(2)根据题目中的运算法则进行计算,即可求出答案;(3)根据题目中的运算法则进行计算,即可求出答案;【详解】解:(1)231248125122=++++=++;故答案为:15;(2)设231015555T=+++++①,把等式①两边同时乘以5,得112310555555T=+++++②,由②-①,得:11451T=-,∴11514T -=, ∴31121015551455++=+++-; (3)设234520192020110101010101010M =-+-+-+-+①, 把等式①乘以10,得:3456222019020202110101010101010101010M =-+-+-+-++②,把①+②,得:202111110M =+, ∴202110111M +=, ∴232452019200022111010101010110010111-+-+-+-++=, ∴20212345201920201011010101010101011-+-+-+-+- 20212021101101111+=- 111=. 【点睛】本题考查了数字的变化规律,熟练掌握运算法则,熟练运用有理数乘法,以及运用消项的思想是解题的关键.24.(1)N,E,T 密文为M,Q,P;(2)密文D,W,N 的明文为F,Y ,C .【分析】(1) 由图表找出N,E,T 对应的自然数,再根据变换公式变成密文.(2)由图表找出N=M,Q,P 对应的自然数,再根据变换.公式变成明文.【详解】解:(1)将明文NET 转换成密文:2522517263N M +→→+=→ 3313E Q →→=→ 5158103T P +→→+=→ 即N,E,T 密文为M,Q,P;(2)将密文D,W,N 转换成明文:()133138114D F →→⨯--=→2326W Y →→⨯=→253(2517)222N C →→⨯--=→即密文D,W,N 的明文为F,Y ,C .【点睛】本题考查有理数的混合运算,此题较复杂,解答本题的关键是由图表中找到对应的数或字母,正确运用转换公式进行转换.25.7或-1.【分析】根据题目中给出的方法,对所求式子进行变形,求出x、y的值,进而可求x+y的值.【详解】解:∵2210 x y-=+∴()22100x y--+-=,∴2210x y--=0-=0∴x=±4,y=3当x=4时,x+y=4+3=7当x=-4时,x+y=-4+3=-1∴x+y的值是7或-1.【点睛】本题考查实数的运算,解题的关键是弄清题中给出的解答方法,然后运用类比的思想进行解答.26.(1)a2=2,a3=-1,a4=1 2(2)a2016•a2017•a2018= -1(3)a33+a66+a99+…+a9999=-1【分析】(1)将a1=12代入11a-中即可求出a2,再将a2代入求出a3,同样求出a4即可.(2)从(1)的计算结果可以看出,从a1开始,每三个数一循环,而2016÷3=672,则a2016=-1,a2017=12,a2018=2然后计算a2016•a2017•a2018的值;(3)观察可得a3、a6、a9、…a99,都等于-1,将-1代入,即可求出结果.【详解】(1)将a1=12,代入11a-,得21=211-2a=;将a2=2,代入11a-,得31=-11-2a=;将a3=-1,代入11a-,得411=1--12a=().(2)根据(1)的计算结果,从a1开始,每三个数一循环,而2016÷3=672,则a2016=-1,a2017=12,a2018=2所以,a2016•a2017•a2018=(-1)×12×2= -1(3)观察可得a3、a6、a9、…a99,都等于-1,将-1代入,a33+a66+a99+…+a9999=(-1)3+(-1)6+(-1)9+…+(-1)99=(-1)+1+(-1)+…(-1)=-1【点睛】此类问题考查了数字类的变化规律,解题的关键是要严格根据定义进行解答,同时注意分析循环的规律.27.(1)49515050⨯;2018202020192019⨯;(2)10102019. 【分析】(1)根据已知数据得出规律,2111111n n n ⎛⎫⎛⎫-=-+ ⎪⎪⎝⎭⎝⎭,进而求出即可; (2)利用规律拆分,再进一步交错约分得出答案即可.【详解】解:(1)21150-=49515050⨯; 2112019-=2018202020192019⨯; (2)2222111111112342019⎛⎫⎛⎫⎛⎫⎛⎫---⋅⋅⋅- ⎪⎪⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭=1324352018202022334420192019⨯⨯⨯⨯⨯⨯⨯⨯…… =1202022019⨯ =10102019. 【点睛】此题主要考查了实数运算中的规律探索,根据已知运算得出数字之间的变化规律是解决问题的关键.28.(1)48;(2)28【分析】(1)根据题中所给的分析方法先求出这几个数的立方根都是两位数,然后根据第二和第三步求出个位数和十位数即可.(2)根据题中所给的分析方法先求出这几个数的立方根都是两位数,然后根据第二和第三步求出个位数和十位数即可.【详解】解:(1)第一步:10100=,11059210100000000<<,10100∴, ∴能确定110592的立方根是个两位数.第二步:110592的个位数是2,38512=,∴能确定110592的立方根的个位数是8.第三步:如果划去110592后面的三位592得到数110,45,可得4050,由此能确定110592的立方根的十位数是4,因此110592的立方根是48;(2)第一步:10=100=,1000219521000000<<,10100∴<,∴能确定21952的立方根是个两位数.第二步:21952的个位数是2,38512=,∴能确定21952的立方根的个位数是8.第三步:如果划去21952后面的三位952得到数21,23<,可得2030,由此能确定21952的立方根的十位数是2,因此21952的立方根是28.28,故答案为:28.【点睛】本题主要考查了数的立方,理解一个数的立方的个位数就是这个数的个位数的立方的个位数是解题的关键,有一定难度.29.(1) 111n n -+;(2)①20192020;②1n n +;(3) 50101. 【分析】(1)根据题目中的式子可以写出第n 个式子的结果;(2)①根据题目中的式子的特点和(1)中的结果,可以求得所求式子的值; ②根据题目中的式子的特点和(1)中的结果,可以求得所求式子的值;(3)根据题目中式子的特点,可以求得所求式子的值.【详解】解:(1)由题目中的式子可得,111(1)1n n n n =-++, 故答案为:111n n -+; (2)①111112233420192020++++⨯⨯⨯⨯ 111111112233420192020-+-+-++-= 211200=- 20192020=, 故答案为:20192020; ②1111122334(1)n n ++++⨯⨯⨯+11111111223341n n =-+-+-+⋯+-+ 111n =-+ 1n n =+, 故答案为:1n n +; (3)111113355799101++++⨯⨯⨯⨯ 11111111123355799101⎛⎫=⨯-+-+-++- ⎪⎝⎭ 1112101⎛⎫=⨯- ⎪⎝⎭ 11002101=⨯ 50101=. 【点睛】本题考查数字的变化类、有理数的混合运算,解答本题的关键是明确题意,发现题目中式子的变化特点,求出所求式子的值.30.(1)1115656=-⨯,()11111n n n n =-⨯++;(2)①4950;②1465119800【分析】(1)根据规律可得第5个算式;根据规律可得第n 个算式;(2)①根据运算规律可得结果.②利用非负数的性质求出a 与b 的值,代入原式后拆项变形,抵消即可得到结果. 【详解】(1)根据规律得:第5个等式是1115656=-⨯,第n 个等式是()11111n n n n =-⨯++; (2)①11111223344950⨯⨯⨯⨯++++, 111111111223344950=-+-+-++-, 1150=-, 4950=;②a 0=,1a ,3b =, 原式111111324354698100=+++++⨯⨯⨯⨯⨯,11111111111111=⨯-+⨯-+⨯-⨯-++⨯-,(1)()()+()() 23224235246298100 1111111111(1)=⨯-+-+-+-++-,23243546981001111(1)=⨯+--,229910014651=.19800【点睛】本题主要考查了数字的变化规律,发现规律,运用规律是解答此题的关键.。
七年级数学下册期末测试题及答案(共五套)

七年级数学下册期末测试题及答案(共五套)七年级数学下册期末测试题及答案姓名。
学号。
班级:一、选择题(共10小题,每小题3分,共30分)1.若m。
-1,则下列各式中错误的是()A。
6m。
-6B。
-5m < -5C。
m+1.0D。
1-m < 22.下列各式中,正确的是()A。
16=±4B。
±16=4C。
3-27=-3D。
(-4)^2=163.已知a。
b。
0,那么下列不等式组中无解的是()A。
{x-a。
x>-b}B。
{x>a。
x<-a。
x<-b}C。
{x>a。
xb}D。
{x-a。
x<b}4.一辆汽车在公路上行驶,两次拐弯后,仍在原来的方向上平行行驶,那么两个拐弯的角度可能为()A。
先右转50°,后右转40°B。
先右转50°,后左转40°C。
先右转50°,后左转130°D。
先右转50°,后左转50°5.解为{x=1.y=2}的方程组是()A。
{x-y=1.x-y=-1}B。
{x-y=1.3x+y=5}C。
{x-y=3.3x+y=-5}D。
{x-2y=-3.3x+y=5}6.如图,在△ABC中,∠ABC=50°,∠ACB=80°,BP平分∠ABC,CP平分∠ACB,则∠BPC的大小是()A。
100°B。
110°C。
115°D。
120°7.四条线段的长分别为3,4,5,7,则它们首尾相连可以组成不同的三角形的个数是()A。
4B。
3C。
2D。
18.在各个内角都相等的多边形中,一个外角等于一个内角的1/2,则这个多边形的边数是()A。
5B。
6C。
7D。
89.如图,△A'B'C'是由△XXX沿BC方向平移了BC长度的一半得到的,若△ABC的面积为20 cm²,则四边形A'CC'B'的面积为()A。
最新北师大版七年级下册数学期末复习计算题练习试题以及答案

七年级下册计算题练习试题一、选择题。
1、下列计算正确的是( )A 、623x x x =•B 、22x 2x 2=)(C 、623x x =)(D 、4x x 5=-2、下列计算正确的是( )A 、933a a a =•B 、224a a a =÷)(﹣C 、632a 2a 2﹣)(﹣=D 、422a 3a a 2=+ 3、若关于x 2-2(k -1)x+9是完全平方式,则k 等于( )。
A 、±1 B 、±3 C 、﹣1或3 D 、4或﹣24、在多项式中,与﹣x -y 相乘的结果是x 2-y 2的多项式是( ) A 、﹣x+y B 、x+y C 、x -y D 、﹣x -y5、下列计算正确是( )A 、22a 6a 3=)(B 、1052a a a =•C 、1234x x =)(D 、326a a a =÷ 6、下列计算正确的是( )A 、a a a 23=÷B 、923a 4a 2=)(C 、4a 2a 22-)-(=D 、523a a a =+ 7、下列计算正确的是( )A 、1055a a a =+B 、623a a a =•C 、67a a a =÷D 、33x 2x 2=)( 8、下列计算正确的是( )A 、532x x x =+B 、632x x =)(﹣C 、236x x x =÷D 、632x x x =• 9、下列运算正确的是( )A 、222a 2a a 3=-B 、326a a a =÷C 、623a a a =•D 、532a a =)( 10、下列计算正确的是( )A 、222y x y x +=+)(B 、633x x x =•C 、326x x x =÷D 、422x 6x 3=)(11、下列计算正确的是( )A 、a 12a 4a 3=•B 、326a a a =÷C 、1243a a =)(﹣D 、1243a a a =•12、已知a+b=5,ab=3,则22b a +等于( ) A 、6 B 、8 C 、19 D 、25 13、下列计算正确的是( )A 、1x 41x 222+=+)(B 、4842b a 8b a 2=)(﹣C 、6x 63x 22x 32-))(-(=+D 、222a 8a 4a 4=+14、下列计算正确的是( )A 、3a 422=-aB 、222x y x y +=+)(C 、m m3m 4y y y =÷)()(D 、842x 12x 6x 2=• 二、填空题。
最新鲁教版(五四制)七年级数学下册第十章三角形的有关证明章节练习试题(含答案解析)

鲁教版(五四制)七年级数学下册第十章三角形的有关证明章节练习考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、下列各组图形中是全等三角形的一组是()A.B.C.D.2、如图,已知∠ABC=∠BAD,添加下列条件还不能判定△ABC≌△BAD的是()A.AC=BD B.∠CAB=∠DBA C.∠C=∠D D.BC=AD3、若等腰三角形两边长分别是3和6,则这个三角形的周长是()A .12B .15C .9或15D .12 或154、如图,BD 平分ABC ∠,BC DE ⊥于点E ,7AB =,4DE =,则ABD S ∆=( )A .28B .21C .14D .75、如图,等腰直角OAB 中,OA OB =,过点A 作AD OA ⊥,若线段OA 上一点C 满足CDB OBD ∠=∠,则CBD ∠的度数为( )A .42︒B .43︒C .45︒D .60︒6、如图,在平行四边形ABCD 中,将△ABC 沿着AC 所在的直线折叠得到△AB ′C ,B ′C 交AD 于点E ,连接B ′D ,若∠B =60°,∠ACB =45°,AC B ′D 的长是( )A .1BC D7、如图,点D 在AB 上,点E 在AC 上,AB =AC ,还不能证明△ABE ≌△ACD 的是( )A .AD =AEB .BD =CEC .∠B =∠CD .BE =CD8、下列命题是真命题的是( )A .两直线平行,同旁内角相等B .有一个角是60°的三角形是等边三角形C .有两条边和一个角对应相等的两个三角形一定全等D .到一条线段的两端距离相等的点,必在这条线段的垂直平分线上9、如图,ABC DCB ∠=∠.添加一个条件后可得ABC DCB ≅,则不能添加的条件是( )A .AB DC = B .AC DB = C .AD ∠=∠ D .ACB DBC ∠=∠10、如图,在△ABC 中,∠C =90°,D ,E 是AC 上两点,且AE =DE ,BD 平分∠EBC ,那么下列说法中不正确的是( )A .BE 是△ABD 的中线B .BD 是△BCE 的角平分线C .∠1=∠2=∠3D .S △AEB =S △EDB第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,已知△ABC中,AB=AC,要使△ABD≌ACE,则只需添加一个适当的条件是_____.(只填一个即可)2、如图,在△ABC中,∠C=45°,AD⊥BC于D,F为AC上一点,连接BF交AD于E,过F作MN⊥FB 交BA延长线于M,交BC于N,若点M恰在BN的垂直平分线上,且DE:BN=1:7,S△ABD=15,则S△ABE=_____.3、如图,在ABC中,AB=AC=10,BC=12,AD=8,AD是∠BAC的角平分线.若E,F分别是AD和AC上的动点,则EC+EF的最小值是________.4、等边三角形的边长为a,则该等边三角形的面积为________.(用含a的代数式表示)5、如图,∠AOP=∠BOP=15°,PC∥OA,PD⊥OA,若PC=4,则PD=___.三、解答题(5小题,每小题10分,共计50分)1、如图AB ∥CD ,∠B =∠D ,AE =CF ,求证:△ABF ≌△CDE .2、△ABC 如图所示(1)用尺规作∠ABC 的平分线BD 交AC 于点D ;(保留作图痕迹,不要求写作法)(2)在(1)中作出∠ABC 的平分线BD 后,过点D 作DE //AB ,交BC 于点E .求证:BE =DE .3、问题发现:如图①,△ABC 与△ADE 是等边三角形,且点B 、D ,E 在同一直线上,连接CE ,求BEC ∠的度数,并确定线段BD 与CE 的数量关系.拓展探究:如图②,△ABC 与△ADE 都是等腰直角三角形,90BAC DAE ∠=∠=︒,且点B ,D ,E 在同一直线上,AF BE ⊥于F ,连接CE ,求BEC ∠的度数,并确定线段AF ,BF ,CE 之间的数量关系.4、已知:如图,在△ABC 中,45ABC ∠=︒,CD AB ⊥,BE AC ⊥,CD 与BE 相交于点F .(1)求证:ACD FBD ≌△△;(2)若AB =3BC =,求线段BF 的长.5、如图,AB ,CD 相交于点E 且互相平分,F 是BD 延长线上一点,若2FAC BAC ∠=∠,求证:AC DF AF +=.-参考答案-一、单选题1、B【解析】【分析】根据全等三角形的判定定理逐个判断即可.【详解】解:A.不符合全等三角形的判定定理,不能推出两三角形全等,故本选项不符合题意;B.符合全等三角形的判定定理SAS,能推出两三角形全等,故本选项符合题意;C.只有一个角相等,不符合全等三角形的判定定理,不能推出两三角形全等,故本选项不符合题意;D.只有一条边相等,不符合全等三角形的判定定理,不能推出两三角形全等,故本选项不符合题意;故选:B.【点睛】本题考查了全等三角形的判定定理,能熟记全等三角形的判定定理是解此题的关键,注意:全等三角形的判定定理有SAS,ASA,AAS,SSS,两直角三角形全等还有HL等.2、A【解析】【分析】根据全等三角形的判定定理依次分析判断即可.【详解】解:由题知∠ABC=∠BAD,AB=BA,当AC=BD时,不能证明△ABC≌△BAD,故选项A符合题意;当∠CAB=∠DBA时,可根据ASA证明△ABC≌△BAD,故选项B不符合题意;当∠C=∠D时,可根据AAS证明△ABC≌△BAD,故选项C不符合题意;当BC=AD时,可根据SAS证明△ABC≌△BAD,故选项D不符合题意;故选:A.【点睛】此题考查了全等三角形的判定定理,熟记三角形全等的判定定理是解题的关键.3、B【解析】【分析】分腰长为3和腰长为6两种情况考虑,先根据三角形的三边关系确定三角形是否存在,再根据三角形的周长公式求值即可.【详解】当腰长为3时,三边长为3、3、6,∵3+3=6,不符合三角形三边关系,∴不能构成三角形,当腰长为6时,三边长为3、6、6,∵3+6=9>6,符合三角形三边关系,∴能构成三角形,∴三角形的周长为3+6+6=15,故选:B .【点睛】本题考查了等腰三角形的性质以及三角形三边关系,由三角形三边关系确定三角形的三条边长为解题的关键.4、C【解析】【分析】作DH BA ⊥于H ,由角平分线的性质得到4DH DE ==,结合三角形面积公式解题.【详解】解:作DH BA ⊥于H ,BD 平分ABC ∠,BC DE ⊥,DH AB ⊥,4DH DE ∴==,Δ174142ABD S ∴=⨯⨯=, 故选:C .【点睛】本题考查角平分线的性质定理,三角形的面积等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.5、C【解析】【分析】过点B 作BE AD ⊥,交AD 的延长线于E ,BF CD ⊥于F ,由“AAS ”可证BED BFD ∆≅∆,可得BE BF BO ==,EBD FBD ∠=∠,由“HL ”可证Rt BCF Rt BCO ≌,可得OBC CBF ∠=∠,即可求解.【详解】解:如图,过点B 作BE AD ⊥,交AD 的延长线于E ,BF CD ⊥于F ,AD AO ⊥,BD AO ⊥, //AD BO ∴,EDB DBO ∴∠=∠,又CDB OBD ∠=∠, EDB BDC ∴∠=∠,45BAD ∠=︒,DA AO ⊥, 45DAB BAO ∴∠=∠=︒, 又BE AD ⊥,BO AO ⊥, BE BO ∴=,在BED ∆和BFD ∆中, 90E BFD BDE BDF BD BD ∠=∠=︒⎧⎪∠=∠⎨⎪=⎩, ()BED BFD AAS ∴∆∆≌, BE BF BO ∴==,EBD FBD ∠=∠, 在Rt BCF 和Rt BCO △中, BF BO BC BC =⎧⎨=⎩, ∴Rt BCF Rt BCO ≌, OBC CBF ∴∠=∠,360E EAO AOB OBE ∠+∠+∠+∠=︒, 90OBE ∴∠=︒,90EBD DBF FBC CBO ∴∠+∠+∠+∠=︒,45∴∠=︒,DBC故选:C.【点睛】本题考查了全等三角形的判定和性质,等腰直角三角形的性质,角平分线的性质等知识,添加恰当辅助线构造全等三角形是本题的关键.6、B【解析】【分析】先通过角度关系与大小证明AD⊥B’C,再通过直角三角形各边长之间的关系求出B’D的长度.【详解】∵四边形ABCD是平行四边形∴AD∥BC,AB∥CD,∠ADC=60°∴∠CAE=∠ACB=45°∵将△ABC沿AC翻折至△AB’C,∴∠AB’C=∠B=60°∴∠AEC=180°-∠CAE-∠ACB’=90°∴AE=CE∴∠AEC=90°,∠AB’C=60°,∠ADC=60°,∴∠B’AD=30°,∠DCE=30°,∴B’E=DE=1,∴B’D故选:B.【点睛】本题通过折叠问题考查了角度的计算和特殊直角三角形的三边之间的关系,掌握这些是本题解题关键.7、D【解析】【分析】根据全等三角形的判定定理逐个判断即可.【详解】解:A.∵在△ABE 和△ACD 中,AB AC A A AE AD =⎧⎪∠=∠⎨⎪=⎩, ∴△ABE ≌△ACD (SAS ),故本选项不符合题意;B.∵AB =AC ,BD =CE ,∴AD =AE ,在△ABE 和△ACD 中,AB AC A A AE AD =⎧⎪∠=∠⎨⎪=⎩, ∴△ABE ≌△ACD (SAS ),故本选项不符合题意;C.∵在△ABE 和△ACD 中,A A AB AC B C ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△ABE≌△ACD(ASA),故本选项不符合题意;D、根据AB=AC,BE=CD和∠A=∠A不能推出△ABE≌△ACD,故本选项符合题意;故选:D.【点睛】本题考查了全等三角形的判定定理,能灵活运用定理进行推理是解此题的关键,注意:全等三角形的判定定理有:SAS,ASA,AAS,SSS.8、D【解析】【分析】利用平行线的性质、等边三角形的判定方法、全等三角形的判定方法及垂直平分线的判定方法分别判断后即可确定正确的选项.【详解】解:A、两直线平行,同旁内角互补,故原命题错误,是假命题,不符合题意;B、有一个角是60°的等腰三角形是等边三角形,故原命题错误,不符合题意;C、有两边和夹角对应相等的两个三角形一定全等,故原命题错误,不符合题意;D、到一条线段的两端距离相等的点,必在这条线段的垂直平分线上,正确,是真命题,符合题意.故选:D.【点睛】本题考查了命题与定理的知识,解题的关键是了解平行线的性质、等边三角形的判定方法、全等三角形的判定方法及垂直平分线的判定方法,难度不大.9、B【解析】【分析】根据全等三角形的判定定理依次分析解答.【详解】∠=∠,BC=CB,解:由题意知,ABC DCB当AB DC=时,可依据SAS证明△ABC≌△DCB,故选项A不符合题意;当AC DB=时,不可证明△ABC≌△DCB,故选项B符合题意;当A D∠=∠时,可依据AAS证明△ABC≌△DCB,故选项C不符合题意;∠=∠时,可依据ASA证明△ABC≌△DCB,故选项D不符合题意;当ACB DBC故选:B.【点睛】此题考查了全等三角形的判定定理,熟记三角形全等的判定定理并应用是解题的关键.10、C【解析】【分析】根据三角形中线、角平分线的定义逐项判断即可求解.【详解】解:A、∵AE=DE,∴BE是△ABD的中线,故本选项不符合题意;B、∵BD平分∠EBC,∴BD是△BCE的角平分线,故本选项不符合题意;C、∵BD平分∠EBC,∴∠2=∠3,但不能推出∠2、∠3和∠1相等,故本选项符合题意;D 、∵S △AEB =12×AE ×BC ,S △EDB =12×DE ×BC ,AE =DE ,∴S △AEB =S △EDB ,故本选项不符合题意;故选:C【点睛】本题主要考查了三角形中线、角平分线的定义,熟练掌握三角形中,连接一个顶点和它的对边的中点的线段叫做三角形的中线;三角形的一个角的平分线与这个角的对边相交,连接这个角的顶点和交点的线段叫三角形的角平分线是解题的关键.二、填空题1、BD =CE【解析】【分析】此题是一道开放型的题目,答案不唯一,如BD CE =,根据SAS 推出即可;也可以BAD CAE ∠=∠等.【详解】解:BD CE =,理由是:AB AC =, B C ∴∠=∠,在ABD ∆和ACE ∆中,∵AB AC B C BD CE =⎧⎪∠=∠⎨⎪=⎩, ()ABD ACE SAS ∴∆≅∆,故答案为:BD CE =.【点睛】本题考查了全等三角形的判定的应用,解题的关键是掌握全等三角形的判定定理有SAS,ASA,AAS,SSS,题目比较好,难度适中.2、25 2【解析】【分析】过点F作FG⊥BN于点G,根据已知条件证明△ABD≌△BFG,可得BD=FG,AD=BG,再证明△BDE≌△FGN可得DE=GN,根据DE:BN=1:7,可得GN:BN=1:7,设ED=x,DE:BG=1:6,可得AD=BG=6x, AE=5x,然后根据S△ABD=15,进而可得S△ABE.【详解】解:如图,过点F作FG⊥BN于点G,∵AD⊥BC,∴∠ADC=90°,∵∠C=45°,∴∠DAC=45°,∵MN⊥FB,∴∠FBN+∠FNB=90°,∵点M恰在BN的垂直平分线上,∴MB=MN,∴∠ABN=∠FNB,∴∠ABN+∠BAD=90°,∴∠BAD=∠FBN,∵∠AFB=∠FBC+∠C=∠BAD+∠DAC=∠BAF,∴BA=BF,在△ABD和△BFG中,ADB BGFBAD FBG,AB BF∴△ABD≌△BFG(AAS),∴BD=FG,AD=BG,∵∠BED+∠EBD=90°,∠BAD+∠ABD=90°,∴∠BED=∠ABD=∠BFG=∠FNG,在△BDE和△FGN中,BDE FGNBED FNG,BD FG∴△BDE≌△FGN(AAS),∴DE=GN,∵DE:BN=1:7,∴GN:BN=1:7,设ED=x,∴DE:BG=1:6,∴AD=BG=6x,∴AE=AD﹣ED=6x﹣x=5x,∵S△ABD=15,∴S△ABE=551566ABDS=⨯△=252.故答案为:252.【点睛】本题是三角形的综合题,属于中考题中填空题压轴题,考查全等三角形的判定与性质,线段垂直平分线的性质,三角形的面积等知识,解决本题的关键是综合运用以上知识.3、48 5【解析】【分析】作F关于AD的对称点F',由角的对称性知,点F'在AB上,当CF'⊥AB时,EC+EF的最小值为CF',再利用面积法求出CF'的长即可.【详解】解:作F关于AD的对称点F',连接C F'交AD于点E,如图,∵AD是∠BAC的平分线,∴点F'在AB上,∴EF=EF',∴当CF'⊥AB时,EC+EF的最小值为CF',∵AB=AC,AD是∠BAC的平分线,∴AD⊥BC,∴S△ABC=12BC×AD=12AB×CF′,∵AB=AC=10,BC=12,AD=8,∴12×8=10×CF',∴CF'=485,∴EC+EF的最小值为485,故答案为:485.【点睛】本题主要考查了等腰三角形的性质,轴对称-最短路线问题,三角形的面积等知识,熟练掌握将军饮马的基本模型是解题的关键.42【解析】【分析】求出等边三角形的高,根据三角形面积公式即可得出答案.【详解】如图所示,ABC 是等边三角形,过点A 作AD BC ⊥交于点D ,∵ABC 的边长为a ,∴AB BC a ==,122a BD BC ==,∴AD ===,∴212ABC S a =⨯=,2. 【点睛】本题考查等边三角形的性质,掌握等边三角形“三线合一”求长度是解题的关键.5、2【解析】【分析】过P 点作PE ⊥OB 于E ,如图,根据角平分线的性质得到PE =PD ,再利用平行线的性质得到∠PCE =∠AOB =30°,接着根据含30度的直角三角形三边的关系得到PE =12PC =2,从而得到PD 的长. 【详解】解:过P 点作PE ⊥OB 于E ,如图,∵∠AOP =∠BOP =15°,∴OP 平分∠AOB ,∠AOB =30°,而PD ⊥OA ,PE ⊥OB ,∴PE =PD ,∵PC ∥OA ,∴∠PCE =∠AOB =30°,∴PE =12PC =12×4=2, ∴PD =2.故答案为:2.【点睛】本题考查了角平分线的性质:角的平分线上的点到角的两边的距离相等.也考查了含30度的直角三角形的性质和平行线的性质.三、解答题1、见解析【解析】【分析】根据平行线的性质得到A C ∠=∠,根据线段的和差得到AF CE =,结合B D ∠=∠,即可利用AAS 证明ABF CDE ∆≅∆.【详解】证明://AB CD ,A C ∴∠=∠,AE CF =,AE EF CF EF ∴+=+,即AF CE =,在ABF ∆和CDE ∆中,B D AC AF CE ∠=∠⎧⎪∠=∠⎨⎪=⎩, ()ABF CDE AAS ∴∆≅∆.【点睛】此题考查了平行线的性质、全等三角形的判定,解题关键是熟记全等三角形的判定定理.2、 (1)见解析(2)见解析【解析】【分析】(1)利用基本作图,作∠ABC 的平分线即可;(2)利用角平分线的定义得到∠ABD =∠CBD ,再根据平行线的性质得到∠EDB =∠ABD ,则∠EDB =∠EBD ,从而得到结论.(1)解:如图,BD 为所作;(2)证明:∵BD平分∠ABC,∴∠ABD=∠CBD,∵DE//AB,∴∠EDB=∠ABD,∴∠EDB=∠EBD,∴BE=DE.【点睛】本题考查了作图−基本作图:熟练掌握5种基本作图(作已知角的角平分线).也考查了等腰三角形的性质和平行线的性质.3、问题发现:∠AEB的度数为60°;线段BD与CE之间的数量关系是:BD=CE,理由见解析;拓展探究:∠BEC=90°,BF=CE+AF,理由见解析【解析】【分析】问题发现:证明△ABD≌△ACE,可得BD=CE,由点B,D,E在同一直线上,可得∠BEC=60°;拓展探究:方法同上,证明△ABD≌△ACE(SAS),可得BD=CE,∠ADB=∠AEC,由点A,D,E在同一直线上,可得∠ADB=∠AEC=135°,进而可得∠DAE=90°,由AD=AE,AF⊥DE,可得AF=DF=EF,即可得出BF=BD+DF=CE+AF.【详解】问题发现:∵△ACB和△ADE均为等边三角形,∴AB =AC ,AD =AE ,∠BAC =∠DAE =60°,∠ADE =∠AED =60°,∴∠BAC -∠DAC =∠DAE -∠DAC ,即∠BAD =∠CAE ,在△ABD 和△CAE 中,AB AC BAD CAE AD AE =⎧⎪∠=∠⎨⎪=⎩, ∴△ABD ≌△ACE (SAS ),∴BD =CE ,∠BDA =∠CEA ,∵点B ,D ,E 在同一直线上,∴∠ADB =180-60=120°,∴∠AEC =120°,∴∠BEC =∠AEC -∠AED =120-60=60°,综上,可得∠AEB 的度数为60°;线段BD 与CE 之间的数量关系是:BD =CE .拓展探究:∵△ACB 和△DAE 均为等腰直角三角形,∴AB =AC ,AD =AE ,∠BAC =∠DAE =90°,∠ADE =∠AED =45°,∴∠BAC -∠DAC =∠DAE -∠DAC ,即∠BAD =∠CAE ,在△ABD 和△ACE 中,AB AC BAD CAE AD AE =⎧⎪∠=∠⎨⎪=⎩, ∴△ABD ≌△ACE (SAS ),∴BD =CE ,∠ADB =∠AEC ,∵点A ,D ,E 在同一直线上,∴∠ADB =180-45=135°,∴∠AEC =135°,∴∠BEC =∠AEC -∠AED =135-45=90°;∵∠DAE =90°,AD =AE ,AF ⊥DE ,∴AF =DF =EF ,∴DE =DF +EF =2AF ,∴BF =BD +DF =CE +AF .【点睛】本题考查了等边三角形的性质,等腰三角形的性质与判定,全等三角形的性质与判定,掌握等腰三角形的性质与判定是解题的关键.4、 (1)见解析【解析】【分析】(1)由“ASA ”可证ACD FBD ∆≅∆;(2)由全等三角形的性质可得AD DF = (1)解:证明:45ABC ∠=︒,CD AB ⊥,BE AC ⊥, 45ABC DCB ∴∠=∠=︒,90ADC AEB ∠=∠=︒,BD CD ∴=,90A ACD A ABE ∠+∠=∠+∠=︒,ACD ABE ∴∠=∠,在ACD ∆和FBD ∆中,90ACD ABE CD BD ADC BDF ∠=∠⎧⎪=⎨⎪∠=∠=︒⎩, ()ACD FBD ASA ∴∆≅∆;(2)解:BD CD =,90BDC ∠=︒,3BC =,BD CD ∴=2AB =,AD ∴= ACD FBD ∆≅∆,AD DF ∴=BF ∴ 【点睛】本题考查了全等三角形的判定和性质,勾股定理,等腰直角三角形的性质,解题的关键是证明三角形全等.5、见解析【解析】【分析】先证明AEC BED △△≌,可得CAE DBE =∠∠,AC BD =,再证明AF BF =,从而可得答案.【详解】证明:∵AB ,CD 互相平分∴AE BE =,CE DE =又∵AEC BED ∠=∠∴AEC BED △△≌∴CAE DBE =∠∠,AC BD =∵2FAC BAC ∠=∠∴CAE FAE ∠=∠∴DBE FAE ∠=∠∴AF BF =∵BF BD DF =+∴AC DF AF +=.【点睛】本题考查的是全等三角形的判定与性质,等腰三角形的判定,证明AF BF =是解本题的关键.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、选择题: 1.若m >-1,则下列各式中错误的...是( ) 1
A .6m >-6
B .-5m <-5
C .m+1>0
D .1-m <2
2 2.下列各式中,正确的是( ) A.16=±4 B.±16=4 C.327-=-
3 3 D.2(4)-=-4
4 3.已知a >b >0,那么下列不等式组中无解..
的是( ) 5
A .⎩⎨⎧-><b x a x
B .⎩⎨⎧-<->b x a x
C .⎩⎨⎧-<>b x a x
D .⎩⎨⎧<->b
x a x
6
4.一辆汽车在公路上行驶,两次拐弯后,仍在原来的方向上平行行驶,7 那么两个拐弯的角度可能为 ( )
8 (A) 先右转50°,后右转40° (B) 先右转50°,后左转40° 9 (C) 先右转50°,后左转130° (D) 先右转50°,后左转50°
10
5.解为1
2x y =⎧⎨=⎩
的方程组是( )
11
A.135x y x y -=⎧⎨+=⎩
B.135x y x y -=-⎧⎨+=-⎩
C.331x y x y -=⎧⎨-=⎩
D.23
35x y x y -=-⎧⎨+=⎩
12
6.如图,在△ABC 中,∠ABC=500,∠ACB=800,BP 平分∠ABC ,CP 平分13 ∠ACB ,则∠BPC 的大小是( )A .1000
B .1100
C .1150
14 D .1200
15
P
C
B
A
16
(1) (2) (3)
17 7.四条线段的长分别为3,4,5,7,则它们首尾相连可以组成不同的三18 角形的个数是( )
19 A .4 B .3 C .2 D .1
20 8.在各个内角都相等的多边形中,一个外角等于一个内角的1
2
,则这个多21 边形的边数是( )
22 A .5 B .6 C .7 D .8
23 9.如图,△A 1B 1C 1是由△ABC 沿BC 方向平移了BC 长度的一半得到的,若24 △ABC 的面积为20 cm 2,则四边形A 1DCC 1的面积为( )A .10 cm 2 B .12 cm 2 25 C .15 cm 2 D .17 cm 2
26 10.课间操时,小华、小军、小刚的位置如图1,小华对小刚说,如果我的位27 置用(•0,0)表示,小军的位置用(2,1)表示,那么你的位置可以表示成( )
28 A.(5,4) B.(4,5) C.(3,4) D.(4,3)
29 二、填空题11.49的平方根是________,算术平方根是______,-8的立方根30 是_____.
31 12.不等式5x-9≤3(x+1)的解集是________.
32
13.如果点P(a,2)在第二象限,那么点Q(-3,a)在_______.
33 14.如图3所示,在铁路旁边有一李庄,现要建一火车站,•为了使李庄人乘34 火车最方便(即距离最近),请你在铁路旁选一点来建火车站(位置已选好),说35 明理由:____________.
36 15.从A 沿北偏东60°的方向行驶到B,再从B 沿南偏西20°的方向行驶37 到C,•则∠ABC=_______度.
38 16.如图,AD ∥BC,∠D=100°,CA 平分∠BCD,则∠39 DAC=_______.
40 17.给出下列正多边形:① 正三角形;② 正方形;41 ③ 正六边形;④ 正八边形.用上述正多边形中的一种能
42 够辅满地面的是_____________.(将所有答案的序号都填上) 43 18.若│x 2-25│
则x=_______,y=_______.
44
三、解答题: 19.解不等式组:⎪⎩⎪
⎨⎧+<-≥--.21512,4)2(3x x x x ,并把解集在数轴上表示
45
出来.
46
20.解方程组:2
31342
4()3(2)17x y x y x y ⎧-=⎪
⎨⎪--+=⎩ 47 21.如图, AD ∥BC , AD 平分∠EAC,
48 你能确定∠B 与∠C 的数量关系吗?请说明理由。
49
C
B
A
D
A 1
D 2
A
E
C
B
50 22.如图,已知D 为△ABC 边BC 延长线上一点,DF ⊥AB 于F 交AC 于E, 51 ∠A=35°,•∠D=42°,求∠ACD 的度数.
52
53
23.如图, 已知A (-4,-1),B (
54 △ABC 经过平移得到的△A′B′C′,
55 △ABC 中任意一点P(x 1,y 1)56 为P′(x 1+6,y 1+4)。
57 (1)请在图中作出△A′B′C′; 58 (2)写出点A′、B′、C′的坐标.
59
60
61 24.长沙市某公园的门票价格如下表所示:
62
某校九年级甲、乙两个班共100•多人去该公园举行毕业联欢活
63
64
动,•其中甲班有50多人,乙班不足50人,如果以班为单位分别买门票,两个班65
一共应付920元;•如果两个班联合起来作为一个团体购票,一共要付515元, 66
问甲、乙两班分别有多少人?
67
25、某储运站现有甲种货物1530吨,乙种货物1150吨,安排用一列货68
车将这批货物运往青岛,这列货车可挂A,B两种不同规格的货厢50节.已69
知甲种货物35吨和乙种货物15吨可装满一节A型货厢,甲种货物25吨和乙70
种货物35吨可装满一节B型货厢,按此要求安排A,B两种货厢的节数,有哪71
几种运输方案?请设计出来.
72
一、选择题: BCCDD,CBBCD
73
二、填空题:11.±7,7,-2 12. x≤6 13.三 14.垂线段最短。
74
15. 40 16. 400 17. ①②③ 18. x=±5,y=3
75
三、解答题:(共46分)
76
19. 解:第一个不等式可化为 x-3x+6≥4,其解集为x≤1.
77
第二个不等式可化为 2(2x-1)<5(x+1),
78
有 4x-2<5x+5,其解集为x>-7.∴原不等式组的解集为-7<x≤1.
79
80
20. 解:原方程可化为 89627170x y x y -=⎧⎨++=⎩∴ 8960
828680x y x y --=⎧⎨++=⎩
两方程相减,
81
可得 37y+74=0,∴ y=-2.从而 32x =-.因此,原方程组的解为 322
x y ⎧
=-
⎪⎨⎪=-⎩
82
21. ∠B=∠C 。
理由:∵AD ∥BC ∴∠1=∠B ,∠2=∠C ∵∠1=∠2∴∠B=∠C 83 22. 解:因为∠AFE=90°,所以∠AEF=90°-∠A=90°-35°=55°.
84 所以∠°-∠CED-∠D=180°-55°85 -42=83°. 86 23. A′(2,3), 87 B′(1,0), 88 C′(5,1). 89
90
91 92
93 24. 解:设甲、乙两班分别有x 、y 人.根据题意得810920
55515x y x y +=⎧⎨+=⎩ 解得
94
55
48x y =⎧⎨=⎩
95
25. 解:设用A 型货厢x 节,则用B 型货厢(50-x )节,由题意,得
96
3525(50)15301535(50)1150x x x x +-≥⎧⎨+-≥⎩ 解得28≤x ≤30. 因为x 为整数,所以x
97 只能取28,29,30.相应地(5O-x )的值为22,21,20.所以共有三种调运98 方案.
99 第一种调运方案:用 A 型货厢 28节,B 型货厢22节; 100 第二种调运方案:用A 型货厢29节,B 型货厢21节;
101 第三种调运方案:用A 型货厢30节,用B 型货厢20节.
102。