初中数学_概率与统计题知识点汇总_中考
初中数学概率与统计知识点总结与归纳

初中数学概率与统计知识点总结与归纳在初中数学中,概率与统计是一个重要的知识领域,它涉及到我们生活中的各种随机事件和数据处理。
通过学习概率与统计,我们可以更好地理解和分析数据,做出准确的推断和预测。
下面将对初中数学中的概率与统计知识点进行总结与归纳。
一、概率1. 概率的基本概念概率是指某个事件发生的可能性大小,通常用一个介于0和1之间的数来表示。
0表示不可能事件,1表示必然事件。
2. 事件的互斥与独立性互斥事件是指两个事件不能同时发生,独立事件是指两个事件的发生与否相互不影响。
互斥事件的概率相加等于总事件的概率。
3. 事件的可能性事件的可能性等于有利结果数目除以总结果数目,通常用分数或百分比表示。
4. 抽取样本的概率当从一个有限的样本空间中进行抽样时,抽取每个样本的概率相等。
可以通过计算有利结果数目与总结果数目之比来求得概率。
5. 随机事件的概率计算通过数学方法和实验方法,可以计算复杂事件的概率。
对于简单事件,可以通过计数的方法来计算。
6. 事件的补事件的概率事件的补事件是指与其对立的事件,两个事件的概率相加等于1。
7. 代数运算通过代数运算,可以对事件的概率进行加法和乘法运算。
加法运算用于求两个事件中至少发生一个的概率,乘法运算用于求两个事件都发生的概率。
二、统计1. 数据的收集与整理统计学中的数据可以通过调查、实验或观察获得。
收集到的数据需要进行整理,包括去除异常值和冗余数据。
2. 数据的分布形式数据可以分为定量数据和定性数据。
定量数据可以进行精确计量,如身高、体重等,而定性数据是非数值性的,如性别、颜色等。
数据分布形式有离散型和连续型两种。
3. 数据的图表表示统计学中常用的图表包括条形图、折线图、饼图和散点图。
这些图表可以直观地展示数据的特征和规律。
4. 数据的中心趋势通过求数据的平均值、中位数和众数等可以了解数据的中心趋势。
平均值是全部数据的总和除以数据数量,中位数是将数据按大小排序后居中位置的数值,众数是出现次数最多的数值。
初中数学概率与统计知识点归纳

初中数学概率与统计知识点归纳在初中数学学习的过程中,概率与统计是一个重要的知识点。
概率与统计涉及到我们日常生活中的各种事件和数据分析,不仅在数学课堂中有所应用,而且在我们的日常生活中也能体现出它的重要性。
本文将对初中数学中概率与统计的知识点进行归纳和总结。
1. 概率概率是描述事件发生可能性的数值。
在初中数学中,概率常常与事件发生的可能性相关联。
在概率的计算中,我们常常会遇到以下几个概念:(1) 随机事件:指从某个特定的结果集合中产生一个或者多个结果。
(2) 必然事件:指在某种情况下一定会发生的事件,概率为1。
(3) 不可能事件:指在某种情况下一定不会发生的事件,概率为0。
(4) 事件的互斥与独立:两个或多个事件不能同时发生的情况下,称其为互斥事件;两个或多个事件的结果互不影响的情况下,称其为独立事件。
2. 统计统计是根据事实,通过收集、整理、分析和解释数据来获取有关问题的结论的方法。
在初中数学中,我们常常会遇到以下几个统计知识点:(1) 数据的收集与整理:通过调查问卷、实验数据等收集原始数据,并对数据进行整理和分类。
(2) 频率和频数:频率指某个数值出现的次数,频数指某个数值出现的频率。
(3) 统计图表:通过柱状图、折线图、饼图等不同的图表形式来呈现数据。
(4) 平均数:平均数是数值数据集中的一个重要统计量,可以用来表示数值的集中程度。
3. 概率与统计的应用概率与统计不仅仅是学习中的一门知识,它也常常应用于我们日常生活中的各个方面。
以下是概率与统计的一些常见应用:(1) 调查问卷与意见统计:在进行市场调查或者社会调查时,通过收集和分析问卷数据,得到有效的统计结果。
(2) 运动比赛中的胜负预测:通过分析球队的历史战绩、球员的表现等数据来预测比赛的结果。
(3) 投资与风险管理:在投资决策中,通过概率与统计的分析,可以帮助我们评估投资的风险,并做出合理的投资决策。
(4) 交通流量与道路规划:通过对交通流量数据的分析,可以调整道路规划和交通信号灯的设置,提高交通效率。
初三下学期数学知识点总结归纳

初三下学期数学知识点总结归纳数学知识是学生在初中阶段必须掌握的重要内容之一,对于初三下学期的数学知识点,下面将进行详细总结和归纳。
着重介绍了代数方面的知识、几何方面的知识以及概率与统计的知识。
一、代数知识点总结归纳1. 方程与不等式初三下学期的代数部分主要涉及到方程与不等式的解题。
在解方程方面,主要包括一元一次方程、一元二次方程、一元二次不等式等等。
在解题过程中,可利用等式性质、加减消去法、配方法等多种解法,要熟练掌握这些解题方法,并灵活运用。
2. 函数初三下学期的数学中,介绍了函数的概念、函数的图像、函数的性质、函数的运算等知识点。
要熟悉各类函数的图像特征、性质,了解函数之间的关系,并能够根据函数的表达式进行函数的运算。
3. 图形的平移与旋转在初三下学期,图形的平移与旋转是代数部分的重点内容。
学生需要学会根据不同的规律进行图形的平移与旋转操作,并理解图形变化后的性质。
二、几何知识点总结归纳1. 三角形三角形是初中数学中的一个重要图形,初三下学期的几何部分中,主要讲解了三角形的性质、三角形的面积、三角形的相似关系等知识点。
学生需要掌握三角形的各类性质,并能够根据所给条件进行分类与判断。
2. 平行线与比例在几何部分,学生需要熟练掌握平行线的性质、平行线的判定方法以及平行线与比例的关系。
这些内容是解决几何问题的重要基础知识。
3. 空间几何空间几何是初三下学期的重点内容之一。
涉及到空间几何的主要内容有直线与平面的关系、多面体的表面积和体积计算等等。
学生要熟悉这些内容,并能够运用在实际问题中。
三、概率与统计知识点总结归纳1. 事件与概率学生需要掌握事件的概念与概率的计算方法。
要理解事件的独立性、互斥性以及事件发生的可能性大小。
2. 统计统计是初三下学期概率与统计部分的重要内容之一。
学生需要了解频率分布表、频率直方图、折线图等统计图的制作与分析方法,能够从图表中获取有关数据的信息。
根据初三下学期的数学课程内容,代数知识点、几何知识点以及概率与统计知识点是学生需要重点掌握和理解的内容。
教学备课初中数学中的概率与统计知识点

教学备课初中数学中的概率与统计知识点概率和统计是初中数学中重要且有趣的内容,它们在日常生活中有广泛的应用。
作为数学教师,备课时需要系统地总结和准备这些知识点,以保证教学的连贯性和深入性。
本文将介绍初中数学中的概率与统计知识点,并提供备课时的参考建议。
一、概率知识点1.随机事件与样本空间随机事件指某个试验的结果,样本空间是所有可能结果的集合。
备课时应明确随机事件和样本空间的概念,引导学生理解概率的概念。
2.事件的概率事件的概率从频率的角度解释,是该事件出现的可能性大小。
备课时可以通过实例、游戏等方式让学生感受事件概率的不同,培养他们的数学直觉。
3.概率的计算备课时应系统总结概率的计算方法,如等可能事件的概率计算、互斥事件、相互独立事件等。
还可以引入二项分布、多项式分布等概率分布的概念,培养学生的抽象思维。
4.抽样与抽样误差抽样是从总体中选取一部分样本进行研究,并推断总体特征的过程。
备课时可以通过实例让学生理解抽样的目的和方法,以及抽样误差的概念和影响因素。
二、统计知识点1.数据收集与整理数据的收集与整理是统计学中的重要环节。
备课时可以通过学生调查、实验等方式让学生参与数据收集,并教授数据整理的基本方法,如制表、画图等。
2.数据的分析与展示备课时应指导学生掌握数据的分析与展示方法,如频数分布表、频数分布图、折线图、柱状图、饼状图等。
还可以教授中心与离散趋势的测度,如平均数、中位数、众数、极差、标准差等。
3.统计推断统计推断是根据样本推断总体的方法。
备课时应教授参数估计、假设检验等基本概念和方法,引导学生通过实例进行问题分析和解决。
4.统计与社会备课时可以结合社会问题,让学生理解统计在各个领域的应用,如人口统计、经济统计、医学统计等。
通过这种方式,可以提高学生对统计的兴趣与实际运用能力。
结语备课初中数学中的概率与统计知识点需要清晰的逻辑结构和系统的教学方法。
教师可以根据教材内容,合理安排课时和课堂活动,开展多样化的教学实践,提高学生的学习效果和兴趣。
初中数学概率与统计知识点归纳

初中数学概率与统计知识点归纳概率和统计是数学领域中非常重要的分支,它们与现实生活密切相关,能够帮助我们更好地理解和解析事件发生的规律。
在初中数学教学中,概率和统计也是重要的内容。
下面将对初中数学中的概率和统计知识点进行归纳和总结。
一、概率1.概念和基本概率计算概率是研究随机现象的数学工具,是事件发生可能性大小的度量。
在初中阶段,学生需要掌握事件的可能性计算方法。
对于事件A发生的概率记作P(A),其计算公式为:P(A) = A的可能性数量 ÷总可能性数量在简单情况下,通过列举样本空间和事件发生的样本点就可以计算概率,例如,从一副扑克牌中抽取一张牌,求抽到红心的概率。
2.加法原理加法原理是计算多个事件并的概率的方法。
如果事件A和事件B互斥(即两个事件不可能同时发生),那么事件A和事件B的并的概率等于事件A的概率加上事件B的概率。
P(A∪B) = P(A) + P(B)例如,从一副扑克牌中抽一张牌,求抽到红心或方片的概率。
3.乘法原理乘法原理是计算多个事件交的概率的方法。
如果事件A和事件B是相互独立的(即一个事件的发生不影响另一个事件的发生),那么事件A和事件B的交的概率等于事件A的概率乘以事件B的概率。
P(A∩B) = P(A) × P(B)例如,从一副扑克牌中抽两张牌,求第一张牌是红心的概率,第二张牌是方片的概率。
4.有关性质和应用学生需要了解概率的一些基本性质和应用,例如:概率的范围在0到1之间,且概率为0的事件不会发生;概率可以用来预测事件的可能性大小;利用概率可以解决实际问题,如排列组合、生日悖论等。
二、统计1.数据收集与整理统计是收集、整理、分析和解释数据的方法和过程。
对于初中生而言,学会合理收集和整理数据是非常重要的。
收集数据可以通过实地观察、调查问卷、抽样等方式进行。
整理数据应注意选择适当的统计图表,如表格、条形图、折线图等。
2.频数和频率频数是指某项数据出现的次数,频率是指某项数据出现的次数与总数据量的比值。
初中数学概率与统计知识点归纳

初中数学概率与统计知识点归纳概率与统计是数学中的一个重要分支,涉及到众多的知识点和概念。
初中阶段是学习概率与统计的起点,对于学生来说,了解并掌握这些知识点是非常关键的。
一、概率的基本概念和性质1. 试验与事件:试验是一种具有确定结果的随机现象,而事件是试验的结果的一个子集。
例如,掷骰子是一个试验,出现点数为2的事件是一个事件。
2. 基本事件与复合事件:基本事件是试验的最简单的结果,而复合事件是由多个基本事件组成的。
例如,掷两个骰子,出现点数之和为8的事件是一个复合事件。
3. 概率的定义和性质:概率是指某个事件发生的可能性。
概率的取值范围是0到1之间,概率为0表示不可能事件,概率为1表示必然事件。
概率的性质包括互斥事件的概率和对立事件的概率。
二、概率的计算方法1. 经典概型计算:对于等可能发生的事件,可以通过计算事件发生的可能性与总的可能性之商来求解概率。
例如,抽一张红心牌的概率为4/52。
2. 相对频率计算:通过大量的实验数据,计算事件发生的频率来估计概率。
例如,抛一枚硬币,计算出正面朝上的频率来近似估计概率。
3. 理论概率计算:通过已知的概率关系和定理,计算复杂事件的概率。
例如,两个骰子之和为5的概率可以通过列举所有可能结果并计算符合要求的结果的概率来求解。
三、统计的基本概念和方法1. 统计调查和数据收集:统计是对一定范围内的事物进行调查和数据收集的过程。
在统计调查中,样本的选择和数据的收集非常重要,要保证样本的代表性和数据的真实性。
2. 数据的整理和表达:对收集到的数据进行整理归纳,可以使用频数表、频率表、直方图等形式进行数据的表达和展示。
3. 统计指标和描述性统计:统计指标是对数据进行度量和刻画的指标,包括平均数、中位数、众数、极差等。
描述性统计是通过统计指标来描述和分析数据的特征和规律。
四、概率与统计的应用1. 概率的应用:概率在日常生活中有很多应用,例如抽奖、赌博等。
在科学研究和工程领域,概率也有着广泛的应用,例如风险评估、质量控制等。
初中数学概率与统计的应用知识点总结

初中数学概率与统计的应用知识点总结概率与统计是数学中非常重要的分支,广泛应用于现实生活中的各个领域。
初中阶段的学习主要涉及了概率与统计的基本概念、计算原则以及应用技巧。
本文将对初中数学中涉及的概率与统计的知识点进行总结。
一、概率概率是描述事件发生可能性的数值,常用的计算方法有两种:相对频率法和几何法。
1.1 相对频率法相对频率法是通过实验或统计数据来计算概率。
当事件发生的次数远大于实验进行的次数时,事件的概率可以近似于实验中该事件发生的频率。
1.2 几何法几何法是通过几何图形来计算概率。
对于各种几何图形,我们可以根据其特定的性质来计算概率,例如正方形、矩形、圆等。
二、统计统计是通过数据的收集、整理、处理和分析,来描述和研究事物的数量关系、规律性和变异性等问题。
初中阶段主要学习了两种统计方法:频数统计和频率统计。
2.1 频数统计频数统计是指统计某个数据项在一组数据中出现的次数。
通过计算频数,我们可以得到各个数据项的出现频率,并通过图表进行直观展示。
2.2 频率统计频率统计是指统计某个数据项在一组数据中出现的频率,即该数据项发生的相对次数。
通过计算频率,我们可以更直观地观察到数据项之间的分布情况。
三、概率与统计的应用概率与统计的知识在现实生活和各个学科中广泛应用,以下是一些常见的应用。
3.1 事件的概率计算在日常生活中,我们经常需要计算事件的概率。
比如,掷一枚硬币正面朝上的概率是多少?抽一张扑克牌为红心的概率是多少?通过概率的计算,我们可以更加准确地预测事件的发生概率。
3.2 调查与统计通过对一定范围的人群或样本的调查与统计,我们可以获得一定的信息来做决策或者研究。
比如,通过对学生的身高进行调查与统计,我们可以得到学生身高的平均值、中位数等信息,从而了解学生身高的分布情况。
3.3 随机事件模拟在某些情况下,我们无法通过实验直接观察到事件的概率,这时候可以通过随机事件模拟来近似估计概率。
比如,通过随机模拟抛一枚硬币的结果,我们可以估计出硬币正面朝上的概率。
中考复习初中数学概率与统计复习重点整理

中考复习初中数学概率与统计复习重点整理概率与统计是初中数学的一个重要分支,也是中考数学考试中的一大重点内容。
复习概率与统计不仅要熟悉基本概念和公式,还要能够灵活运用,解决实际问题。
下面是中考复习初中数学概率与统计的重点内容整理。
一、概率1. 基本概率公式基本概率公式为:P(A) = 事件A的可能性/总的可能性其中,事件A的可能性是指事件A发生的次数或数目,总的可能性是指所有可能事件发生的次数或数目。
2. 事件间的关系- 互斥事件:两个事件不能同时发生。
- 互逆事件:事件A发生的概率与事件A不发生的概率之和为1。
- 独立事件:事件A的发生与事件B的发生没有关系。
3. 概率的应用- 抽样:从一大群体中取出一小部分进行调查,通过样本推断总体特征。
- 排列与组合:计算不同元素的排列和组合个数。
- 条件概率:在已知其他事件发生的条件下,某个事件发生的概率。
二、统计1. 统计调查统计调查是通过对一定数量的个体进行观察和测量,并对结果进行整理与分析,得出总体特征的方法。
2. 数据的收集与整理- 原始数据:未经处理的数据。
- 频数与频率:频数是指每个数值出现的次数,频率是指频数与总数的比值。
- 统计表与统计图:用于展示统计数据的表格和图形。
3. 数据的分析与应用- 平均数:一组数的算术平均值,用于表现数据的集中趋势。
- 中位数:将一组数据从小到大排列,位于中间的数据。
- 众数:出现频率最高的数值。
- 极差:一组数的最大值与最小值的差别。
4. 直方图与折线图- 直方图:用于表示连续数据的统计图,横轴表示分组区间,纵轴表示频率或频数。
- 折线图:用于表示离散数据的统计图,横轴表示数据类别,纵轴表示频率或频数。
总结:中考复习初中数学概率与统计重点内容主要包括概率的基本概念与公式、事件间的关系、概率的应用,以及统计的统计调查、数据的收集与整理、数据的分析与应用,以及直方图与折线图的应用。
熟练掌握这些内容,能够解决与概率与统计相关的实际问题,对应试有很大帮助。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
中考数学统计与概率试题汇编一、选择题1.(福建福州4分)从1,2,﹣3三个数中,随机抽取两个数相乘,积是正数的概率是A、0B、13C、23D、12.(福建泉州3分)下列事件为必然事件的是A、打开电视机,它正在播广告B、抛掷一枚硬币,一定正面朝上C、投掷一枚普通的正方体骰子,掷得的点数小于7D、某彩票的中奖机会是1%,买1张一定不会中奖3.(福建漳州3分)下列事件中,属于必然事件的是A.打开电视机,它正在播广告B.打开数学书,恰好翻到第50页C.抛掷一枚均匀的硬币,恰好正面朝上D.一天有24小时【答案】D。
【考点】必然事件。
4.(福建漳州3分)九年级一班5名女生进行体育测试,她们的成绩分别为70,80,85,75,85(单位:分),这次测试成绩的众数和中位数分别是A.79,85 B.80,79 C.85,80 D.85,85【答案】C。
【考点】众数,中位数。
5.(福建三明4分)有5张形状、大小、质地均相同的卡片,背面完全相同,正面分别印有等边三角形、平行四边形、菱形、等腰梯形和圆五种不同的图案.将这5张卡片洗匀后正面朝下放在桌面上,从中随机抽出一张,抽出的卡片正面图案是中心对称图形的概率为A.15B.25C.35D.45【答案】C 。
【考点】概率,中心对称图形。
6.(福建厦门3分)下列事件中,必然事件是A 、掷一枚普通的正方体骰子,骰子停止后朝上的点数是1B 、掷一枚普通的正方体骰子,骰子停止后朝上的点数是偶数C 、抛掷一枚普通的硬币,掷得的结果不是正面就是反面D 、从装有99个红球和1个白球的布袋中随机取出一个球,这个球是红球 【答案】C 。
【考点】必然事件。
7.(福建龙岩4分)数名射击运动员第一轮比赛成绩如下表所示;则他们本轮比赛的平均成绩是A .7.8环B .7.9环 C. 8.l 环 D .8.2环【答案】C 。
【考点】加权平均数。
8.(福建南平4分)下列调查中,适宜采用全面调查方式的是 A .了解南平市的空气质量情况 B .了解闽江流域的水污染情况 C .了解南平市居民的环保意识 D .了解全班同学每周体育锻炼的时间【答案】D 。
【考点】全面调查与抽样调查。
9.(福建南平4分)下列说法错误的是 A .必然事件发生的概率为1 B .不确定事件发生的概率为0.5 C .不可能事件发生的概率为0 D .随机事件发生的概率介于0和1之间【答案】B 。
【考点】概率的意义。
10.(福建宁德4分)“a 是实数,()012≥-a ”这一事件是 .A.必然事件B.不确定事件C.不可能事件D.随机事件【答案】A。
【考点】必然事件。
二、填空题1. (福建福州4分)已知地球表面陆地面积与海洋面积的比约为3:7.如果宇宙中飞来一块陨石落在地球上,则落在陆地上的概率是▲ .【答案】310。
【考点】几何概率。
2.(福建漳州4分)口袋中有2个红球和3个白球,每个球除颜色外完全相同,从口袋中随机摸出一个红球的概率是_ ▲ .【答案】2 5。
【考点】概率。
3.(福建三明4分)甲、乙两个参加某市组织的省“农运会”铅球项目选拔赛,各投掷6次,记录成绩,计算平均数和方差的结果为:-x甲=13.5m,-x乙=13.5m,S2甲=0.55,S2乙=0.50,则成绩较稳定的是▲ (填“甲”或“乙”).【答案】乙。
【考点】方差。
4.(福建厦门4分)某年6月上旬,厦门市最高气温如下表所示:日期 1 2 3 4 5 6 7 8 9 10 最高气温(℃)30 28 30 32 34 31 27 32 33 30 那么,这些日最高气温的众数为▲ ℃.【答案】30。
【考点】众数。
【5.(福建龙岩3分)一组数据10,14,20,24.19,1 6的极差是▲ 。
【答案】14。
【考点】极差。
6.(福建龙岩3分)袋子中有3个红球和6个白球,这些球除颇色外均完全相同,则从袋子中随机摸出一个球是白球的概率是▲ ,【答案】23。
【考点】概率。
7.(福建莆田4分)数据1 2 1 2x--,,,,的平均数是1,则这组数据的中位数是▲ 。
【答案】1。
【考点】中位数,算术平均数。
8.(福建南平3分)抛掷一枚质地均匀的硬币两次,正面都朝上的概率是_ ▲ .【答案】1 4。
【考点】列表法或树状图法,概率。
9.(福建南平3分)某次跳绳比赛中,统计甲、乙两班学生每分钟跳绳的成绩(单位:次)情况如下表:班级参加人数平均次数中位数方差甲45 135 149 180乙45 135 151 130 下列三个命题:(1)甲班平均成绩低于乙班平均成绩;(2)甲班成绩的波动比乙班成绩的波动大;(3)甲班成绩优秀人数少于乙班成绩优秀人数(跳绳次数≥150次为优秀)其中正确的命题是_ ▲ .(只填序号)【答案】②③。
【考点】算术平均数,方差,中位数。
10.(福建宁德3分)甲、乙俩射击运动员进行10次射击,甲的成绩是7,7,8,9,8,9,10,9,9,9,乙的成绩如图环710所示.则甲、乙射击成绩的方差之间关系是甲2S▲ 乙2S(填“<”,“=”,“>”).【答案】<。
三、解答题1.(福建福州10分)在结束了380课时初中阶段数学内容的教学后,唐老师计划安排60课时用于总复习,根据数学内容所占课时比例,绘制如下统计图表(图1~图3),请根据图表提供的信息,回答下列问题:(1)图1中“统计与概率”所在扇形的圆心角为度;(2)图2、3中的a= ,b=;(3)在60课时的总复习中,唐老师应安排多少课时复习“数与代数”内容?【答案】解:(1)36。
(2)60; 14。
(3)依题意,得45%×60=27。
答:唐老师应安排27课时复习“数与代数”内容。
【考点】扇形统计图,统计表,条形统计图,频数、频率和总量的关系。
【(3)根据频数、频率和总量的关系用60乘以45%即可。
2.(福建泉州9分)四张小卡片上分别写有数字1、2、3、4.它们除数字外没有任何区别,现将它们放在盒子里搅匀.(1)随机地从盒子里抽取一张,求抽到数字2的概率;(2)随机地从盒子里抽取一张.不放回再抽取第二张.请你用画树状图或列表的方法表示所有等可能的结果,并求抽到的数字之和为5的概率. 【答案】解:(1)P (抽到数字2)= 14。
(2)画树状图:从图可知,两次抽取小卡片抽到的数字之和共有12种等可能的结果,其中抽到的数字之和为5的有4种,∴P(抽到的数字之和为5)=41123。
【考点】列表法或树状图法,概率。
3.(福建泉州9分)心理健康是一个人健康的重要标志之一.为了解学生对心理健康知识的掌握程度,某校从800名在校学生中,随机抽取200名进行问卷调查,并按“优秀”、“良好”、“一般”、“较差”四个等级统计,绘制成如下的频数分布表和频数分布直方图.请根据图表提供的信息,解答下列问题:(1)求频数分布表中a 、b 、c 的值.并补全频数分布直方图;(2)请你估计该校学生对心理健康知识掌握程度达到“优秀”的总人数.【答案】解:(1)∵抽样的总人数为60÷0.3=200,∴a =100÷200=0.5;b =200×0.15=30;c =200×0.05=10。
根据较差的频数为10补全频数分布直方图:程度 频数 频率 优秀 60 0.3良好 100a一般 b0.15 较差c0.05(2)∵800×0.3=240,∴估计该校学生对心理健康知识掌握程度达到“优秀”的总人数为240人。
【考点】频数(率)分布表,频数分布直方图,频数、频率和总量的关系,用样本估计总体。
4.(福建漳州8分)漳州市某中学对全校学生进行文明礼仪知识测试,为了解测试结果,随机抽取部分学生的成绩进行分析,将成绩分为三个等级:不合格、一般、优秀,并绘制成如下两幅统计图(不完整).请你根据图中所给的信息解答下列问题:(1)请将以上两幅统计图补充完整;(2)若“一般”和“优秀”均被视为达标成绩,则该校被抽取的学生中有_ ▲ 人达标; (3)若该校学生有1200人,请你估计此次测试中,全校达标的学生有多少人? 【答案】解:(1)将两幅统计图补充完整:优秀 50%一般______不合格 20% 1224 36 48 60 不合格 一般优秀72 成绩等级人数(2)96.(3)1200×(50%+30%)=960(人)答:估计全校达标的学生有960人。
【考点】扇形统计图,条形统计图,频数、频率和总量的关系,用样本估计总体。
5.(福建三明10分)某校为庆祝中国共产党90周年,组织全校1800名学生进行党史知识竞赛.为了解本次知识竞赛成绩的分布情况,从中随机抽取了部分学生的成绩进行统计分析,得到如下统计表:根据统计表提供的信息,回答下列问题:(1)a= ,b= ,c= ;(2)上述学生成绩的中位数落在组范围内;(3)如果用扇形统计图表示这次抽样成绩,那么成绩在89.5~100.5范围内的扇形的圆心角为度;(4)若竞赛成绩80分(含80分)以上的为优秀,请你估计该校本次竞赛成绩优秀的学生有人.【答案】解:(1)0.2,24,60。
(2)79.5~89.5。
(3)126°。
(4)1350.【考点】频数(率)分布表,频数、频率和总量的关系,中位数,扇形统计图的圆心角,用样本估计总体。
6.(福建厦门8分)甲袋中有三个红球,分别标有数字1、2、3;乙袋中有三个白球,分别标有数字2、3、4.这些球除颜色和数字外完全相同.小明先从甲袋中随机摸出一个红球,再从乙袋中随机摸出一个白球.请画出树状图,并求摸得的两球数字相同的概率.【答案】解:画树状图:图中可见,共有9种等可能的结果,数字相同的有2种,∴P(两个球上的数字相同)=29。
【考点】树状图法,概率。
7.(福建龙岩10分)为庆祝建党90周年,某校团委计划在“七·一”前夕举行“唱响红歌”班级歌咏比赛,要确定一首喜欢人数最多的歌曲为每班必唱歌曲。
为此提供代号为A、B、C、D四首备选曲目让学生选择,经过抽样调查,并将采集的数据绘制如下两幅不完整的统计图。
请根据图①,图②所提供的信息,解答下列问题:(1)本次抽样调查的学生有_________名,其中选择曲目代号为A的学生占抽样总数的百分比是________%;(2)请将图②补充完整;(3)若该校共有1200名学生,根据抽样调查的结果估计全校共有多少名学生选择此必唱歌曲?(要有解答过程)【答案】解:(1)180;20%。
(2)∵选C的有180-36-30-42=72(人),∴据此补图:(3)∵喜欢人数最多的歌曲为每班必唱歌曲,代号为C的曲目喜欢人数最多,为72人,∴喜欢C曲目的人数占抽样人数的百分比为72÷180=40%。
∴估计全校选择此必唱歌曲共有:1200×40%=480(名)。