圆的对称性与性质

合集下载

圆的对称性

圆的对称性

圆的对称性〖圆的定义〗几何说:平面上到定点的距离等于定长的所有点组成的图形叫做圆.定点称为圆心,定长称为半径.轨迹说:平面上一动点以一定点为中心,一定长为距离运动一周的轨迹称为圆周,简称圆. 集合说:到定点的距离等于定长的点的集合叫做圆.点与圆的位置三种位置关系:________、________、________.〖有关圆的基本性质与定理〗圆的确定:不在同一直线上的三个点确定一个圆.圆的对称性质:圆是轴对称图形,其对称轴是任意一条过圆心的直线.圆也是中心对称图形,其对称中心是圆心.垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的弧.逆定理:平分弦(不是直径)的直径垂直于弦,并且平分弦所对的弧.垂径定理的推论:推论一:平分弦(不是直径)的直径垂直与这条弦,并且平分这条弦所对的两段弧 推论二:弦的垂直平分线经过圆心,并且平分这条弦所对的弧推论三:平分弦所对的一条弧的直径垂直平分这条弦,并且平分这条弦所对的另一条弧 推论四:在同圆或者等圆中,两条平行弦所夹的弧相等类型一、判断点和圆的位置关系:【例1】已知圆的半径等于5 cm ,根据下列点P 到圆心的距离:(1)4 cm ;(2)5 cm ;(3)6 cm ,判定点P 与圆的位置关系,并说明理由.【例2】若A e 的半径为5,点A 的坐标为(3,4)点P 的坐标为(5,8)则点P 和A e 的位置关系.【搭配练习】1、已知a 、b 、c 是△ABC 的三边长,外接圆的圆心在△ABC 一条边上的是( )A.a=15,b=12,c=1B.a=5,b=12,c=12C.a=5,b=12,c=13D.a=5,b=12,c=142、如图,点A 、B 、C 表示三个村庄,现要建一座深水井泵站,向三个村庄分别送水,为使三条输水管线长度相同,水泵站应建在何处?请画出图,并说明理由.类型二、垂径定理的应用【例3】1、如图,AB 是⊙O 的一条弦,OC ⊥AB 于点C ,OA = 5,AB = 8,求OC 的长.2、如图,⊙O 的半径为5,圆心O 到弦AB 的距离为3,则圆上到弦AB 所在的直线距离为2的点有( ).A . 1个B . 2个C . 3个D . 4个3、如图,已知半径OD 与弦AB 互相垂直,垂足为点C ,若AB=8cm ,CD=3cm ,则圆O 的半径为______.4、如图,将半径为2cm 的圆形纸片折叠后,圆弧恰好经过圆心O,则折痕AB 的长为_________.5、如图,在平面直角坐标系中,⊙A 经过原点O ,并且分别与x 轴、y 轴交于B 、C 两点,已知B (8,0),C (0,6),则⊙A 的半径为____________.6、在Rt ABC V 中,90ACB ∠=o ,3AC =,4BC =,以点C 为圆心,CA 为半径的圆与交于点,则AD 的长为( ). A. 95 B. 245 C. 185 D. 527、如图,在以点O 为圆心的两个圆中,大圆的弦AB 交小圆于点C 、D ,求证:AC=BD .A B C OC AD B8、如图是一名考古学家发现的一块古代车轮碎片,你能帮他找到这个车轮的半径吗?(画出示意图,保留作图痕迹)【搭配练习】1、如图,AB是⊙O的直径,弦CD⊥AB于点E,已知,CD=8,AE=2,求⊙O的半径.2、如图,⊙O的半径为5,AB为弦,OC⊥AB,交AB于点D,交⊙O于点C,CD=2,求弦AB 的长.3、如图,⊙O的直径CD=10,AB是⊙O的弦,AB⊥CD,垂足为M,OM:OC=3:5.求AB的长度.Θ与x轴交于O,A 4、如图,在平面直角坐标系中,点O为坐标原点,点P在第一象限,PΘ的半径为13,则点P的坐标为 ____________.两点,点A的坐标为(6,0),P类型三、圆中两条弦的问题:【例4】1、如图,⊙O的半径为10cm,弦AB∥CD,AB=16cm,CD=12cm,圆心O位于AB、CD 的上方,求AB和CD间的距离.2、AB,AC分别是⊙O中的两条弦,圆的半径为2,且AB=23,AC=22,求BAC3、已知⊙O的半径为13,弦.AB CDP AB=24cm,CD=10cm,求AB和CD的距离。

圆的定义及对称性

圆的定义及对称性

圆的定义与圆的对称性【知识要点】(1)在同一平面内,一条线段OP 绕它固定的一个端点O 旋转一周,另一个端点P 所经过的封闭曲线叫做圆.定点O 就是圆心,线段OP 就是圆的半径.以点O 为圆心的圆,记作“⊙O ”,读作“圆O ”. 说明:①这是圆的描述性定定义,由定义可以看出:确定圆的两个条件是圆心和半径,圆心确定圆的位置,圆的半径确定圆的大小;②要注意圆是指“圆周”,而非“圆面”.(2)在同一个平面内,圆是到定点的距离等于定长的点的集合,定点叫做圆心,定长叫做半径. 说明:这是圆的点集定义,它包括两个方面的含义:①圆上各点到定点(即圆心)的距离等于定长(即半径);②.到定点的距离等于定长的点都在圆上点和圆的位置关系有点在圆内、点在圆上、点在圆外三种,点和圆的位置关系是由这个点到圆心的距离与圆的半径的大小关系决定的.如果圆的半径是r ,这个点到圆心的距离为d ,那么点在圆外d r ⇔>;点在圆上d r ⇔=;点在圆内d r ⇔<圆是轴对称图形,其对称轴是任意一条过圆心的直线(通过折叠可发现此性质) 圆是中心对称图形,对称中心是圆心(利用旋转的方法可以得到此性质)圆具有旋转不变性:一个圆绕着它的圆心旋转任意角度,都能与原来的图形重合.(1)中心对称图形:在平面内,一个图形绕某个点旋转180°,如果旋转前后的图形互相重合,那么这个图形叫做中心对称图形,这个点叫做它的对称中心。

轴对称图形是指沿对称轴对折后完全重合的图形.。

(2)圆的对称轴是直线,不能说直径是它的对称轴,而应说直径所在的直线是它的对称轴;圆的对称轴有无数条(1)经过圆心的弦叫做直径,直径等于半径的2倍(2A 、B 为端点的弧记作AB ,读作“圆弧AB ”或“弧AB ”大于半圆的弧叫做优弧(用三个字母表示);小于半圆的弧叫做劣弧(3提示:①同圆是指同一个圆;等圆、同心圆是指两个圆的关系,等圆是指能够重合,圆心不同的两个圆 ②等弧必须是同圆或等圆中的弧,因为只有在同圆或等圆中,两条弧才可能互相重合,长度相等的弧不一定是等弧(4垂直与弦的直径平分这条弦,并且平分弦所对的两条弧如图所示,∵ CD 是直径, C D ⊥AB∴ AE=BE,AC = BC, AD =BD 若一条直线①过圆心,②垂直于一条弦,则此直线①平 分此弦②平分此弦所对的优弧和劣弧(1)平分弦(不是直径)的直径垂直于弦,并 且平分弦所对的两条弧;(2)弦的垂直平分线经过圆 心,并且平分弦所对的两条弧;(3)平分弦所对的一 条弧的直径垂直平分弦,并且平分弦所对的另一条弧提示:(1)对于一个圆和一条直线来说,如果以①过圆心②垂直于弦③平分弦④平分弦所对的优弧⑤平分弦所对的劣弧这五个条件中任何两个作为题设,那么其它三个就是结论 (2)在应用垂径定理与推论进行计算时,往往要构 造如图所示的直角三角形 ,根据垂径定理与勾股定 理有222()2ard =+根据此公式,在,,a r d 三个量中,知道任何两个量就可以求出第三个量在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等,所对的弦的弦心距相等在同圆或等圆中,如果两个圆心角、两条弧、两条弦或两条弦的弦心距中有一组相等,那么它们所对应的其余各组量都分别相等.说明:(1)注意在“同圆或等圆中”这个条件(2)注意理解“所对应”的含义【典型例题】ABOC 2a rAdD例1、下列语句中不正确的是( )①直径是弦;②弧是半圆;③经过圆内一顶点可以作无数条弦;④长度相等的弧是等弧 A.①③④ B. ②③ C. ②④ D. ①④例2、由一已知点P 到圆上各点的最大距离为5,最小距离为1,则圆的半径为( ) A 、2或3 B 、3 C 、4 D 、2 或4例3、在平面内,⊙O 的半径为5cm ,点P 到圆心O 的距离为3cm ,则点P 与⊙O 的位置关系是例4、在△ABC 中,∠ACB=90°,AC=2cm,BC=4cm,CM 是AB 边上的中线,以点C为半径作圆,则A 、B 、C 、M 四点在圆外的有 ,在圆上的有 ,在圆内的有 .例5、在⊙O 中,AB 、AC 为互相垂直且相等的两条弦,O D ⊥AB,O E ⊥AC 垂足分别为D 、E ,若AC=2cm ,则⊙O 的半径为 cm例6、如下图,菱形ABCD 的对角线AC 和BD 相交于点O ,E 、F 、G 、H 分别为边AB 、BC 、CD 、DA 的中点,那么E 、F 、G 、H 是否在同一个圆上?例7、如图,点P 的坐标为(4,0),⊙P 的半径为5,且⊙P 与x 轴交于点A 、B,与y 轴交于点C 、D,试求出点A 、B 、C 、D 的坐标.例8、海军部队在灯塔A 的周围进行爆破作业,A 的周围3km 的水域为危险水域,有一渔船误入离灯塔2km 的某处B ,为了尽快驶离危险区域,该船应按什么方向航行?请给予证明.EGBACDF H O例9、矩形的四个顶点是否能在同一个圆上,若在同一个圆上,请你指出来并加以证明例10、已知⊙O 的直径为10cm ,弦AB=6cm ,求圆心O 到弦AB 的距离.例11、在直径为650mm 的圆柱形油槽中装入一些油后,截面如图所示,如油面宽AB=600mm ,求油的最大深度【经典练习】1.下列命题中错误的命题有( )(1)弦的垂直平分线经过圆心;(2)平分弦的直径垂直于弦;(3)•梯形的对角线互相平分;(4)圆的对称轴是直径.A .1个B .2个C .3个D .4个2.点A 的坐标为(3,0),点B 的坐标为(0,4),则点B 在以A 为圆心, 6 为半径的圆的_______.3.已知⊙O 的半径为6cm,P 为线段OA 的中点,若点P 在⊙O 上,则OA 的长()A.等于6cmB.等于12cm ;C.小于6cmD.大于12cm 4.半径为5的⊙O 内有一点P ,且OP=4,则过点P 的最短弦长是_______,最长的弦长_______.5.如图1,已知⊙O 的半径为5,弦AB=8,P 是弦AB 上任意一点,则OP •的取值范围是_______.(1) (2)6.如图2,⊙O 的直径AB 垂直于弦CD ,垂足为E ,若∠COD=120°,OE=3厘米,则OD=•___cm .7.如图3,AB 是半圆的直径,O 是圆心,C 是半圆上一点,E 是弧AC 的中点,OE 交弦AC 于D ,若AC=8cm ,DE=2cm ,则OD 的长为________cm .8.如图3,同心圆中,大圆的弦AB 交小圆于C 、D ,已知AB=4,CD=2,AB •的弦心距等于1,那么两个同心圆的半径之比为( )A .3:2B 2CD .5:4BB(3) (4)9.如图4,AB 是⊙O 的直径,CD 为弦,CD ⊥AB 于E ,则下列结论中错误的是( )A .∠COE=∠DOEB .CE=DEC .AE=BED . BDBC 10.如图,在以O 为圆心的两个同心圆的圆中,大圆弦AB 交小圆于C 、D 两点,•试判断AC与BD的大小关系,并说明理由.11.如图所示,在⊙O中,CD是直径,AB是弦,AB⊥CD于M,CD=15cm,OM:OC=3:5,求弦AB的长.。

九年级数学圆的对称性知识点

九年级数学圆的对称性知识点

九年级数学圆的对称性知识点圆是数学中一个非常重要的几何概念,它具有丰富的对称性质。

在九年级数学中,我们学习了许多有关圆对称性的知识点。

本文将围绕这一主题,探讨圆的对称性在数学中的应用和意义。

1. 点、线和面的对称性在数学中,几何图形可以根据其对称性质进行分类。

点对称性是最基本的对称性质,它是指图形绕着一个固定点旋转180度后能够重合。

线对称性是指图形相对于一条线对称,两侧对应部分完全一致。

面对称性则是指图形相对于一个面对称,两侧对应部分完全一致。

对称性在几何学中具有重要的应用,它能够帮助我们分析和解决许多问题。

2. 圆的旋转对称性圆具有旋转对称性,这是因为任何一个圆可以绕着其圆心旋转一定角度后得到一个与原圆完全一致的新圆。

这个旋转角度称为圆的旋转角,它可以是任意角度。

利用圆的旋转对称性,我们可以解决许多有关圆的问题,比如确定两个圆是否相等、快速计算圆的周长和面积等。

3. 圆的轴对称性除了旋转对称性,圆还具有轴对称性。

轴对称性是指圆相对于一条直线对称,即对于圆上的任意一点P,当P的关于直线L的对称点也在圆上时,称直线L为圆的轴线。

利用圆的轴对称性,我们可以判断一个图形是否关于某条直线对称,从而简化几何证明的过程。

4. 圆的纵轴对称性和横轴对称性圆的轴对称性可以进一步分为纵轴对称性和横轴对称性。

当圆相对于一条垂直于x轴的直线对称时,称这条直线为圆的纵轴线;当圆相对于一条垂直于y轴的直线对称时,称这条直线为圆的横轴线。

纵轴对称性和横轴对称性在解决一些几何问题时非常有用,可以帮助我们找到图形的对称性质,简化问题的分析。

5. 圆的切线与辅助线的对称性在与圆相关的问题中,切线和辅助线的对称性也是常见且有用的。

以圆的切线为例,对于圆上的任意一点P,过点P作一条切线,这条切线与半径的夹角为90度,且在切点处与圆相切。

利用切线的对称性,我们可以解决一些与圆的切线有关的几何问题,比如判断切线与圆的位置关系、计算切线的长度等。

《圆的对称性》

《圆的对称性》

01
在古希腊和古埃及,数学家们开始研究圆的对称性,并探索其
几何性质。
欧几里得几何
02
在欧几里得几何中,圆被定义为所有到定点距离相等的点的集
合,这个定点被称为圆心。
反射对称性
03
圆的反射对称性是指,如果一个点在圆上,那么与它关于圆心
对称的点也在圆上。
圆的对称性的发展现状
微积分学的发展
在微积分学中,圆的对称性被进一步研究,并应用于解决各种 问题。
更广泛的应用
随着科技的发展,圆的对称性将会在更多的领域得到应用,例如 计算机图形学、人工智能等。
感谢您的观看
THANKS

03
工程学
在工程学中,圆的对称性被广泛应用于机械设计、建筑设计等领域。
例如,许多机械零件和建筑结构都采用了旋转对称性和反射对称性的
பைடு நூலகம்
原理进行设计和建造。
02
圆的基本性质
圆的定义
圆是平面上所有与给定点(称为圆心)的距离等于给定长度(称为半径)的点的 集合。
圆的方程通常表示为(x - h)^2 + (y - k)^2 = r^2,其中(h, k)是圆心的坐标,r是 半径。
测量与计算
圆的对称性在测量和计算 中也经常用到,如计算圆 的周长、面积等。
在物理学中的应用
运动学
圆的对称性在运动学中有着重要的应用,如物体 做圆周运动时的向心力和离心力。
光学
圆的对称性在光学中也有着重要的应用,如各种 光学仪器(如望远镜、显微镜等)的设计。
电磁学
在电磁学中,圆的对称性对于理解电磁场的分布 和性质非常重要。
在日常生活中的应用
建筑设计
圆的对称性在建筑设计中有着广泛的应用,如圆形屋顶、圆形窗 户等。

圆形对称图形的知识点总结

圆形对称图形的知识点总结

圆形对称图形的知识点总结
1. 圆的对称中心: 圆形是一种高度对称的图形,因此它的对称中心即为圆心。

无论是将圆
形沿着任何轴线进行翻转、旋转或倒影,都将得到一致的图形,因为圆形的每一点到圆心
的距离都相等。

2. 圆的轴对称: 圆形具有无数个轴对称轴线,这是因为圆形的任意一条直径都是它的轴对
称轴线。

将圆形沿着任意直径进行翻转、旋转或倒影,所得到的图形都与原图形完全一致。

3. 圆的中心对称: 圆形具有中心对称性,也就是说如果将圆形沿着圆心进行旋转180度,
那么所得到的图形与原图形将完全一致。

这是因为圆形的每一点到圆心的距离都相等,因
此无论如何旋转,都将得到一致的图形。

4. 圆形的旋转对称: 圆形在任意角度的旋转下都具有对称性,也就是说无论将圆形旋转多
少度,所得到的图形都与原图形完全一致。

这是因为圆形的每一点到圆心的距离都相等,
因此无论如何旋转,都将得到一致的图形。

5. 圆形的对称性质: 圆形的对称性质使得我们能够更好地理解和描述它的特征和性质。


过对称性的分析,我们可以得到许多重要的结论,例如圆形的面积公式和周长公式,圆形
的切线性质和弦的性质等等。

总之,圆形对称图形具有高度的对称性,包括轴对称、中心对称和旋转对称等多种对称性质。

这些对称性质使得我们能够更好地理解和描述圆形的特征和性质,为解决各种几何问
题提供了重要的理论基础。

因此,对圆形的对称性进行深入的研究和分析,有助于我们更
好地掌握几何学知识,提高解决问题的能力。

圆的概念和有关性质-知识总结和例题

圆的概念和有关性质-知识总结和例题

圆的概念和有关性质 知识总结和例题圆的旋转定义:在一个平面内,线段OA 绕它固定的一个端点O 旋转一周,另一个端点所形成的图形叫做圆.以点O 为圆心的圆,记作“⊙O ”,读作“圆O ”固定的端点O 叫做圆心,线段OA 叫做半径,一般用r 表示. 确定一个圆的要素:一是圆心,圆心确定其位置;二是半径,半径确定其大小. 同心圆:圆心相同,半径不同 等圆 : 圆心相同,半径不同圆的集合定义:圆心为O 、半径为r 的圆可以看成是所有到定点O 的距离等于定长r 的点的集合. 弦:连接圆上任意两点的线段叫做弦.经过圆心的弦叫做直径 注意:1.弦和直径都是线段.2. 直径是弦,是经过圆心的特殊弦,是圆中最长的弦,但弦不一定是直径.弧: 圆上任意两点间的部分叫做圆弧,简弧.以A 、B 为端点的弧记作 ,读作“圆弧AB ”或“弧AB ”. 半圆:圆的任意一条直径的两个端点把圆分成两条弧,每一条弧都叫做半圆 劣弧与优弧:小于半圆的弧叫做劣弧. ;小于半圆的弧叫做劣弧. ; 等弧:等弧仅仅存在于同圆或者等圆中.1.一点和⊙O 上的最近点距离为4cm,最远的距离为10cm, 则这个圆的半径是2.下面3个命题:①半径相等的两个圆是等圆;②长度相等的弧是等弧;③一条弦把圆分成两条弧,这两条弧不可能是等弧.其中真命题的个数为( )A .0个B .1C .2个D .3个3 .如图,MN 是半圆O 的直径,正方形ABCD 的顶点A 、D 在半圆上,顶点B 、C 在直径MN 上,求证:OB=OC.图4DB O NMAC图5DBONM AC(3) (4) (5) (6)4.如图,在扇形MON 中,=45MON ,半径MO=NO=10,,正方形ABCD 的顶点B 、C 、D 在半径上,顶点A 在圆弧上,求正方形ABCD 的边长5.如图,AB ,AC 为⊙O 的弦,连接CO ,BO 并延长,分别交弦AB ,AC 于点E ,F ,∠B =∠C.求证:CE =BF.6,如图,过A ,C ,D 三点的圆的圆心为E ,过B ,F ,E 三点的圆的圆心为D ,∠A =63°,求∠B 的度数.圆的对称性:圆是轴对称图形,任意一条直径所在直线都是圆的对称轴.垂径定理:垂直于弦的直径平分弦且平分弦所对的弧。

圆的基本概念与性质

圆的基本概念与性质圆是几何学中最基本的图形之一,它具有独特的形状和性质。

本文将对圆的基本概念和一些重要性质进行详细介绍。

一、圆的定义圆是由平面上距离一个固定点一定距离的所有点组成的集合。

这个固定点被称为圆心,而这个距离被称为半径。

二、圆的常用符号在几何学中,圆常用符号“O”表示圆心,用字母“r”表示半径。

因此,一个圆可以用符号“O(r)”表示。

三、圆的性质1. 圆的对称性由于圆的定义是以一个固定点为中心,所有距离这个点相等的点的集合,因此圆具有天然的对称性。

任意一条直径将圆分成两个等边的半圆,半圆上的所有点与圆心的距离相等。

2. 圆的直径、半径和弦在圆中,直径是通过圆心并且两端点都在圆上的线段;半径是从圆心到圆上的任意一点的线段,它等于圆的半径;弦是圆上连接两个点的线段,不经过圆心。

3. 圆的周长和面积圆的周长定义为圆上的一条完整弧所对应的长度,可以用公式C =2πr来计算,其中C表示周长,r表示半径。

圆的面积定义为圆内所有点所组成的区域的大小,可以用公式A = πr²来计算,其中A表示面积,r表示半径。

4. 圆的切线和法线圆上的切线是与圆相切的直线,它只与圆在切点相交。

切线与半径构成的夹角为90度。

法线是与切线垂直的直线,它通过切点并与切线垂直相交。

5. 圆的弧度制和度数制圆的弧度制是一种用弧长比半径的面度来度量角度的方式。

一个圆的弧长等于半径的弧度数。

度数制是人们常见的度量角度的方式,一个圆被等分为360度,1度等于圆的1/360。

四、圆的相关定理和应用1. 圆上的三角形圆上的三角形是指三个顶点都在圆上的三角形。

它有很多特殊性质,如圆上的两条弧所对应的角相等,半径与割线所包围的弧所对应的角相等等。

2. 切线定理和切割定理切线定理指的是切线与半径的关系,即切线的平方等于切点处外切圆的半径与切点到圆心的距离之积。

切割定理指的是弦分割定理和切线分割定理,它们描述了切线和弦所分割的弧长和线段之间的关系。

圆的定义有两个

【圆的定义有两‎个】其一:平面上到定点‎的距离等于定‎长的点的集合‎叫圆。

其二:平面上一条线‎段,绕它的一端旋‎转360°,留下的轨迹叫‎圆。

【有关圆的基本‎性质与定理】⑴圆的确定:画一条线段,以线段长为半‎径以一端点为‎圆心画弧绕3‎60度后得到‎圆。

圆的对称性质‎:圆是轴对称图‎形,其对称轴是任‎意一条通过圆‎心的直线。

圆也是中心对‎称图形,其对称中心是‎圆心。

垂径定理:垂直于弦的直‎径平分这条弦‎,并且平分弦所‎对的2条弧。

逆定理:平分弦(不是直径)的直径垂直于‎弦,并且平分弦所‎对的2条弧。

⑵有关圆周角和‎圆心角的性质‎和定理在同圆或等圆‎中,如果两个圆心‎角,两个圆周角,两组弧,两条弦,两条弦心距中‎有一组量相等‎,那么他们所对‎应的其余各组‎量都分别相等‎。

一条弧所对的‎圆周角等于它‎所对的圆心角‎的一半。

直径所对的圆‎周角是直角。

90度的圆周‎角所对的弦是‎直径。

如果一条弧的‎长是另一条弧‎的2倍,那么其所对的‎圆周角和圆心‎角是另一条弧‎的2倍。

⑶有关外接圆和‎内切圆的性质‎和定理①一个三角形有‎唯一确定的外‎接圆和内切圆‎。

外接圆圆心是‎三角形各边垂‎直平分线的交‎点,到三角形三个‎顶点距离相等‎;②内切圆的圆心‎是三角形各内‎角平分线的交‎点,到三角形三边‎距离相等。

③R=2S△÷L(R:内切圆半径,S:三角形面积,L:三角形周长)④两相切圆的连‎心线过切点(连心线:两个圆心相连‎的直线)⑤圆O中的弦P‎Q的中点M,过点M任作两‎弦AB,CD,弦AD与BC‎分别交PQ于‎X,Y,则M为XY之‎中点。

(4)如果两圆相交‎,那么连接两圆‎圆心的线段(直线也可)垂直平分公共‎弦。

(5)圆心角的度数‎等于它所对的‎弧的度数。

(6)圆周角的度数‎等于它所对的‎弧的度数的一‎半。

(7)弦切角的度数‎等于它所夹的‎弧的度数的一‎半。

(8)圆内角的度数‎等于这个角所‎对的弧的度数‎之和的一半。

初三数学 圆的性质定理

初三数学圆的性质定理1、圆的对称性:圆是轴对称图形,任一条直径所在的直线都是它的对称轴.2、垂径定理:垂直于弦的直径平分弦,并且平分弦所对的两条弧.3、垂径定理的推论:平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧.4、垂径定理的应用:①用直尺和圆规平分一条弧.作法是过圆心作弧所对弦的垂线,理由是垂径定理;②在利用垂径定理计算或证明时,我们通常将其化为一个直角三角形的边和角,这个特殊直角三角形的三边分别是半径、弦的一半和圆心到弦的垂线段.例1、如图,已知以点O为公共圆心的两个同心圆,大圆的弦AD交小圆于B、C.(1)求证:AB=CD(2)如果AD=6cm,BC=4cm,求圆环的面积.1.圆周角定义:顶点在圆周上,并且两边都和圆相交的角叫做圆周角.2.圆周角定理:同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.3.推论:①同圆或等圆中,相等的圆周角所对的弧一定相等.②半圆(或直径)所对圆周角是直角,90°的圆周角所对的弦是直径.③如果三角形一边上的中线等于这条边的一半,那么这个三角形是直角三角形.4.圆的内接四边形:①定义:如果一个多边形的所有顶点都在同一圆上,这个多边形叫做圆内接多边形,这个圆叫做这个多边形的外接圆.②圆内接四边形的性质:圆内接四边形的对角互补.例2、如图,AB是⊙O的直径,BC是弦,OD⊥BC于E,交BC于D.若BC=8,ED=2,求⊙O的半径.1、如图,已知AB是⊙O的直径,弦CD⊥AB于点P,CD=10cm,AP∶PB=1∶5,那么⊙O的半径是()2、圆的半径为13cm,两弦AB∥CD,AB=24cm,CD=10cm,则两弦AB、CD的距离是()A.7cm B.17cm C.12cm D.7cm或17cm3、如下图所示,AB是⊙O的一条固定直径,它把⊙O分成上、下两个半圆,自上半圆上一点C作弦CD⊥AB,∠OCD的平分线交⊙O于点P,当点C在上半圆(不包括A、B两点)移动时,点P()A.到CD的距离保持不变B.位置不变C.平分D.随点C的移动而移动4、如上中图,BD是⊙O的直径,弦AC、BD相交于点E,则下列结论不成立的是()A.∠ABD=∠ACD B.C.∠BAE=∠BDC D.∠ABD=∠BDC5、如上右图,⊙O的直径CD过弦EF的中点G,∠EOD=40°,则∠DCF等于()A.80°B.50°C.40°D.20°6、如下图,A、B、C是⊙O上三点,∠ACB=40°,则∠ABO等于__________度.7、如上左二图,△ABC的顶点都在⊙O上,∠C=30°,AB=2cm,则⊙O的半径为__________cm.8、如上左三图,在平面直角坐标系中,P是经过O(0,0),A(0,2),B(2,0)的圆上的一个动点(P与O、A 、B不重合),则∠OAB=__________,∠OPB=__________.9、如右上图,△ABC内接于⊙O,∠B=∠OAC,OA=8cm,则AC=__________cm.10、如图,△ABC内接于⊙O,∠BAC=120°,AB=AC,BD为⊙O的直径,AD=6,则BC=__________.11、如图,⊙O中的弦AB、CD互相垂直于E,AE=5cm,BE=13cm,O到AB的距离为.求⊙O的半径及O到CD的距离.12、如图,某地有一座圆弧形的拱桥,桥下水面宽为7.2m,拱顶高出水面2.4m,现有一艘宽3m,船舱顶部为正方形并高出水面2m的货船要经过这里,此时货船能顺利通过这座拱桥吗?请说明理由.13、如图,AB为⊙O的直径,BD是⊙O的弦,延长到C,使BD=DC,连接AC交⊙O于点F,点F不与点A重合.(1)AB与AC的大小有什么关系?为什么?(2)按角的大小分类,请你判断△ABC属于哪一类三角形,并说明理由.一、确定圆的条件(1)因为作圆实质上是确定圆心和半径,要经过已知点A作圆,只要圆心确定下来,半径就随之确定了下来.所以以点A以外的任意一点为圆心,以这一点与点A所连的线段为半径就可以作一个圆.由于圆心是任意的.因此这样的圆有无数个.如图(1).(2)已知点A、B都在圆上,它们到圆心的距离都等于半径.因此圆心到A、B的距离相等.根据前面提到过的线段的垂直平分线的性质可知,线段的垂直平分线上的点到线段两端点的距离相等,则圆心应在线段AB的垂直平分线上.在AB的垂直平分线上任意取一点,都能满足到A、B两点的距离相等,所以在AB的垂直平分线上任取一点都可以作为圆心,这点到A的距离即为半径,圆就确定下来了.由于线段AB的垂直平分线上有无数点,因此有无数个圆心,作出的圆有无数个.如图(2).(3)要作一个圆经过A、B、C三点,就是要确定一个点作为圆心,使它到三点的距离相等.因为到A、B两点距离相等的点的集合是线段AB的垂直平分线,到B、C两点距离相等的点的集合是线段BC的垂直平分线,这两条垂直平分线的交点满足到A、B、C三点的距离相等,就是所作圆的圆心.因为两条直线的交点只有一个,所以只有一个圆心,即只能作出一个满足条件的圆.过不在同一条直线上的三点确定一个圆2、经过三角形三个顶点的圆,叫做三角形的外接圆,外接圆的圆心是三角形三边垂直平分线的交点,叫做三角形的外心,这个三角形叫做这个圆的内接三角形.因为画圆的关键是确定圆心和半径,所以作三角形的外接圆时,只要找三边垂直平分线的交点,这就是圆心,以这点到三角形任一顶点间的距离为半径就可作出三角形的外接圆.3、利用尺规过不在同一条直线上的三个点作圆的方法作法图示1.连结AB、BC2.分别作AB、BC的垂直平分线DE和FG,DE和FG相交于点O3.以O为圆心,OA为半径作圆⊙O就是所要求作的圆例1、已知锐角三角形、直角三角形、钝角三角形,分别作出它们的外接圆,它们外心的位置有怎样的特点?(1)(2)(3)例3、如图,点A、B、C表示三个村庄,现要建一座深水井泵站,向三个村庄分别送水,为使三条输水管线长度相同,水泵站应建在何处?请画出图,并说明理由.1、下列关于外心的说法正确的是()A.外心是三个角的平分线的交点 B.外心是三条高的交点C.外心是三条中线的交点 D.外心是三边的垂直平分线的交点2、下列条件中不能确定一个圆的是()A.圆心和半径B.直径 C.三角形的三个顶点D.平面上的三个已知点3、三角形的外心具有的性质是()A.到三边的距离相等B.到三个顶点的距离相等 C.外心在三角形外D.外心在三角形内4、等腰三角形底边上的中线所在的直线与一腰的垂直平分线的交点是()A.重心B.垂心 C.外心D.无法确定5、如图所示,在5×5正方形网格中,一条圆弧经过A,B,C三点,那么这条圆弧所在圆的圆心是()A.点P B.点Q C.点R D.点M6、如图,是△ABC的外接圆,∠BAC=30°,BC=2 cm ,则△OBC的面积是_______.7、直角三角形的两边长分别为16和12,则此三角形的外接圆半径是_______.8、如图,有一个圆形的盖水桶的铁片,部分边沿由于水生锈残缺了一些,很不美观,为了废物利用,将铁片剪去一些使其成为圆形的,应找到圆心,并找到合理的半径,在铁片上画出圆,沿圆剪下即可,问应怎么样找到圆心和半径?。

圆的认识课后总结范文

一、课程概述这学期的数学课程中,我们重点学习了圆的认识。

通过学习,我对圆的定义、性质、画法以及应用等方面有了更加深入的理解。

以下是我对这节课的总结。

二、学习收获1. 理解了圆的定义:圆是平面上所有点到定点的距离相等的点的集合,这个定点称为圆心,距离称为半径。

2. 掌握了圆的性质:圆具有对称性,圆上的任意两点与圆心的连线都相等;圆的周长是圆上所有点到圆心的距离之和,即2πr;圆的面积是圆上所有点到圆心的距离的平方乘以π,即πr²。

3. 学会了画圆的方法:利用圆规可以画出半径相等的圆,通过圆规的调整,可以画出不同半径的圆。

4. 理解了圆的应用:在日常生活中,圆的应用无处不在,如圆形的桌面、圆形的跑道、圆形的硬币等。

在建筑设计、机械制造等领域,圆的应用也具有重要意义。

三、教学启示1. 注重基础知识的掌握:在学习圆的认识时,首先要熟练掌握圆的定义、性质等基础知识,为后续学习打下坚实基础。

2. 结合实际生活,提高学习兴趣:通过举例说明圆在生活中的应用,激发学生的学习兴趣,让他们体会到数学与生活的密切联系。

3. 培养学生的动手能力:在学习画圆的方法时,引导学生动手操作,提高他们的实践能力。

4. 强调数学思维的重要性:在讲解圆的性质时,注重培养学生的数学思维,引导他们从不同角度思考问题。

四、课后反思1. 在学习圆的认识过程中,我发现自己在画圆时容易出错,今后要加强练习,提高自己的画圆技巧。

2. 通过学习圆的性质,我认识到数学知识具有普遍性,要将所学知识运用到实际生活中,提高自己的综合素质。

3. 在今后的学习中,我要更加注重基础知识的学习,为深入学习数学知识打下坚实基础。

4. 在课堂教学中,教师应注重培养学生的数学思维,提高他们的学习兴趣,使他们在快乐中学习数学。

总之,这节课让我对圆有了更加深入的认识,也让我明白了数学与生活的密切联系。

在今后的学习中,我将继续努力,不断提高自己的数学素养。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

圆的对称性与性质
【重点知识】
1.弦心距:圆心到弦的距离.
2.圆周角:顶点在圆上,它的两边分别和圆相交的角,叫做圆周角.
3.一条弧所对的圆周角等于它所对的圆心角的一半.
4.在同圆或等圆中,同弧或等弧所对的圆周角相等.
5.直径所对的圆周角是直角,090的圆周角所对的弦是直径.
【归纳总结】
1.在同圆或等圆中:①两个圆心角相等;②两条弧相等;③两条弦相等;④两条弦的弦心距相等.此四项中任何一项成立,则其余对应的三项都成立.
【典型例题】
例1.①如图1,在⊙O 中,,AB AC = 070,A ∠=则C ∠=______.
②如图2,已知,,A B C 在⊙O 上,且040,BAC ∠=则OCB ∠=_____.
③如图3,已知AB 是⊙O 的直径,,,C D E 都是⊙O 上的点,则12∠+∠=_____. ④如图4,已知圆心角AOB ∠的度数为0100,则圆周角ACB ∠的度数是______.
(图1) (图2) (图3) (图4) (图5) ⑤如图5,矩形ABCD 与圆心在AB 上的⊙O 交于点,,,,8,1,G B F E GB cm AG cm == 2,DE cm =则EF =_______cm .
⑥如图6,在⊙O 中,0
60,3,ACB D AC ∠=∠==则ABC ∆的周长为________.
⑦(2008湘潭)如图7,已知⊙O 半径为5,弦AB 长为8,点P 为弦AB 上一动点,连结OP ,则线段OP 的最小长度是 .
图6 图7
⑧(2008重庆)已知,如图8,AB 为⊙O 的直径,,AB AC BC =交⊙O 于点,D AC 交⊙O
于点0,45.E BAC ∠=给出以下五个结论:①0
22.5;EBC ∠=②;BD DC =③2;AE EC = ④劣弧⋂ AE 是劣弧⋂DE 的2倍;⑤.AE BC =其中正确结论的序号是 . ⑨(2008黄石)如图9,AB 为⊙O 的直径,点C D ,在⊙O 上,50BAC ∠=,则ADC ∠= .
图8 图9
⑩如图10,∠E=40°,AB=BC=CD ,则∠ACD= .
例2.①在半径为2的⊙O 中,弦AB
的长为AOB ∠=______.
②⊙O 的半径2,OA =弦,AB AC
的长为一元二次方程20x x -+=的两
个根,则BAC ∠=_____.
③如图,在⊙O 中,AB 是直径,
CD 是一条弦,//,AB CD 圆周角030,10,CAD AB cm ∠==则弦CD 的长是______.
④如图,AB 是⊙O 的直径,CD 为弦,CD AB ⊥于E ,则下列结论中不成立的是( )
A. COE DOE ∠=∠
B. CE DE =
C.OE BE =
D. BD BC =
⑤(2008上海)小明不慎把家里的圆形玻璃打碎了,其中四块碎片如图所示,为配到与原来大小一样的圆形玻璃,小明带到商店去的一块玻璃碎片应该是( )
A.第①块
B.第②块
C.第③块
D.第④块
③图 ④图 ⑤图 ⑥图
B ∙E D
C B A O 20 题图
图10
⑥如图,点P 是⊙O 外一点,从点P 出发的两条射线与⊙O 相交于点,,,,A B C D 且,AB CD =则BPO ∠与DPO ∠之间的关系是( )
A. BPO DPO ∠>∠
B. BPO DPO ∠<∠
C. BPO DPO ∠=∠
D.无法确定 ⑦已知,AB CD 是同圆的两条弧,且2AB CD =,则弦,AB CD 之间的关系是( )
A. 2AB CD =
B. 2AB CD >
C. 2AB CD <
D.无法确定
例3.①如图,AD 交⊙O 于点,,B D ⊙O 的半径为05,8,30,r cm AO cm A ==∠=求BD 和
AD 的长.
②如图,在RT ABC ∆中,0
90,3,4,C AC BC ∠===以点C 为圆心,CA 的长为半径的
圆与,AB BC 分别相交于点,,D E 求,AD BD 的长.
例4.如图,AB 是半圆的直径,延长弦CD 交AB 的延长线于点,E 且02,15,AB DE E =∠=求AOC ∠的度数.
例5.(金华市)如图,已知AB 是⊙O 的直径,点,C D 在⊙O 上,且6, 3.AB BC ==
(1)求sin BAC ∠的值;
(2)如果OE AC ⊥,垂足为E ,求OE 的长;
(3)求tan ADC ∠的值.(结果保留根号)
例 6.如图,⊙O 的内接四边形ABCD 的对角线,AC BD OE BC ⊥⊥于,E 求证:
1.2
OE AD =
例7.如图,⊙O 是ABC ∆的外接圆,AD 是BC 边上的高,若8,3,6,BD CD AD ===求⊙O 的面积.
(拔高题)
如图所示,AB 为⊙O 的直径,D 为BC 中点,连接BC 交AD 于,E DG AB ⊥于G .
(1) 求证:2BD AD DE =⋅.
(2) 如果3tan ,8,4
A DG =
=求DE 的长.。

相关文档
最新文档