三相异步电机VF调速

合集下载

三相异步电动机调速原理

三相异步电动机调速原理

三相异步电动机调速原理
三相异步电动机的调速原理主要基于对转差率的控制。

三相异步电动机的转速公式为n=60f/p(1-s),其中f代表电源频率,p为极对数,n代表电机转速,s代表转差率。

当电动机的三相定子绕组通入三相对称交流电后,将产生一个旋转磁场,该旋转磁场切割转子绕组,从而在转子绕组中产生感应电流(转子绕组是闭合通路),载流的转子导体在定子旋转磁场作用下将产生电磁力,从而在电机转轴上形成电磁转矩,驱动电动机旋转,并且电机旋转方向与旋转磁场方向相同。

当导体在磁场内切割磁力线时,在导体内产生感应电流,“感应电机”的名称由此而来。

感应电流和磁场的联合作用向电机转子施加驱动力。

三相异步电动机的调速方法包括:
1. 改变电源频率:通过改变电源频率可以改变电动机的转速。

2. 改变电动机极数:通过增加或减少电动机的极数可以改变电动机的转速。

3. 改变转差率:通过改变转差率可以改变电动机的转速。

请注意,在具体应用时需要根据实际需求和情况选择适当的调速方法。

同时,也要注意遵守相关的安全操作规程,确保电动机的正常运行和延长其使用寿命。

三相异步电动机的三种调速方法

三相异步电动机的三种调速方法

三相异步电动机的三种调速方法三相异步电动机是工业生产中常用的一种电动机,其具有结构简单、可靠性高、维护方便等优点,因此被广泛应用于各种机械设备中。

在实际应用中,为了满足不同的工作要求,需要对三相异步电动机进行调速。

本文将介绍三相异步电动机的三种调速方法。

一、电压调制调速法电压调制调速法是一种常用的三相异步电动机调速方法。

该方法通过改变电动机的供电电压来实现调速。

具体来说,当需要降低电动机的转速时,可以降低电动机的供电电压,从而降低电动机的转速。

反之,当需要提高电动机的转速时,可以提高电动机的供电电压,从而提高电动机的转速。

电压调制调速法的优点是调速范围广,调速精度高,且不会对电动机的机械结构产生影响。

但是,该方法需要使用特殊的电压调制器,成本较高,且在低速运行时容易出现电动机振动和噪音等问题。

二、变频调速法变频调速法是一种基于电子技术的三相异步电动机调速方法。

该方法通过改变电动机的供电频率来实现调速。

具体来说,当需要降低电动机的转速时,可以降低电动机的供电频率,从而降低电动机的转速。

反之,当需要提高电动机的转速时,可以提高电动机的供电频率,从而提高电动机的转速。

变频调速法的优点是调速范围广,调速精度高,且在低速运行时不会出现电动机振动和噪音等问题。

同时,该方法还可以实现电动机的软启动和停机,延长电动机的使用寿命。

但是,该方法需要使用特殊的变频器,成本较高。

三、转子电阻调速法转子电阻调速法是一种基于电动机本身结构的三相异步电动机调速方法。

该方法通过改变电动机转子电阻来实现调速。

具体来说,当需要降低电动机的转速时,可以增加电动机转子电阻,从而降低电动机的转速。

反之,当需要提高电动机的转速时,可以减小电动机转子电阻,从而提高电动机的转速。

转子电阻调速法的优点是成本低,调速范围广,且不需要使用特殊的调速器。

但是,该方法会对电动机的机械结构产生影响,同时在低速运行时容易出现电动机振动和噪音等问题。

三相异步电动机的调速方法有电压调制调速法、变频调速法和转子电阻调速法。

三相异步电机VF调速

三相异步电机VF调速

第1章绪论1.1 毕业论文选题的背景电动机作为主要的动力设备被广泛的应用于工农业生产、国防、科技、日常生活等各个方面,其负荷约占总发电量的60%"70%,成为用电量最多的电气设备。

根据采用的电流制式不同,电动机分为直流电动机和交流电动机两大类,其中交流电动机形式多样、用途各异、拥有量最多,交流电动机又分为同步电动机和异步(感应)电动机两大类。

根据统计,交流电动机用电量占电机总用电量的85%左右,可见交流电动机应用的广泛性及其在国民经济中的重要地位。

电动机作为把电能转换为机械能的主要设备,在实际应用中,一是要使电动机具有较高的机电能量转换效率;二是根据生产机械的工艺要求控制和调节电动机的旋转速度。

电动机的调速性能好坏对提高产品质量、提高劳动生产率和节省电能有着直接的决定性影响。

电动机和控制装置一起合成电力传动自动控制系统。

以直流电动机作为控制对象的电力传动自动控制系统称之为直流调速系统;以交流电动机作为控制对象的电力传动自动控制系统称之为交流调速系统。

根据交流电机的类型,相应有同步电动机调速系统和异步电动机调速系统。

众所周知,直流电动机的转速容易控制和调节,采用转速、电流双闭环直流调速系统可获得优良的静、动态调速特性。

因此,长期以来在变速传动领域中,直流调速一直占据主导地位。

但是,由于直流调速系统解决不了直流电动机本身的的换向问题和在恶劣环境下的不适应问题,这就限制了直流调速系统的进一步发展。

交流电动机,特别是鼠笼型异步电动机,具有结构简单、制造容易、坚固耐用、转动惯量小、运行可靠、很少维修、使用环境及结构发展不受限制等优点。

但交流电动机自1885年出现后,由于没有理想的调速方案,因而长期用于恒速拖动领域。

20世纪70年代后,国际上解决了交流电动机调速方案中的关键问题,使得交流调速系统已具备了宽调速范围、高稳态精度、快速动态响应、高工作效率以及可以四象限运行等优异性能,其静、动态特性均可以和直流调速系统相媲美。

三相异步电动机的调速方法

三相异步电动机的调速方法

三相异步电动机的调速方法调速便是在同一负载下能得到纷歧样的转速,以满意出产进程的央求。

例如各种切削机床的主轴运动跟着工件与刀具的材料、工件直径、加工技能的央求及走刀量的巨细等的纷歧样,央求有纷歧样的转速,以获得最髙的出产率和确保加工质量。

假定选用电气调速,就可以大大简化机械变速安排。

由下式(1)可知,改动电动机的转速有三种或许,即改动电源频率、极对数p及转差率s。

前两者是笼型电动机的调速方法,后者是绕线型电动机的调速方法。

(一)变频调速图1变频调速设备这些年变频调速技能翻开很快,如今首要选用如图1所示的变频调速设备,它首要由整流器和逆变器两大大都构成。

整流器先将频率f为50Hz的三相沟通电改换为直流电,再由逆变器改换为频率可调、电压有用值也可调的三相沟通电,供应三相笼型电动机。

由此可得到电动机的无级调速,并具有硬的机械特性。

通常有下列两种变频调速方法:(1)在,即低于额外转速调速时,应坚持的比值近于不变,也便是两者要成份额地一同调度。

由和两式可知,这时磁通Ф和转矩T 也都近似不变。

这便是恒转矩调速。

假定把转速调低时坚持不变,在减小时磁通Ф则将添加。

这就会使磁路丰满(电动机磁通通常方案在挨近铁心磁丰满点),然后添加励磁电流和铁损,致使电动机过热,这是不容许的。

(2)在,即高于额外转速调速时,应坚持。

在增大时,磁通Ф和转矩T都将减小。

转速n增大,转矩T减小,将使功率近于不变。

这是恒功率调速。

假定把转速调高时的比值不变,在添加的一同也要添加。

跨过额外电压也是不容许的。

频率调度方案通常为0.5~320Hz。

如今在国内由于逆变器中的开关元件(可关断晶闸管、大功率晶体管和功率场效应管等)的制作水平不断跋涉,笼型电动机的变频调速技能的运用也就日益广泛。

(二)变极调速由式可知,假定极对数p减小一半,则旋转磁场的转速便跋涉一倍,转子转速n差不多也跋涉一倍。

因而改动p可以得到纷歧样的转速。

怎样改动极对数呢?这同定子绕组的接法有关。

三相异步电动机的变频调速.

三相异步电动机的变频调速.

三相异步电动机的变频调速一、三相异步电动机的调速关系式:n=n0(1-s)=60f 1(1-s)/p 改变转速有以下几种方法:1、改变电动机的极对数P2、改变电动机的转差率S3、改变电动机的电源频率F1二、异步电动机的调速特性:1、变极调速优点:调速方法简单,机械特性较硬缺点:调速平滑性差,转速成倍变化,不能完成无极调速2、调转差率调速(1)笼型电动机定子调压法和电磁调速法优点:变速方便,可以完成无极调速缺点:机械特性较软(2)绕线转子异步电动机的转子回路串电阻缺点:不能完成无极调速,浪费电能3、变频调速(1)、基频以下恒磁通(恒转矩)变频调速1)为什么要恒磁通变频调速?2)怎样才能做到变频调速时磁通恒定由每极磁通φ=E1/4.44N1F1,可知,磁通φ的值由 E 和 F 共同决定,对 E 和 F 进行适当控制,就可以使磁通保持额定值不变。

(2)基频以上恒功率(恒电压)变频调速由每极磁通φ =E1/4.44N 1F1,可知,要使电压恒定不变,主磁通φ随 F 的上升而应减小。

总结:随着转速的提高,要使电压恒定,磁通就自然下降,当转子电流不变时,其电磁转矩就会减小,而电磁功率却保持恒定。

变频器的操作一、变频器的接线1、主回路接线R、R、T:接交流三相电流U、V、W:接三相异步电动机2、控制回路的接线(1)正转起动信号:STL(2)反转起动信号:STR(3)起动自保持选择信号:STOP(4)输入信号中具有功能设定的有:RL、RM、RH、RT、AU 、JOG、CS二、操作面板1、操作面板的名称和功能上半部分为显示器,下半部分为各种按键。

MODE :可用于选择操作模式或设定模式SET:用于确定频率和参数的设定三、应用实例1、全部清除答:1)设定pr.79=1或0 PU 操作模式下,2)按MODE 键至“帮助模式”3)按▲键至“全部清除” (ALLC )4)按SET 出现“ 0”,按▲键将“ 0”改为“ 1”5)按SET 键 1.5s 即可2、运行操作方式的选择(1)PU 运行操作方式:设置电动机以48HZ 运行并操作答:设置:1)设定pr.79=1 PU 操作模式下2)按MODE 键至“频率设定模式”3)按▲键改变设定值4)按SET 键 1.5s 即可操作:1)开始:按FWD 或REV 键(电动机起动,自动地变为监视模式,显示输出频率)2)停止:按STOP 键(2)外部运行操作方式:设置电动机以50HZ 运行1)开关操作运行答:1、设定pr.79=2 外部操作模式下2、将起动开关STF 或STR 处于NO,电动机即运行3、调节电位器可对电动机进行加速、减速控制2)点动运行答:1、设定pr.79=2 外部操作模式下2、设定“点动频率” pr.15 为5HZ3、设定“点动加/减速时间pr.16 为3S4、接通“ JOG”或“ STR”进行正反转点动运行3)组合运行操作方式1)组合操作模式1(运行频率由PU 设定,起动信号由外部输入)答:设定pr.79=3 组合操作模式下完成2)组合操作模式 2 (运行频率由外部输入设定,起动信号PU 设定)答:设定pr.79=4 组合操作模式下完成pr.79 的参数设置pr.79=0 PU 或外部操作可切换pr.79=1 PU 操作模式(起动信号和运行频率均由PU 面板设定)pr.79=2 外部操作模式(起动信号和运行频率均由外部输入)pr.79=3 外部/PU 组合操作模式 1(运行频率由PU 设定,起动信号由外部输入)pr.79=4 外部/PU 组合操作模式 2(运行频率由外部输入设定,起动信号PU 设定)pr.79=5 程序运行模式3、输出频率跳变跳变:电气频率与机械频率发生共振,容易发生负载轻或没有负载及变频器跳闸现象在FR-A500 变频器上通过pr.31~ pr.32 pr.33~ pr.34 pr.35~ pr.36 设定 3 个跳变区域,跳变频率可以设定为各区域的上点或下点,pr.31 为频率跳变“ 1A” pr.33 为频率跳变“ 2A” pr.35 为频率跳变“ 3A”。

三相异步电动机的几种调速控制

三相异步电动机的几种调速控制

三相异步电动机的几种调速控制收藏此信息打印该信息添加:佚名来源:未知根据异步电动机的转差率S表达式:可知交流电动机转速公式如下:式中n---电动机的转速,r/min;p---电动机极对数;f1---供电电源频率,Hz;s---异步电动机的转差率。

由上式分析,通过改变定子电压频率f1、极对数p以及转差率s都可以实现交流异步电动机的速度调节,具体可以归纳为变极调速、变转差率调速和变频调速三大类,而变转差率调速又包括调压调速、转子串电阻调速、串级调速等,它们都属于转差功率消耗型的调速方法。

一、变极调速1、变极调速的方法变换异步电动机绕组极数从而改变同步转速进行调速的方式称为变极调速。

其转速只能按阶跃方式变化,不能连续变化。

变极调速的基本原理是:如果电网频率不变,电动机的同步转速与它的极对数成反比。

因此,变更电动机绕组的结线方式,使其在不同的极对数下运行,其同步转速便会随之改变。

异步电动机的极对数是由定子绕组的联接方式来决定,这样就可以通过改换定子绕组的联接来改变异步电动机的极对数。

变更极对数的调速方法一般仅适用于笼型异步电动机。

双速电动机、三速电动机是变极调速中最常用的两种形式。

2.双速电动机的控制线路双速电动机的定子绕组的联接方式常有两种:一种是绕组从三角形改成双星形,如下图(a)所示的连接方式转换成如图(c)所示的连接方式,另一种是绕组从单星形改成双星形,如图(b)所示的连接方式转换成如图(c)所示的连接方式,这两种接法都能使电动机产生的磁极对数减少一半即电动机的转速提高一倍。

双速电动机的定子绕组的接线图下图是双速电动机三角形变双星形的控制原理图,当按下起动按钮SB2,主电路接触器KMl的主触头闭合,电动机三角形连接,电动机以低速运转;同时KA的常开触头闭合使时间继电器线圈带电,经过一段时间(时间继电器的整定时间),KMl的主触头断开,KM2、KM3的主触头闭合,电动机的定子绕组由三角形变双星形,电动机以高速运转。

异步电机VF调速轻载不稳定解决方法

异步电机VF调速轻载不稳定解决方法

异步电机使用V/F调速轻载不稳定解决方法摘要:针对异步电机V/F控制在空载及轻载状态出现的电流振荡现象,分析得出振荡原因在于定子无功电流分量振荡造成的电机定子磁链及电磁转矩振荡。

对定子无功电流分量进行振荡抑制,电流和转速得以稳定。

该方法在通用变频调速装置上仅由软件实现,不需要额外的硬件成本。

实验结果验证所述方法的有效性。

关键词:异步电机;V/F控制;振荡抑制0 引言随着电力电子技术的不断发展,交流调速技术的应用越来越广泛。

异步电机变频调速控制方法可分为:电压频比(V/F)控制方式、转差频率控制方式、矢量控制方式和直接转矩控制方式。

矢量控制的控制精度较高,能够与直流调速系统性能相媲美,因此,一直受到广泛的关注,也是异步电机控制技术研究的主要方向。

但是,矢量控制技术实现比较复杂,严重依赖电机参数,且通常需要速度传感器。

与矢量控制变频调速控制技术相比,通用变频调速技术精度相对较差,但具有不依赖电机参数,不需要速度传感器,控制方法简单、容易实现等优点。

因此,在工程实际中,通用变频调速系统得到了广泛应用,目前大部分的变频调速系统都采用这样一种模式,尤其在风机、水泵等调速性能要求不高的应用场合。

如果能对其部分性能进行改善,将使其得到更广泛的应用。

本文对异步电机V/F控制空载或轻载振荡现象进行研究,对定子无功电流分量进行振荡抑制,提高了V/F调速系统的稳定性,实验结果验证所述方法的有效性。

1 V/F调速轻载振荡分析交流电机在PWM方式供电的条件下,电机轻载或者空载的时候电机存在一个比较宽的频率段,系统会出现局部不稳定现象,这时电流幅值波动很大,输出频率也会有一定改变,电流的振荡有可能会导致系统因为过电流而误触发报警,使系统不能稳定可靠的工作。

引起振荡的原因很多,如定子电阻、转子惯量、死区时间、系统共振频率等,比较普遍的观点是电机和变频器在能量交换过程中引起的。

对死区效应进行补偿后可以有效的减少振荡的幅度,但不能从根本上抑制振荡。

三相异步电动机的调速公式

三相异步电动机的调速公式

三相异步电动机的调速公式三相异步电动机的调速公式是:
N = (120*f)/(P * NS)
其中,
N是电动机的转速(单位:转/分钟),
f是电源的频率(单位:赫兹),
P是电动机的极数,
NS是电动机的同步转速(单位:转/分钟)。

这个调速公式适用于没有电动机负载参与的情况下,即理论上的转速。

实际情况中,电动机调速会受到负载的影响,因此需要在调整电动机负载的同时进行调速。

在实际调速过程中,常用的方法有电压调制、频率调制、极数变换及串并联调速等。

这些方法中,电压调制是最常见的方法,通过改变电源电压的幅值来调整电动机的转速。

频率调制方法利用变频器对
电源频率进行调整,从而实现电动机的调速。

极数变换方法是通过改变电动机的极数来调整转速,适用于一些特殊场合。

串并联调速是通过改变电动机的绕组实现不同的转速,串联是将绕组连成串联电路,并联是将绕组连成并联电路,实现电动机的调速。

除了上述调速方法,还可以通过使用反馈控制的技术,例如闭环控制和矢量控制,来实现更精确的调速效果。

在工业环境中,通常会使用变频器等电力驱动设备来实现对三相异步电动机的精确调速。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第1章绪论1.1 毕业论文选题的背景电动机作为主要的动力设备被广泛的应用于工农业生产、国防、科技、日常生活等各个方面,其负荷约占总发电量的60%"70%,成为用电量最多的电气设备。

根据采用的电流制式不同,电动机分为直流电动机和交流电动机两大类,其中交流电动机形式多样、用途各异、拥有量最多,交流电动机又分为同步电动机和异步(感应)电动机两大类。

根据统计,交流电动机用电量占电机总用电量的85%左右,可见交流电动机应用的广泛性及其在国民经济中的重要地位。

电动机作为把电能转换为机械能的主要设备,在实际应用中,一是要使电动机具有较高的机电能量转换效率;二是根据生产机械的工艺要求控制和调节电动机的旋转速度。

电动机的调速性能好坏对提高产品质量、提高劳动生产率和节省电能有着直接的决定性影响。

电动机和控制装置一起合成电力传动自动控制系统。

以直流电动机作为控制对象的电力传动自动控制系统称之为直流调速系统;以交流电动机作为控制对象的电力传动自动控制系统称之为交流调速系统。

根据交流电机的类型,相应有同步电动机调速系统和异步电动机调速系统。

众所周知,直流电动机的转速容易控制和调节,采用转速、电流双闭环直流调速系统可获得优良的静、动态调速特性。

因此,长期以来在变速传动领域中,直流调速一直占据主导地位。

但是,由于直流调速系统解决不了直流电动机本身的的换向问题和在恶劣环境下的不适应问题,这就限制了直流调速系统的进一步发展。

交流电动机,特别是鼠笼型异步电动机,具有结构简单、制造容易、坚固耐用、转动惯量小、运行可靠、很少维修、使用环境及结构发展不受限制等优点。

但交流电动机自1885年出现后,由于没有理想的调速方案,因而长期用于恒速拖动领域。

20世纪70年代后,国际上解决了交流电动机调速方案中的关键问题,使得交流调速系统已具备了宽调速范围、高稳态精度、快速动态响应、高工作效率以及可以四象限运行等优异性能,其静、动态特性均可以和直流调速系统相媲美。

交流调速系统与直流调速系统相比,具有如下特点:(1)容量大。

(2)转速高且耐压高。

(3)交流电动机的体积、重量、价格比同容量的直流电动机小,且结构简单、经济可靠、惯性小。

(4)交流电动机环境适应性强,坚固耐用,可在十分恶劣环境下使用。

(5)交流调速系统能显著节能。

(6)高性能、高精度的新型交流调速系统已达到直流调速系统同等性能指标。

从各方面来看,交流调速系统最终将取代直流调速系统。

1.2 课题的研究意义在工业发展的初级阶段,人们主要使用集中传动。

作为动力的鼠笼电动机,是不需要调速的。

它只需要满足各种生产条件对它提出的起动和稳速运行的要求就可以,调速的任务是由皮带和齿轮来完成。

随着生产规模的不断扩大,对生产的连续性和流程化的要求愈来愈高,发展电机的调速技术已经是势在必行了。

直流调速系统,由于其良好的调速性能,很长的时期内在调速领域内占据首位。

但是由于直流电动机本身有机械换向器,给直流调速系统造成一些固有的、难于解决的问题。

随着交流传动电动机调速的理论问题的突破和调速装置(主要指变频器)性能的完善,交流电动机调速系统的性能差的缺点已经得到了克服,目前,交流调速系统的性能已经可以和直流系统相媲美,甚至可以超过直流系统。

由于交流调速不断显示其本身的优越性和巨大的社会效益,使变频器具有越来越旺盛的生命力。

各种性能优越的新型电力半导体器件的出现,如既能控制导通又能控制关断的门极可关断晶闸管GTO;具有良好功率转换效率和适于在高频大功率情况下工作的MOSFET;既有MOS管栅极驱动电压功率小和驱动线路简单,又有双极性功率晶体管导通饱和压降小优点的绝缘栅双极性大功率管IGBT;以及内部既有大功率开关器件,又有各种驱动电路和过压、过流等保护电路的智能型功率模块IPM等器件的应用,不仅使交流调速系统控制装置体积小,效率高,而且还更容易实现各种功能复杂但在结构上简单的控制方案,更加充实和推动了变频器理论的进一步发展。

能完成各种复杂信号和信息处理的集成芯片的出现,如能产生脉宽调制信号的专用集成电路以及各种单片机和计算机系统用的微处理器和接口芯片的大量问世,为高质量的控制创造了良好的条件。

建立在电机统一理论和机电一体化理论基础上的各种先进控制方案,通过快速检测电流实现PWM控制的变频技术,通过直接控制转矩来快速控制转速的转速自调整技术,以及具有很强抗干扰能力的变结构控制系统等等,都极大地丰富了电机调速领域的内容。

交流异步电机的V/f比恒定控制是异步电动机变频调速中最基本的控制方式。

它是在改变变频器输出电压频率的同时改变输出电压的幅值,以维护电机磁通基本恒定,从而在较宽的调速范围内,使电动机的效率、功率因数不下降。

V/f 控制是目前通用变频器中广泛采用的控制方式。

因此,研究异步电机的V/F调速,有着一定的实际意义和应用价值。

1.3 本课题的主要工作V/f比恒定控制是异步电动机变频调速中最基本的控制方式,常用于速度精度要求不十分严格或负载变动较小的场合。

由于V/f控制是转速开环控制,无需速度传感器,控制电路简单,负载可以是通用标准异步电机,所以这种控制方法通用性强、经济性好,是目前通用变频器产品中使用较多的一种控制方式。

本课题的主要工作:(1) 根据毕业设计任务设计书中的给定条件及要求,确定总体方案:V/F控制方式的SPWM变频调速;(2)熟悉交流异步电机的特点,工作原理及调速方法,介绍交流异步电机变频调速的几种方式,分析V/F调速方式的原理和特点;(3) 对采用SPWM技术实现V/F控制的交流异步电机变频调速进行研究;(4) 借助MATLAB建立系统模型、仿真,并对仿真结果进行分析;1.4 本章小结本章内容简单介绍了电动机在工农业生产、国防、科技、日常生活等各个方面的作用,简述了直流调速系统和交流调速系统各自的特点,分析了交流调速系统将代替直流调速系统的趋势,简单介绍了本课题的研究意义和论文的主要工作。

第2章交流异步电动机简介2.1 异步电动机的特点异步电动机(asynchronous motor) 又称感应电动机,是由气隙旋转磁场与转子绕组感应电流相互作用产生电磁转矩,从而实现机电能量转换为机械能量的一种交流电动机。

异步电动机按照转子结构分为两种形式:有鼠笼式、绕线式异步电动机。

作电动机运行的异步电机。

因其转子绕组电流是感应产生的,又称感应电动机。

异步电动机是各类电动机中应用最广、需要量最大的一种。

在中国,异步电动机的用电量约占总负荷的60%多。

异步电动机的转子绕组不需与其他电源相连,其定子电流直接取自交流电力系统;与其他电机相比,异步电动机的结构简单,制造、使用、维护方便,运行可靠性高,重量轻,成本低。

以三相异步电动机为例,与同功率、同转速的直流电动机相比,前者重量只及后者的二分之一,成本仅为三分之一。

异步电动机还容易按不同环境条件的要求,派生出各种系列产品。

它还具有接近恒速的负载特性,能满足大多数工农业生产机械拖动的要求。

其局限性是,它的转速与其旋转磁场的同步转速有固定的转差率(见异步电机),因而调速性能较差,在要求有较宽广的平滑调速范围的使用场合(如传动轧机、卷扬机、大型机床等),不如直流电动机经济、方便。

此外,异步电动机运行时,从电力系统吸取无功功率以励磁,这会导致电力系统的功率因数变坏。

因此,在大功率、低转速场合(如拖动球磨机、压缩机等)不如用同步电动机合理。

2.2异步电动机的分类异步电动机的种类很多,从不同的角度有不同的分类法。

按定子相数分有单相异步电动机、三相异步电动机;按转子绕组形式,一般可分为绕线式和鼠笼式两种类型。

鼠笼式异步电动机中,又有单鼠笼、双鼠笼和深槽式之分;按电机尺寸或功率,分为大型、中型、小型和小功率电机;按电机的防护形式分为开启式、防护式、封闭式。

2.3异步电动机的用途异步电机主要用作电动机,其功率范围从几瓦到上万千瓦,是国民经济各行业和人们日常生活中应用最广泛的电动机,为多种机械设备和家用电器提供动力。

例如机床、中小型轧钢设备、风机、水泵、轻工机械、冶金和矿山机械等,大都采用三相异步电动机拖动;电风扇、洗衣机、电冰箱、空调器等家用电器中则广泛使用单相异步电动机。

异步电机也可作为发电机,用于风力发电厂和小型水电站等。

2.4异步电动机的发展和发展趋势1985年大部分地区迅速推广了全封闭自冷式鼠笼型三相异步电动机y系列及其派生系列产品,其功率范围为0.55~250kw,机座中心高为80~315。

通过引进消化美国西屋公司和瑞士bbc公司的技术,自行研发的y系列6kv、220~2800kw中型高压三相异步电动机,采用新颖的箱式结构,是目前国内中型高压电机的主导产品,以后又随着我国电网电压由6kv升高到10kv,又研发了10kv 系列中小型高压异步电动机。

1996年以电科所为首组织有关厂家完成了y2系列的开发,功率范围为0.12~315kw,机座中心高为63~355。

该系列产品显著降低了空载噪声,有效抑制了负载噪声。

2003年电科所组织有关厂家又完整地建立了全系列采用冷轧硅钢片的y3系列,其能耗达到国标gb18163-2002中能耗限定值的规定,同时也达到欧洲eff2效率标准,并且主要性能指标达到国际同类产品的先进水平。

1992年美国能源部发布了新的能源法规,提出了高效率三相异步电动机的效率标准,并规定从1997年10月24日开始,凡制造和进口一般用途电动机效率必须符合这一标准。

以后又更进一步提出超高效率电机。

1999年欧洲电机和电力电子制造商协会制定了eff1、eff2、eff3三个等级的效率标准,并决定到2003年削减50%低于eff3标准水平的电机生产,2006年以后不再生产。

我国也于2002年8月正式实施《中小型三相异步电动机能效限定值及节能评定值》的国标(gb18163-2002)。

因此借着节能的规划和“以冷代热”的法令,应该大力推广y3新系列,使之成为我国低压三相异步电动机的主导产品,且新一轮的派生系列产品也应在y3新系列上展开。

计算机控制技术和现代控制理论应用与交流调速系统后为其发展创造了更加有利的条件。

使交流调速系统成为当前发展和研究的重点。

采用微机控制后用软件实现矢量控制算法。

使硬件电路规范化。

从而降低了成本,提高了可靠性。

而且还有可能进一步实现更复杂的动力。

交流传动正逐步取代支流传动而成为机电传动的主流。

2.5 三相异步电机工作的基本原理2.5.1 异步电动机的等效电路异步电动机的转子能量是通过电磁感应而得来的。

定子和转子之间在电路上没有任何联系,其电路可用图2.1来表示。

图2.1异步电动机的定、转子图图2.1中:1.U ——定子的相电压; 1I.——定子的相电流;11 、 x r ——定子每相绕组的电阻和漏抗; s E 2、S I 2、S X 2分别是转子电路产生的电动势、电流、漏电抗;1.E ——每相定子绕组反电动势,它是定子绕组切割旋转磁场而产生的。

相关文档
最新文档