初中数学中考压轴题30道专练(40页)

合集下载

中考数学压轴题100题精选含答案

中考数学压轴题100题精选含答案

中考数学压轴题100题精选【含答案】2中考数学压轴题100题精选【含答案】【001】如图,已知抛物线2(1)y a x =-+a ≠0)经过点(2)A -,0,抛物线的顶点为D ,过O 作射线OM AD ∥.过顶点D 平行于x 轴的直线交射线OM 于点C ,B 在x 轴正半轴上,连结BC .(1)求该抛物线的解析式;(2)若动点P 从点O 出发,以每秒1个长度单位的速度沿射线OM 运动,设点P 运动的时间为()t s .问当t 为何值时,四边形DAOP 分别为平行四边形?直角梯形?等腰梯形?(3)若OC OB =,动点P 和动点Q 分别从点O 和点B 同时出发,分别以每秒1个长度单位和2个长度单位的速度沿OC 和BO 运动,当其中一个点停止运动时另一个点也随之停止运动.设它们的运动的时间为t ()s ,连接PQ ,当t 为何值时,四边形BCPQ 的面积最小?并求出最小值及此时PQ 的长.3【002】如图16,在Rt △ABC 中,∠C=90°,AC = 3,AB = 5.点P 从点C 出发沿CA 以每秒1个单位长的速度向点A 匀速运动,来的速度沿AC 返回;点Q 从点A 秒1个单位长的速度向点B Q 的运动,DE 保持垂直平分PQ ,交折线QB-BC-CP 于点E .点P 、同时出发,当点Q 到达点B 时停止运动,点P 也随之停止.设点P 、Q 运动的时间是t 秒(t >0).(1)当t = 2时,AP = ,点Q 到AC 的距离是 ;(2)在点P 从C 向A 运动的过程中,求△APQ 的面积S 与t 的函数关系式;(不必写出t 的取值范围) (3)在点E 从B 向C 运动的过程中,四边形QBED 能否成为直角梯形?若能,求t 的值.若不能,请说明理由;(4)当DE 经过点C 时,请直接写出t 的值. P D 图【003】如图,在平面直角坐标系中,已知矩形ABCD 的三个顶点B(4,0)、C(8,0)、D(8,8).抛物线y=ax2+bx过A、C两点.(1)直接写出点A的坐标,并求出抛物线的解析式;(2)动点P从点A出发.沿线段AB向终点B 运动,同时点Q从点C出发,沿线段CD向终点D运动.速度均为每秒1个单位长度,运动时间为t秒.过点P作PE⊥AB交AC于点E,①过点E作EF⊥AD于点F,交抛物线于点G.当t为何值时,线段EG最长?②连接EQ.在点P、Q运动的过程中,判断有几个时刻使得△CEQ是等腰三角形?请直接写出相应的t值。

中考数学压轴题100题精选及答案

中考数学压轴题100题精选及答案

中考数学压轴题100题精选【001】如图,已知抛物线2(1)y a x =-+a ≠0)经过点(2)A -,0,抛物线的顶点为D ,过O 作射线OM AD ∥.过顶点D 平行于x 轴的直线交射线OM 于点C ,B 在x 轴正半轴上,连结BC . (1)求该抛物线的解析式;(2)若动点P 从点O 出发,以每秒1个长度单位的速度沿射线OM 运动,设点P 运动的时间为()t s .问当t 为何值时,四边形DAOP 分别为平行四边形?直角梯形?等腰梯形? (3)若OC OB =,动点P 和动点Q 分别从点O 和点B 同时出发,分别以每秒1个长度单位和2个长度单位的速度沿OC 和BO 运动,当其中一个点停止运动时另一个点也随之停止运动.设它们的运动的时间为t ()s ,连接PQ ,当t 为何值时,四边形BCPQ 的面积最小?并求出最小值及此时PQ 的长.【C=90°,AC = 3,AB = 5.点P 从点C 出发沿CA 以每秒1个单位长的速度向点A 匀速运动,到达点A 后立刻以原来的速度沿AC 返回;点Q 从点A 出发沿AB 以每秒1个单位长的速度向点B 匀速运动.伴随着P 、Q 的运动,DE 保持垂直平分PQ ,且交PQ 于点D ,交折线QB-BC-CP 于点E .点P 、Q 同时出发,当点Q 到达点B 时停止运动,点P 也随之停止.设点P 、Q 运动的时间是t 秒(t >0). (1)当t = 2时,AP = ,点Q 到AC 的距离是 ; (2)在点P 从C 向A 运动的过程中,求△APQ 的面积S 与 t 的函数关系式;(不必写出t 的取值范围)(3)在点E 从B 向C 运动的过程中,四边形QBED 能否成 为直角梯形?若能,求t 的值.若不能,请说明理由; (4)当DE 经过点C 时,请直接写出t 的值.【003】如图,在平面直角坐标系中,已知矩形ABCD 的三个顶点B (4,0)、C (8,0)、D (8,8).抛物线y=ax2+bx 过A 、C 两点. (1)直接写出点A 的坐标,并求出抛物线的解析式;A P 图16(2)动点P 从点A 出发.沿线段AB 向终点B 运动,同时点Q 从点C 出发,沿线段CD 向终点D 运动.速度均为每秒1个单位长度,运动时间为t 秒.过点P 作PE ⊥AB 交AC 于点E ,①过点E 作EF ⊥AD 于点F ,交抛物线于点G .当t 为何值时,线段EG 最长? ②连接EQ .在点P 、Q 运动的过程中,判断有几个时刻使得△CEQ 是等腰三角形? 请直接写出相应的t 值。

中考数学压轴题(有答案)

中考数学压轴题(有答案)

- --中考初中数学压轴题精选〔有答案〕一.解答题〔共30小题〕1.〔2021•〕如图,以点P〔﹣1,0〕为圆心的圆,交x轴于B、C两点〔B在C的左侧〕,交y轴于A、D两点〔A 在D的下方〕,AD=2,将△ABC绕点P旋转180°,得到△MCB.〔1〕求B、C两点的坐标;〔2〕请在图中画出线段MB、MC,并判断四边形ACMB的形状〔不必证明〕,求出点M的坐标;〔3〕动直线l从与BM重合的位置开场绕点B顺时针旋转,到与BC重合时停顿,设直线l与CM交点为E,点Q为BE的中点,过点E作EG⊥BC于G,连接MQ、QG.请问在旋转过程中∠MQG的大小是否变化?假设不变,求出∠MQG 的度数;假设变化,请说明理由.2.〔2021•〕如图,l1⊥l2,⊙O与l1,l2都相切,⊙O的半径为2cm,矩形ABCD的边AD、AB分别与l1,l2重合,AB=4cm,AD=4cm,假设⊙O与矩形ABCD沿l1同时向右移动,⊙O的移动速度为3cm/s,矩形ABCD的移动速度为4cm/s,设移动时间为t〔s〕〔1〕如图①,连接OA、AC,那么∠OAC的度数为_________ °;〔2〕如图②,两个图形移动一段时间后,⊙O到达⊙O1的位置,矩形ABCD到达A1B1C1D1的位置,此时点O1,A1,C1恰好在同一直线上,求圆心O移动的距离〔即OO1的长〕;〔3〕在移动过程中,圆心O到矩形对角线AC所在直线的距离在不断变化,设该距离为d〔cm〕,当d<2时,求t 的取值围〔解答时可以利用备用图画出相关示意图〕.3.〔2021•〕如图,平面直角坐标系xOy中,一次函数y=﹣x+b〔b为常数,b>0〕的图象与x轴、y轴分别相交于点A、B,半径为4的⊙O与x轴正半轴相交于点C,与y轴相交于点D、E,点D在点E上方.〔1〕假设直线AB与有两个交点F、G.①求∠CFE的度数;②用含b的代数式表示FG2,并直接写出b的取值围;〔2〕设b≥5,在线段AB上是否存在点P,使∠CPE=45°?假设存在,请求出P点坐标;假设不存在,请说明理由.4.〔2021•〕如图1,在平行四边形ABCD中,AB=5,BC=8,cosB=,点P是边BC上的动点,以CP为半径的圆C 与边AD交于点E、F〔点F在点E的右侧〕,射线CE与射线BA交于点G.〔1〕当圆C经过点A时,求CP的长;〔2〕连接AP,当AP∥CG时,求弦EF的长;〔3〕当△AGE是等腰三角形时,求圆C的半径长.5.〔2021•〕在平面直角坐标系xOy中,点M〔,〕,以点M为圆心,OM长为半径作⊙M.使⊙M与直线OM 的另一交点为点B,与x轴,y轴的另一交点分别为点D,A〔如图〕,连接AM.点P是上的动点.〔1〕写出∠AMB的度数;〔2〕点Q在射线OP上,且OP•OQ=20,过点Q作QC垂直于直线OM,垂足为C,直线QC交x轴于点E.①当动点P与点B重合时,求点E的坐标;②连接QD,设点Q的纵坐标为t,△QOD的面积为S.求S与t的函数关系式及S的取值围.6.〔2021•〕阅读材料:如图1,在△AOB中,∠O=90°,OA=OB,点P在AB边上,PE⊥OA于点E,PF⊥OB于点F,那么PE+PF=OA.〔此结论不必证明,可直接应用〕〔1〕【理解与应用】如图2,正方形ABCD的边长为2,对角线AC,BD相交于点O,点P在AB边上,PE⊥OA于点E,PF⊥OB于点F,那么PE+PF的值为_________ .〔2〕【类比与推理】如图3,矩形ABCD的对角线AC,BD相交于点O,AB=4,AD=3,点P在AB边上,PE∥OB交AC于点E,PF∥OA 交BD于点F,求PE+PF的值;〔3〕【拓展与延伸】如图4,⊙O的半径为4,A,B,C,D是⊙O上的四点,过点C,D的切线CH,DG相交于点M,点P在弦AB上,PE∥BC交AC于点E,PF∥AD于点F,当∠ADG=∠BCH=30°时,PE+PF是否为定值?假设是,请求出这个定值;假设不是,请说明理由.7.〔2021•〕如图平面直角坐标系中,点O是坐标原点,矩形ABCO是顶点坐标分别为A〔3,0〕、B〔3,4〕、C〔0,4〕.点D在y轴上,且点D的坐标为〔0,﹣5〕,点P是直线AC上的一动点.〔1〕当点P运动到线段AC的中点时,求直线DP的解析式〔关系式〕;〔2〕当点P沿直线AC移动时,过点D、P的直线与x轴交于点M.问在x轴的正半轴上是否存在使△DOM与△ABC相似的点M?假设存在,请求出点M的坐标;假设不存在,请说明理由;〔3〕当点P沿直线AC移动时,以点P为圆心、R〔R>0〕为半径长画圆.得到的圆称为动圆P.假设设动圆P的半径长为,过点D作动圆P的两条切线与动圆P分别相切于点E、F.请探求在动圆P中是否存在面积最小的四边形DEPF?假设存在,请求出最小面积S的值;假设不存在,请说明理由.8.〔2021•〕在平面直角坐标系xOy中,O是坐标原点,以P〔1,1〕为圆心的⊙P与x轴,y轴分别相切于点M和点N,点F从点M出发,沿x轴正方向以每秒1个单位长度的速度运动,连接PF,过点PE⊥PF交y轴于点E,设点F运动的时间是t秒〔t>0〕.〔1〕假设点E在y轴的负半轴上〔如下图〕,求证:PE=PF;〔2〕在点F运动过程中,设OE=a,OF=b,试用含a的代数式表示b;〔3〕作点F关于点M的对称点F′,经过M、E和F′三点的抛物线的对称轴交x轴于点Q,连接QE.在点F运动过程中,是否存在某一时刻,使得以点Q、O、E为顶点的三角形与以点P、M、F为顶点的三角形相似?假设存在,请直接写出t的9.〔2021•〕问题探究〔1〕如图①,在矩形ABCD中,AB=3,BC=4,如果BC边上存在点P,使△APD为等腰三角形,那么请画出满足条件的一个等腰三角形△APD,并求出此时BP的长;〔2〕如图②,在△ABC中,∠ABC=60°,BC=12,AD是BC边上的高,E、F分别为边AB、AC的中点,当AD=6时,BC边上存在一点Q,使∠EQF=90°,求此时BQ的长;问题解决〔3〕有一山庄,它的平面图为如图③的五边形ABCDE,山庄保卫人员想在线段CD上选一点M安装监控装置,用来监视边AB,现只要使∠AMB大约为60°,就可以让监控装置的效果到达最正确,∠A=∠E=∠D=90°,AB=270m,AE=400m,ED=285m,CD=340m,问在线段CD上是否存在点M,使∠AMB=60°?假设存在,请求出符合条件的DM 的长,假设不存在,请说明理由.10.〔2021•〕如图,在⊙O的接△ABC中,∠ACB=90°,AC=2BC,过C作AB的垂线l交⊙O于另一点D,垂足为E.设P是上异于A,C的一个动点,射线AP交l于点F,连接PC与PD,PD交AB于点G.〔1〕求证:△PAC∽△PDF;〔2〕假设AB=5,=,求PD的长;〔3〕在点P运动过程中,设=x,tan∠AFD=y,求y与x之间的函数关系式.〔不要求写出x的取值围〕11.〔2021•〕木匠黄师傅用长AB=3,宽BC=2的矩形木板做一个尽可能大的圆形桌面,他设计了四种方案:方案一:直接锯一个半径最大的圆;方案二:圆心O1、O2分别在CD、AB上,半径分别是O1C、O2A,锯两个外切的半圆拼成一个圆;方案三:沿对角线AC将矩形锯成两个三角形,适当平移三角形并锯一个最大的圆;方案四:锯一块小矩形BCEF拼到矩形AFED下面,利用拼成的木板锯一个尽可能大的圆.〔1〕写出方案一中圆的半径;〔2〕通过计算说明方案二和方案三中,哪个圆的半径较大?〔3〕在方案四中,设CE=x〔0<x<1〕,圆的半径为y.①求y关于x的函数解析式;②当x取何值时圆的半径最大,最大半径为多少?并说明四种方案中哪一个圆形桌面的半径12.〔2021•〕如图,矩形ABCD的边AB=3cm,AD=4cm,点E从点A出发,沿射线AD移动,以CE为直径作圆O,点F为圆O与射线BD的公共点,连接EF、CF,过点E作EG⊥EF,EG与圆O相交于点G,连接CG.〔1〕试说明四边形EFCG是矩形;〔2〕当圆O与射线BD相切时,点E停顿移动,在点E移动的过程中,①矩形EFCG的面积是否存在最大值或最小值?假设存在,求出这个最大值或最小值;假设不存在,说明理由;②求点G移动路线的长.13.〔2021•东昌府区三模〕:如图,在△ABC中,AB=BC,D是AC中点,BE平分∠ABD交AC于点E,点O是AB上一点,⊙O过B、E两点,交BD于点G,交AB于点F.〔1〕求证:AC与⊙O相切;〔2〕当BD=6,sinC=时,求⊙O的半径.14.〔2021•模拟〕阅读材料:如图,△ABC中,AB=AC,P为底边BC上任意一点,点P到两腰的距离分别为r1,r2,腰上的高为h,连接AP,那么S△ABP+S△ACP=S△ABC,即:AB•r1+AC•r2=AB•h,∴r1+r2=h〔1〕理解与应用如果把“等腰三角形〞改成“等边三角形〞,那么P的位置可以由“在底边上任一点〞放宽为“在三角形任一点〞,即:边长为2的等边△ABC任意一点P到各边的距离分别为r 1,r2,r3,试证明:.〔2〕类比与推理边长为2的正方形任意一点到各边的距离的和等于_________ ;〔3〕拓展与延伸假设边长为2的正n边形A1A2…An部任意一点P到各边的距离为r1,r2,…r n,请问r1+r2+…r n是否为定值〔用含n的式子表示〕,如果是,请合理猜测出这个定值.15.〔2021•名校一模〕如图△ABC中∠A=90°,以AB为直径的⊙O交BC于D,E为AC边中点,求证:DE是⊙O的切线.16.〔2021•灌南县模拟〕如图,AB是⊙O的直径,AC是弦,∠ACD=∠AOC,AD⊥CD于点D.〔1〕求证:CD是⊙O的切线;〔2〕假设AB=10,AD=2,求AC的长.17.〔2021•普陀区二模〕如图,在等腰△ABC中,AB=AC=5,BC=6,点D为BC边上一动点〔不与点B重合〕,过D 作射线DE交AB边于E,使∠BDE=∠A,以D为圆心、DC的长为半径作⊙D.〔1〕设BD=x,AE=y,求y关于x的函数关系式,并写出定义域.〔2〕当⊙D与AB边相切时,求BD的长.〔3〕如果⊙E是以E为圆心,AE的长为半径的圆,那么当BD的长为多少时,⊙D与⊙E相切?18.〔2021•模拟〕如图,矩形ABCD的边AB=4,BC=3.一简易量角器放置在矩形ABCD,其零度线即半圆O的直径〔1〕当n=136时,α= _________ ,求出α与n的关系式;〔2〕在P点的运动过程中,线段EB与EP有怎样的数量关系,请予证明;〔3〕在P点的运动过程中,F点在直线CD上的位置随着α的变化而变化,当F点在线段CD上时、在CD的延长线上时、在DC的延长线上时,对应的α值分别是多少?〔参考数据:tan56.3°≈1.5〕〔4〕连接BP,在P点的运动过程中,是否存在△ABP与△CEF相似的情况?假设存在,求出此时n的值以及相应的EF的长;假设不存在,请说明理由.19.〔2021•一模〕如图,正方形ABCD的边长是8cm,以正方形的中心O为圆心,EF为直径的半圆切AB于M、切BC于N,C为BG的中点,AG交CD于H.P,Q同时从A出发,P以1cm/s的速度沿折线ADCG运动,Q以cm/s的速速沿线段AG方向运动,P,Q中有一点到达终点时,整个运动停顿.P,Q运动的时间记为t.〔1〕当t=4时,求证:△PEF≌△MEF;〔2〕当0≤t≤8时,试判断PQ与CD的位置关系;〔3〕当t>8时,是否存在t使得=?假设存在请求出所有t的值,假设不存在,请说明理由.20.〔2021•〕如图,点C是以AB为直径的⊙O上的一点,AD与过点C的切线互相垂直,垂足为点D.〔1〕求证:AC平分∠BAD;〔2〕假设CD=1,AC=,求⊙O的半径长.〔1〕求证:DP∥AB;〔2〕假设AC=6,BC=8,求线段PD的长.22.〔2021•〕如图,⊙O的直径AB=10,C、D是圆上的两点,且.设过点D的切线ED交AC的延长线于点F.连接OC交AD于点G.〔1〕求证:DF⊥AF.〔2〕求OG的长.23.〔2021•德阳〕如图,AB是⊙O直径,BC是⊙O的弦,弦ED⊥AB于点F,交BC于点G,过点C作⊙O的切线与ED的延长线交于点P.〔1〕求证:PC=PG;〔2〕点C在劣弧AD上运动时,其他条件不变,假设点G是BC的中点,试探究CG、BF、BO三者之间的数量关系,并写出证明过程;〔3〕在满足〔2〕的条件下,⊙O的半径为5,假设点O到BC的距离为时,求弦ED的长.24.〔2021•贺州〕:⊙O的直径为3,线段AC=4,直线AC和PM分别与⊙O相切于〔2〕求sin∠PMC的值.25.〔2021•〕,如图,直线MN交⊙O于A,B两点,AC是直径,AD平分∠CAM交⊙O于D,过D作DE⊥MN于E.〔1〕求证:DE是⊙O的切线;〔2〕假设DE=6cm,AE=3cm,求⊙O的半径.26.〔2021•〕如图,在△ABC中,∠BAC=90°,AB=AC,AB是⊙O的直径,⊙O交BC于点D,DE⊥AC于点E,BE 交⊙O于点F,连接AF,AF的延长线交DE于点P.〔1〕求证:DE是⊙O的切线;〔2〕求tan∠ABE的值;〔3〕假设OA=2,求线段AP的长.27.〔2021•〕如图,△ABC中,以AB为直径的⊙O交AC于点D,∠DBC=∠BAC.〔1〕求证:BC是⊙O的切线;〔2〕假设⊙O的半径为2,∠BAC=30°,求图中阴影局部的面积.28.〔2021•〕如图,在△ABC中,AB=AC,以AB为直径作半圆⊙O,交BC于点D,连接AD,过点D作DE⊥AC,垂足为点E,交AB的延长线于点F.〔1〕求证:EF是⊙0的切线.〔2〕如果⊙0的半径为5,sin∠ADE=,求BF的长.29.〔2021•〕如图,OC平分∠MON,点A在射线OC上,以点A为圆心,半径为2的⊙A与OM相切于点B,连接BA并延长交⊙A于点D,交ON于点E.〔1〕求证:ON是⊙A的切线;〔2〕假设∠MON=60°,求图中阴影局部的面积.〔结果保存π〕30.〔2021•〕如图,AB是⊙O的直径,∠B=∠CAD.〔1〕求证:AC是⊙O的切线;〔2〕假设点E是的中点,连接AE交BC于点F,当BD=5,CD=4时,求AF的值.参考答案与试题解析一.解答题〔共30小题〕1.〔2021•〕如图,以点P〔﹣1,0〕为圆心的圆,交x轴于B、C两点〔B在C的左侧〕,交y轴于A、D两点〔A 在D的下方〕,AD=2,将△ABC绕点P旋转180°,得到△MCB.〔1〕求B、C两点的坐标;〔2〕请在图中画出线段MB、MC,并判断四边形ACMB的形状〔不必证明〕,求出点M的坐标;〔3〕动直线l从与BM重合的位置开场绕点B顺时针旋转,到与BC重合时停顿,设直线l与CM交点为E,点Q为BE的中点,过点E作EG⊥BC于G,连接MQ、QG.请问在旋转过程中∠MQG的大小是否变化?假设不变,求出∠MQG的度数;假设变化,请说明理由.考点:圆的综合题.专题:压轴题.分析:〔1〕连接PA,运用垂径定理及勾股定理即可求出圆的半径,从而可以求出B、C两点的坐标.〔2〕由于圆P是中心对称图形,显然射线AP与圆P的交点就是所需画的点M,连接MB、MC即可;易证四边形ACMB是矩形;过点M作MH⊥BC,垂足为H,易证△MHP≌△AOP,从而求出MH、OH的长,进而得到点M的坐标.〔3〕易证点E、M、B、G在以点Q为圆心,QB为半径的圆上,从而得到∠MQG=2∠MBG.易得∠OCA=60°,从而得到∠MBG=60°,进而得到∠MQG=120°,所以∠MQG是定值.解答:解:〔1〕连接PA,如图1所示.∵PO⊥AD,∴AO=DO.∵AD=2,∴OA=.∵点P坐标为〔﹣1,0〕,∴OP=1.∴PA==2.∴BP=CP=2.∴B〔﹣3,0〕,C〔1,0〕.〔2〕连接AP,延长AP交⊙P于点M,连接MB、MC.如图2所示,线段MB、MC即为所求作.四边形ACMB是矩形.理由如下:∵△MCB由△ABC绕点P旋转180°所得,∴四边形ACMB是平行四边形.∵BC是⊙P的直径,∴∠CAB=90°.∴平行四边形ACMB是矩形.过点M作MH⊥BC,垂足为H,如图2所示.在△MHP和△AOP中,∵∠MHP=∠AOP,∠HPM=∠OPA,MP=AP,∴△MHP≌△AOP.∴MH=OA=,PH=PO=1.∴OH=2.∴点M的坐标为〔﹣2,〕.〔3〕在旋转过程中∠MQG的大小不变.∵四边形ACMB是矩形,∴∠BMC=90°.∵EG⊥BO,∴∠BGE=90°.∴∠BMC=∠BGE=90°.∵点Q是BE的中点,∴QM=QE=QB=QG.∴点E、M、B、G在以点Q为圆心,QB为半径的圆上,如图3所示.∴∠MQG=2∠MBG.∵∠COA=90°,OC=1,OA=,∴tan∠OCA==.∴∠OCA=60°.∴∠MBC=∠BCA=60°.∴∠MQG=120°.∴在旋转过程中∠MQG的大小不变,始终等于120°.点评:此题考察了垂径定理、勾股定理、全等三角形的判定与性质、矩形的判定与性质、圆周角定理、特殊角的三角函数、图形的旋转等知识,综合性比拟强.证明点E、M、B、G在以点Q为圆心,QB为半径的圆上是解决第三小题的关键.2.〔2021•〕如图,l1⊥l2,⊙O与l1,l2都相切,⊙O的半径为2cm,矩形ABCD的边AD、AB分别与l1,l2重合,AB=4cm,AD=4cm,假设⊙O与矩形ABCD沿l1同时向右移动,⊙O的移动速度为3cm/s,矩形ABCD的移动速度为4cm/s,设移动时间为t〔s〕〔1〕如图①,连接OA、AC,那么∠OAC的度数为105 °;〔2〕如图②,两个图形移动一段时间后,⊙O到达⊙O1的位置,矩形ABCD到达A1B1C1D1的位置,此时点O1,A1,C1恰好在同一直线上,求圆心O移动的距离〔即OO1的长〕;〔3〕在移动过程中,圆心O到矩形对角线AC所在直线的距离在不断变化,设该距离为d〔cm〕,当d<2时,求t 的取值围〔解答时可以利用备用图画出相关示意图〕.考点:圆的综合题.专题:几何综合题;压轴题.分析:〔1〕利用切线的性质以及锐角三角函数关系分别求出∠OAD=45°,∠DAC=60°,进而得出答案;〔2〕首先得出,∠C1A1D1=60°,再利用A1E=AA1﹣OO1﹣2=t﹣2,求出t的值,进而得出OO1=3t得出答案即可;〔3〕①当直线AC与⊙O第一次相切时,设移动时间为t1,②当直线AC与⊙O第二次相切时,设移动时间为t2,分别求出即可.解答:解:〔1〕∵l1⊥l2,⊙O与l1,l2都相切,∴∠OAD=45°,∵AB=4cm,AD=4cm,∴CD=4cm,∴tan∠DAC===,∴∠DAC=60°,∴∠OAC的度数为:∠OAD+∠DAC=105°,故答案为:105;〔2〕如图位置二,当O1,A1,C1恰好在同一直线上时,设⊙O1与l1的切点为E,连接O1E,可得O1E=2,O1E⊥l1,在Rt△A1D1C1中,∵A1D1=4,C1D1=4,∴tan∠C1A1D1=,∴∠C1A1D1=60°,在Rt△A1O1E中,∠O1A1E=∠C1A1D1=60°,∴A1E==,∵A1E=AA1﹣OO1﹣2=t﹣2,∴t﹣2=,∴t=+2,∴OO1=3t=2+6;〔3〕①当直线AC与⊙O第一次相切时,设移动时间为t1,如图,此时⊙O移动到⊙O2的位置,矩形ABCD移动到A2B2C2D2的位置,设⊙O2与直线l1,A2C2分别相切于点F,G,连接O2F,O2G,O2A2,∴O2F⊥l1,O2G⊥A2C2,由〔2〕得,∠C2A2D2=60°,∴∠GA2F=120°,∴∠O2A2F=60°,在Rt△A2O2F中,O2F=2,∴A2F=,∵OO2=3t1,AF=AA2+A2F=4t1+,∴4t1+﹣3t1=2,∴t1=2﹣,②当直线AC与⊙O第二次相切时,设移动时间为t2,记第一次相切时为位置一,点O1,A1,C1共线时位置二,第二次相切时为位置三,由题意知,从位置一到位置二所用时间与位置二到位置三所用时间相等,∴+2﹣〔2﹣〕=t2﹣〔+2〕,解得:t2=2+2,综上所述,当d<2时,t的取值围是:2﹣<t<2+2.点评:此题主要考察了切线的性质以及锐角三角函数关系等知识,利用分类讨论以及数形结合t的值是解题关键.3.〔2021•〕如图,平面直角坐标系xOy中,一次函数y=﹣x+b〔b为常数,b>0〕的图象与x轴、y轴分别相交于点A、B,半径为4的⊙O与x轴正半轴相交于点C,与y轴相交于点D、E,点D在点E上方.〔1〕假设直线AB与有两个交点F、G.①求∠CFE的度数;②用含b的代数式表示FG2,并直接写出b的取值围;〔2〕设b≥5,在线段AB上是否存在点P,使∠CPE=45°?假设存在,请求出P点坐标;假设不存在,请说明理由.考点:圆的综合题.专题:几何综合题;压轴题.分析:〔1〕连接CD,EA,利用同一条弦所对的圆周角相等求行∠CFE=45°,〔2〕作OM⊥AB点M,连接OF,利用两条直线垂直相交求出交点M的坐标,利用勾股定理求出FM2,再求出FG2,再根据式子写出b的围,〔3〕当b=5时,直线与圆相切,存在点P,使∠CPE=45°,再利用△APO∽△AOB和△AMP∽△AOB相似得出点P的坐标,再求出OP所在的直线解析式.解答:解:〔1〕①如图,∵∠COE=90°∴∠CFE=∠COE=45°,〔圆周角定理〕②方法一:如图,作OM⊥AB点M,连接OF,∵OM⊥AB,直线的函数式为:y=﹣x+b,∴OM所在的直线函数式为:y=x,∴交点M〔b,b〕∴OM2=〔b〕2+〔b〕2,∵OF=4,∴FM2=OF2﹣OM2=42﹣〔b〕2﹣〔b〕2,∵FM=FG,∴FG2=4FM2=4×[42﹣〔b〕2﹣〔b〕2]=64﹣b2=64×〔1﹣b2〕,∵直线AB与有两个交点F、G.∴4≤b<5,∴FG2=64×〔1﹣b2〕〔4≤b<5〕方法二:①如图,作OM⊥AB点M,连接OF,∵直线的函数式为:y=﹣x+b,∴B的坐标为〔0,b〕,A的坐标为〔b,0〕,∴AB==b,∴sin∠BAO===,∴sin∠MAO===,∴OM=b,∴在RT△OMF中,FM==∵FG=2FM,∴FG2=4FM2=4〔42﹣b2〕=64﹣﹣b2=64×〔1﹣b2〕,∵直线AB与有两个交点F、G.∴4≤b<5,∴FG2=64×〔1﹣b2〕〔4≤b<5〕〔2〕如图,当b=5时,直线与圆相切,∵在直角坐标系中,∠COE=90°,∴∠CPE=∠ODC=45°,∴存在点P,使∠CPE=45°,连接OP,∵P是切点,∴OP⊥AB,∴△APO∽△AOB,∴=,∵OP=r=4,OB=5,AO=,∴=即AP=,∵AB===,作PM⊥AO交AO于点M,设P的坐标为〔x,y〕,∵△AMP∽△AOB,∴=∴=,∴y=,∴x=OM===∴点P的坐标为〔,〕.点评:此题主要考察了圆与一次函数的知识,解题的关键是作出辅助线,利用三角形相似求出点P的坐标.4.〔2021•〕如图1,在平行四边形ABCD中,AB=5,BC=8,cosB=,点P是边BC上的动点,以CP为半径的圆C 与边AD交于点E、F〔点F在点E的右侧〕,射线CE与射线BA交于点G.〔1〕当圆C经过点A时,求CP的长;〔2〕连接AP,当AP∥CG时,求弦EF的长;〔3〕当△AGE是等腰三角形时,求圆C的半径长.考点:圆的综合题.专题:压轴题.分析:〔1〕当点A在⊙C上时,点E和点A重合,过点A作AH⊥BC于H,直接利用勾股定理求出AC进而得出答案;〔2〕首先得出四边形APCE是菱形,进而得出CM的长,进而利用锐角三角函数关系得出CP以及EF的长;〔3〕∠GAE≠∠BGC,只能∠AGE=∠AEG,利用AD∥BC,得出△GAE∽△GBC,进而求出即可.解答:解:〔1〕如图1,设⊙O的半径为r,当点A在⊙C上时,点E和点A重合,过点A作AH⊥BC于H,∴BH=AB•cosB=4,∴AH=3,CH=4,∴AC==5,∴此时CP=r=5;〔2〕如图2,假设AP∥CE,APCE为平行四边形,∵CE=CP,∴四边形APCE是菱形,连接AC、EP,那么AC⊥EP,∴AM=CM=,由〔1〕知,AB=AC,那么∠ACB=∠B,∴CP=CE==,∴EF=2=;〔3〕如图3:过点C作⊥AD于点N,设AQ⊥BC,∵=cosB,AB=5,∴BQ=4,AN=QC=BC﹣BQ=4.∵cosB=,∴∠B<45°,∵∠BCG<90°,∴∠BGC>45°,∴∠BGC>∠B=∠GAE,即∠BGC≠∠GAE,又∠AEG=∠BCG≥∠ACB=∠B=∠GAE,∴当∠AEG=∠GAE时,A、E、G重合,那么△AGE不存在.即∠AEG≠∠GAE∴只能∠AGE=∠AEG,∵AD∥BC,∴△GAE∽△GBC,∴=,即=,解得:AE=3,EN=AN﹣AE=1,∴CE===.点评:此题主要考察了相似三角形的判定与性质以及勾股定理以及锐角三角函数关系等知识,利用分类讨论得出△AGE是等腰三角形时只能∠AGE=∠AEG进而求出是解题关键.5.〔2021•〕在平面直角坐标系xOy中,点M〔,〕,以点M为圆心,OM长为半径作⊙M.使⊙M与直线OM 的另一交点为点B,与x轴,y轴的另一交点分别为点D,A〔如图〕,连接AM.点P是上的动点.〔1〕写出∠AMB的度数;〔2〕点Q在射线OP上,且OP•OQ=20,过点Q作QC垂直于直线OM,垂足为C,直线QC交x轴于点E.①当动点P与点B重合时,求点E的坐标;②连接QD,设点Q的纵坐标为t,△QOD的面积为S.求S与t的函数关系式及S的取值围.考点:圆的综合题.专题:几何综合题;压轴题.分析:〔1〕首先过点M作MH⊥OD于点H,由点M〔,〕,可得∠MOH=45°,OH=MH=,继而求得∠AOM=45°,又由OM=AM,可得△AOM是等腰直角三角形,继而可求得∠AMB的度数;〔2〕①由OH=MH=,MH⊥OD,即可求得OD与OM的值,继而可得OB的长,又由动点P与点B重合时,OP•OQ=20,可求得OQ的长,继而求得答案;②由OD=2,Q的纵坐标为t,即可得S=,然后分别从当动点P与B点重合时,过点Q作QF⊥x轴,垂足为F点,与当动点P与A点重合时,Q点在y轴上,去分析求解即可求得答案.解答:解:〔1〕过点M作MH⊥OD于点H,∵点M〔,〕,∴OH=MH=,∴∠MOD=45°,∵∠AOD=90°,∴∠AOM=45°,∵OM=AM,∴∠OAM=∠AOM=45°,∴∠AMO=90°,∴∠AMB=90°;〔2〕①∵OH=MH=,MH⊥OD,∴OM==2,OD=2OH=2,∴OB=4,∵动点P与点B重合时,OP•OQ=20,∴OQ=5,∵∠OQE=90°,∠POE=45°,∴OE=5,∴E点坐标为〔5,0〕②∵OD=2,Q的纵坐标为t,∴S=.如图2,当动点P与B点重合时,过点Q作QF⊥x轴,垂足为F点,∵OP=4,OP•OQ=20,∴OQ=5,∵∠OFC=90°,∠QOD=45°,∴t=QF=,此时S=;如图3,当动点P与A点重合时,Q点在y轴上,∴OP=2,∵OP•OQ=20,∴t=OQ=5,此时S=;∴S的取值围为5≤S≤10.点评:此题考察了垂径定理、等腰直角三角形的性质以及勾股定理等知识.此题难度较大,注意掌握辅助线的作法,注意掌握数形结合思想、分类讨论思想与方程思想的应用.6.〔2021•〕阅读材料:如图1,在△AOB中,∠O=90°,OA=OB,点P在AB边上,PE⊥OA于点E,PF⊥OB于点F,那么PE+PF=OA.〔此结论不必证明,可直接应用〕〔1〕【理解与应用】如图2,正方形ABCD的边长为2,对角线AC,BD相交于点O,点P在AB边上,PE⊥OA于点E,PF⊥OB于点F,那么PE+PF的值为.〔2〕【类比与推理】如图3,矩形ABCD的对角线AC,BD相交于点O,AB=4,AD=3,点P在AB边上,PE∥OB交AC于点E,PF∥OA 交BD于点F,求PE+PF的值;〔3〕【拓展与延伸】如图4,⊙O的半径为4,A,B,C,D是⊙O上的四点,过点C,D的切线CH,DG相交于点M,点P在弦AB上,PE∥BC交AC于点E,PF∥AD于点F,当∠ADG=∠BCH=30°时,PE+PF是否为定值?假设是,请求出这个定值;假设不是,请说明理由.考点:圆的综合题;等边三角形的判定与性质;矩形的性质;正方形的性质;弦切角定理;相似三角形的判定与性质.专题:压轴题;探究型.分析:〔1〕易证:OA=OB,∠AOB=90°,直接运用阅读材料中的结论即可解决问题.〔2〕易证:OA=OB=OC=0D=,然后由条件PE∥OB,PF∥AO可证△AEP∽△AOB,△BFP∽△BOA,从而可得==1,进而求出EP+FP=.〔3〕易证:AD=BC=4.仿照〔2〕中的解法即可求出PE+PF=4,因而PE+PF是定值.解答:解:〔1〕如图2,∵四边形ABCD是正方形,∴OA=OB=OC=OD,∠ABC=∠AOB=90°.∵AB=BC=2,∴AC=2.∴OA=.∵OA=OB,∠AOB=90°,PE⊥OA,PF⊥OB,∴PE+PF=OA=.〔2〕如图3,∵四边形ABCD是矩形,∴OA=OB=OC=OD,∠DAB=90°.∵AB=4,AD=3,∴BD=5.∴OA=OB=OC=OD=.∵PE∥OB,PF∥AO,∴△AEP∽△AOB,△BFP∽△BOA.∴,.∴==1.∴+=1.∴EP+FP=.∴PE+PF的值为.〔3〕当∠ADG=∠BCH=30°时,PE+PF是定值.理由:连接OA、OB、OC、OD,如图4∵DG与⊙O相切,∴∠GDA=∠ABD.∵∠ADG=30°,∴∠ABD=30°.∴∠AOD=2∠ABD=60°.∵OA=OD,∴△AOD是等边三角形.∴AD=OA=4.同理可得:BC=4.∵PE∥BC,PF∥AD,∴△AEP∽△ACB,△BFP∽△BDA.∴,.∴==1.∴=1.∴PE+PF=4.∴当∠ADG=∠BCH=30°时,PE+PF=4.点评:此题考察了正方形的性质、矩形的性质、弦切角定理、相似三角形的判定与性质、等边三角形的判定与性质等知识,考察了类比联想的能力,由一定的综合性.要求PE+PF的值,想到将相似所得的比式相加是解决此题的关键.7.〔2021•〕如图平面直角坐标系中,点O是坐标原点,矩形ABCO是顶点坐标分别为A〔3,0〕、B〔3,4〕、C〔0,4〕.点D在y轴上,且点D的坐标为〔0,﹣5〕,点P是直线AC上的一动点.〔1〕当点P运动到线段AC的中点时,求直线DP的解析式〔关系式〕;〔2〕当点P沿直线AC移动时,过点D、P的直线与x轴交于点M.问在x轴的正半轴上是否存在使△DOM与△ABC 相似的点M?假设存在,请求出点M的坐标;假设不存在,请说明理由;〔3〕当点P沿直线AC移动时,以点P为圆心、R〔R>0〕为半径长画圆.得到的圆称为动圆P.假设设动圆P的半径长为,过点D作动圆P的两条切线与动圆P分别相切于点E、F.请探求在动圆P中是否存在面积最小的四边形DEPF?假设存在,请求出最小面积S的值;假设不存在,请说明理由.考点:圆的综合题;待定系数法求一次函数解析式;垂线段最短;勾股定理;切线长定理;相似三角形的判定与性质.专题:综合题;压轴题;存在型;分类讨论.分析:〔1〕只需先求出AC中点P的坐标,然后用待定系数法即可求出直线DP的解析式.〔2〕由于△DOM与△ABC相似,对应关系不确定,可分两种情况进展讨论,利用三角形相似求出OM的长,即可求出点M的坐标.〔3〕易证S△PED=S△PFD.从而有S四边形DEPF=2S△PED=DE.由∠DEP=90°得DE2=DP2﹣PE2=DP2﹣.根据“点到直线之间,垂线段最短〞可得:当DP⊥AC时,DP最短,此时DE也最短,对应的四边形DEPF的面积最小.借助于三角形相似,即可求出DP⊥AC时DP的值,就可求出四边形DEPF面积的最小值.解答:解:〔1〕过点P作PH∥OA,交OC于点H,如图1所示.∵PH∥OA,∴△CHP∽△COA.∴==.∵点P是AC中点,∴CP=CA.∴HP=OA,CH=CO.∵A〔3,0〕、C〔0,4〕,∴OA=3,OC=4.∴HP=,CH=2.∴OH=2.∵PH∥OA,∠COA=90°,∴∠CHP=∠COA=90°.∴点P的坐标为〔,2〕.设直线DP的解析式为y=kx+b,∵D〔0,﹣5〕,P〔,2〕在直线DP上,∴∴∴直线DP的解析式为y=x﹣5.〔2〕①假设△DOM∽△ABC,图2〔1〕所示,∵△DOM∽△ABC,∴=.∵点B坐标为〔3,4〕,点D的坐标为〔0.﹣5〕,∴BC=3,AB=4,OD=5.∴=.∴OM=.∵点M在x轴的正半轴上,∴点M的坐标为〔,0〕②假设△DOM∽△CBA,如图2〔2〕所示,∵△DOM∽△CBA,∴=.∵BC=3,AB=4,OD=5,∴=.∴OM=.∵点M在x轴的正半轴上,∴点M的坐标为〔,0〕.综上所述:假设△DOM与△CBA相似,那么点M的坐标为〔,0〕或〔,0〕.〔3〕∵OA=3,OC=4,∠AOC=90°,∴AC=5.∴PE=PF=AC=.∵DE、DF都与⊙P相切,∴DE=DF,∠DEP=∠DFP=90°.∴S△PED=S△PFD.∴S四边形DEPF=2S△PED=2×PE•DE=PE•DE=DE.∵∠DEP=90°,∴DE2=DP2﹣PE2.=DP2﹣.根据“点到直线之间,垂线段最短〞可得:当DP⊥AC时,DP最短,此时DE取到最小值,四边形DEPF的面积最小.∵DP⊥AC,∴∠DPC=90°.∴∠AOC=∠DPC.∵∠OCA=∠PCD,∠AOC=∠DPC,∴△AOC∽△DPC.∴=.∵AO=3,AC=5,DC=4﹣〔﹣5〕=9,∴=.∴DP=.∴DE2=DP2﹣=〔〕2﹣=.∴DE=,∴S四边形DEPF=DE=.∴四边形DEPF面积的最小值为.点评:此题考察了相似三角形的判定与性质、用待定系数法求直线的解析式、切线长定理、勾股定理、垂线段最短等知识,考察了分类讨论的思想.将求DE的最小值转化为求DP的最小值是解决第3小题的关键.另外,要注意“△DOM与△ABC相似〞与“△DOM∽△ABC“之间的区别.8.〔2021•〕在平面直角坐标系xOy中,O是坐标原点,以P〔1,1〕为圆心的⊙P与x轴,y轴分别相切于点M和点N,点F从点M出发,沿x轴正方向以每秒1个单位长度的速度运动,连接PF,过点PE⊥PF交y轴于点E,设点F运动的时间是t秒〔t>0〕.〔1〕假设点E在y轴的负半轴上〔如下图〕,求证:PE=PF;〔2〕在点F运动过程中,设OE=a,OF=b,试用含a的代数式表示b;〔3〕作点F关于点M的对称点F′,经过M、E和F′三点的抛物线的对称轴交x轴于点Q,连接QE.在点F运动过程中,是否存在某一时刻,使得以点Q、O、E为顶点的三角形与以点P、M、F为顶点的三角形相似?假设存在,请直接写出t的值;假设不存在,请说明理由.考点:圆的综合题.专题:压轴题.分析:〔1〕连接PM,PN,运用△PMF≌△PNE证明;〔2〕分两种情况:①当t>1时,点E在y轴的负半轴上;②当0<t≤1时,点E在y轴的正半轴或原点上,再根据〔1〕求解,〔3〕分两种情况,当1<t<2时,当t>2时,三角形相似时还各有两种情况,根据比例式求出时间t.解答:证明:〔1〕如图,连接PM,PN,∵⊙P与x轴,y轴分别相切于点M和点N,∴PM⊥MF,PN⊥ON且PM=PN,∴∠PMF=∠PNE=90°且∠NPM=90°,∵PE⊥PF,∠NPE=∠MPF=90°﹣∠MPE,在△PMF和△PNE中,,∴△PMF≌△PNE〔ASA〕,∴PE=PF;〔2〕解:分两种情况:①当t>1时,点E在y轴的负半轴上,如图1,由〔1〕得△PMF≌△PNE,∴NE=MF=t,PM=PN=1,∴b=OF=OM+MF=1+t,a=NE﹣ON=t﹣1,∴b﹣a=1+t﹣〔t﹣1〕=2,∴b=2+a,②0<t≤1时,如图2,点E在y轴的正半轴或原点上,同理可证△PMF≌△PNE,∴b=OF=OM+MF=1+t,a=OE=ON﹣NE=1﹣t,∴b+a=1+t+1﹣t=2,∴b=2﹣a.综上所述,当t>1时,b=2+a;当0<t≤1时,b=2﹣a;〔3〕存在;①如图3,当1<t<2时,∵F〔1+t,0〕,F和F′关于点M对称,M的坐标为〔1,0〕,∴F′〔1﹣t,0〕∵经过M、E和F′三点的抛物线的对称轴交x轴于点Q,∴Q〔1﹣t,0〕∴OQ=1﹣t,由〔1〕得△PMF≌△PNE∴NE=MF=t,∴OE=t﹣1当△OEQ∽△MPF∴=∴=,解得,t=,当△OEQ∽△MFP时,∴=,=,。

中考数学-几何综合压轴问题(共40题)(学生版)

中考数学-几何综合压轴问题(共40题)(学生版)

几何综合压轴问题(40题)1(2023·四川自贡·统考中考真题)如图1,一大一小两个等腰直角三角形叠放在一起,M,N分别是斜边DE,AB的中点,DE=2,AB=4.(1)将△CDE绕顶点C旋转一周,请直接写出点M,N距离的最大值和最小值;(2)将△CDE绕顶点C逆时针旋转120°(如图2),求MN的长.2(2023·山东烟台·统考中考真题)如图,点C为线段AB上一点,分别以AC,BC为等腰三角形的底边,在AB的同侧作等腰△ACD和等腰△BCE,且∠A=∠CBE.在线段EC上取一点F,使EF=AD,连接BF,DE.(1)如图1,求证:DE=BF;(2)如图2,若AD=2,BF的延长线恰好经过DE的中点G,求BE的长.3(2023·浙江绍兴·统考中考真题)在平行四边形ABCD中(顶点A,B,C,D按逆时针方向排列),AB= 12,AD=10,∠B为锐角,且sin B=45.(1)如图1,求AB边上的高CH的长.(2)P是边AB上的一动点,点C,D同时绕点P按逆时针方向旋转90°得点C ,D .①如图2,当点C 落在射线CA上时,求BP的长.②当△AC D 是直角三角形时,求BP的长.4(2023·甘肃武威·统考中考真题)【模型建立】(1)如图1,△ABC和△BDE都是等边三角形,点C关于AD的对称点F在BD边上.①求证:AE=CD;②用等式写出线段AD,BD,DF的数量关系,并说明理由.【模型应用】(2)如图2,△ABC是直角三角形,AB=AC,CD⊥BD,垂足为D,点C关于AD的对称点F在BD边上.用等式写出线段AD,BD,DF的数量关系,并说明理由.【模型迁移】(3)在(2)的条件下,若AD=42,BD=3CD,求cos∠AFB的值.5(2023·江西·统考中考真题)课本再现思考我们知道,菱形的对角线互相垂直.反过来,对角线互相垂直的平行四边形是菱形吗?可以发现并证明菱形的一个判定定理;对角线互相垂直的平行四边形是菱形.(1)定理证明:为了证明该定理,小明同学画出了图形(如图1),并写出了“已知”和“求证”,请你完成证明过程.己知:在▱ABCD中,对角线BD⊥AC,垂足为O.求证:▱ABCD是菱形.(2)知识应用:如图2,在▱ABCD中,对角线AC和BD相交于点O,AD=5,AC=8,BD=6.①求证:▱ABCD是菱形;②延长BC至点E,连接OE交CD于点F,若∠E=12∠ACD,求OFEF的值.6(2023·湖北随州·统考中考真题)1643年,法国数学家费马曾提出一个著名的几何问题:给定不在同一条直线上的三个点A,B,C,求平面上到这三个点的距离之和最小的点的位置,意大利数学家和物理学家托里拆利给出了分析和证明,该点也被称为“费马点”或“托里拆利点”,该问题也被称为“将军巡营”问题.(1)下面是该问题的一种常见的解决方法,请补充以下推理过程:(其中①处从“直角”和“等边”中选择填空,②处从“两点之间线段最短”和“三角形两边之和大于第三边”中选择填空,③处填写角度数,④处填写该三角形的某个顶点)当△ABC的三个内角均小于120°时,如图1,将△APC绕,点C顺时针旋转60°得到△A P C,连接PP ,由PC=P C,∠PCP =60°,可知△PCP 为三角形,故PP =PC,又P A =PA,故PA+PB+PC =PA +PB+PP ≥A B,由可知,当B,P,P ,A在同一条直线上时,PA+PB+PC取最小值,如图2,最小值为A B,此时的P点为该三角形的“费马点”,且有∠APC=∠BPC=∠APB=;已知当△ABC有一个内角大于或等于120°时,“费马点”为该三角形的某个顶点.如图3,若∠BAC≥120°,则该三角形的“费马点”为点.(2)如图4,在△ABC中,三个内角均小于120°,且AC=3,BC=4,∠ACB=30°,已知点P为△ABC的“费马点”,求PA+PB+PC的值;(3)如图5,设村庄A,B,C的连线构成一个三角形,且已知AC=4km,BC=23km,∠ACB=60°.现欲建一中转站P沿直线向A,B,C三个村庄铺设电缆,已知由中转站P到村庄A,B,C的铺设成本分别为a 元/km,a元/km,2a元/km,选取合适的P的位置,可以使总的铺设成本最低为元.(结果用含a的式子表示)7(2023·山东枣庄·统考中考真题)问题情境:如图1,在△ABC中,AB=AC=17,BC=30,AD是BC边上的中线.如图2,将△ABC的两个顶点B,C分别沿EF,GH折叠后均与点D重合,折痕分别交AB,AC,BC于点E,G,F,H.猜想证明:(1)如图2,试判断四边形AEDG的形状,并说明理由.问题解决;(2)如图3,将图2中左侧折叠的三角形展开后,重新沿MN折叠,使得顶点B与点H重合,折痕分别交AB, BC于点M,N,BM的对应线段交DG于点K,求四边形MKGA的面积.8(2023·湖南·统考中考真题)(1)[问题探究]如图1,在正方形ABCD中,对角线AC、BD相交于点O.在线段AO上任取一点P(端点除外),连接PD、PB.①求证:PD=PB;②将线段DP绕点P逆时针旋转,使点D落在BA的延长线上的点Q处.当点P在线段AO上的位置发生变化时,∠DPQ的大小是否发生变化?请说明理由;③探究AQ与OP的数量关系,并说明理由.(2)[迁移探究]如图2,将正方形ABCD换成菱形ABCD,且∠ABC=60°,其他条件不变.试探究AQ与CP的数量关系,并说明理由.9(2023·湖南岳阳·统考中考真题)如图1,在△ABC中,AB=AC,点M,N分别为边AB,BC的中点,连接MN.初步尝试:(1)MN与AC的数量关系是,MN与AC的位置关系是.特例研讨:(2)如图2,若∠BAC=90°,BC=42,先将△BMN绕点B顺时针旋转α(α为锐角),得到△BEF,当点A,E,F在同一直线上时,AE与BC相交于点D,连接CF.(1)求∠BCF的度数;(2)求CD的长.深入探究:(3)若∠BAC<90°,将△BMN绕点B顺时针旋转α,得到△BEF,连接AE,CF.当旋转角α满足0°<α<360°,点C,E,F在同一直线上时,利用所提供的备用图探究∠BAE与∠ABF的数量关系,并说明理由.10(2023·湖北黄冈·统考中考真题)【问题呈现】△CAB和△CDE都是直角三角形,∠ACB=∠DCE=90°,CB=mCA,CE=mCD,连接AD,BE,探究AD,BE的位置关系.(1)如图1,当m=1时,直接写出AD,BE的位置关系:;(2)如图2,当m≠1时,(1)中的结论是否成立?若成立,给出证明;若不成立,说明理由.【拓展应用】(3)当m=3,AB=47,DE=4时,将△CDE绕点C旋转,使A,D,E三点恰好在同一直线上,求BE的长.11(2023·河北·统考中考真题)如图1和图2,平面上,四边形ABCD中,AB=8,BC=211,CD=12, DA=6,∠A=90°,点M在AD边上,且DM=2.将线段MA绕点M顺时针旋转n°(0<n≤180)到MA ,∠A MA的平分线MP所在直线交折线AB-BC于点P,设点P在该折线上运动的路径长为x(x>0),连接A P.(1)若点P在AB上,求证:A P=AP;(2)如图2.连接BD.①求∠CBD的度数,并直接写出当n=180时,x的值;②若点P到BD的距离为2,求tan∠A MP的值;(3)当0<x≤8时,请直接写出点A 到直线AB的距离.(用含x的式子表示).12(2023·四川达州·统考中考真题)(1)如图①,在矩形ABCD的AB边上取一点E,将△ADE沿DE翻折,使点A落在BC上A 处,若AB=6,BC=10,求AEEB的值;(2)如图②,在矩形ABCD 的BC 边上取一点E ,将四边形ABED 沿DE 翻折,使点B 落在DC 的延长线上B 处,若BC ⋅CE =24,AB =6,求BE 的值;(3)如图③,在△ABC 中,∠BAC =45°,AD ⊥BC ,垂足为点D ,AD =10,AE =6,过点E 作EF ⊥AD 交AC 于点F ,连接DF ,且满足∠DFE =2∠DAC ,直接写出BD +53EF 的值.13(2023·湖南郴州·统考中考真题)已知△ABC 是等边三角形,点D 是射线AB 上的一个动点,延长BC 至点E ,使CE =AD ,连接DE 交射线AC 于点F .(1)如图1,当点D 在线段AB 上时,猜测线段CF 与BD 的数量关系并说明理由;(2)如图2,当点D 在线段AB 的延长线上时,①线段CF 与BD 的数量关系是否仍然成立?请说明理由;②如图3,连接AE .设AB =4,若∠AEB =∠DEB ,求四边形BDFC 的面积.14(2023·湖北宜昌·统考中考真题)如图,在正方形ABCD 中,E ,F 分别是边AD ,AB 上的点,连接CE ,EF ,CF .(1)若正方形ABCD 的边长为2,E 是AD 的中点.①如图1,当∠FEC =90°时,求证:△AEF ∽△DCE ;②如图2,当tan ∠FCE =23时,求AF 的长;(2)如图3,延长CF ,DA 交于点G ,当GE =DE ,sin ∠FCE =13时,求证:AE =AF .15(2023·湖北武汉·统考中考真题)问题提出:如图(1),E 是菱形ABCD 边BC 上一点,△AEF 是等腰三角形,AE =EF ,∠AEF =∠ABC =αa ≥90° ,AF 交CD 于点G ,探究∠GCF 与α的数量关系.问题探究:(1)先将问题特殊化,如图(2),当α=90°时,直接写出∠GCF 的大小;(2)再探究一般情形,如图(1),求∠GCF 与α的数量关系.问题拓展:(3)将图(1)特殊化,如图(3),当α=120°时,若DG CG =12,求BECE的值.16(2023·山西·统考中考真题)问题情境:“综合与实践”课上,老师提出如下问题:将图1中的矩形纸片沿对角线剪开,得到两个全等的三角形纸片,表示为△ABC 和△DFE ,其中∠ACB =∠DEF =90°,∠A =∠D .将△ABC 和△DFE 按图2所示方式摆放,其中点B 与点F 重合(标记为点B ).当∠ABE =∠A 时,延长DE 交AC 于点G .试判断四边形BCGE 的形状,并说明理由.(1)数学思考:谈你解答老师提出的问题;(2)深入探究:老师将图2中的△DBE 绕点B 逆时针方向旋转,使点E 落在△ABC 内部,并让同学们提出新的问题.①“善思小组”提出问题:如图3,当∠ABE =∠BAC 时,过点A 作AM ⊥BE 交BE 的延长线于点M ,BM 与AC 交于点N .试猜想线段AM 和BE 的数量关系,并加以证明.请你解答此问题;②“智慧小组”提出问题:如图4,当∠CBE=∠BAC时,过点A作AH⊥DE于点H,若BC=9,AC=12,求AH的长.请你思考此问题,直接写出结果.17(2023·湖北十堰·统考中考真题)过正方形ABCD的顶点D作直线DP,点C关于直线DP的对称点为点E,连接AE,直线AE交直线DP于点F.(1)如图1,若∠CDP=25°,则∠DAF=°;(2)如图1,请探究线段CD,EF,AF之间的数量关系,并证明你的结论;(3)在DP绕点D转动的过程中,设AF=a,EF=b请直接用含a,b的式子表示DF的长.18(2023·辽宁大连·统考中考真题)综合与实践问题情境:数学活动课上,王老师给同学们每人发了一张等腰三角形纸片探究折叠的性质.已知AB=AC,∠A>90°,点E为AC上一动点,将△ABE以BE为对称轴翻折.同学们经过思考后进行如下探究:独立思考:小明:“当点D落在BC上时,∠EDC=2∠ACB.”小红:“若点E为AC中点,给出AC与DC的长,就可求出BE的长.”实践探究:奋进小组的同学们经过探究后提出问题1,请你回答:问题1:在等腰△ABC中,AB=AC,∠A>90°,△BDE由△ABE翻折得到.(1)如图1,当点D落在BC上时,求证:∠EDC=2∠ACB;(2)如图2,若点E为AC中点,AC=4,CD=3,求BE的长.问题解决:小明经过探究发现:若将问题1中的等腰三角形换成∠A<90°的等腰三角形,可以将问题进一步拓展.问题2:如图3,在等腰△ABC中,∠A<90°,AB=AC=BD=4,2∠D=∠ABD.若CD=1,则求BC的长.19(2023·山东·统考中考真题)(1)如图1,在矩形ABCD中,点E,F分别在边DC,BC上,AE⊥DF,垂足为点G.求证:△ADE∽△DCF.【问题解决】(2)如图2,在正方形ABCD中,点E,F分别在边DC,BC上,AE=DF,延长BC到点H,使CH=DE,连接DH.求证:∠ADF=∠H.【类比迁移】(3)如图3,在菱形ABCD中,点E,F分别在边DC,BC上,AE=DF=11,DE=8,∠AED=60°,求CF 的长.20(2023·福建·统考中考真题)如图1,在△ABC中,∠BAC=90°,AB=AC,D是AB边上不与A,B重合的一个定点.AO⊥BC于点O,交CD于点E.DF是由线段DC绕点D顺时针旋转90°得到的,FD,CA的延长线相交于点M.(1)求证:△ADE∽△FMC;(2)求∠ABF的度数;(3)若N是AF的中点,如图2.求证:ND=NO.21(2023·四川·统考中考真题)如图1,已知线段AB,AC,线段AC绕点A在直线AB上方旋转,连接BC,以BC为边在BC上方作Rt△BDC,且∠DBC=30°.(1)若∠BDC=90°,以AB为边在AB上方作Rt△BAE,且∠AEB=90°,∠EBA=30°,连接DE,用等式表示线段AC与DE的数量关系是;(2)如图2,在(1)的条件下,若DE⊥AB,AB=4,AC=2,求BC的长;(3)如图3,若∠BCD=90°,AB=4,AC=2,当AD的值最大时,求此时tan∠CBA的值.22(2023·广西·统考中考真题)【探究与证明】折纸,操作简单,富有数学趣味,我们可以通过折纸开展数学探究,探索数学奥秘.【动手操作】如图1,将矩形纸片ABCD对折,使AD与BC重合,展平纸片,得到折痕EF;折叠纸片,使点B 落在EF上,并使折痕经过点A,得到折痕AM,点B,E的对应点分别为B ,E ,展平纸片,连接AB ,BB ,BE .请完成:(1)观察图1中∠1,∠2和∠3,试猜想这三个角的大小关系;(2)证明(1)中的猜想;【类比操作】如图2,N为矩形纸片ABCD的边AD上的一点,连接BN,在AB上取一点P,折叠纸片,使B ,P 两点重合,展平纸片,得到折痕EF ;折叠纸片,使点B ,P 分别落在EF ,BN 上,得到折痕l ,点B ,P 的对应点分别为B ,P ,展平纸片,连接,P B .请完成:(3)证明BB 是∠NBC 的一条三等分线.23(2023·重庆·统考中考真题)在Rt △ABC 中,∠ACB =90°,∠B =60°,点D 为线段AB 上一动点,连接CD .(1)如图1,若AC =9,BD =3,求线段AD 的长.(2)如图2,以CD 为边在CD 上方作等边△CDE ,点F 是DE 的中点,连接BF 并延长,交CD 的延长线于点G .若∠G =∠BCE ,求证:GF =BF +BE .(3)在CD 取得最小值的条件下,以CD 为边在CD 右侧作等边△CDE .点M 为CD 所在直线上一点,将△BEM 沿BM 所在直线翻折至△ABC 所在平面内得到△BNM .连接AN ,点P 为AN 的中点,连接CP ,当CP 取最大值时,连接BP ,将△BCP 沿BC 所在直线翻折至△ABC 所在平面内得到△BCQ ,请直接写出此时NQ CP的值.24(2023·湖南·统考中考真题)如图,在等边三角形ABC 中,D 为AB 上的一点,过点D 作BC 的平行线DE 交AC 于点E ,点P 是线段DE 上的动点(点P 不与D 、E 重合).将△ABP 绕点A 逆时针方向旋转60°,得到△ACQ ,连接EQ 、PQ ,PQ 交AC 于F .(1)证明:在点P 的运动过程中,总有∠PEQ =120°.(2)当AP DP为何值时,△AQF 是直角三角形?25(2023·黑龙江·统考中考真题)如图①,△ABC和△ADE是等边三角形,连接DC,点F,G,H分别是DE,DC和BC的中点,连接FG,FH.易证:FH=3FG.若△ABC和△ADE都是等腰直角三角形,且∠BAC=∠DAE=90°,如图②:若△ABC和△ADE都是等腰三角形,且∠BAC=∠DAE=120°,如图③:其他条件不变,判断FH和FG之间的数量关系,写出你的猜想,并利用图②或图③进行证明.26(2023·黑龙江齐齐哈尔·统考中考真题)综合与实践数学模型可以用来解决一类问题,是数学应用的基本途径.通过探究图形的变化规律,再结合其他数学知识的内在联系,最终可以获得宝贵的数学经验,并将其运用到更广阔的数学天地.(1)发现问题:如图1,在△ABC和△AEF中,AB=AC,AE=AF,∠BAC=∠EAF=30°,连接BE,CF,延长BE交CF于点D.则BE与CF的数量关系:,∠BDC=°;(2)类比探究:如图2,在△ABC和△AEF中,AB=AC,AE=AF,∠BAC=∠EAF=120°,连接BE,CF,延长BE,FC交于点D.请猜想BE与CF的数量关系及∠BDC的度数,并说明理由;(3)拓展延伸:如图3,△ABC和△AEF均为等腰直角三角形,∠BAC=∠EAF=90°,连接BE,CF,且点B,E,F在一条直线上,过点A作AM⊥BF,垂足为点M.则BF,CF,AM之间的数量关系:;(4)实践应用:正方形ABCD中,AB=2,若平面内存在点P满足∠BPD=90°,PD=1,则S△ABP=.27(2023·广东深圳·统考中考真题)(1)如图,在矩形ABCD中,E为AD边上一点,连接BE,①若BE=BC,过C作CF⊥BE交BE于点F,求证:△ABE≌△FCB;=20时,则BE⋅CF=.②若S矩形ABCD(2)如图,在菱形ABCD中,cos A=13,过C作CE⊥AB交AB的延长线于点E,过E作EF⊥AD交AD =24时,求EF⋅BC的值.于点F,若S菱形ABCD(3)如图,在平行四边形ABCD中,∠A=60°,AB=6,AD=5,点E在CD上,且CE=2,点F为BC上一点,连接EF,过E作EG⊥EF交平行四边形ABCD的边于点G,若EF⋅EG=73时,请直接写出AG的长.28(2023·内蒙古·统考中考真题)如图,在菱形ABCD中,对角线AC,BD相交于点O,点P,Q分别是边BC,线段OD上的点,连接AP,QP,AP与OB相交于点E.(1)如图1,连接QA.当QA=QP时,试判断点Q是否在线段PC的垂直平分线上,并说明理由;(2)如图2,若∠APB=90°,且∠BAP=∠ADB,①求证:AE=2EP;②当OQ=OE时,设EP=a,求PQ的长(用含a的代数式表示).29(2023·内蒙古赤峰·统考中考真题)数学兴趣小组探究了以下几何图形.如图①,把一个含有45°角的三角尺放在正方形ABCD中,使45°角的顶点始终与正方形的顶点C重合,绕点C旋转三角尺时,45°角的两边CM ,CN 始终与正方形的边AD ,AB 所在直线分别相交于点M ,N ,连接MN ,可得△CMN .【探究一】如图②,把△CDM 绕点C 逆时针旋转90°得到△CBH ,同时得到点H 在直线AB 上.求证:∠CNM =∠CNH ;【探究二】在图②中,连接BD ,分别交CM ,CN 于点E ,F .求证:△CEF ∽△CNM ;【探究三】把三角尺旋转到如图③所示位置,直线BD 与三角尺45°角两边CM ,CN 分别交于点E ,F .连接AC 交BD 于点O ,求EFNM的值.30(2023·山东东营·统考中考真题)(1)用数学的眼光观察.如图,在四边形ABCD 中,AD =BC ,P 是对角线BD 的中点,M 是AB 的中点,N 是DC 的中点,求证:∠PMN =∠PNM .(2)用数学的思维思考.如图,延长图中的线段AD 交MN 的延长线于点E ,延长线段BC 交MN 的延长线于点F ,求证:∠AEM =∠F .(3)用数学的语言表达.如图,在△ABC 中,AC <AB ,点D 在AC 上,AD =BC ,M 是AB 的中点,N 是DC 的中点,连接MN 并延长,与BC 的延长线交于点G ,连接GD ,若∠ANM =60°,试判断△CGD 的形状,并进行证明.31(2023·甘肃兰州·统考中考真题)综合与实践【思考尝试】(1)数学活动课上,老师出示了一个问题:如图1,在矩形ABCD中,E是边AB上一点,DF⊥CE于点F,GD⊥DF,AG⊥DG,AG=CF.试猜想四边形ABCD的形状,并说明理由;【实践探究】(2)小睿受此问题启发,逆向思考并提出新的问题:如图2,在正方形ABCD中,E是边AB上一点,DF⊥CE于点F,AH⊥CE于点H,GD⊥DF交AH于点G,可以用等式表示线段FH,AH,CF的数量关系,请你思考并解答这个问题;【拓展迁移】(3)小博深入研究小睿提出的这个问题,发现并提出新的探究点:如图3,在正方形ABCD中,E是边AB上一点,AH⊥CE于点H,点M在CH上,且AH=HM,连接AM,BH,可以用等式表示线段CM,BH的数量关系,请你思考并解答这个问题.32(2023·贵州·统考中考真题)如图①,小红在学习了三角形相关知识后,对等腰直角三角形进行了探究,在等腰直角三角形ABC中,CA=CB,∠C=90°,过点B作射线BD⊥AB,垂足为B,点P在CB上.(1)【动手操作】如图②,若点P在线段CB上,画出射线PA,并将射线PA绕点P逆时针旋转90°与BD交于点E,根据题意在图中画出图形,图中∠PBE的度数为度;(2)【问题探究】根据(1)所画图形,探究线段PA与PE的数量关系,并说明理由;(3)【拓展延伸】如图③,若点P在射线CB上移动,将射线PA绕点P逆时针旋转90°与BD交于点E,探究线段BA,BP, BE之间的数量关系,并说明理由.33(2023·辽宁·统考中考真题)在RtΔABC中,∠ACB=90°,CA=CB,点O为AB的中点,点D在直线AB上(不与点A,B重合),连接CD,线段CD绕点C逆时针旋转90°,得到线段CE,过点B作直线l⊥BC,过点E作EF⊥l,垂足为点F,直线EF交直线OC于点G.(1)如图,当点D与点O重合时,请直接写出线段AD与线段EF的数量关系;(2)如图,当点D在线段AB上时,求证:CG+BD=2BC;(3)连接DE,△CDE的面积记为S1,△ABC的面积记为S2,当EF:BC=1:3时,请直接写出S1S2的值.34(2023·四川成都·统考中考真题)探究式学习是新课程倡导的重要学习方式,某兴趣小组拟做以下探究.在Rt△ABC中,∠C=90°,AC=BC,D是AB边上一点,且ADBD=1n(n为正整数),E是AC边上的动点,过点D作DE的垂线交直线BC于点F.【初步感知】(1)如图1,当n=1时,兴趣小组探究得出结论:AE+BF=22AB,请写出证明过程.【深入探究】(2)①如图2,当n=2,且点F在线段BC上时,试探究线段AE,BF,AB之间的数量关系,请写出结论并证明;②请通过类比、归纳、猜想,探究出线段AE,BF,AB之间数量关系的一般结论(直接写出结论,不必证明)【拓展运用】(3)如图3,连接EF,设EF的中点为M.若AB=22,求点E从点A运动到点C的过程中,点M运动的路径长(用含n的代数式表示).35(2023·江苏徐州·统考中考真题)【阅读理解】如图1,在矩形ABCD中,若AB=a,BC=b,由勾股定理,得AC2=a2+b2,同理BD2=a2+b2,故AC2+BD2=2a2+b2.【探究发现】如图2,四边形ABCD为平行四边形,若AB=a,BC=b,则上述结论是否依然成立?请加以判断,并说明理由.【拓展提升】如图3,已知BO为△ABC的一条中线,AB=a,BC=b,AC=c.求证:BO2=a2+b22-c24.【尝试应用】如图4,在矩形ABCD中,若AB=8,BC=12,点P在边AD上,则PB2+PC2的最小值为.36(2023·四川南充·统考中考真题)如图,正方形ABCD中,点M在边BC上,点E是AM的中点,连接ED,EC.(1)求证:ED=EC;(2)将BE绕点E逆时针旋转,使点B的对应点B 落在AC上,连接MB′.当点M在边BC上运动时(点M 不与B,C重合),判断△CMB′的形状,并说明理由.(3)在(2)的条件下,已知AB=1,当∠DEB′=45°时,求BM的长.37(2023·安徽·统考中考真题)在Rt△ABC中,M是斜边AB的中点,将线段MA绕点M旋转至MD 位置,点D在直线AB外,连接AD,BD.(1)如图1,求∠ADB的大小;(2)已知点D和边AC上的点E满足ME⊥AD,DE∥AB.(ⅰ)如图2,连接CD,求证:BD=CD;(ⅱ)如图3,连接BE,若AC=8,BC=6,求tan∠ABE的值.38(2023·浙江宁波·统考中考真题)定义:有两个相邻的内角是直角,并且有两条邻边相等的四边形称为邻等四边形,相等两邻边的夹角称为邻等角.(1)如图1,在四边形ABCD中,AD∥BC,∠A=90°,对角线BD平分∠ADC.求证:四边形ABCD为邻等四边形.(2)如图2,在6×5的方格纸中,A,B,C三点均在格点上,若四边形ABCD是邻等四边形,请画出所有符合条件的格点D.(3)如图3,四边形ABCD是邻等四边形,∠DAB=∠ABC=90°,∠BCD为邻等角,连接AC,过B作BE∥AC交DA的延长线于点E.若AC=8,DE=10,求四边形EBCD的周长.39(2023·江苏扬州·统考中考真题)【问题情境】在综合实践活动课上,李老师让同桌两位同学用相同的两块含30°的三角板开展数学探究活动,两块三角板分别记作△ADB和△A D C,∠ADB=∠A D C=90°,∠B=∠C=30°,设AB=2.【操作探究】如图1,先将△ADB和△A D C的边AD、A D 重合,再将△A D C绕着点A按顺时针方向旋转,旋转角为α0°≤α≤360°,旋转过程中△ADB保持不动,连接BC.(1)当α=60°时,BC=;当BC=22时,α=°;(2)当α=90°时,画出图形,并求两块三角板重叠部分图形的面积;(3)如图2,取BC的中点F,将△A D C绕着点A旋转一周,点F的运动路径长为.40(2023·四川乐山·统考中考真题)在学习完《图形的旋转》后,刘老师带领学生开展了一次数学探究活动【问题情境】刘老师先引导学生回顾了华东师大版教材七年级下册第121页“探索”部分内容:如图,将一个三角形纸板△ABC绕点A逆时针旋转θ到达△AB C 的位置,那么可以得到:AB=AB ,AC =AC ,BC=B C ;∠BAC=∠B AC ,∠ABC=∠AB C ,∠ACB=∠AC B ()刘老师进一步谈到:图形的旋转蕴含于自然界的运动变化规律中,即“变”中蕴含着“不变”,这是我们解决图形旋转的关键;故数学就是一门哲学.【问题解决】(1)上述问题情境中“( )”处应填理由:;(2)如图,小王将一个半径为4cm,圆心角为60°的扇形纸板ABC绕点O逆时针旋转90°到达扇形纸板A BC 的位置.①请在图中作出点O;②如果BB =6cm,则在旋转过程中,点B经过的路径长为;【问题拓展】小李突发奇想,将与(2)中完全相同的两个扇形纸板重叠,一个固定在墙上,使得一边位于水平位置,另一个在弧的中点处固定,然后放开纸板,使其摆动到竖直位置时静止,此时,两个纸板重叠部分的面积是多少呢?如图所示,请你帮助小李解决这个问题.。

中考数学压轴题100题精选及答案(全)

中考数学压轴题100题精选及答案(全)
【013】如图,抛物线经过 三点.
(1)求出抛物线的解析式;
(2)P是抛物线上一动点,过P作 轴,垂足为M,是否存在P点,使得以A,P,M为顶点的三角形与 相似?若存在,请求出符合条件的点P的坐标;若不存在,请说明理由;
(3)在直线AC上方的抛物线上有一点D,使得 的面积最大,求出点D的坐标.
【014】在平面直角坐标中,边长为2的正方形 的两顶点 、 分别在 轴、 轴的正半轴上,点 在原点.现将正方形 绕 点顺时针旋转,当 点第一次落在直线 上时停止旋转,旋转过程中, 边交直线 于点 , 边交 轴于点 (如图).
【020】如图甲,在△ABC中,∠ACB为锐角,点D为射线BC上一动点,连结AD,以AD为一边且在AD的右侧作正方形ADEF。
解答下列问题:
(1)如果AB=AC,∠BAC=90°,①当点D在线段BC上时(与点B不重合),如图乙,线段CF、BD之间的位置关系为,数量关系为。
②当点D在线段BC的延长线上时,如图丙,①中的结论是否仍然成立,为什么?
【008】如图所示,在直角梯形ABCD中,∠ABC=90°,AD∥BC,AB=BC,E是AB的中点,CE⊥BD。
(1) 求证:BE=AD;
(2)求证:AC是线段ED的垂直平分线;
(3)△DBC是等腰三角形吗?并说明理由。
【009】一次函数 的图象分别与 轴、 轴交于点 ,与反比例函数 的图象相交于点 .过点 分别作 轴, 轴,垂足分别为 ;过点 分别作 轴, 轴,垂足分别为 与 交于点 ,连接 .
(3)设直线 与y轴的交点是 ,在线段 上任取一点 (不与 重合),经过 三点的圆交直线 于点 ,试判断 的形状,并说明理由;
(4)当 是直线 上任意一点时,(3)中的结论是否成立?(请直接写出结论).

中考数学综合题压轴题100题精选(附答案解析)

中考数学综合题压轴题100题精选(附答案解析)

中考数学综合题压轴题100题精选(附答案解析)一、中考压轴题1.在△ABC中,AB=BC,将△ABC绕点A沿顺时针方向旋转得△A1B1C1,使点C1落在直线BC上(点C1与点C不重合),(1)如图,当∠C>60°时,写出边AB1与边CB的位置关系,并加以证明;(2)当∠C=60°时,写出边AB1与边CB的位置关系(不要求证明);(3)当∠C<60°时,请你在如图中用尺规作图法作出△AB1C1(保留作图痕迹,不写作法),再猜想你在(1)、(2)中得出的结论是否还成立并说明理由.【分析】(1)AB1∥BC.因为等腰三角形,两底角相等,再根据平行线的判定,内错角相等两直线平行,可证明两直线平行.(2)当∠C=60°时,写出边AB1与边CB的位置关系也是平行,证明方法同(1)题.(3)成立,根据旋转变换的性质画出图形.利用三角形全等即可证明.【解答】解:(1)AB1∥BC.证明:由已知得△ABC≌△AB1C1,∴∠BAC=∠B1AC1,∠B1AB=∠C1AC,∵AC1=AC,∴∠AC1C=∠ACC1,∵∠C1AC+∠AC1C+∠ACC1=180°,∴∠C1AC=180°﹣2∠ACC1,同理,在△ABC中,∵BA=BC,∴∠ABC=180°﹣2∠ACC1,∴∠ABC=∠C1AC=∠B1AB,∴AB1∥BC.(5分)(2)如图1,∠C=60°时,AB1∥BC.(7分)(3)如图,当∠C<60°时,(1)、(2)中的结论还成立.证明:显然△ABC≌△AB1C1,∴∠BAC=∠B1AC1,∴∠B1AB=∠C1AC,∵AC1=AC,∴∠AC1C=∠ACC1,∵∠C1AC+∠AC1C+∠ACC1=180°,∴∠C1AC=180°﹣2∠ACC1,同理,在△ABC中,∵BA=BC,∴∠ABC=180°﹣2∠ACC1,∴∠ABC=∠C1AC=∠B1AB,∴AB1∥BC.(13分)【点评】考查图形的旋转,等腰三角形的性质,平行线的判定.本题实质是考查对图形旋转特征的理解,旋转前后的图形是全等的.2.如图,已知△BEC是等边三角形,∠AEB=∠DEC=90°,AE=DE,AC,BD的交点为O.(1)求证:△AEC≌△DEB;(2)若∠ABC=∠DCB=90°,AB=2 cm,求图中阴影部分的面积.【分析】(1)在△AEC和△DEB中,已知AE=DE,BE=CE,且夹角相等,根据边角边可证全等.(2)由图可知,在连接EO并延长EO交BC于点F,连接AD之后,整个图形是一个以EF所在直线对称的图形.即△AEO和△DEO面积相等,只要求出其中一个即可,而三角形AEO面积=•OE•FB,所以解题中心即为求出OE和FB,有(1)中结论和已知条件即可求解.【解答】(1)证明:∵∠AEB=∠DEC=90°,∴∠AEB+∠BEC=∠DEC+∠BEC,即∠AEC=∠DEB,∵△BEC是等边三角形,∴CE=BE,又AE=DE,∴△AEC≌△DEB.(2)解:连接EO并延长EO交BC于点F,连接AD.由(1)知AC=BD.∵∠ABC=∠DCB=90°,∴∠ABC+∠DCB=180°,∴AB∥DC,AB==CD,∴四边形ABCD为平行四边形且是矩形,∴OA=OB=OC=OD,又∵BE=CE,∴OE所在直线垂直平分线段BC,∴BF=FC,∠EFB=90°.∴OF=AB=×2=1,∵△BEC是等边三角形,∴∠EBC=60°.在Rt△AEB中,∠AEB=90°,∠ABE=∠ABC﹣∠EBC=90°﹣60°=30°,∴BE=AB•cos30°=,在Rt△BFE中,∠BFE=90°,∠EBF=60°,∴BF=BE•cos60°=,EF=BE•sin60°=,∴OE=EF﹣OF==,∵AE=ED,OE=OE,AO=DO,∴△AOE≌△DOE.∴S△AOE=S△DOE∴S阴影=2S△AOE=2וEO•BF=2×××=(cm2).【点评】考查综合应用等边三角形、等腰三角形、解直角三角形、直角三角形性质,进行逻辑推理能力和运算能力.3.如果将点P绕定点M旋转180°后与点Q重合,那么称点P与点Q关于点M对称,定点M叫做对称中心.此时,M是线段PQ的中点.如图,在直角坐标系中,△ABO的顶点A,B,O的坐标分别为(1,0),(0,1),(0,0).点列P1,P2,P3,…中的相邻两点都关于△ABO的一个顶点对称:点P1与点P2关于点A对称,点P2与点P3关于点B对称,点P3与点P4关于点O对称,点P4与点P5关于点A对称,点P5与点P6关于点B对称,点P6与点P7关于点O对称…对称中心分别是A,B,O,A,B,O,…,且这些对称中心依次循环.已知点P1的坐标是(1,1),试求出点P2,P7,P100的坐标.【分析】通过作图可知6个点一个循环,那么P7的坐标和P1的坐标相同,P100的坐标与P4的坐标一样,通过图中的点可很快求出.【解答】解:P2的坐标是(1,﹣1),P7的坐标是(1,1),P100的坐标是(1,﹣3).理由:作P1关于A点的对称点,即可得到P2(1,﹣1),分析题意,知6个点一个循环,故P7的坐标与P1的坐标一样,P100的坐标与P4的坐标一样,所以P7的坐标等同于P1的坐标为(1,1),P100的坐标等同于P4的坐标为(1,﹣3).【点评】解决本题的关键是读懂题意,画出图形,仔细观察,分析,得到相应的规律.4.(1)已知一元二次方程x2+px+q=0(p2﹣4q≥0)的两根为x1、x2;求证:x1+x2=﹣p,x1•x2=q.(2)已知抛物线y=x2+px+q与x轴交于A、B两点,且过点(﹣1,﹣1),设线段AB的长为d,当p为何值时,d2取得最小值,并求出最小值.【分析】(1)先根据求根公式得出x1、x2的值,再求出两根的和与积即可;(2)把点(﹣1,﹣1)代入抛物线的解析式,再由d=|x1﹣x2|可知d2=(x1﹣x2)2=(x1+x2)2﹣4 x1•x2=p2,再由(1)中x1+x2=﹣p,x1•x2=q即可得出结论.【解答】证明:(1)∵a=1,b=p,c=q∴△=p2﹣4q∴x=即x1=,x2=∴x1+x2=+=﹣p,x1•x2=•=q;(2)把(﹣1,﹣1)代入y=x2+px+q得1﹣p+q=﹣1,所以,q=p﹣2,设抛物线y=x2+px+q与x轴交于A、B的坐标分别为(x1,0)、(x2,0)∵d=|x1﹣x2|,∴d2=(x1﹣x2)2=(x1+x2)2﹣4x1•x2=p2﹣4q=p2﹣4p+8=(p﹣2)2+4当p=2时,d2的最小值是4.【点评】本题考查的是抛物线与x轴的交点及根与系数的关系,熟知x1,x2是方程x2+px+q =0的两根时,x1+x2=﹣p,x1x2=q是解答此题的关键.5.经统计分析,某市跨河大桥上的车流速度v(千米/小时)是车流密度x(辆/千米)的函数,当桥上的车流密度达到220辆/千米时,造成堵塞,此时车流速度为0千米/小时;当车流密度不超过20辆/千米时,车流速度为80千米/小时,研究表明:当20≤x≤220时,车流速度v是车流密度x的一次函数.(1)求大桥上车流密度为100辆/千米时的车流速度;(2)在交通高峰时段,为使大桥上的车流速度大于40千米/小时且小于60千米/小时,应控制大桥上的车流密度在什么范围内?(3)车流量(辆/小时)是单位时间内通过桥上某观测点的车辆数,即:车流量=车流速度×车流密度.求大桥上车流量y的最大值.【分析】(1)当20≤x≤220时,设车流速度v与车流密度x的函数关系式为v=kx+b,根据题意的数量关系建立方程组求出其解即可;(2)由(1)的解析式建立不等式组求出其解即可;(3)设车流量y与x之间的关系式为y=vx,当x<20和20≤x≤220时分别表示出函数关系由函数的性质就可以求出结论.【解答】解:(1)设车流速度v与车流密度x的函数关系式为v=kx+b,由题意,得,解得:,∴当20≤x≤220时,v=﹣x+88,当x=100时,v=﹣×100+88=48(千米/小时);(2)由题意,得,解得:70<x<120.∴应控制大桥上的车流密度在70<x<120范围内;(3)设车流量y与x之间的关系式为y=vx,当0≤x≤20时y=80x,∴k=80>0,∴y随x的增大而增大,∴x=20时,y最大=1600;当20≤x≤220时y=(﹣x+88)x=﹣(x﹣110)2+4840,∴当x=110时,y最大=4840.∵4840>1600,∴当车流密度是110辆/千米,车流量y取得最大值是每小时4840辆.【点评】本题考查了车流量=车流速度×车流密度的运用,一次函数的解析式的运用,一元一次不等式组的运用,二次函数的性质的运用,解答时求出函数的解析式是关键.6.如图,在矩形ABCD中,AB=8,AD=6,点P、Q分别是AB边和CD边上的动点,点P从点A向点B运动,点Q从点C向点D运动,且保持AP=CQ.设AP=x.(1)当PQ∥AD时,求x的值;(2)当线段PQ的垂直平分线与BC边相交时,求x的取值范围;(3)当线段PQ的垂直平分线与BC相交时,设交点为E,连接EP、EQ,设△EPQ的面积为S,求S关于x的函数关系式,并写出S的取值范围.【分析】(1)根据已知条件,证明四边形APQD是矩形,再根据矩形的性质和AP=CQ 求x即可;(2)连接EP、EQ,则EP=EQ,设BE=y,列出等式(8﹣x)2+y2=(6﹣y)2+x2然后根据函数的性质来求x的取值范围;(3)由图形的等量关系列出方程,再根据函数的性质来求最值.【解答】解:(1)当PQ∥AD时,则∠A=∠APQ=90°,∠D=∠DQP=90°,又∵AB∥CD,∴四边形APQD是矩形,∴AP=QD,∵AP=CQ,AP=CD=,∴x=4.(2)如图,连接EP、EQ,则EP=EQ,设BE=y.∴(8﹣x)2+y2=(6﹣y)2+x2,∴y=.∵0≤y≤6,∴0≤≤6,∴≤x≤.(3)S△BPE=•BE•BP=••(8﹣x)=,S△ECQ==•(6﹣)•x=,∵AP=CQ,∴S BPQC=,∴S=S BPQC﹣S△BPE﹣S△ECQ=24﹣﹣,整理得:S==(x﹣4)2+12(),∴当x=4时,S有最小值12,当x=或x=时,S有最大值.∴12≤S≤.【点评】解答本题时,涉及到了矩形的判定、矩形的性质、勾股定理以及二次函数的最值等知识点,这是一道综合性比较强的题目,所以在解答题目时,一定要把各个知识点融会贯通,这样解题时才会少走弯路.7.已知:y关于x的函数y=(k﹣1)x2﹣2kx+k+2的图象与x轴有交点.(1)求k的取值范围;(2)若x1,x2是函数图象与x轴两个交点的横坐标,且满足(k﹣1)x12+2kx2+k+2=4x1x2.①求k的值;②当k≤x≤k+2时,请结合函数图象确定y的最大值和最小值.【分析】(1)分两种情况讨论,当k=1时,可求出函数为一次函数,必与x轴有一交点;当k≠1时,函数为二次函数,若与x轴有交点,则△≥0.(2)①根据(k﹣1)x12+2kx2+k+2=4x1x2及根与系数的关系,建立关于k的方程,求出k 的值;②充分利用图象,直接得出y的最大值和最小值.【解答】解:(1)当k=1时,函数为一次函数y=﹣2x+3,其图象与x轴有一个交点.当k≠1时,函数为二次函数,其图象与x轴有一个或两个交点,令y=0得(k﹣1)x2﹣2kx+k+2=0.△=(﹣2k)2﹣4(k﹣1)(k+2)≥0,解得k≤2.即k≤2且k≠1.综上所述,k的取值范围是k≤2.(2)①∵x1≠x2,由(1)知k<2且k≠1,函数图象与x轴两个交点,∴k<2,且k≠1.由题意得(k﹣1)x12+(k+2)=2kx1①,将①代入(k﹣1)x12+2kx2+k+2=4x1x2中得:2k(x1+x2)=4x1x2.又∵x1+x2=,x1x2=,∴2k•=4•.解得:k1=﹣1,k2=2(不合题意,舍去).∴所求k值为﹣1.②如图,∵k1=﹣1,y=﹣2x2+2x+1=﹣2(x﹣)2+.且﹣1≤x≤1.由图象知:当x=﹣1时,y最小=﹣3;当x=时,y最大=.∴y的最大值为,最小值为﹣3.【点评】本题考查了抛物线与x轴的交点、一次函数的定义、二次函数的最值,充分利用图象是解题的关键.8.如图1,在直角坐标系中,点A的坐标为(1,0),以OA为边在第四象限内作等边△AOB,点C为x轴的正半轴上一动点(OC>1),连接BC,以BC为边在第四象限内作等边△CBD,直线DA交y轴于点E.(1)试问△OBC与△ABD全等吗?并证明你的结论;(2)随着点C位置的变化,点E的位置是否会发生变化?若没有变化,求出点E的坐标;若有变化,请说明理由;(3)如图2,以OC为直径作圆,与直线DE分别交于点F、G,设AC=m,AF=n,用含n的代数式表示m.【分析】(1)由等边三角形的性质知,OBA=∠CBD=60°,易得∠OBC=∠ABD,又有OB=AB,BC=BD故有△OBC≌△ABD;(2)由1知,△OBC≌△ABD⇒∠BAD=∠BOC=60°,可得∠OAE=60°,在Rt△EOA 中,有EO=OA•tan60°=,即可求得点E的坐标;(3)由相交弦定理知1•m=n•AG,即AG=,由切割线定理知,OE2=EG•EF,在Rt△EOA中,由勾股定理知,AE==2,故建立方程:()2=(2﹣)(2+n),就可求得m与n关系.【解答】解:(1)两个三角形全等.∵△AOB、△CBD都是等边三角形,∴OBA=∠CBD=60°,∴∠OBA+∠ABC=∠CBD+∠ABC,即∠OBC=∠ABD;∵OB=AB,BC=BD,△OBC≌△ABD;(2)点E位置不变.∵△OBC≌△ABD,∴∠BAD=∠BOC=60°,∠OAE=180°﹣60°﹣60°=60°;在Rt△EOA中,EO=OA•tan60°=,或∠AEO=30°,得AE=2,∴OE=∴点E的坐标为(0,);(3)∵AC=m,AF=n,由相交弦定理知1•m=n•AG,即AG=;又∵OC是直径,∴OE是圆的切线,OE2=EG•EF,在Rt△EOA中,AE==2,()2=(2﹣)(2+n)即2n2+n﹣2m﹣mn=0解得m=.【点评】命题立意:考查圆的相交弦定理、切线定理、三角形全等等知识,并且将这些知识与坐标系联系在一起,考查综合分析、解决问题的能力.9.广安市某楼盘准备以每平方米6000元的均价对外销售,由于国务院有关房地产的新政策出台后,购房者持币观望,房地产开发商为了加快资金周转,对价格经过两次下调后,决定以每平方米4860元的均价开盘销售.(1)求平均每次下调的百分率.(2)某人准备以开盘价均价购买一套100平方米的住房,开发商给予以下两种优惠方案以供选择:①打9.8折销售;②不打折,一次性送装修费每平方米80元,试问哪种方案更优惠?【分析】(1)根据题意设平均每次下调的百分率为x,列出一元二次方程,解方程即可得出答案;(2)分别计算两种方案的优惠价格,比较后发现方案①更优惠.【解答】解:(1)设平均每次下调的百分率为x,则6000(1﹣x)2=4860,解得:x1=0.1=10%,x2=1.9(舍去),故平均每次下调的百分率为10%;(2)方案①购房优惠:4860×100×(1﹣0.98)=9720(元);方案②可优惠:80×100=8000(元).故选择方案①更优惠.【点评】本题主要考查一元二次方程的实际应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程,再求解,属于中档题.10.九年级(1)班课外活动小组利用标杆测量学校旗杆的高度,已知标杆高度CD=3m,标杆与旗杆的水平距离BD=15m,人的眼睛与地面的高度EF=1.6m,人与标杆CD的水平距离DF=2m,求旗杆AB的高度.【分析】利用三角形相似中的比例关系,首先由题目和图形可看出,求AB的长度分成了2个部分,AH和HB部分,其中HB=EF=1.6m,剩下的问题就是求AH的长度,利用△CGE∽△AHE,得出,把相关条件代入即可求得AH=11.9,所以AB=AH+HB=AH+EF=13.5m.【解答】解:∵CD⊥FB,AB⊥FB,∴CD∥AB∴△CGE∽△AHE∴即:∴∴AH=11.9∴AB=AH+HB=AH+EF=11.9+1.6=13.5(m).【点评】主要用到的解题思想是把梯形问题转化成三角形问题,利用三角形相似比列方程来求未知线段的长度.11.如图,一次函数y=﹣x﹣2的图象分别交x轴、y轴于A、B两点,P为AB的中点,PC⊥x轴于点C,延长PC交反比例函数y=(x<0)的图象于点Q,且tan∠AOQ=.(1)求k的值;(2)连接OP、AQ,求证:四边形APOQ是菱形.【分析】(1)由一次函数解析式确定A点坐标,进而确定C,Q的坐标,将Q的坐标代入反比例函数关系式可求出k的值.(2)由(1)可分别确定QC=CP,AC=OC,且QP垂直平分AO,故可证明四边形APOQ是菱形.【解答】(1)解:∵y=﹣x﹣2令y=0,得x=﹣4,即A(﹣4,0)由P为AB的中点,PC⊥x轴可知C点坐标为(﹣2,0)又∵tan∠AOQ=可知QC=1∴Q点坐标为(﹣2,1)将Q点坐标代入反比例函数得:1=,∴可得k=﹣2;(2)证明:由(1)可知QC=PC=1,AC=CO=2,且A0⊥PQ∴四边形APOQ是菱形.【点评】本题考查了待定系数法求函数解析式,又结合了几何图形进行考查,属于综合性比较强的题目,有一定难度.12.⊙O1与⊙O2相交于A、B两点,如图(1),连接O2O1并延长交⊙O1于P点,连接P A、PB并分别延长交⊙O2于C、D两点,连接CO2并延长交⊙O2于E点.已知⊙O2的半径为R,设∠CAD=α.(1)求CD的长(用含R、α的式子表示);(2)试判断CD与PO1的位置关系,并说明理由;(3)设点P’为⊙O1上(⊙O2外)的动点,连接P’A、P’B并分别延长交⊙O2于C’、D’,请你探究∠C’AD’是否等于α?C’D’与P’O1的位置关系如何?并说明理由.(注:图(2)与图(3)中⊙O1和⊙O2的大小及位置关系与图(1)完全相同,若你感到继续在图(1)中探究问题(3),图形太复杂,不便于观察,可以选择图(2)或图(3)中的一图说明理由).【分析】(1)作⊙O2的直径CE,连接DE.根据圆周角定理的推论,得∠E=∠CAD=α,再利用解直角三角形的知识求解;(2)连接AB,延长PO1与⊙O1相交于点E,连接AE.根据圆内接四边形的性质,得∠ABP′=∠C′,根据圆周角定理的推论,得∠ABP′=∠E,∠EAP′=90°,从而证明∠AP′E+∠C′=90°,则CD与PO1的位置关系是互相垂直;(3)根据同弧所对的圆周角相等,则说明∠C’AD’等于α;根据(2)中的证明过程,则可以证明C’D’与P’O1的位置关系是互相垂直.【解答】解:(1)连接DE.根据圆周角定理的推论,得∠E=∠CAD=α.∵CE是直径,∴∠CDE=90°.∴CD=CE•sin E=2R sinα;(2)CD与PO1的位置关系是互相垂直.理由如下:连接AB,延长PO1与⊙O1相交于点E,连接AE.∵四边形BAC′D′是圆内接四边形,∴∠ABP′=∠C′.∵P′E是直径,∴∠EAP′=90°,∴∠AP′E+∠E=90°.又∠ABP′=∠E,∴∠AP′E+∠C′=90°,即CD与PO1的位置关系是互相垂直;(3)根据同弧所对的圆周角相等,则说明∠C’AD’等于α;根据(2)中的证明过程,则可以证明C’D’与P’O1的位置关系是互相垂直.【点评】此题综合运用了圆周角定理及其推论、直角三角形的性质、圆内接四边形的性质.注意:连接两圆的公共弦、构造直径所对的圆周角都是圆中常见的辅助线.13.我们学习了利用函数图象求方程的近似解,例如:把方程2x﹣1=3﹣x的解看成函数y =2x﹣1的图象与函数y=3﹣x的图象交点的横坐标.如图,已画出反比例函数y=在第一象限内的图象,请你按照上述方法,利用此图象求方程x2﹣x﹣1=0的正数解.(要求画出相应函数的图象;求出的解精确到0.1)【分析】根据题意可知,方程x2﹣x﹣1=0的解可看做是函数y=和y=x﹣1的交点坐标,所以根据图象可知方程x2﹣x﹣1=0的正数解约为1.1.【解答】解:∵x≠0,∴将x2﹣x﹣1=0两边同时除以x,得x﹣1﹣=0,即=x﹣1,把x2﹣x﹣1=0的正根视为由函数y=与函数y=x﹣1的图象在第一象限交点的横坐标.如图:∴正数解约为1.1.【点评】主要考查了反比例函数和一元二次方程之间的关系.一元二次方程的解都可化为一个反比例函数和一次函数的交点问题求解.14.已知⊙O1与⊙O2相交于A、B两点,点O1在⊙O2上,C为⊙O2上一点(不与A,B,O1重合),直线CB与⊙O1交于另一点D.(1)如图(1),若AD是⊙O1的直径,AC是⊙O2的直径,求证:AC=CD;(2)如图(2),若C是⊙O1外一点,求证:O1C丄AD;(3)如图(3),若C是⊙O1内的一点,判断(2)中的结论是否成立?【分析】(1)连接C01,利用直径所对圆周角等于90度,以及垂直平分线的性质得出即可;(2)根据已知得出四边形AEDB内接于⊙O1,得出∠ABC=∠E,再利用=,得出∠E=∠AO1C,进而得出CO1∥ED即可求出;(3)根据已知得出∠B=∠EO1C,又∠E=∠B,即可得出∠EO1C=∠E,得出CO1∥ED,即可求出.【解答】(1)证明:连接C01∵AC为⊙O2直径∴∠AO1C=90°即CO1⊥AD,∵AO1=DO1∴DC=AC(垂直平分线的性质);(2)证明:连接AO1,连接AB,延长AO1交⊙O1于点E,连接ED,∵四边形AEDB内接于⊙O1,∴∠E+∠ABD=180°,∵∠ABC+∠ABD=180°,∴∠ABC=∠E,又∵=,∴∠ABC=∠AO1C,∴∠E=∠AO1C,∴CO1∥ED,又AE为⊙O1的直径,∴ED⊥AD,∴O1C⊥AD,(3)(2)中的结论仍然成立.证明:连接AO1,连接AB,延长AO1交⊙O1于点E,连接ED,∵∠B+∠AO1C=180°,∠EO1C+∠AO1C═180°,∴∠B=∠EO1C,又∵∠E=∠B,∴∠EO1C=∠E,∴CO1∥ED,又ED⊥AD,∴CO1⊥AD.【点评】此题主要考查了圆周角定理以及相交两圆的性质和圆内接四边形的性质,根据圆内接四边形的性质得出对应角之间的关系是解决问题的关键.15.如图,已知直径为OA的⊙P与x轴交于O、A两点,点B、C把三等分,连接PC 并延长PC交y轴于点D(0,3).(1)求证:△POD≌△ABO;(2)若直线l:y=kx+b经过圆心P和D,求直线l的解析式.【分析】(1)首先连接PB,由直径为OA的⊙P与x轴交于O、A两点,点B、C把三等分,可求得∠APB=∠DPO=60°,∠ABO=∠POD=90°,即可得△P AB是等边三角形,可得AB=OP,然后由ASA,即可判定:△POD≌△ABO;(2)易求得∠PDO=30°,由OP=OD•tan30°,即可求得点P的坐标,然后利用待定系数法,即可求得直线l的解析式.【解答】(1)证明:连接PB,∵直径为OA的⊙P与x轴交于O、A两点,点B、C把三等分,∴∠APB=∠DPO=×180°=60°,∠ABO=∠POD=90°,∵P A=PB,∴△P AB是等边三角形,∴AB=P A,∠BAO=60°,∴AB=OP,∠BAO=∠OPD,在△POD和△ABO中,∴△POD≌△ABO(ASA);(2)解:由(1)得△POD≌△ABO,∴∠PDO=∠AOB,∵∠AOB=∠APB=×60°=30°,∴∠PDO=30°,∴OP=OD•tan30°=3×=,∴点P的坐标为:(﹣,0)∴,解得:,∴直线l的解析式为:y=x+3.【点评】此题考查了圆周角定理、全等三角形的判定与性质、直角三角形的性质、等边三角形的判定与性质以及待定系数法求一次函数的解析式.此题综合性较强,难度适中,注意准确作出辅助线,注意数形结合思想的应用.16.如图,菱形、矩形与正方形的形状有差异,我们将菱形、矩形与正方形的接近程度称为“接近度”.在研究“接近度”时,应保证相似图形的“接近度”相等.(1)设菱形相邻两个内角的度数分别为m°和n°,将菱形的“接近度”定义为|m﹣n|,于是|m﹣n|越小,菱形越接近于正方形.①若菱形的一个内角为70°,则该菱形的“接近度”等于40;②当菱形的“接近度”等于0时,菱形是正方形.(2)设矩形相邻两条边长分别是a和b(a≤b),将矩形的“接近度”定义为|a﹣b|,于是|a﹣b|越小,矩形越接近于正方形.你认为这种说法是否合理?若不合理,给出矩形的“接近度”一个合理定义.【分析】(1)根据相似图形的定义知,相似图形的形状相同,但大小不一定相同,相似图形的“接近度”相等.所以若菱形的一个内角为70°,则该菱形的“接近度”等于|m﹣n|;当菱形的“接近度”等于0时,菱形是正方形;(2)不合理,举例进行说明.【解答】解:(1)①∵内角为70°,∴与它相邻内角的度数为110°.∴菱形的“接近度”=|m﹣n|=|110﹣70|=40.②当菱形的“接近度”等于0时,菱形是正方形.(2)不合理.例如,对两个相似而不全等的矩形来说,它们接近正方形的程度是相同的,但|a﹣b|却不相等.合理定义方法不唯一.如定义为,越接近1,矩形越接近于正方形;越大,矩形与正方形的形状差异越大;当时,矩形就变成了正方形,即只有矩形的越接近1,矩形才越接近正方形.【点评】正确理解“接近度”的意思,矩形的“接近度”|a﹣b|越小,矩形越接近于正方形.这是解决问题的关键.17.图(1)是一个10×10格点正方形组成的网格.△ABC是格点三角形(顶点在网格交点处),请你完成下面的两个问题:(1)在图(1)中画出与△ABC相似的格点△A1B1C1和△A2B2C2,且△A1B1C1与△ABC的相似比是2,△A2B2C2与△ABC的相似比是;(2)在图(2)中用与△ABC,△A1B1C1,△A2B2C2全等的格点三角形(每个三角形至少使用一次),拼出一个你熟悉的图案,并为你设计的图案配一句贴切的解说词.【分析】(1)△A1B1C1与△ABC的相似比是2,则让△ABC的各边都扩大2倍就可.△A2B2C2与△ABC的相似比是;△ABC的直角边是2,所以△A2B2C2与的直角边是即一个对角线的长度.斜边为2.依此画图即可;(2)拼图有审美意义即可,答案不唯一.【解答】解:【点评】本题主要考查了相似图形的画法,做这类题时根据的是相似图形的性质,即相似比相等.对应角相等.18.如图,矩形ABCD的边AD、AB分别与⊙O相切于点E、F,(1)求的长;(2)若,直线MN分别交射线DA、DC于点M、N,∠DMN=60°,将直线MN沿射线DA方向平移,设点D到直线的距离为d,当时1≤d≤4,请判断直线MN与⊙O的位置关系,并说明理由.【分析】(1)连接OE、OF,利用相切证明四边形AFOE是正方形,再根据弧长公式求弧长;(2)先求出直线M1N1与圆相切时d的值,结合1≤d≤4,划分d的范围,分类讨论.【解答】解:(1)连接OE、OF,∵矩形ABCD的边AD、AB分别与⊙O相切于点E、F,∴∠A=90°,∠OEA=∠OF A=90°∴四边形AFOE是正方形∴∠EOF=90°,OE=AE=∴的长==π.(2)如图,将直线MN沿射线DA方向平移,当其与⊙O相切时,记为M1N1,切点为R,交AD于M1,交BC于N1,连接OM1、OR,∵M1N1∥MN∴∠DM1N1=∠DMN=60°∴∠EM1N1=120°∵MA、M1N1切⊙O于点E、R∴∠EM1O=∠EM1N1=60°在Rt△EM1O中,EM1===1∴DM1=AD﹣AE﹣EM1=+5﹣﹣1=4.过点D作DK⊥M1N1于K在Rt△DM1K中DK=DM1×sin∠DM1K=4×sin∠60°=2即d=2,∴当d=2时,直线MN与⊙O相切,当1≤d<2时,直线MN与⊙O相离,当直线MN平移到过圆心O时,记为M2N2,点D到M2N2的距离d=DK+OR=2+=3>4,∴当2<d≤4时,MN直线与⊙O相交.【点评】本题考查的是直线与圆的位置关系,解决此类问题可通过比较圆心到直线距离d与圆半径大小关系完成判定.19.如图,AD是⊙O的直径.(1)如图①,垂直于AD的两条弦B1C1,B2C2把圆周4等分,则∠B1的度数是22.5°,∠B2的度数是67.5°;(2)如图②,垂直于AD的三条弦B1C1,B2C2,B3C3把圆周6等分,分别求∠B1,∠B2,∠B3的度数;(3)如图③,垂直于AD的n条弦B1C1,B2C2,B3C3,…,B n∁n把圆周2n等分,请你用含n的代数式表示∠B n的度数(只需直接写出答案).【分析】根据条件可以先求出圆的各段弧的度数,根据圆周角等于所对弧的度数的一半,就可以求出圆周角的度数.【解答】解:(1)垂直于AD的两条弦B1C1,B2C2把圆周4等分,则是圆的,因而度数是45°,因而∠B1的度数是22.5°,同理的度数是135度,因而,∠B2的度数是67.5°;(2)∵圆周被6等分∴===360°÷6=60°∵直径AD⊥B1C1∴==30°,∴∠B1==15°∠B2==×(30°+60°)=45°∠B3==×(30°+60°+60°)=75°;(3)B n∁n把圆周2n等分,则弧BnD的度数是:,则∠B n AD=,在直角△AB n D中,.【点评】本题是把求圆周角的度数的问题转化为求弧的度数的问题,依据是圆周角等于所对弧的度数的一半.20.二次函数y=ax2+bx+c图象的一部分如图所示,则a的取值范围是﹣1<a<0.【分析】由抛物线的开口方向判断a的符号,由抛物线与y轴的交点得出c的值,然后根据图象经过的点的情况进行推理,进而推出所得结论.【解答】解:抛物线开口向下,a<0,图象过点(0,1),c=1,图象过点(1,0),a+b+c=0,∴b=﹣(a+c)=﹣(a+1).由题意知,当x=﹣1时,应有y>0,∴a﹣b+c>0,∴a+(a+1)+1>0,∴a>﹣1,∴实数a的取值范围是﹣1<a<0.【点评】根据开口判断a的符号,根据与x轴,y轴的交点判断c的值以及b用a表示出的代数式.难点是推断出当x=﹣1时,应有y>0.21.今年,我国政府为减轻农民负担,决定在5年内免去农业税.某乡今年人均上缴农业税25元,若两年后人均上缴农业税为16元,假设这两年降低的百分率相同.(1)求降低的百分率;(2)若小红家有4人,明年小红家减少多少农业税?(3)小红所在的乡约有16000农民,问该乡农民明年减少多少农业税?【分析】(1)设降低的百分率为x,则降低一次后的数额是25(1﹣x),再在这个数的基础上降低x,则变成25(1﹣x)(1﹣x)即25(1﹣x)2,据此即可列方程求解;(2)每人减少的税额是25x,则4个人的就是4×25x,代入(1)中求得的x的值,即可求解;(3)每个人减少的税额是25x,乘以总人数16000即可求解.【解答】解:(1)设降低的百分率为x,依题意有,25(1﹣x)2=16,解得,x1=0.2=20%,x2=1.8(舍去);(2)小红全家少上缴税25×20%×4=20(元);(3)全乡少上缴税16000×25×20%=80 000(元).答:降低的增长率是20%,明年小红家减少的农业税是20元,该乡农民明年减少的农业税是80 000元.【点评】本题考查求平均变化率的方法.若设变化前的量为a,变化后的量为b,平均变化率为x,则经过两次变化后的数量关系为a(1±x)2=b.22.如图,在矩形ABCD中,AB=m(m是大于0的常数),BC=8,E为线段BC上的动点(不与B、C重合).连接DE,作EF⊥DE,EF与射线BA交于点F,设CE=x,BF=y.(1)求y关于x的函数关系式;(2)若m=8,求x为何值时,y的值最大,最大值是多少?(3)若y=,要使△DEF为等腰三角形,m的值应为多少?【分析】(1)利用互余关系找角相等,证明△BEF∽△CDE,根据对应边的比相等求函数关系式;(2)把m的值代入函数关系式,再求二次函数的最大值;(3)∵∠DEF=90°,只有当DE=EF时,△DEF为等腰三角形,把条件代入即可.【解答】解:(1)∵EF⊥DE,∴∠BEF=90°﹣∠CED=∠CDE,又∠B=∠C=90°,∴△BEF∽△CDE,∴=,即=,解得y=;(2)由(1)得y=,将m=8代入,得y=﹣x2+x=﹣(x2﹣8x)=﹣(x﹣4)2+2,所以当x=4时,y取得最大值为2;(3)∵∠DEF=90°,∴只有当DE=EF时,△DEF为等腰三角形,∴△BEF≌△CDE,∴BE=CD=m,此时m=8﹣x,解方程=,得x=6,或x=2,当x=2时,m=6,当x=6时,m=2.【点评】本题把相似三角形与求二次函数解析式联系起来,在解题过程中,充分运用相似三角形对应边的比相等,建立函数关系式.23.在△ABC中,AB=AC,D为BC上一点,由D分别作DE⊥AB于E,DF⊥AC于F.设DE=a,DF=b,且实数a,b满足9a2﹣24ab+16b2=0,并有=2566,∠A使得方程x2﹣x•sin A+sin A﹣=0有两个相等的实数根.(1)试求实数a,b的值;(2)试求线段BC的长.【分析】(1)由题意可知:2a2b=2566,则2a2b=248,则a2b=48.化简9a2﹣24ab+16b2=0得:(3a﹣4b)2=0,则3a﹣4b=0,即3a=4b,则根据,可求得a与b的值;(2)要求BC的长需求出BD和CD的长,知BD、CD分别是直角三角形BDE和直角三角形CDF中的斜边.又知在△ABC中,AB=AC,则∠B=∠C,则根据三角函数只要知道∠B或∠C的读数即可,要求∠B或∠C的读数需求的∠A的读数,根据判别式可以求得∠A的读数.【解答】解:(1)由条件有,解得;(2)又由关于x的方程的判别式△=sin2A﹣sin A+=(sin A﹣)2=0,则sin A=,而∠A为三角形的一个内角,所以∠A1=60°或∠A2=120° 2分当∠A=60°时,△ABC为正三角形,∠B=∠C=60°于是分别在Rt△BDE和Rt△CDF中有BD=,CD=所以BC=BD+DC=.当∠A=120°时,△ABC为等腰三角形,∠B=∠C=30°同上方法可得BC=14. 3分所以线段BC的长应为或14.【点评】考查了解直角三角形以及判别式的应用.24.某市城建部门经过长期市场调查发现,该市年新建商品房面积P(万平方米)与市场新房均价x(千元/平方米)存在函数关系P=25x;年新房销售面积Q(万平方米)与市场新房均价x(千元/平方米)的函数关系为Q=﹣10;(1)如果年新建商品房的面积与年新房销售面积相等,求市场新房均价和年新房销售总额;(2)在(1)的基础上,如果市场新房均价上涨1千元,那么该市年新房销售总额是增加还是减少?变化了多少?结合年新房销售总额和积压面积的变化情况,请你提出一条合理化的建议.(字数不超过50)【分析】(1)根据“新建商品房的面积与年新房销售面积相等”作为相等关系求x的值即可;(2)分别求算出市场新房均价上涨1千元后的新建商品房面积P,年新房销售面积Q再来求算其变化的量和积压的情况.【解答】解:(1)根据题意得:25x=﹣10,解得x1=2,x2=﹣(舍去),则Q=﹣10=50万平方米,所以市场新房均价为2千元.则年新房销售总额为2000×500000=10亿元.(2)因为Q=﹣10=30万平方米,。

初中数学试卷中考压轴题精选(含详细答案)

初中数学试卷中考压轴题精选(含详细答案)

精品基础教育教学资料,仅供参考,需要可下载使用!一.解答题(共30小题)1.(顺义区)如图,直线l1:y=kx+b平行于直线y=x﹣1,且与直线l2:相交于点P(﹣1,0).(1)求直线l1、l2的解析式;(2)直线l1与y轴交于点A.一动点C从点A出发,先沿平行于x轴的方向运动,到达直线l2上的点B1处后,改为垂直于x轴的方向运动,到达直线l1上的点A1处后,再沿平行于x轴的方向运动,到达直线l2上的点B2处后,又改为垂直于x轴的方向运动,到达直线l1上的点A2处后,仍沿平行于x轴的方向运动,…照此规律运动,动点C依次经过点B1,A1,B2,A2,B3,A3,…,B n,A n,…①求点B1,B2,A1,A2的坐标;②请你通过归纳得出点A n、B n的坐标;并求当动点C到达A n处时,运动的总路径的长?2.(莆田)如图1,在平面直角坐标系xOy中,矩形OABC的边OA在y轴的正半轴上,OC在x轴的正半轴上,OA=1,OC=2,点D在边OC上且OD=.(1)求直线AC的解析式;(2)在y轴上是否存在点P,直线PD与矩形对角线AC交于点M,使得△DMC为等腰三角形?若存在,直接写出所有符合条件的点P的坐标;若不存在,请说明理由.(3)抛物线y=﹣x2经过怎样平移,才能使得平移后的抛物线过点D和点E(点E在y轴的正半轴上),且△ODE沿DE折叠后点O落在边AB上O′处.3.(资阳)已知Z市某种生活必需品的年需求量y1(万件)、供应量y2(万件)与价格x (元/件)在一定范围内分别近似满足下列函数关系式:y1=﹣4x+190,y2=5x﹣170.当y1=y2时,称该商品的价格为稳定价格,需求量为稳定需求量;当y1<y2时,称该商品的供求关系为供过于求;当y1>y2时,称该商品的供求关系为供不应求.(1)求该商品的稳定价格和稳定需求量;(2)当价格为45(元/件)时,该商品的供求关系如何?为什么?4.(哈尔滨)如图1,在平面直角坐标系中,点O是坐标原点,四边形ABCO是菱形,点A的坐标为(﹣3,4),点C在x轴的正半轴上,直线AC交y轴于点M,AB边交y轴于点H.(1)求直线AC的解析式;(2)连接BM,如图2,动点P从点A出发,沿折线ABC方向以2个单位/秒的速度向终点C匀速运动,设△PMB的面积为S(S≠0),点P的运动时间为t秒,求S与t之间的函数关系式(要求写出自变量t的取值范围);(3)在(2)的条件下,当t为何值时,∠MPB与∠BCO互为余角,并求此时直线OP与直线AC所夹锐角的正切值.5.(桂林)如图已知直线L:y=x+3,它与x轴、y轴的交点分别为A、B两点.(1)求点A、点B的坐标.(2)设F为x轴上一动点,用尺规作图作出⊙P,使⊙P经过点B且与x轴相切于点F(不写作法,保留作图痕迹).(3)设(2)中所作的⊙P的圆心坐标为P(x,y),求y关于x的函数关系式.(4)是否存在这样的⊙P,既与x轴相切又与直线L相切于点B?若存在,求出圆心P的坐标;若不存在,请说明理由.6.(防城港)如图,在平面直角坐标系,直线y=﹣(x﹣6)与x轴、y轴分别相交于A、D两点,点B在y轴上,现将△AOB沿AB翻折180°,使点O刚好落在直线AD的点C处.(1)求BD的长;(2)设点N是线段AD上的一个动点(与点A、D不重合),S△NBD=S1,S△NOA=S2,当点N运动到什么位置时,S1•S2的值最大,并求出此时点N的坐标;(3)在y轴上是否存在点M,使△MAC为直角三角形?若存在,请写出所有符合条件的点M的坐标,并选择一个写出其求解过程;若不存在,简述理由.7.(大兴安岭)直线y=kx+b(k≠0)与坐标轴分别交于A、B两点,OA、OB的长分别是方程x2﹣14x+48=0的两根(OA>OB),动点P从O点出发,沿路线O⇒B⇒A以每秒1个单位长度的速度运动,到达A点时运动停止.(1)直接写出A、B两点的坐标;(2)设点P的运动时间为t(秒),△OPA的面积为S,求S与t之间的函数关系式(不必写出自变量的取值范围);(3)当S=12时,直接写出点P的坐标,此时,在坐标轴上是否存在点M,使以O、A、P、M为顶点的四边形是梯形?若存在,请直接写出点M的坐标;若不存在,请说明理由.8.(云南)如图,在直角坐标系中,半圆直径为OC,半圆圆心D的坐标为(0,2),四边形OABC是矩形,点A的坐标为(6,0).(1)若过点P(2,0)且与半圆D相切于点F的切线分别与y轴和BC边交于点H与点E,求切线PF所在直线的解析式;(2)若过点A和点B的切线分别与半圆相切于点P1和P2(点P1、P2与点O、C不重合),请求P1、P2点的坐标并说明理由.(注:第(2)问可利用备用图作答).9.(厦门)如图,在直角梯形OABD中,DB∥OA,∠OAB=90°,点O为坐标原点,点A 在x轴的正半轴上,对角线OB,AD相交于点M.OA=2,AB=2,BM:MO=1:2.(1)求OB和OM的值;(2)求直线OD所对应的函数关系式;(3)已知点P在线段OB上(P不与点O,B重合),经过点A和点P的直线交梯形OABD 的边于点E(E异于点A),设OP=t,梯形OABD被夹在∠OAE内的部分的面积为S,求S关于t的函数关系式.10.(天门)如图①,在平面直角坐标系中,A点坐标为(3,0),B点坐标为(0,4).动点M从点O出发,沿OA方向以每秒1个单位长度的速度向终点A运动;同时,动点N从点A出发沿AB方向以每秒个单位长度的速度向终点B运动.设运动了x秒.(1)点N的坐标为(_________,_________);(用含x的代数式表示)(2)当x为何值时,△AMN为等腰三角形;(3)如图②,连接ON得△OMN,△OMN可能为正三角形吗?若不能,点M的运动速度不变,试改变点N的运动速度,使△OMN为正三角形,并求出点N的运动速度.11.(乐山)如图,在平面直角坐标系中,△ABC的边AB在x轴上,且OA>OB,以AB 为直径的圆过点C.若点C的坐标为(0,2),AB=5,A,B两点的横坐标x A,x B是关于x的方程x2﹣(m+2)x+n﹣1=0的两根.(1)求m,n的值;(2)若∠ACB平分线所在的直线l交x轴于点D,试求直线l对应的一次函数解析式;(3)过点D任作一直线l′分别交射线CA,CB(点C除外)于点M,N.则的是否为定值?若是,求出该定值;若不是,请说明理由.12.(黄冈)已知:如图,在直角梯形COAB中,OC∥AB,以O为原点建立平面直角坐标系,A,B,C三点的坐标分别为A(8,0),B(8,10),C(0,4),点D为线段BC 的中点,动点P从点O出发,以每秒1个单位的速度,沿折线OABD的路线移动,移动的时间为t秒.(1)求直线BC的解析式;(2)若动点P在线段OA上移动,当t为何值时,四边形OPDC的面积是梯形COAB面积的;(3)动点P从点O出发,沿折线OABD的路线移动过程中,设△OPD的面积为S,请直接写出S与t的函数关系式,并指出自变量t的取值范围;(4)试探究:当动点P在线段AB上移动时,能否在线段OA上找到一点Q,使四边形CQPD 为矩形?并求出此时动点P的坐标.13.(遵义)如图,已知一次函数的图象与x轴,y轴分别相交于A,B两点,点C在AB上以每秒1个单位的速度从点B向点A运动,同时点D在线段AO上以同样的速度从点A向点O运动,运动时间用t(单位:秒)表示.(1)求AB的长;(2)当t为何值时,△ACD与△AOB相似并直接写出此时点C的坐标;(3)△ACD的面积是否有最大值?若有,此时t为何值;若没有,请说明理由.14.(株洲)已知Rt△ABC,∠ACB=90°,AC=4,BC=3,CD⊥AB于点D,以D为坐标原点,CD所在直线为y轴建立如图所示平面直角坐标系.(1)求A,B,C三点的坐标;(2)若⊙O1,⊙O2分别为△ACD,△BCD的内切圆,求直线O1O2的解析式;(3)若直线O1O2分别交AC,BC于点M,N,判断CM与CN的大小关系,并证明你的结论.15.(镇江)探索、研究:下图是按照一定的规律画出的一列“树型”图,下表的n表示“树型”图的序号,a n表示第n个“树型”图中“树枝”的个数.图:表:n 1 2 3 4 …a n 1 3 7 15 …(1)根据“图”、“表”可以归纳出a n关于n的关系式为_________.若直线l1经过点(a1,a2)、(a2,a3),求直线l1对应的函数关系式,并说明对任意的正整数n,点(a n,a n+1)都在直线l1上.(2)设直线l2:y=﹣x+4与x轴相交于点A,与直线l1相交于点M,双曲线y=(x>0)经过点M,且与直线l2相交于另一点N.①求点N的坐标,并在如图所示的直角坐标系中画出双曲线及直线l1、l2.②设H为双曲线在点M、N之间的部分(不包括点M、N),P为H上一个动点,点P的横坐标为t,直线MP与x轴相交于点Q,当t为何值时,△MQA的面积等于△PMA的面积的2倍又是否存在t的值,使得△PMA的面积等于1?若存在,求出t的值;若不存在,请说明理由.③在y轴上是否存在点G,使得△GMN的周长最小?若存在,求出点G的坐标;若不存在,请说明理由.16.(咸宁)如图,在平面直角坐标系xoy中,已知矩形ABCD的边AB、AD分别在x轴、y轴上,点A与坐标原点重合,且AB=2,AD=1.操作:将矩形ABCD折叠,使点A落在边DC上.探究:(1)我们发现折痕所在的直线与矩形的两边一定相交,那么相交的情形有几种请你画出每种情形的图形;(只要用矩形草稿纸动手折一折你会有发现的!)(2)当折痕所在的直线与矩形的边OD相交于点E,与边OB相交于点F时,设直线的解析式为y=kx+b.①求b与k的函数关系式;②求折痕EF的长(用含k的代数式表示),并写出k的取值范围.17.(厦门)已知点P(m,n)(m>0)在直线y=x+b(0<b<3)上,点A、B在x轴上(点A在点B的左边),线段AB的长度为b,设△PAB的面积为S,且S=b2+b.(1)若b=,求S的值;(2)若S=4,求n的值;(3)若直线y=x+b(0<b<3)与y轴交于点C,△PAB是等腰三角形,当CA∥PB时,求b的值.18.(乌鲁木齐)如图1,在平面直角坐标系中,O为坐标原点,点A的坐标为(0,6),点B坐标为,BC∥y轴且与x轴交于点C,直线OB与直线AC相交于点P.(1)求点P的坐标;(2)若以点O为圆心,OP的长为半径作⊙O(如图2),求证:直线AC与⊙O相切于点P;(3)过点B作BD∥x轴与y轴相交于点D,以点O为圆心,r为半径作⊙O,使点D在⊙O 内,点C在⊙O外;以点B为圆心,R为半径作⊙B,若⊙O与⊙B相切,试分别求出r,R 的取值范围.19.(随州)如图,直角梯形ABCD的腰BC所在直线的解析式为y=﹣x﹣6,点A 与坐标原点O重合,点D的坐标为(0,﹣4),将直角梯形ABCD绕点O顺时针旋转180°,得到直角梯形OEFG(如图1).(1)直接写出E,F两点的坐标及直角梯形OEFG的腰EF所在直线的解析式;(2)将图1中的直角梯形ABCD先沿x轴向右平移到点A与点E重合的位置,再让直角顶点A紧贴着EF,向上平移直角梯形ABCD(即梯形ABCD向上移动时,总保持着AB∥FG),当点A与点F重合时,梯形ABCD停止移动.观察得知:在梯形ABCD移动过程中,其腰BC始终经过坐标原点O.(如图2)①设点A的坐标为(a,b),梯形ABCD与梯形OEFG重合部分的面积为S,试求a与何值时,S的值恰好等于梯形OEFG面积的;②当点A在EF上滑动时,设AD与x轴的交点为M,试问:在y轴上是否存在点P,使得△PAM是底角为30°的等腰三角形?如果存在,请求出所有符合条件的点P的坐标;如果不存在,请说明理由.(利用图3进行探索)20.(邵阳)如图,直线y=﹣x+2与x轴,y轴分别相交于点A,B.将△AOB绕点O 按顺时针方向旋转α角(0°<α≤360°),可得△COD.(1)求点A,B的坐标;(2)当点D落在直线AB上时,直线CD与OA相交于点E,△COD和△AOB的重叠部分为△ODE(图①).求证:△ODE∽△ABO;(3)除了(2)中的情况外,是否还存在△COD和△AOB的重叠部分与△AOB相似,若存在,请指出旋转角α的度数;若不存在,请说明理由;(4)当α=30°时(图②),CD与OA,AB分别相交于点P,M,OD与AB相交于点N,试求△COD与△AOB的重叠部分(即四边形OPMN)的面积.21.(韶关)如图,在平面直角坐标系中,四边形OABC是矩形,OA=4,AB=2,直线与坐标轴交于D、E.设M是AB的中点,P是线段DE上的动点.(1)求M、D两点的坐标;(2)当P在什么位置时,PA=PB求出此时P点的坐标;(3)过P作PH⊥BC,垂足为H,当以PM为直径的⊙F与BC相切于点N时,求梯形PMBH 的面积.22.(衢州)如图,点B1(1,y1),B2(2,y2),B3(3,y3)…,B n(n,y n)(n是正整数)依次为一次函数y=x+的图象上的点,点A1(x1,0),A2(x2,0),A3(x3,0),…,A n(x n,0)(n是正整数)依次是x轴正半轴上的点,已知x1=a(0<a<1),△A1B1A2,△A2B2A3,△A3B3A4…△A n B n A n+1分别是以B1,B2,B3,…,B n为顶点的等腰三角形.(1)写出B2,B n两点的坐标;(2)求x2,x3(用含a的代数式表示);分析图形中各等腰三角形底边长度之间的关系,写出你认为成立的两个结论;(3)当a(0<a<1)变化时,在上述所有的等腰三角形中,是否存在直角三角形?若存在,求出相应的a的值;若不存在,请说明理由.23.(黔东南州)某商厦试销一种成本为50元/件的商品,规定试销时的销售单价不低于成本,又不高于80元/件,试销中销售量y(件)与销售单价x(元/件)的关系可近似的看作一次函数(如图).(1)求y与x的关系式;(2)设商厦获得的毛利润(毛利润=销售额﹣成本)为s(元),则销售单价定为多少时,该商厦获利最大,最大利润是多少?此时的销售量是多少件?24.(牡丹江)如图,在平面直角坐标系中,已知点A(﹣3,6),点B,点C分别在x轴的负半轴和正半轴上,OB,OC的长分别是方程x2﹣4x+3=0的两根(OB<OC).(1)求B,C两点的坐标;(2)在坐标平面内是否存在点Q和点P(点P在直线AC上),使以O、P、C、Q为顶点的四边形是正方形?若存在,请直接写出Q点的坐标;若不存在,请说明理由;(3)若平面内有M(1,﹣2),D为线段OC上一点,且满足∠DMC=∠BAC,∠MCD=45°,求直线AD的解析式.25.(梅州)如图,直角梯形ABCD中,AB∥CD,∠A=90°,AB=6,AD=4,DC=3,动点P从点A出发,沿A→D→C→B方向移动,动点Q从点A出发,在AB边上移动.设点P移动的路程为x,点Q移动的路程为y,线段PQ平分梯形ABCD的周长.(1)求y与x的函数关系式,并求出x,y的取值范围;(2)当PQ∥AC时,求x,y的值;(3)当P不在BC边上时,线段PQ能否平分梯形ABCD的面积?若能,求出此时x的值;若不能,说明理由.26.(聊城)某市为了进一步改善居民的生活环境,园林处决定增加公园A和公园B的绿化面积.已知公园A,B分别有如图1,图2所示的阴影部分需铺设草坪,在甲、乙两地分别有同种草皮1608m2和1200m2出售,且售价一样.若园林处向甲、乙两地购买草皮,其路程和运费单价见下表:公园A 公园B路程(千米)运费单价(元)路程(千米)运费单价(元)甲地30 0.25 32 0.25乙地22 0.3 30 0.3(注:运费单价指将每平方米草皮运送1千米所需的人民币)(1)分别求出公园A,B需铺设草坪的面积;(结果精确到1m2)(2)请设计出总运费最省的草皮运送方案,并说明理由.27.(佳木斯)如图,在平面直角坐标系中,已知点A(﹣3,6),点B,点C分别在x轴的负半轴和正半轴上,OB,OC的长分别是方程x2﹣4x+3=0的两根(OB<OC).(1)求点B,点C的坐标;(2)若平面内有M(1,﹣2),D为线段OC上一点,且满足∠DMC=∠BAC,求直线MD 的解析式;(3)在坐标平面内是否存在点Q和点P(点P在直线AC上),使以O,P,C,Q为顶点的四边形是正方形?若存在,请直接写出Q点的坐标;若不存在,请说明理由.28.(济南)已知:如图,在平面直角坐标系中,△ABC是直角三角形,∠ACB=90°,点A,C的坐标分别为A(﹣3,0),C(1,0),tan∠BAC=.(1)求过点A,B的直线的函数表达式;(2)在x轴上找一点D,连接DB,使得△ADB与△ABC相似(不包括全等),并求点D 的坐标;(3)在(2)的条件下,如P,Q分别是AB和AD上的动点,连接PQ,设AP=DQ=m,问是否存在这样的m,使得△APQ与△ADB相似?如存在,请求出m的值;如不存在,请说明理由.29.(黑龙江)如图,点A为x轴负半轴上一点,点B为x轴正半轴上一点,OA,OB(OA <OB)的长分别是关于x的一元二次方程x2﹣4mx+m2+2=0的两根,C(0,3),且S△ABC=6 (1)求∠ABC的度数;(2)过点C作CD⊥AC交x轴于点D,求点D的坐标;(3)在第(2)问的条件下,y轴上是否存在点P,使∠PBA=∠ACB?若存在,请直接写出直线PD的解析式;若不存在,请说明理由.30.(哈尔滨)如图,梯形ABCD在平面直角坐标系中,上底AD平行于x轴,下底BC 交y轴于点E,点C(4,﹣2),点D(1,2),BC=9,sin∠ABC=.(1)求直线AB的解析式;(2)若点H的坐标为(﹣1,﹣1),动点G从B出发,以1个单位/秒的速度沿着BC边向C点运动(点G可以与点B或点C重合),求△HGE的面积S(S≠0)随动点G的运动时间t′秒变化的函数关系式(写出自变量t′的取值范围);(3)在(2)的条件下,当秒时,点G停止运动,此时直线GH与y轴交于点N.另一动点P开始从B出发,以1个单位/秒的速度沿着梯形的各边运动一周,即由B到A,然后由A到D,再由D到C,最后由C回到B(点P可以与梯形的各顶点重合).设动点P 的运动时间为t秒,点M为直线HE上任意一点(点M不与点H重合),在点P的整个运动过程中,求出所有能使∠PHM与∠HNE相等的t的值.答案与评分标准一.解答题(共30小题)1.(顺义区)如图,直线l1:y=kx+b平行于直线y=x﹣1,且与直线l2:相交于点P(﹣1,0).(1)求直线l1、l2的解析式;(2)直线l1与y轴交于点A.一动点C从点A出发,先沿平行于x轴的方向运动,到达直线l2上的点B1处后,改为垂直于x轴的方向运动,到达直线l1上的点A1处后,再沿平行于x轴的方向运动,到达直线l2上的点B2处后,又改为垂直于x轴的方向运动,到达直线l1上的点A2处后,仍沿平行于x轴的方向运动,…照此规律运动,动点C依次经过点B1,A1,B2,A2,B3,A3,…,B n,A n,…①求点B1,B2,A1,A2的坐标;②请你通过归纳得出点A n、B n的坐标;并求当动点C到达A n处时,运动的总路径的长?考点:一次函数综合题。

九年级中考数学动点问题压轴题专题训练(含答案)

九年级中考数学动点问题压轴题专题训练(含答案)

九年级中考数学动点问题压轴题专题训练1. 如图1,在平面直角坐标系中,四边形OABC各顶点的坐标分别为O(0,0),A(3,33),B(9,53),C(14,0).动点P与Q同时从O点出发,运动时间为t秒,点P沿OC方向以1单位长度/秒的速度向点C运动,点Q沿折线OA-AB-BC运动,在OA,AB,BC上运动的速度分别为3,3,52(单位长度/秒).当P,Q中的一点到达C点时,两点同时停止运动.(1)求AB所在直线的函数表达式.(2)如图2,当点Q在AB上运动时,求△CPQ的面积S关于t的函数表达式及S 的最大值.(3)在P,Q的运动过程中,若线段PQ的垂直平分线经过四边形OABC的顶点,求相应的t值.图1 图22. 如图,抛物线y=-x2+bx+c与x轴交于A,B两点(A在B的左侧),与y轴交于点N,过A点的直线l:y=kx+n与y轴交于点C,与抛物线y=-x2+bx+c的另一个交点为D,已知A(-1,0),D(5,-6),P点为抛物线y=-x2+bx+c上一动点(不与A,D重合).(1)求抛物线和直线l的解析式;(2)当点P在直线l上方的抛物线上时,过P点作PE∥x轴交直线l于点E,作PF∥y轴交直线l于点F,求PE+PF的最大值;(3)设M为直线l上的点,探究是否存在点M,使得以点N,C,M,P为顶点的四边形为平行四边形.若存在,求出点M的坐标;若不存在,请说明理由.3. 如图,在平面直角坐标系中,抛物线y=ax2+bx+c经过A(-2, -4 )、O(0, 0)、B(2, 0)三点.(1)求抛物线y=ax2+bx+c的解析式;(2)若点M是该抛物线对称轴上的一点,求AM+OM的最小值.4. 设直线l1:y=k1x+b1与l2:y=k2x+b2,若l1⊥l2,垂足为H,则称直线l1与l2是点H的直角线.(1)已知直线①122y x =-+;②2y x =+;③22y x =+;④24y x =+和点C (0,2),则直线_______和_______是点C 的直角线(填序号即可);(2)如图,在平面直角坐标系中,直角梯形OABC 的顶点A (3,0)、B (2,7)、C (0,7),P 为线段OC 上一点,设过B 、P 两点的直线为l 1,过A 、P 两点的直线为l 2,若l 1与l 2是点P 的直角线,求直线l 1与l 2的解析式.5. 如图①,在平面直角坐标系xOy 中,已知抛物线y=ax 2-2ax -8a 与x 轴相交于A ,B 两点(点A 在点B 的左侧),与y 轴交于点C (0,-4).(1)点A 的坐标为 ,点B 的坐标为 ,线段AC 的长为 ,抛物线的解析式为 .(2)点P 是线段BC 下方抛物线上的一个动点.如果在x 轴上存在点Q ,使得以点B ,C ,P ,Q 为顶点的四边形是平行四边形,求点Q 的坐标.①6. 如图,已知抛物线211(1)444by x b x =-++(b 是实数且b >2)与x 轴的正半轴分别交于点A 、B (点A 位于点B 是左侧),与y 轴的正半轴交于点C .(1)点B 的坐标为______,点C 的坐标为__________(用含b 的代数式表示); (2)请你探索在第一象限内是否存在点P ,使得四边形PCOB 的面积等于2b ,且△PBC 是以点P 为直角顶点的等腰直角三角形?如果存在,求出点P 的坐标;如果不存在,请说明理由;(3)请你进一步探索在第一象限内是否存在点Q ,使得△QCO 、△QOA 和△QAB 中的任意两个三角形均相似(全等可看作相似的特殊情况)?如果存在,求出点Q 的坐标;如果不存在,请说明理由.7. 如图,已知A 、B 是线段MN 上的两点,4=MN ,1=MA ,1>MB .以A 为中心顺时针旋转点M ,以B 为中心逆时针旋转点N ,使M 、N 两点重合成一点C ,构成△ABC ,设x AB =. (1)求x 的取值范围;(2)若△ABC 为直角三角形,求x 的值; (3)探究:△ABC 的最大面积?8. 如图,已知抛物线y=-x2+bx+c经过A(0, 1)、B(4, 3)两点.(1)求抛物线的解析式;(2)求tan∠ABO的值;(3)过点B作BC⊥x轴,垂足为C,在对称轴的左侧且平行于y轴的直线交线段AB于点N,交抛物线于点M,若四边形MNCB为平行四边形,求点M的坐标.9. 在平面直角坐标系中,反比例函数与二次函数y=k(x2+x-1)的图象交于点A(1,k)和点B(-1,-k).(1)当k=-2时,求反比例函数的解析式;(2)要使反比例函数与二次函数都是y随x增大而增大,求k应满足的条件以及x的取值范围;(3)设二次函数的图象的顶点为Q,当△ABQ是以AB为斜边的直角三角形时,求k的值.10. 如图,已知抛物线y=ax2+bx+4(a≠0)的对称轴为直线x=3,抛物线与x轴相交于A,B两点,与y轴相交于点C,已知B点的坐标为(8,0).(1)求抛物线的解析式;(2)点M为线段BC上方抛物线上的一点,点N为线段BC上的一点,若MN∥y 轴,求MN的最大值;(3)在抛物线的对称轴上是否存在点Q,使△ACQ为等腰三角形?若存在,求出符合条件的Q点坐标;若不存在,请说明理由.11. 如图,直线y=2x+6与反比例函数y=kx(k>0)的图象交于点A(m,8),与x轴交于点B,平行于x轴的直线y=n(0<n<6)交反比例函数的图象于点M,交AB于点N,连接BM.(1)求m的值和反比例函数的解析式;(2)观察图象,直接写出当x>0时不等式2x+6-kx>0的解集;(3)直线y=n沿y轴方向平移,当n为何值时,△BMN的面积最大?最大值是多少?12. 如图,在平面直角坐标系xOy中,顶点为M的抛物线y=ax2+bx(a>0)经过点A和x轴正半轴上的点B,AO=BO=2,∠AOB=120°.(1)求这条抛物线的表达式;(2)连结OM,求∠AOM的大小;(3)如果点C在x轴上,且△ABC与△AOM相似,求点C的坐标.13. 在直角梯形OABC中,CB//OA,∠COA=90°,CB=3,OA=6,BA=35.分别以OA、OC边所在直线为x轴、y轴建立如图所示的平面直角坐标系.(1)求点B的坐标;(2)已知D、E分别为线段OC、OB上的点,OD=5,OE=2EB,直线DE交x轴于点F.求直线DE的解析式;(3)点M是(2)中直线DE上的一个动点,在x轴上方的平面内是否存在另一点N,使以O、D、M、N为顶点的四边形是菱形?若存在,请求出点N的坐标;若不存在,请说明理由.14. 如图,已知一次函数y =-x +7与正比例函数43y x 的图象交于点A ,且与x 轴交于点B .(1)求点A 和点B 的坐标;(2)过点A 作AC ⊥y 轴于点C ,过点B 作直线l //y 轴.动点P 从点O 出发,以每秒1个单位长的速度,沿O —C —A 的路线向点A 运动;同时直线l 从点B 出发,以相同速度向左平移,在平移过程中,直线l 交x 轴于点R ,交线段BA 或线段AO 于点Q .当点P 到达点A 时,点P 和直线l 都停止运动.在运动过程中,设动点P 运动的时间为t 秒.①当t 为何值时,以A 、P 、R 为顶点的三角形的面积为8?②是否存在以A 、P 、Q 为顶点的三角形是等腰三角形?若存在,求t 的值;若不存在,请说明理由.15. 如图,二次函数y =a (x 2-2mx -3m 2)(其中a 、m 是常数,且a >0,m >0)的图像与x 轴分别交于A 、B (点A 位于点B 的左侧),与y 轴交于点C (0,-3),点D 在二次函数的图像上,CD //AB ,联结AD .过点A 作射线AE 交二次函数的图像于点E ,AB 平分∠DAE . (1)用含m 的式子表示a ;(2)求证:AD为定值;AE(3)设该二次函数的图像的顶点为F.探索:在x轴的负半轴上是否存在点G,联结GF,以线段GF、AD、AE的长度为三边长的三角形是直角三角形?如果存在,只要找出一个满足要求的点G即可,并用含m的代数式表示该点的横坐标;如果不存在,请说明理由.16. 如图,二次函数y=-x2+4x+5的图象的顶点为D,对称轴是直线l,一次函数y=x+1的图象与x轴交于点A,且与直线DA关于l的对称直线交于点B.(1)点D的坐标是.(2)直线l与直线AB交于点C,N是线段DC上一点(不与点D,C重合),点N 的纵坐标为n.过点N作直线与线段DA,DB分别交于点P,Q,使得△DPQ与△DAB 相似.①当n=时,求DP的长;②若对于每一个确定的n的值,有且只有一个△DPQ与△DAB相似,请直接写出n的取值范围.17. 已知直线y =3x -3分别与x 轴、y 轴交于点A ,B ,抛物线y =ax 2+2x +c 经过点A ,B .(1)求该抛物线的表达式,并写出该抛物线的对称轴和顶点坐标;(2)记该抛物线的对称轴为直线l ,点B 关于直线l 的对称点为C ,若点D 在y 轴的正半轴上,且四边形ABCD 为梯形. ①求点D 的坐标;②将此抛物线向右平移,平移后抛物线的顶点为P ,其对称轴与直线y =3x -3交于点E ,若73tan =∠DPE ,求四边形BDEP 的面积.18. 如图,在平面直角坐标系xOy 中,二次函数y =-x 2+2x +8的图象与一次函数y =-x +b 的图象交于A 、B 两点,点A 在x 轴上,点B 的纵坐标为-7.点P是二次函数图象上A 、B 两点之间的一个动点(不与点A 、B 重合),设点P 的横坐标为m ,过点P 作x 轴的垂线交AB 于点C ,作PD ⊥AB 于点D . (1)求b 及sin ∠ACP 的值;(2)用含m 的代数式表示线段PD 的长;(3)连接PB ,线段PC 把△PDB 分成两个三角形,是否存在适合的m 值,使这两个三角形的面积之比为1∶2?如果存在,直接写出m 的值;如果不存在,请说明理由.19. 如图,抛物线233384y x x =--+与x 轴交于A 、B 两点(点A 在点B 的左侧),与y 轴交于点C . (1)求点A 、B 的坐标;(2)设D 为已知抛物线的对称轴上的任意一点,当△ACD 的面积等于△ACB 的面积时,求点D 的坐标;(3)若直线l 过点E (4, 0),M 为直线l 上的动点,当以A 、B 、M 为顶点所作的直角三角形有且只有....三个时,求直线l 的解析式.20. 已知平面直角坐标系中两定点A(-1, 0)、B(4, 0),抛物线y=ax2+bx-2(a≠0)过点A、B,顶点为C,点P(m, n)(n<0)为抛物线上一点.(1)求抛物线的解析式和顶点C的坐标;(2)当∠APB为钝角时,求m的取值范围;(3)若m>32,当∠APB为直角时,将该抛物线向左或向右平移t(0<t<52)个单位,点C、P平移后对应的点分别记为C′、P′,是否存在t,使得顺次首尾连接A、B、P′、C′所构成的多边形的周长最短?若存在,求t的值并说明抛物线平移的方向;若不存在,请说明理由.2021中考数学压轴专题训练之动点问题-答案一、解答题(本大题共20道小题)1. 【答案】【思维教练】(1)设一次函数解析式,将已知点A、B的坐标值代入求解即可;(2)S△CPQ=12·CP·Q y,CP=14-t,点Q在AB上,Q y即为当x=t时的y值,代入化简得出S与t的函数关系式,化为顶点式得出最值;(3)垂直平分线过顶点需以时间为临界点分情况讨论,当Q在OA上时,过点C;当Q在AB上时,过点A;当Q在BC上时,过点C和点B,再列方程并求解.解图1解:(1)把A(3,33),B(9,53)代入y =kx +b ,得⎩⎪⎨⎪⎧3k +b =33,9k +b =53,解得⎩⎨⎧k =33,b =23, ∴y =33x +23;(3分) (2)在△PQC 中,PC =14-t ,∵OA =32+(33)2=6且Q 在OA 上速度为3单位长度/s , AB =62+(23)2=43且Q 点在AB 上的速度为3单位长度/s , ∴Q 在OA 上时的横坐标为t ,Q 在AB 上时的横坐标为32t , PC 边上的高线长为33t +2 3.(6分)所以S =12(14-t )(32t +23)=-34t 2+532t +143(2≤t ≤6).当t =5时,S 有最大值为8134.(7分)解图2(3)①当0<t ≤2时,线段PQ 的中垂线经过点C(如解图1). 可得方程(332t )2+(14-32t )2=(14-t )2. 解得t 1=74,t 2=0(舍去),此时t =74.(8分)解图3②当2<t ≤6时,线段PQ 的中垂线经过点A(如解图2). 可得方程(33)2+(t -3)2=[3(t -2)]2.解得t 1=3+572,∵t 2=3-572(舍去),此时t =3+572. ③当6<t ≤10时,(1)线段PQ 的中垂线经过点C(如解图3). 可得方程14-t =25-52t ,解得t =223.(10分)解图4(2)线段PQ 的中垂线经过点B(如解图4). 可得方程(53)2+(t -9)2=[52(t -6)]2. 解得t 1=38+2027,t 2=38-2027(舍去).此时t =38+2027.(11分)综上所述,t 的值为74,3+572,223,38+2027.(12分)【难点突破】解决本题的关键点在于对PQ 的垂直平分线过四边形顶点的情况进行分类讨论,在不同阶段列方程求解.2. 【答案】[分析] (1)将点A,D的坐标分别代入直线表达式、抛物线的表达式,即可求解;(2)设出P点坐标,用参数表示PE,PF的长,利用二次函数求最值的方法.求解;(3)分NC是平行四边形的一条边或NC是平行四边形的对角线两种情况,分别求解即可.解:(1)将点A,D的坐标代入y=kx+n得:解得:故直线l的表达式为y=-x-1.将点A,D的坐标代入抛物线表达式,得解得故抛物线的表达式为:y=-x2+3x+4.(2)∵直线l的表达式为y=-x-1,∴C(0,-1),则直线l与x轴的夹角为45°,即∠OAC=45°,∵PE∥x轴,∴∠PEF=∠OAC=45°.又∵PF∥y轴,∴∠EPF=90°,∴∠EFP=45°.则PE=PF.设点P坐标为(x,-x2+3x+4),则点F(x,-x-1),∴PE+PF=2PF=2(-x2+3x+4+x+1)=-2(x-2)2+18,∵-2<0,∴当x=2时,PE+PF有最大值,其最大值为18.(3)由题意知N(0,4),C(0,-1),∴NC=5,①当NC是平行四边形的一条边时,有NC∥PM,NC=PM.设点P 坐标为(x ,-x 2+3x +4),则点M 的坐标为(x ,-x -1), ∴|y M -y P |=5,即|-x 2+3x +4+x +1|=5, 解得x=2±或x=0或x=4(舍去x=0),则点M 坐标为(2+,-3-)或(2-,-3+)或(4,-5);②当NC 是平行四边形的对角线时,线段NC 与PM 互相平分. 由题意,NC 的中点坐标为0,,设点P 坐标为(m ,-m 2+3m +4), 则点M (n',-n'-1), ∴0==,解得:n'=0或-4(舍去n'=0), 故点M (-4,3).综上所述,存在点M ,使得以N ,C ,M ,P 为顶点的四边形为平行四边形,点M 的坐标分别为: (2+,-3-),(2-,-3+),(4,-5),(-4,3).3. 【答案】(1)212y x x =-+。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

初中数学中考压轴题专练30道(40页)选择题法大全
方法一:排除选项法选择题因其答案是四选一,必然只有一个正确答案,那么我们就可以采用排除法,从四个选项中排除掉易于判断是错误的答案,那么留下的一个自然就是正确的答案。

方法二:赋予特殊值法即根据题目中的条件,选取某个符合条件的特殊值或作出特殊图形进行计算、推理的方法。

用特殊值法解题要注意所选取的值要符合条件,且易于计算。

方法三:通过猜想、测量的方法,直接观察或得出结果
这类方法在近年来的初中题中常被运用于探索规律性的问题,此类题的主要解法是运用不完全归纳法,通过试验、猜想、试误验证、总结、归纳等过程使问题得解。

方法四:直接求解法有些选择题本身就是由一些填空题、判断题、解答题改编而来的,因此往往可采用直接法,直接由从题目的条件出发,通过正确的运算或推理,直接求得结论,再与选择项对照来确定选择项。

我们在做解答题时大部分都是采用这种方法。

例如:商场促销活动中,将标价为200元的商品,在打8折的基础上,再打8折销售,现该商品的售价是( )A 、160元B、128元 C 、120元D、88元
方法五:数形结合法解决与图形或图像有关的选择题,常常要运用数形结合的思想方法,有时还要综合运用其他方法。

方法六:代入法将选择支代入题干或题代入选择支进行检验,然后作出判断。

方法七:观察法观察题干及选择支特点,区别各选择支差异及相互关系作出选择。

方法八:枚举法列举所有可能的情况,然后作出正确的判断。

例如:把一张面值10元的人民币换成零钱,现有足够面值为2元,1元的人民币,换法有( )A.5种 B.6种 C.8种 D.10种
分析:如果设面值2元的人民币x张,1元的人民币y元,不难列出方程,此方程的非负整数解有6对,故选B。

方法九:待定系数法要求某个函数关系式,可先假设待定系数,然后根据题意列出方程(组),通过解方程(组),求得待定系数,从而确定函数关系式,这种方法叫待定系数法。

方法十:不完全归纳法当某个数学问题涉及到相关多乃至无穷多的情形,头绪纷乱很难下手时,行之有效的方法是通过对若干简单情形进行考查,从中找出一般规律,求得问题的解决。

以上是我们给同学们介绍的初中数学选择题的答题技巧,希望同学们认真掌握,选择题的分数一定要拿下。

初中数学答题技巧有以上十种,能全部掌握的最好;不能的话,建议同学们选择集中适合自己的初中数学选择题做题方法。

填空题解法大全
一、填空题特点分析与选择题同属客观性试题的填空题,具有客观性试题的所有特点,即题目短小精干,考查目标集中明确,答案唯一正确,答卷方式简便,评分客观公正等。

但是它又有本身的特点,即没有备选答案可供选择,这就避免了选择项所起的暗示或干扰的作用,及考生存在的瞎估乱猜的侥幸心理,从这个角度看,它能够比较真实地考查出学生的真正水平。

考查内容多是“双基”方面,知识覆盖面广。

但在考查同样内容时,难度一般比择题略大。

二、主要题型初中填空题主要题型一是定量型填空题,主要考查计算能力的计算题,同时也考查考生对题目中所涉及到数学公式的掌握的熟练程度;二是定性型填空题,考查考生对重要的数学概念、定理和性质等数学基础知识的理解和熟练程度。

当然这两类填空题也是互相渗透的,对于具体知识的理解和熟练程度只不过是考查有所侧重而已。

填空题一般是一道题填一个空格,当然个别省市也有例外。

江西省还出了一道“先阅读,后填空”的试题,它首先列举了30名学生的数学成绩,给出频率分布表,然后要求考生回答六小道填空题,这也可以说是一种新题型。

这种先阅读一段短文,在理解的基础上,要求解答有关的问题,是近年悄然兴起的阅读理解题。

它不仅考查了学生阅读理解和整理知识的能力,同时提醒考生平时要克服读书囫囵吞枣、不求甚解的不良习惯。

这种新题型的出现,无疑给填空题较寂静的湖面投了一个小石子。

三、基本题法
方法一:直接法
方法二:特例法
方法三:数形结合法
方法四:猜想法
方法五:整体法
方法六:构造法
方法七:图解法
方法八:等价转化法
方法九:观察法
压轴例题。

相关文档
最新文档