植物生理生态学复习资料
植物生理学

1.植物体内水分存在的形式与植物代谢强弱抗逆性有何关系?水在植物体内以束缚水和自由水两种形态存在。
束缚水是被原生质组分吸附,不能自由移动的水分。
自由水是不被原生质组分吸附,可自由移动的水分。
自由水/束缚水比值较高时,职务代谢活跃,但抗逆性差;比值较低时,代谢活性低,抗逆性强。
2.试述气孔运动的机制及其影响因素。
气孔运动实质:渗透调节保卫细胞。
一切影响气孔保卫细胞水势下降的条件都促使气孔张开。
气孔运动是一个非常复杂的问题,其调控涉及内在节律,以及外部因素。
气孔运动有一种内生近似昼夜节律,即使置于连续光照或黑暗之下,气孔仍会随一天的昼夜交替而开闭,这种节律可维持数天。
气孔蒸腾的速率受到内外因素的影响。
外界条件中以光照为主,内部因素中以气孔调节为主。
外部因子主要包括CO2,光,温度,叶片含水量,风,植物激素等。
3.水分的生理生态作用。
水对植物的生命活动有极重要的生理生态作用。
生理作用:水是原生质的主要组分;水直接参与植物体内重要的代谢过程;水是物质吸收,运输的良好介质(介电常数高);水保持植物的固有姿态;细胞的分裂和生长需要足够的水。
生态作用:调节植物体内(高比热,高汽化热);水对可见光有良好的通透性;水可调节植物的生存环境。
4.试述根系吸收矿质元素的特点,主要过程及其影响因素。
特点:对矿质元素和水分的相对吸收,离子的选择性吸收,单盐毒害和离子对抗。
主要过程:离子被吸附在根细胞表面-非代谢性交换吸附,离子进入根部内部,离子进入导管。
影响因素:土壤温度,土壤通气状况,土壤溶液的浓度,土壤溶液的PH值,土壤水分含量,土壤颗粒对粒子的吸附,土壤微生物,土壤中离子的相互作用。
5.氮磷钾三大元素生理功能,缺氮症。
氮:能使植物叶子大而鲜绿,使叶片减缓衰老,营养健壮,花多,产量高。
磷:能使作物代谢正常,植株发育良好,同时提高作物的抗旱性以及抗寒性,提早成熟。
钾:能使植物的光合作用加强,茎秆坚韧,抗伏倒,使种子饱满。
生态学期末复习资料(精华版)

⽣态学期末复习资料(精华版)⽣态学期末复习资料(打★为考过) 第⼀章绪论⼀、名词解释★1.⽣物圈(Biosphere):地球上全部⽣物和⼀切适合于⽣物栖息的场所。
它包括岩⽯圈(lithosphere)的上层、全部⽔圈(hydrosphere)和⼤⽓圈(atmosphere)的下层。
2.⽣态学(Ecology):研究⽣物(organism)及环境(environment)间相互关系的科学(Hackel,1869)。
研究⽣命系统与环境系统之间相互作⽤规律及其机理的科学(马世骏,1980)。
⼆、问答题1.简述⽣态学的发展过程。
答:(1)⽣态学的萌芽时期(公元16世纪以前):以古代思想家、农学家对⽣物环境相互关系的朴素整体观点为特点;(2)⽣态学的建⽴时期(公元17世纪⾄19世纪):欧洲科学家探索活动再度迭起,崇尚科学和科学实验,⼀些科学理论相继形成;(3)⽣态学的巩固时期(20世纪初⾄20世纪50年代):这⼀时期是⽣态学理论的形成、⽣物种群和群落由定性到定量描述,⽣态学实验,⽅法发展的辉煌时期,形成了著名的四⼤学派;(4)现代⽣态学时期(20世纪60年代⾄今):①研究层次上向宏观和微观的⽅向发展、⽣态学的研究层次已包括了分⼦、基因、个体直到⽣物圈;②研究⼿段的更新:⾃计电⼦仪、同位素⽰踪、稳定性同位素、⽣态建模、系统论引⼊⽣态学;③研究范围的扩展:符合⼈类活动对⽣态过程的影响以纯⾃然现象研究扩展到⾃然-经济-社会复合系统的研究。
★(简答题)2.列出国内外各5位著名⽣态学家,并概括其在⽣态学上的最主要贡献。
答:Odum, Tansley, Clements, 苏卡乔夫,孙儒泳等★3.现代⽣态学的发展趋势。
(论述题)答:(1)⽣态系统⽣态学的研究成为主流;(2)系统理论在⽣态学中得到了⼴泛运⽤;(3)从描述性科学⾛向实验科学;(4)研究对象继续向宏观和微观两个⽅向发展,由传统的个体、种群、群落向更宏观和更微观的⽅向发展,⽣态系统⽣态学、景观⽣态学、全球⽣态学和分⼦⽣态学的出现是现代⽣态学发展的重要标志;(5)⼀些新兴的⽣态学分⽀如进化⽣态学、⾏为⽣态学、化学⽣态学等相继出现;(6)应⽤⽣态学迅速发展。
植物生理与生态

植物生理与生态植物是我们生活中不可或缺的一部分,它们通过各种生理和生态适应来适应不同的环境条件。
植物生理和生态学是研究植物如何适应环境并与其他生物相互作用的学科。
本文将探讨植物生理与生态的关系以及植物在生理和生态方面的适应能力。
一、植物生理1. 植物的生长和发育植物的生长和发育是植物生理学的重要研究内容之一。
植物通过细胞分裂、伸长和分化等过程实现生长与发育。
植物能够感知和响应外部环境的刺激,如光、温度、湿度等,从而适应不同的生长条件。
2. 植物的营养吸收和代谢植物通过根系吸收土壤中的水分和营养物质,并通过光合作用将阳光转化为能量。
植物还能合成和利用氨基酸、碳水化合物和脂类等有机物质进行代谢活动,维持正常的生理功能。
3. 植物的水分和气体交换植物需要水分和气体交换来维持生长和生存。
植物通过根系吸水,并通过叶片的气孔进行气体交换,吸收二氧化碳并释放氧气。
这一过程对植物的生长和光合作用至关重要。
二、植物生态1. 生态位与种群生态学生态位是指一个物种在特定环境中所占据的地位和资源利用方式。
植物在自然界中与其他植物和动物形成复杂的生态系统。
种群生态学研究植物在一定地理范围内的空间分布、数量变化以及与其他生物相互作用的规律。
2. 植物与环境的相互作用植物与环境之间存在着复杂的相互作用关系。
植物根据环境条件的变化,通过适应性进化来调整自身生理和形态结构,以提高在环境中的生存能力。
例如,在干旱地区,一些植物发展出了较为发达的根系和减少水分蒸腾的机制,提高水分利用效率。
三、植物的适应性1. 植物的生物节律植物具有自身的生物节律,如花期、休眠期和开花时间等。
这些生物节律受到光照、温度、水分等环境因素的影响。
通过调整生物节律,植物能够适应不同的环境条件和生态需求。
2. 植物的竞争与合作植物在自然界中存在着竞争与合作关系。
植物通过竞争获取光、水和营养等资源,同时与其他植物进行合作,如共生和互惠共生。
这种竞争和合作关系是植物共同适应环境的一种策略。
复习——植物生理生态学

植物生理生态学复习名词解释:第1章绪论1.生理生态学:以有机体的生理功能与其环境为研究对象的学科2.生态幅:每一种生物对每一种生态因子都有一个耐受范围;在耐受范围的最低点和最高点(或称耐受性的上限和下限)之间的范围,称为生态幅或生态价。
3.生理幅:植物的生理耐受范围(只考虑非生物因子作用的结果)4.逆境:指降低一些生理过程(如生长或光合作用)速率的生物或非生物因素第2章光合作用1.光饱和点:超过该光照强度时,CO2同化率不受光照强度影响2.光补偿点:光合作用CO2同化率与呼吸作用产生的CO2速率相等3.暗呼吸速率:植物体吸收氧气和放出二氧化碳的氧化还原过程的速率4.最大光合速率:在最适条件下达到的光合作用速率5.CO2补偿点:光合作用CO2同化率等于呼吸作用CO2产率时的CO2浓度6.光合有效辐射(PAR):太阳辐射中能被绿色植物用来进行光合作用的那部分能量7.光合诱导:受光斑照射时,林下植物叶片便会逐渐提高其光合速率,这个过程涉及气孔导度的增大和光合酶的激活,称为光合诱导。
8.光合氮利用效率(PUNE):光合组织每单位质量氮合成的有机物质量9.同位素分馏:由于同位素质量不同,因此在物理、化学及生物化学作用过程中,一种元素在不同物质之间的分配具有不同的同位素比值的现象10.水生植物的CO2来源与水pH值的关系a.当pH<7时,水体的CO2含量高,水生植物主要利用CO2进行光合作用。
b.当pH>7时,水体中CO2不足,则许多植物利用碳酸氢盐作为光合作用的碳源。
第3章呼吸作用1.呼吸商:呼吸作用释放CO2摩尔数与吸收O2摩尔数之比2.有氧呼吸:指细胞在氧气的参与下,通过多种酶的催化作用,把葡萄糖等有机物彻底氧化分解,产生二氧化碳和水,释放能量,生成大量ATP的过程3.无氧呼吸:在无氧条件下,通过酶的催化作用,植物细胞把糖类等有机物分解成为不彻底的氧化产物,同时释放出少量能量的过程。
4.维持呼吸:维持植物组织现状的呼吸量5.生长呼吸:用于植物生长的呼吸量6.离子吸收呼吸:用于离子吸收的呼吸量7.交替呼吸(或抗氰氧化):植物线粒体内膜上的非磷酸化电子转运途径,由交替氧化酶催化将还原型辅酶Q(转化为氧化型辅酶Q)中的电子转入O2。
植物生态学重点

植物生态学重点植物生态学是生态学的一个分支,研究植物个体、种群、群落和生态系统在受到物理和生物环境梯度的影响下的变化规律。
以下是植物生态学的重点内容:1、植物种群生态学:研究植物种群的分布、数量、动态和遗传特征。
了解种群生态学有助于理解植物如何适应环境变化,以及如何应对人口增长、气候变化等全球变化。
2、植物群落生态学:研究植物群落的组成、结构、动态和分布。
理解群落生态学可以帮助我们了解植物如何与其环境相互作用,以及如何预测和管理不同环境中的植物群落。
3、生态系统生态学:研究整个生态系统的结构和功能,包括生物部分和非生物部分。
生态系统生态学有助于我们理解整个生态系统的健康和稳定性,以及如何保护和维护生态系统。
4、全球气候变化:全球气候变化对植物生态学有深远的影响。
植物生态学家正在努力了解和预测气候变化如何影响植物生长、繁殖和分布,以及如何采取措施减轻其影响。
5、保护生物学:保护生物学是植物生态学的一个重要领域,专注于保护和维护生物多样性和生态系统。
保护生物学有助于我们了解如何保护濒危物种、生态系统,以及如何合理利用自然资源。
6、环境修复:环境修复是植物生态学的另一个重要领域,包括土壤修复、水体修复和大气修复等。
通过使用植物和微生物修复技术,我们可以有效地减少污染,改善环境质量。
7、入侵生物学:入侵生物学研究入侵物种的生态学和进化过程,以及如何预防和控制入侵物种的扩散。
入侵生物学有助于我们了解如何管理和控制外来物种的入侵,以保护本土生物多样性和生态系统。
8、土壤生态学:土壤生态学研究土壤中生物群落的组成、结构、功能和变化规律,包括土壤微生物、土壤动物、土壤和水的关系等。
了解土壤生态学有助于我们了解土壤的健康和生产力,以及如何保护和维护土壤生态系统。
9、水体生态学:水体生态学研究水生生物群落的组成、结构、功能和变化规律,包括水生植物、水生动物和水体污染等。
了解水体生态学有助于我们了解水体的健康和生产力,以及如何保护和维护水生生态系统。
植物生理生态学中的重点问题及其研究方法

植物生理生态学中的重点问题及其研究方法植物生理生态学是植物学的一个分支,它研究植物在自然环境中的生理和生态适应过程,包括植物形态和结构、生长发育、光合作用和呼吸作用、物质和能量的转化和利用、逆境适应等方面。
本文将着重介绍植物生理生态学中的重点问题及其研究方法。
一、植物对光环境的适应性光合作用是植物生长发育的基础,并且光的强度、波长以及周期会影响植物的生长和发育。
植物能够自适应不同的光环境,例如阴生植物性状特化、草本植物叶片厚度和羽状度改变、树木叶片下垂等适应策略。
研究植物对光环境的适应性问题可以通过通过光合速率、反馈机制、调控因素、形态结构等方面。
在研究方法方面,可以使用激光扫描共聚焦显微镜来观察植物叶片的细胞结构和组织特征。
通过对植物的光合作用和生长发育情况的调查,可以探究植物对不同光环境的适应性机制。
二、植物对水分和营养的利用植物在自然环境中要面对水分和营养的不平衡问题。
一些荒漠植物和适应水分不足的植物表现出低水分利用阀值、耐旱能力和水分利用效率高等特征;同样,不同的土壤中的缺氧、温度等不同因素也会影响植物的生长和发育。
为了适应这些不同的环境,植物进化出了不同的体型、菌根共生、根系结构等形态策略进行适应。
在研究方法方面,可以利用根系分析、生物地球化学、光谱学等方法来了解植物对水分和营养的利用情况。
例如,水分利用效率可以通过测量气孔导度变化、蒸腾速率等方式进行测量和分析。
三、植物对气候变化的响应全球气候变化给植物生长和发育带来了巨大的影响,植物在面对气候变化时要调整光合作用、呼吸作用、碳和氮元素的循环等过程以适应新的环境。
植物面临的气候变化主要包括气温的升高、干旱变化、CO2浓度的变化、植被覆盖度的变化等。
为了适应这些变化,植物强调了CO2的浓度感知和调节,通过改变产生、转运、分配和贮藏物质的途径来增强逆境适应能力。
在研究方法方面,可以通过气象数据和地理定位系统(GPS)等手段来收集气候和植物数据,分析植物的生理生态学变化和响应机制。
植物生理学复习题及答案

植物生理学复习题及答案植物的水分代谢复习题一、名词解释1、水分代谢;2、水势;3、渗透势;4、压力势;5、衬质势;6、重力势;7、自由水;8、束缚水;9、渗透作用;10、吸胀作用;11、代谢性吸水;12、水的偏摩尔体积;13、化学势;14、水通道蛋白;15、吐水;16、伤流;17、根压;18、蒸腾拉力;19、蒸腾作用;20、蒸腾速率;21、蒸腾比率;22、蒸腾系数;23、小孔扩散律;24、永久萎蔫;25、临界水势;26、水分临界期;27、生理干旱;28、内聚力学说;29、初干;30、节水农业。
二、缩写符号翻译1、atm;2、bar;3、Mpa;4、Pa;5、PMA;6、RH;7、RWC;8、μw;9、Vw;10、Wact;11、Ws;12、WUE;13、ψw;14、ψp;15、ψs;16、ψm;17、ψπ;18、AQP;19、RDI;20、SPAC。
三、填空题1、植物细胞吸水方式有渗透性吸水、吸胀吸水和代谢性吸水。
2、植物调节蒸腾的方式有气孔关闭、初干和暂时萎蔫。
3、植物散失水分的方式有蒸腾作用和吐水。
4、植物细胞内水分存在的状态有自由水和束缚水。
5、水孔蛋白存在于细胞的液泡膜和质膜上。
水孔蛋白活化依靠磷酸化/脱磷酸化作用调节。
6、细胞质壁分离现象可以解决下列问题:判断膜的半透性、判断细胞死活和测定细胞渗透势。
7、自由水/束缚水比值越大,则代谢越旺盛;其比值越小,则植物的抗逆性越强。
8、一个典型细胞的水势等于ψπ+ψp+ψm;具有液泡的细胞的水势等于ψπ+ψp;干种子细胞的水势等于ψm。
9、形成液泡后,细胞主要靠渗透性吸水。
10、风干种子的萌发吸水主要靠吸胀作用。
11、溶液的水势就是溶液的渗透势。
12、溶液的渗透势决定于溶液中溶质颗粒总数。
13、在细胞初始质壁分离时,细胞的水势等于ψπ,压力势等于零。
14、当细胞吸水达到饱和时,细胞的水势等于零,渗透势与压力势绝对值相等。
15、将一个ψp=-ψs的细胞放入纯水中,则细胞的体积不变。
植物生理生态学

植物生理生态学植物生理生态学是研究生物与环境之间关系的一门学科,它专注于研究植物如何适应环境,以及它们对不同环境的反应是如何发生的。
植物生理生态学是生物学中重要的一种学科,研究手段以实验和观测为主。
由于大多数植物不能靠移动来适应环境变化而选择被动的方式应对,它们的反应必须靠生理形态特征以及生物化学过程的改变来实现。
植物生态生理学,首先是研究不同环境对植物的影响,以及植物如何通过内因的改变来适应外界的环境,其次是研究不同植物间的竞争关系,以及植物如何通过形态生理特性、生物化学过程等策略来调节竞争关系。
此外,还可以研究其他自然生态系统,如昆虫、鸟类等其他动物对植物的影响,以及植物如何通过内部和外部环境的变化来平衡昆虫、鸟类等其他动物的捕食压力。
植物生理生态学的研究主要以实验和观测为主,它的研究对象既可以是植物,也可以是植物的关联对象,植物的互作关系以及内部的生理形态特征等。
植物的研究方法主要是通过实验室实验来模拟环境,运用较为复杂的技术和设备,如植物活体成像、扫描电镜,采用动态荧光和单分子实验等,研究物种发展过程中,植物对环境的反应模式乃至基因表达变化。
植物生理生态学应用范围非常广,它的研究可以帮助人们了解植物适应不同的环境如何形成,如何保护特定植物,有助于物种保护和生态修复,还能够把生态学研究成果用于城市规划、建筑与土地利用管理,以及农业、林业、海洋等环境问题的解决等。
因此,植物生理生态学是生态系统生物学研究中重要的一种学科,研究利用科学原理和独特方法,具有重要的研究价值。
它的研究成果也可以提供有价值的建议和指导意见,为解决PM2.5、空气污染以及气候变化等环境问题提供有力的理论支持。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
植物生理生态学● 绪论植物生理生态学:研究植物与环境的相互作用和机制的一门实验科学。
研究层次:植物个体—器官—组织水平。
植物生理生态学特点:植物生态学的一个分支,主要用生理学的观点和方法来分析生态学现象。
研究生态因子和植物生理现象之间的关系。
植物生理生态学主要集中在组织、器官、个体与生物环境之间的相互关系,作为对生态现象的验证和解释,同时也对微观植物生理学提供了表征验证。
● 植物与环境环境:某一特定生物体或生物群体周围一切因素的总和,包括空间及直接或间接影响该生物体或生物群体生存的各种因素。
环境的本质就是生物生存和发展的资源或影响这种资源的因素。
生态因子:环境中对生物起作用的因子。
对生物的生长、发育、生殖、行为和分布有着直接或间接影响。
生存条件:生态因子中对生物生存环境不能缺少的生态因子的总称。
生境:特定生物个体或群体的栖息地的生态环境。
生态因子根据性质划分:1)气候因子:温度、水分、光照、风、气压和雷电等。
2)土壤因子:土壤结构、土壤成分的理化性质及土壤生物。
3)地形因子:陆地、海洋、海拔高度、山脉走向与坡度等。
4)生物因子:包括动物、植物和微生物之间的各种相互作用。
5)人为因子:人类活动对自然的干预、影响、破坏及对环境的污染等。
植物与生态因子之间的相互关系:1) 生态作用:生态因子对植物的结构、过程、功能、分布等产生的影响。
2) 生态适应:植物改变自身结构与过程以与其生存环境相协调的过程。
3)相互作用:植物对环境做出的响应和反馈,并影响环境的过程。
(环境小气候、土壤结构、土壤微生物、大气组分、生物链结构、协同进化、生物多样性。
)植物对生态因子的响应和耐受性生态幅:耐受范围上最高点和最低点之间的范围。
生物对生态因子耐受限度的调整:1) 驯化:通过人工栽培,自然选择和人工选择,是野生植物、外来植物能适应本地的自然环境和栽培条件成为生产或观赏需要的本地植物。
生物学意义:适应环境变化的能力。
2) 内稳态:生物系统通过内在的调节机制使内环境保持相对稳定。
内稳态通过形态、行为和生理适应实现。
3) 适应:生物对环境压力的调整过程。
植物在形态结构和功能方面获得了可遗传的改变,从而增加了对逆境的抗性。
适应方式:—适应组合:环境条件表现出一整套协同的适应特性。
—生理适应:生物钟、休眠、生理生化变化。
影响植物生理生态的主要环境因子光照①绿色植物将太阳能转化成化学能储存于植物体内,这一过程是生物圈与太阳能发生联系的唯一环节,也是生物圈赖以生存的基础。
②太阳辐射为地球上所有生命系统提供了能量来源。
③根据陆生植物对光强适应的生态类型可分为中性植物(耐阴植物)、阳性植物(阳生植物)、阴性植物(阴地植物)。
④根据植物对日照长度的反应类型可把植物分为长日照植物、短日照植物、中日照植物和中间型植物。
光质:光谱成分(红、橙、黄、绿、青、蓝、紫)生理有效辐射:能被光合作用利用的太阳辐射。
太阳辐射中只有可见光部分可被光合作用所利用。
绿光在陆生植物光合作用中很少被吸收,称为生理无效辐射。
光周期现象:自然界的光暗交替现象植物的光周期反应类型1.短日植物:在昼夜周期中日照长度短于临界值日长才能开花的植物。
2.长日植物:在昼夜周期中日照长度大于临界值日长才能开花的植物。
3.中日性植物:这类植物的成花对日照长度不敏感,只要其他条件满足,在任何日照条件下都能开花。
植物光周期现象的应用:①使花期不同的植物同时开花以杂交育种。
②采用短日照处理使树木提早休眠,增强越冬能力。
③使植物延迟开花,促进营养生长等。
④园艺上控制开花时间,便于观赏等。
⑤安排农时。
温度①温度对植物的作用(温度的生态学意义)1 有效积温:植物在生长发育过程中,从环境中摄取一定热量完成某一阶段的发育。
有效积温意义:预测植物生育期;预测植物地理分布北界;制定农业气候区划,合理安排作物。
2植物春化作用:植物必须经历一段时间的持续低温才能由营养生长阶段转入生殖阶段生长的现象。
3去春化作用(解除春化):植物在春化过程结束前,将其放到较高的生长温度下,低温的效果会被减弱或消除的现象。
②极端温度对植物的影响1高温破坏生物体内的代谢过程和光和呼吸平衡,并且没有经历春化作用植物不能完成发育阶段。
2低温使植物遭受寒害和冻害,引起细胞渗透压变化,导致蛋白质变性,代谢失调。
③植物对极端温度的适应◆ 植物对极端低温的适应1形态上适应:芽具鳞片、体具蜡粉、植株矮小2生理上适应:减少细胞中的水分和增加细胞中有机质的浓度3行为上适应:休眠◆ 植物对极端高温的适应1形态上适应:密毛、鳞片滤光;叶色反光;叶缘向上或暂时折叠,减少辐射伤害;茎干具厚的木栓层,绝热2生理上适应:降低细胞含水量,增加糖或盐浓度;蒸腾作用旺盛3行为上适应:关闭气孔、种子休眠水①水的生物学意义◆水是植物体不可缺少的组成成分。
◆水是植物体所有代谢活动的介质。
◆水为植物创造稳定的温度环境。
◆水是光合作用的原料。
◆水影响植物分布、密度。
②生物体的水分获得与损失途径◆ 水分的丧失途径:蒸发(蒸腾作用、扩散作用)失水,分泌失水◆ 水分获得途径:根部吸收,叶面吸收③生物对水因子的适应◆ 水生植物对水因子的适应①适应方式—发达的通气组织;—机械组织不发达或退化;—叶片薄而长,以增加光合和吸收营养物质的面积。
②生态类型沉水植物、浮水植物、挺水植物◆ 陆生植物对水因子的适应①适应方式形态适应—发达的根系;—叶面小;—单子叶植物中一些具扇状的运动细胞可使叶面卷曲;—具有发达的贮水组织。
生理适应—水分运输的动力;—原生质的渗透浓度高。
②生态类型湿生植物、中生植物、旱生植物土壤(植物矿质养分的来源)◆ 土壤是植物生长的基质和营养库。
土壤提供了植物生活的空间、水分和必须的矿质元素。
生态因子作用的特点1) 综合性:生态因子之间相互影响、相互作用、相互制约,任何一因子的变化都会在不同程度上引起其他因子的变化。
◆ 主导因子作用(非等价性)主导因子:在诸多的环境因子中,有一个对生物起绝对性作用的生态因子。
对生物起作用的诸多因子是非等价的。
2) 3) 4)不可替代性和补偿作用不可替代性:生态因子虽非等价,但都不可缺少,一个因子的缺失不能由另一个因子代替。
阶段性作用生物在生长发育的不同阶段需要不同的生态因子或生态因子的不同强度。
直接作用和间接作用植物光合作用及其生理生态基础光合作用:含叶绿体的绿色植物和某些细菌,在可见光的照射下,经过光反应和碳反应,利用光合色素,将二氧化碳和水转化为有机物,并释放出氧气的过程。
光反应在类囊体(光合膜)上进行,碳反应在叶绿体的基质中进行。
光合作用的重要地位①地球上最重要的化学反应②生命的发动机③地球生物圈形成和运转的关键环节:一切生物体和人类物质的来源;一切生物体和人类能量的来源;一切生物体和人类氧气的来源光合机构—叶绿体及其色素叶肉组织叶绿体①光合作用的光能吸收、传递和转化过程是在类囊体膜上,具有一定分子排列和空间构象的色素蛋白复合体以及有关的电子载体中完成的。
②光合色素:在光合作用中参与吸收、传递光能或引起原初光化学反应的色素。
高等植物和大部分藻类的光合色素是叶绿素a、b 和类胡萝卜素。
③光合色素分布在类囊体膜中,以非共价键与蛋白质结核在一起形成色素蛋白,以吸收和传递光能。
光合作用的生理机制(原初、同化力、碳同化)光反应包括原初反应、电子传递和光和磷酸化。
①原初反应:光合色素分子对光能的吸收、传递和转换过程。
◆反应中心色素:少数特殊状态的叶绿素a分子,它具有光化学活性,能捕光,又能将光能转换为电能。
◆聚光色素:能吸收光能,并把吸收的光能传递到反应中心色素。
大部分叶绿素a、全部叶绿素b、胡萝卜素、叶黄素。
◆光合反应中心:进行光反应原初反应的最基本的色素蛋白结构。
②电子传递与光合磷酸化(电能转化为活跃化学能的过程)1 光系统:叶绿体中的光和色素有规律的组成许多特殊的功能单位。
1 光系统Ⅰ(PSⅠ):颗粒较小。
NADP 的还原核心复合体:反应中心为P7002光系统Ⅱ(PSⅡ):颗粒较大。
水的光解和放氧核心复合体:由6 种多肽组成,反应中心为P6802细胞色素b6f 复合体一种多亚基蛋白,主要生理功能把PQH 类囊体腔。
2中电子传递给PC,同时将H 释放到3 4光合链:连接两个光系统以及H光合电子传递及其类型。
2O 和NADP 之间的传递电子物质。
电子传递:原初反应形成的高能电子沿一系列电子载体传递,在此过程中形+++成O2、NADPH和H 和质子电动势。
◆非环式电子传递(z):水光解产生的电子经过PSⅡ、细胞色素b合体、PSⅠ,最终还原NADP,是主要形式。
6ƒ复◆环式电子传递:PSⅠ吸收光量子分离出来的电子,经过细胞色素b合体,再经过PC 返回PSⅠ的过程6ƒ复◆假环式电子传递:水分解产生的电子经过PSⅡ、细胞色素b6ƒ复合体、PSⅠ还原O 2的过程。
(在强光下NADP 供应不足时产生)5光合磷酸化:光在叶绿体(或载色体)中发生的由ADP 与Pi 合成ATP 的反应。
◆◆◆非环式磷酸化:光合电子传递到Fd 后与非环式电子传递偶联产生ATP 的反应。
在光合磷酸化中占主要地位。
循环式光合磷酸化:光合电子传递到Fd 后与环式电子传递偶联产生ATP 的反应。
假循环式光和磷酸化:光合电子传递到Fd 后与假环式电子传递偶联产生ATP 的反应。
+++③碳同化(二氧化碳同化):植物利用光反应中形成的同化力,将CO定化合物糖类的过程。
2转化为稳1 C 3途径(卡尔文循环):2 C4途径(四碳二羧酸途径)3景天酸代谢途径(CAM途径)2的植物。
C 植物CAM 植物 C 植物共同点都以卡尔文循环合成光合产物不同点碳同化时有一个固定CO2 的过程光合产物在维管束细胞中形成光合产物在叶肉细胞中形成两次CO 固定在空间上隔开两次CO 固定在时间上隔开2CO2更高的同化CO2的组织结构和生理功能;C3植物进化出了光呼吸这一生理功能。
)光呼吸的生理功能:消除乙醇酸的毒害、为卡尔文循环提供CO对光合机构的破坏、减少碳损失。
④光合作用产物2、防止强光8合产物是葡萄糖和果糖,小麦、蚕豆等主要是蔗糖。
光合作用的生理生态响应①光合速率:单位时间、单位叶面积吸收CO2的量或放出CO2的量。
②光补偿点:同一叶片在同一时间内,光合速率和呼吸速率相等时的光强度。
③光饱和点:光合速率开始达到最大值时的光强度。
④CO 2补偿点:当光合速率与呼吸速率相等时外界环境中CO2浓度。
⑤CO 2饱和点:光合速率开始达到最大值时的CO2浓度。
●植物的水分生理生态水是生命起源的先决条件,没有水就没有生命,也就没有植物。
①水分在植物生命活动中的重要性1束缚水:与细胞组分紧密结合而不能自由流动的水分。
2自由水:未与细胞组分相结合可以自由流动的水分。
3自由水/束缚水:比值越高,植物代谢越活跃,但抗逆性差4水在生命活动中的作用:◆原生质的主要成分◆代谢过程的重要反应物质◆植物吸收和运输物质的溶剂◆保持植物的固有姿态◆水有较高的比热和汽化热,有利于调节植物体的温度。