线面积分的计算小结

合集下载

高数线面积分

高数线面积分
则下面的四个命题等价 :
10 沿D内任何一闭路L上的积分为零,即 Pdx Qdy 0 ;
L
20 曲线积分 Pdx Qdy与路径无关,只与起点 A与终点B有关;
L( AB )
30 P Q 在D内恒成立; y x
40 在D内存在二元函数 u( x, y),使du Pdx Qdy .
.
等价的意义是: 若其中一个成立,另外三个也成立。
I a 2 x 2 y 2 dxdy a 2 x 2 y 2 (dxdy)
.
.
Dxy
Dxy
.
2
a 2 x 2 y 2 dxdy 2

d
a
a 2 r 2 rdr
4π a3
.
Dxy
0
0
3
二4 :球面 x 2 y 2 z 2 a 2的外侧表面,Dxy为xOy平面上的圆域:
一型:对面积
二型:对坐标
三重积分
高斯公式
1. 第Ⅰ型、第Ⅱ型曲线积分的比较
曲线积分 标准形式 物理意义
计算方法
相似处
不同处
第一型 (对弧长)
第二型 (对坐标)
f ( x, y)ds
L
f ( x, y, z)ds
L
L指曲线

AB
当 f ( x, y) 0,
f ( x, y)ds表示
L
线密度为 f ( x,
y)的曲线型构
件的质量 M .
设曲线
L: x y
φ(t) (t)
t
1.都是化曲线积分为 定积分计算。
Pdx Qdy W Pdx Qdy 2.都要把曲线表示式 L
L
Pdx Qdy Rdz
表示力F P,Q

线面积分整章

线面积分整章

( )
例1 求I L yds,
y2 4x
其中L : y2 4x,从(1,2)到(1,2)一段.

I
2
y
1 ( y)2dy 0.
2
2
例3 求I xyzds, 其中 : x a cos , y a sin ,
z k的一段. (0 2)
( x , y , z ) x 2 y 2 z 2 ,求: 1、它关于Z 轴的转动惯量 I Z ;
2、它的重心 .
练习题答案
一、1、L ( x, y)ds; 2、L 的弧长 ;
3、弧长;
4、<.
二、1、ea (2 a) 2; 4
3、22a3 (1 22 );
L P( x, y)dx Q( x, y)dy L P( x, y)dx Q( x, y)dy
即对坐标的曲线积分与曲线的方向有关.
三、对坐标的曲线积分的计算
定理 设P( x, y),Q( x, y)在曲线弧L上有定义且连
续,
L的参数方程为
x y

( t ), ( t ),
n
P(i ,i )xi的极限存在, 则称此极限为函
i 1
数 P( x, y)在有向曲线弧L上对坐标 x的曲线
积分(或称第二类曲线积分), 记作
n
L
P(
x,
y)dx

lim
0
i 1
P ( i
,i
)xi
.
n
类似地定义
Q(
L
x,
y)dy

lim
0
i 1
Q(i

线面积分的计算小结

线面积分的计算小结
n 1 (1, 1, 1)
3
y
1 3
z
x

( 3) d S
3 2
二、曲面积分
1、第一类曲面积分
(1)定义 (2)性质(可积性、线性性、可加性) (3)计算方法(化为二重积分) (4)物理应用(质量、重心、引力)。
2、第二类曲面积分
(1)定义
(2)性质(可积性、线性性、可加性、方向性)
z
o
1y
x
4. 计算
其中 为曲线
z

y
解: 利用轮换对称性 , 有
o


x ds
I 2
2

y ds
2
2

z ds
2
x
(的重心在原点)
( x 3
2
y z )ds 4 3
2

a
3
5. 计算
其中L 是沿逆
时针方向以原点为中心, a 为半径的上半圆周. 解法1 令 P x 2 y, Q y 2 x, 则
(2)性质(可积性、线性性、可加性、方向性)
(3)计算方法(化为定积分) (4)格林公式(平面曲线积分:与路径无关、 全微分求积)。(注意加辅助线的技巧) ; (5)斯托克斯公式(空间曲线积分, 线面积分间的关系)。
(6)物理应用(力沿曲线做功,场沿曲线的环流量)
曲线积分的计算法
曲线积分 第一类 ( 对弧长 ) 定积分 第二类 ( 对坐标 ) 转化 用参数方程 用直角坐标方程 用极坐标方程 第一类: 下小上大 第二类: 下始上终
(2) 积分元素投影

第一类: 始终非负 第二类: 有向投影
(3) 确定二重积分域

高等数学的线与面积分

高等数学的线与面积分
其中
是沿 C 的微线元。如果 Fˆ 表示力矢量,则这个线积分就是力推动物体沿路径做的功。
2
问题 2:(答案写在后面的答题页上!)
我们来计算
沿右图所示的闭合三角形路径的线积分。
还是将路径分为三段 C1 , C2 和 C3 ,分别计算其贡献。
作为示范,我们先来进行沿
由 dsr = dxˆi ,我们有
C1
球面的曲面微元为积分得假定电荷均匀分布在半径为r的球面上则球面上的总电荷为这里是电荷密度
麻省理工学院
物理系
解题 1:线积分和面积分
A. 线积分 标量函数 f (x, y, z) 沿路径 C 的线积分定义为
这里C被细分成N段,每一段长度 ∆si。为了计算这个线积分,我们可以用弧长参数s来刻画C。借助
于 x = x(s) , y = y(s) 和 z = z(s) ,上述线积分可改写为普通定积分: 例 1:
作为例子,我们来考虑如下二维积分: 这里 C 是从原点到(1, 1)的直线,如右图所示。 令 s 是从原点测得的弧长。我们有
端点(1, 1)对应于 s = 2 。因此,线积分变成
1
问题 1:(答案写在后面的答题页上!)
本题中我们打算对例 1 中的同一被积函数 x + y 进行积分,只
是取不同的路径 C′ = C1 + C2 ,如右图。积分可分成两部分:
∫∫ r
(b) 试求 y > 0 的柱侧面上的电通量 E ⋅ nˆ d A S
9
问题 1:
∫ (a)
I1 =
(x + y)ds =
C1
∫ (b)
I2 =
(x + y)ds =
C2
(c) I ′ = I1 + I2 =

第10章线面积分2

第10章线面积分2
Σ

∫∫ f ( x, y, z)dS = lim∑ f (ξi ,ηi ,ζ i )∆Si λ→0 i =1
Σ
n
叫被积函数, 其中f ( x, y, z)叫被积函数,Σ叫积分曲面.
2.对面积的曲面积分的性质 2.对面积的曲面积分的性质
若Σ可分为分片光滑的曲面Σ1及Σ2 , 则
∫∫ f ( x, y, z)dS =∫∫ f ( x, y, z)dS +∫∫ f ( x, y, z)dS. Σ
思考题
在对面积的曲面积分化为二重积分 2 2 的公式中, 的公式中 有因子 1+ zx + zy , 试说明 这个因子的几何意义. 这个因子的几何意义
思考题解答
是曲面元的面积, dS是曲面元的面积
2 x 2 y
cos(n, z) =
1
2 1+ zx + z2 y
故 1+ z + z 是曲面法线与z 轴夹角的余弦
( 其中 ∆σ )xy 表示投影区域的面积.
二、概念的引入
实例: 流向曲面一侧的流量. 实例: 流向曲面一侧的流量.
(1) 流 速场 为常向 v ,有 量 向平 面区域 A,求单位 假定密度为1) 1). 时间流过 A 的流体的质量Φ(假定密度为 1).
v
θ
A
n
0
流量 Φ = A v cosθ = Av ⋅ n = v ⋅ A
都在Σ上连续, 都在Σ上连续, 求在单位 时间内流向Σ 时间内流向Σ指定侧的流 体的质量Φ.
x
z
Σ
o
y
1. 分割 把 面 分 n 小 ∆s (∆s 同 也 表 曲 Σ 成 块 i 时 代 i 第i 小 曲 的 积 块 面 面 ), vi 在∆si 上 取 点 任 一 z ∆Si ni (ξi ,ηi ,ς i ) (ξi ,ηi ,ζ i ), 则该点流速为 vi . 法向量为 ni .

最新9线面积分汇总

最新9线面积分汇总

9线面积分一、曲线积分、曲面积分的计算公式1. 对弧长的曲线积分«Skip Record If...»的计算公式:«Skip Record If...»中,«Skip Record If...»为一段光滑的平面曲线,其参数方程为«Skip Record If...»«Skip Record If...»为定义在曲线«Skip Record If...»上的一连续函数.为熟练掌握计算公式,关键是把握以下两点:1)积分变量«Skip Record If...»在曲线«Skip Record If...»上,故«Skip Record If...»满足曲线«Skip Record If...»的方程;2)«Skip Record If...»是曲线«Skip Record If...»的弧长的微分,故«Skip Record If...».所以有如下的计算公式:«Skip Record If...».对«Skip Record If...»是空间曲线段的情况,有类似的公式.设«Skip Record If...»的方程为«Skip Record If...»«Skip Record If...»在«Skip Record If...»上连续,则对弧长的曲线积分«Skip Record If...».弧微元«Skip Record If...»2. 对坐标的曲线积分«Skip Record If...»在«Skip Record If...»中,«Skip Record If...»是以«Skip Record If...»为起点,以«Skip Record If...»为终点,参数方程为«Skip Record If...»的平面曲线,«Skip Record If...»点的坐标为«Skip Record If...»,«Skip Record If...»点的坐标为«Skip Record If...».物理意义:变力«Skip Record If...»沿曲线«Skip Record If...»所做的功«Skip Record If...»其中«Skip Record If...»为熟练掌握该积分的计算公式,关键是把握以下两点:1) 积分变量(«Skip Record If...»)在«Skip Record If...»上,故满足曲线方程«Skip Record If...»;2) «Skip Record If...».对坐标的曲线积分的计算公式为«Skip Record If...».«Skip Record If...»分别对应于«Skip Record If...»点的参数«Skip Record If...»的值,可能«Skip Record If...»也可能«Skip Record If...»«Skip Record If...».类似地,对于空间曲线«Skip Record If...»,也有类似的计算公式.设«Skip Record If...»是以«Skip Record If...»为起点,以«Skip Record If...»为终点,参数方程为«Skip Record If...»的空间曲线,«Skip Record If...»点的坐标为«Skip Record If...»,«Skip Record If...»点的坐标为«Skip Record If...»,«Skip Record If...»在曲线«Skip Record If...»上连续,则«Skip Record If...»«Skip Record If...».●两类曲线积分之间的关系。

第十一章线面积分(何涛一)

第十一章线面积分(何涛一)

一 基本要求1. 理解两类线面积分的概念,掌握两类线面积分的性质。

2. 掌握两类线积分以及两类面积分之间的联系和区别,会计算两类线面积分。

3. 熟练掌握格林(Green)公式,会用平面曲线积分与路径无关的条件。

4. 熟练掌握高斯(Gauss)公式,斯托克斯(Stokes)公式,会计算空间曲线积分5. 会用两类线面积分求一些几何量与物理量(如曲面面积,弧长,质量,重心,转动惯量,功等)。

6. 了解散度,旋度以及场论的概念及其计算方法.二 学习指导【11-1】第一型曲线积分的要点是什么? 答 第一型曲线积分是关于曲线弧长的积分(22)()(dy dx ds +=),计算时应根据不同的曲线方程变换相应的,转换成定积分. ds 【11-2】关于第一型曲线积分的对称性.1.设L 为光滑曲线,且关于轴对称,为曲线y 1L L 位于轴右侧的弧段, 在y (,)f x y L 上的连续,则10(,)2(,)LL f x f x y ds f x y ds f x ⎧⎪=⎨⎪⎩∫∫为的奇函数为的偶函数2. 设L 为光滑曲线,L 的方程关于y x ,具有轮换性,为(,)f x y L 上的连续函数,则(,)(,)LLf x y ds f y x ds =∫∫,3. 设为光滑的空间曲线,ΓΓ的方程关于z y x ,,具有轮换性,为上的连续函数,则(f Γ∫∫∫ΓΓΓ==ds z f ds y f ds x f )()()(222)()()(dz dy dx ds ++=)4.当被积函数1),(=y x f 时,(弧长计算公式)∫=LLds ds y x f ),(∫……………………………………………………………………………… 【11-3】第二型曲线积分的主要计算方法.(1) 将曲线方程(直角坐标,参数方程,极坐标方程)代入后化定积分计算. (2) 用格林(Green)公式化二重积分计算. (3) 用平面曲线积分与路径无关的条件计算.………………………………………………………………………………………… 【11-4】第一型曲面积分的要点是什么?计算应注意什么?答 第一型曲面积分是关于曲面面积的积分。

线面积分总结

线面积分总结

圆Γ的形心 在原点, 故
X =0
机动 目录 上页 下页 返回 结束
例. 计算
其中Γ 为曲线
z
解: 利用对称性 , 有
Γ
Γ
o
y
∫Γ
x2 ds = ∫ y2 ds = ∫ z2 ds
Γ
x
(Γ的重心在原点)
利用重心公式知
2 2 2 2 ∴ I = ∫ (x + y + z )ds 3 Γ 4 3 = πa 3
2
解: 显然球心为 (1 1 1) , 半径为 3 ,, 利用对称性可知
2 4 2 2 2 ∴ I = ∫∫ (x + y + z ) d S = ∫∫ (x + y + z) d S 3 ∑ 3 ∑ ∫∫∑ xd S = ∫∫∑ yd S = ∫∫∑ zd S 利用形心公式
= 4∫∫ xd S = 4⋅ x ⋅ ∫∫ d S
= 4∫
π
0
4 a2 cosθ dθ
机动
目录
上页
下页
返回
结束
的圆弧 L 对于它的对 例. 计算半径为 R ,中心角为 称轴的转动惯量I (设线密度µ = 1). 解:
y
I = ∫ y ds
2 L
x = Rcosθ ( −α ≤θ ≤α ) L: y = Rsinθ
α
−α
L α o R x
∫ P(x, y, z)dx = ∫
(c)
b大
a小 b终
P(x, y(x), z(x)) d x
= ∫ P(x, y(x), z(x)) d x
a起
(S )
∫∫ f (x, y, z) d S = σ f (x, y, z(x, y)) ∫∫
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

转化
二重积分
(1) 统一积分变量 — 代入曲面方程
(2)
积分元素投影

第一类: 第二类:
始终非负 有向投影
(3) 确定二重积分域
— 把曲面积分域投影到相关坐标面
(3) 两类曲面积分的转化
1.
计算 x d y d z y d z d x z d x d y,其中 为半球面
z
(1)定义 (2)性质(可积性、线性性、可加性、方向性)
(3)计算方法(化为二重积分) (4)高斯公式(注意加辅助曲面的技巧) ;
(5)斯托克斯公式(空间曲线积分, 线面积分间的关系)。 (6)物理应用(场穿过曲面指定侧的通量)。
曲面积分的计算法
曲面积分

第一类( 第二类(
对面积 对坐标
) )
解: I (x2 y2 z2 ) 2xy 2 yz dS (2x 2z) d S 2 (x z)ydS
斯托克斯( Stokes ) 公式
P d x Q d y R d z
dydz dzdx

x
y
P
Q
dxd y
yz


1 3

(3)
d
S
1
3
z
dS
x
3 2
z
B n
oC
A
y
x
:x y z 1
n 1 (1, 1, 1)
3
二、曲面积分
1、第一类曲面积分
(1)定义 (2)性质(可积性、线性性、可加性) (3)计算方法(化为二重积分) (4)物理应用(质量、重心、引力)。
2、第二类曲面积分
其中L为摆线

原式

a
2
2
0
t
sin
td
t
a2 t cos t sin t 02
3、计算 提示: 因在 上有
其中由平面 y = z 截球面
从 z 轴正向看沿逆时针方向.

z
原式 =
o 1y
x

2

1 2

2

3 4
1 2

2

z
o 1y
x
4. 计算
其中 为曲线
线面积分的计算
一、 曲线积分 1、第一类 曲线积分 (1)定义 (2)性质(可积性、线性性、可加性) (3)计算方法(化为定积分) (4)物理应用(质量、重心、引力)。
2、第二类 曲线积分 (1)定义 (2)性质(可积性、线性性、可加性、方向性)
(3)计算方法(化为定积分) (4)格林公式(平面曲线积分:与路径无关、
(3) 利用两类曲线积分的联系公式 .
1. 计算
其中L为圆周
提示: 利用极坐标 ,
ds r2 r2 d a d
原式 = L ax ds
说明: 若用参数方程计算, 则
y
r o
t ax
d s x2 y 2 d t
y
r
t
o
ax
2、计算
上对应 t 从 0 到 2 的一段弧. 提示:
的上侧.
提示: 以半球底面 0 为辅助面,

且取下侧 , 记半球域为 , 利用 高斯公式有
o
y
x 0
原式 =
3d x d y d z 0 xdydz ydzdx zdxdy
3 2 R3 0 2 R3
3
2. 计算曲面积分
中 是球面 x2 y2 z2 2x 2z .
全微分求积)。(注意加辅助线的技巧) ;
(5)斯托克斯公式(空间曲线积分, 线面积分间的关系)。
(6)物理应用(力沿曲线做功,场沿曲线的环流量)
曲线积分的计算法
曲线积分
第一类 ( 对弧长 ) 第二类 ( 对坐标 ) 转化
定积分
用参ห้องสมุดไป่ตู้方程
(1) 统一积分变量 用直角坐标方程 用极坐标方程
第一类: 下小上大 (2) 确定积分上下限 第二类: 下始上终
L
L

2 ydx
L AB AB
L
L
:
xy

a a
(1 cos sin t
t)
t :0
y L
D
oA a B x
D 0d x d y
2a
0d
x

2a2
0
sin2 td t
0
a2
7. 求力
沿有向闭曲线 所作的
功, 其中 为平面 x + y + z = 1 被三个坐标面所截成三
这说明积分与路径无关, 故
y
C
L
I AB (x2 y) d x ( y2 x)dy B o A x

a
a
x
2
d
x
解法2 添加辅助线段 BA,它与L所围区域为D, 则
I LBA(x2 y) d x ( y2 x) d y
BA(x2 y) d x ( y2 x) d y
(x2 y) d x (y2 x)dy y2 dx
L
L
L : x a cost, y a sin t, t : 0
I a3 sin3 t d t 2 a3
0
3
2a3
6. 计算
其中L为上半圆周 提示:
沿逆时针方向.
I ex sin y d x (ex cos y 2)dy 2 ydx
(x2 y y 2 )d x (y2 x)d y
L
思考题解答:
y
(1) I1
(x2 3 y)d x (y2 x)d y
L
L AB AB
C
L
D
B o Ax
2 d x d y 2 a3 a2 (2 a )
D
3
3
(2)I2 L (x2 y y 2 ) d x ( y2 x) d y
角形的整个边界, 从 z 轴正向看去沿顺时针方向.
提示: 方法1
z
B
利用对称性
3 y d x z d y xdz AB
oC
A
y
x
3 x d z AB
1
30 (1 z)dz
方法2 利用斯托克斯公式 设三角形区域为 , 方向向上, 则
1
1
3
3

x
y
z R
cos

x
P
cos

y Q
cos
dS z R
n
z


o
y
x
场论初步
方向导数
f l
f cos f cos
x
y
f cos
z
梯度
gradu

u
i

u
j

u
k
x y z
通量 散度
Pdydz Qdzdx Rdxdy
z
解: 利用轮换对称性 , 有
x2 ds y2 ds z2 ds

I

2 3
(x2

y2

z2 )ds
4 a3
3

y
o
x
(的重心在原点)
5. 计算
其中L 是沿逆
时针方向以原点为中心, a 为半径的上半圆周.
解法1 令 P x2 y, Q y2 x, 则

P Q R divA
x y z
环流量 Pdx Qdy Rdz
旋度
rotA

(R

Q
)i

(P

R)
j

(Q

P
)k
y z z x x y
D 0 d x d y
a x2 dx 2 a3
a
3
y
C
L
D
B o Ax
(利用格林公式)
思考:
(1) 若L 改为顺时针方向,如何计算下述积分:
I1 L (x2 3 y) d x ( y2 x) d y
(2) 若 L 同例2 , 如何计算下述积分:
I2
相关文档
最新文档