2019年中考数学压轴题分类汇编:与圆有关【含答案】

合集下载

2019全国中考数学真题分类汇编:与圆的有关计算及参考答案

2019全国中考数学真题分类汇编:与圆的有关计算及参考答案

一、选择题1.(2019·德州)如图,点O为线段BC的中点,点A,C,D到点O的距离相等,若∠ABC=40°,则∠ADC的度数是()A.130°B.140°C.150°D.160°【答案】B.【解析】由题意得到OA=OB=OC=OD,作出圆O,如图所示,∴四边形ABCD为圆O的内接四边形,∴∠ABC+∠ADC=180°,∵∠ABC=40°,∴∠ADC=140°,故选B.2.(2019·滨州)如图,AB为⊙O的直径,C,D为⊙O上两点,若∠BCD=40°,则∠ABD的大小为()A.60°B.50°C.40°D.20°【答案】B【解析】如图,连接AD,∵A B为⊙O的直径,∴∠ADB=90°.∵∠A和∠BCD都是弧BD所对的圆周角,∴∠A=∠BCD=40°,∴∠ABD=90°-40°=50°.故选B.【解析】由题意可知∠BOC=2∠A=45°⨯2=90°,S阴=S扇△-SOBC,S扇=144π42=4π,△S O BC=1.3、(2019·遂宁)如图,△ABC内接于⊙O,若∠A=45°,⊙O的半径r=4,则阴影部分的面积为()A.4π-8B.2πC.4πD.8π-8【答案】A1S圆=2⨯42=8,所以阴影部分的面积为4π-8,故选A.4(2019·广元)如图,AB,AC分别是O的直径和弦,OD⊥AC于点D,连接BD,BC,且AB=10,AC=8,则BD的长为()A.25B.4C.213D.4.8第6题图【答案】C【解析】∵AB是直径,∴∠C=90°,∴BC=AB2-AC2=6,又∵OD⊥AC,∴OD∥BC,∴△OAD∽△BAC,∴CD=AD =12AC=4,∴BD=BC2+C D2=213,故选C.A.5342B.42C.23-π5.(2019·温州)若扇形的圆心角为90°,半径为6,则该扇形的弧长为()A.32πB.2πC.3πD.6π【答案】D【解析】扇形的圆心角为90°,它的半径为6,即n=90°,r=6,根据弧长公式l=nπr180,得6π.故选D. 6.(2019·绍兴)如图,ABC内接于圆O,∠B=65°,∠C=70°,若BC=22,则弧BC的长为() A.π B.2π C.2π D.22π【答案】A【解析】在△ABC中,得∠A=180°-∠B-∠C=45°,连接OB,OC,则∠BOC=2∠A=90°,设圆的半径为r,由勾股定理,得r2+r2=(22)2,解得r=2,所以弧BC的长为90π⨯2180=π.7.(2019·山西)如图,在△R t ABC中,∠ABC=90°,AB=23,BC=2,以AB的中点O为圆心,OA的长为半径作半圆交AC于点D,则图中阴影部分的面积为()-π53π+ D.43-π2第10题图【答案】A-=-,故选【解析】根据扇形的面积公式,S==12π,故本题选:C.2C.2D.【解题过程】在△R t ABC中,连接OD,∠ABC=90°,AB=23,BC=2,∴∠A=30°,∠DOB=60°,过点D作DE⊥AB于点E,∵AB=23,∴AO=OD=3,∴DE=32,∴S阴影=S△ABC-S△AOD-S扇形BOD=23-334π53π242A.8.(2019·长沙)一个扇形的半径为6,圆心角为120°,则该扇形的面积是【】A.2πB.4πC.12πD.24π【答案】C120×π×623609.(2019·武汉)如图,AB是⊙O的直径,M、N是弧AB(异于A、B)上两点,C是弧MN上动点,∠ACB的角平分线交⊙O于点D,∠BAC的平分线交CD于点E.当点C从点M运动到点N时,则C、E两点的运动路径长的比是()A.2B.π352C【答案】A【解题过程】由题得∠1=∠2=12∠C=45°,∠3=∠4,∠5=∠6MAP3412E4tO56QNB设∠3=∠4=m,∠5=∠6=n,得m+n=45°,∴∠AEB=∠C+m+n=90°+45°=135°∴E在以AD为半径的⊙D上(定角定圆)2tDt⨯2π⨯1∴=360=22t⨯2π⨯22 B.π【解析】连接OA,OB,过点O作OD⊥AB交AB于点E,由题可知OD=DE=1D.8-如图,C的路径为MN,E的路径为PQ设⊙O的半径为1,则⊙D的半径为2,4tMNPQ36010.(2019·泰安)如图,将O沿弦AB折叠,AB恰好经过圆心O,若O的半径为3,则AB的长为1A.π C.2π D.3π【答案】C1ODOE=OA,在△R t AOD中,sinA==22OA 1nπr,∴∠A=30°,∴∠AOD=60°,∠AOB=120°,AB==2π,故选C.218011.(2019·枣庄)如图,在边长为4的正方形ABCD中,以点B为圆心,AB为半径画弧,交对角线BD与点E,则图中阴影部分的面积是(结果保留π)A.8-πB.16-2πC.8-2π1π2【解析】在边长为4的正方形ABCD中,BD是对角线,∴AD=AB=4,∠BAD=90°,∠ABE=45°,∴S△ABD=⋅AD⋅AB 45⋅π⋅42周长为12π,即为侧面扇形的弧长,所以圆锥的侧面积=×10×12π=60π,故选D.2B.2π8D.【答案】C12=8,S扇形ABE==8-2π,故选C.36012.(2019·巴中)如图,圆锥的底面半径r=6,高h=8,则圆锥的侧面积是()A.15πB.30πC.45πD.60π【答案】D【解析】圆锥的高,母线和底面半径构成直角三角形,其中r=6,h=8,所以母线为10,即为侧面扇形的半径,底面1213.(2019·凉山)如图,在△AOC中,OA=3cm,OC=lcm,将△AOC绕点D顺时针旋转90°后得到△BOD,则AC边在旋转过程中所扫过的图形的面积为(▲)cm2A.πC.17π19π8【答案】B【解析】AC边在旋转过程中所扫过的图形的面积=△SOCA+S扇形OAB-S扇形OCD-△SODB①△由旋转知:OCA≌△ODB,∴△SOCA=S△ODB,∴①式=S扇形OAB-S扇形OCD=90π⨯3290π⨯12-=2π,故选B.360360∴S正方形ABCD BC2=4k2,⊙O的面积为πr2=π×(k)2=2πk2.14.(2019·自贡)图中有两张型号完全一样的折叠式饭桌,将正方形桌面边上的四个弓形面板翻折起来后,就能形成一个圆形桌面(可近似看作正方形的外接圆),正方形桌面与翻折成的圆形桌面的面积之比最接近()A. B. C. D.【答案】C.【解析】由题意可知,⊙O是正方形ABCD的外接圆,过圆心O点作OE⊥BC于E,在△R t OEC中,∠COE=45°,∴sin∠COE=,设CE=k,则OC=CE=k,∵OE⊥BC,∴CE=BE=k,即BC=2k.=∴正方形==≈.lR ,∴l = ·∴下面圆锥的侧面积 lR = · · 2 R = 2 .故选 D . 15.(2019·湖州)已知圆锥的底面半径为 5cm ,母线长为 13cm ,则这个圆锥的侧面积是()A .60πcm 2B .65πcm 2C .120πcm 2D .130πcm 2【答案】B .【解析】∵r =5,l =13,∴S 锥侧=πrl =π×5×13=65π(cm 2).故选 B .16. (2019·金华)如图,物体由两个圆锥组成,其主视图中,∠A =90°,∠ABC =105°,若上面圆锥的侧面积 为 1,则下面圆锥的侧面积为()A.2B.3C.ABD3 2D. 2C【答案】D .【解析】∵∠A =90°,∠ABC =105°,∴∠ABD =45°,∠CBD =60°,∴△ABD 是等腰直角三角形,△CBD 是等边三角形.设 AB 长为 R ,则 BD 长为 2 R .∵上面圆锥的侧面积为 1,即 1=1 22 R为1 12 2 2 R17.(2019·宁波)如图所示,矩形纸片 ABCD 中,AD =6cm,把它分割成正方形纸片 ABFE 和矩形纸片 EFCD 后,分别裁出扇形 ABF 和半径最大的圆,恰好能作为一个圆锥的底面和侧面,则 AB 的长为A.3.5cmB.4cmC.4.5cmD.5cm【答案】B【解析】AE=1∴AC1⋅2π⋅AB,右侧圆的周长为π⋅DE,∵恰好能作为一个圆锥的底面和侧面,∴,⋅2π⋅AB=44π⋅DE,AB=2DE,即AE=2ED,∵AE+ED=AD=6,∴AB=4,故选B.18.(2019·衢州)如图,取两根等宽的纸条折叠穿插,拉紧,可得边长为2的正六边形。

中考数学压轴题之圆的综合(中考题型整理,突破提升)及答案

中考数学压轴题之圆的综合(中考题型整理,突破提升)及答案

一、圆的综合真题与模拟题分类汇编(难题易错题)1.在⊙O 中,点C是AB上的一个动点(不与点A,B重合),∠ACB=120°,点I是∠ABC的内心,CI的延长线交⊙O于点D,连结AD,BD.(1)求证:AD=BD.(2)猜想线段AB与DI的数量关系,并说明理由.(3)若⊙O的半径为2,点E,F是AB的三等分点,当点C从点E运动到点F时,求点I 随之运动形成的路径长.23【答案】(1)证明见解析;(2)AB=DI,理由见解析(3【解析】分析:(1)根据内心的定义可得CI平分∠ACB,可得出角相等,再根据圆周角定理,可证得结论;(2)根据∠ACB=120°,∠ACD=∠BCD,可求出∠BAD的度数,再根据AD=BD,可证得△ABD是等边三角形,再根据内心的定义及三角形的外角性质,证明∠BID=∠IBD,得出ID=BD,再根据AB=BD,即可证得结论;(3)连接DO,延长DO根据题意可知点I随之运动形成的图形式以D为圆心,DI1为半径的弧,根据已知及圆周角定理、解直角三角形,可求出AD的长,再根据点E,F是弧AB ⌢的三等分点,△ABD是等边三角形,可证得∠DAI1=∠AI1D,然后利用弧长的公式可求出点I 随之运动形成的路径长.详解:(1)证明:∵点I是∠ABC的内心∴CI平分∠ACB∴∠ACD=∠BCD∴弧AD=弧BD∴AD=BD(2)AB=DI理由:∵∠ACB=120°,∠ACD=∠BCD∴∠BCD=×120°=60°∵弧BD=弧BD∴∠DAB=∠BCD=60°∵AD=BD∴△ABD是等边三角形,∴AB=BD,∠ABD=∠C∵I是△ABC的内心∴BI平分∠ABC∴∠CBI=∠ABI∵∠BID=∠C+∠CBI,∠IBD=∠ABI+∠ABD∴∠BID=∠IBD∴ID=BD∵AB=BD∴AB=DI(3)解:如图,连接DO,延长DO根据题意可知点I随之运动形成的图形式以D为圆心,DI1为半径的弧∵∠ACB=120°,弧AD=弧BD∴∠AED=∠ACB=×120°=60°∵圆的半径为2,DE是直径∴DE=4,∠EAD=90°∴AD=sin∠AED×DE=×4=2∵点E,F是弧AB ⌢的三等分点,△ABD是等边三角形,∴∠ADB=60°∴弧AB的度数为120°,∴弧AM、弧BF的度数都为为40°∴∠ADM=20°=∠FAB∴∠DAI1=∠FAB+∠DAB=80°∴∠AI1D=180°-∠ADM-∠DAI1=180°-20°-80°=80°∴∠DAI1=∠AI1D∴AD=I1D=2∴弧I1I2的长为:点睛:此题是一道圆的综合题,有一定的难度,熟记圆的相关性质与定理,并对圆中的弦、弧、圆心角、圆周角等进行灵活转化是解题关键,注意数形结合思想的渗透.2.如图,已知AB是⊙O的直径,点C为圆上一点,点D在OC的延长线上,连接DA,交BC的延长线于点E,使得∠DAC=∠B.(1)求证:DA是⊙O切线;(2)求证:△CED∽△ACD;(3)若OA=1,sinD=13,求AE的长.【答案】(1)证明见解析;(22【解析】分析:(1)由圆周角定理和已知条件求出AD⊥AB即可证明DA是⊙O切线;(2)由∠DAC=∠DCE,∠D=∠D可知△DEC∽△DCA;(3)由题意可知AO=1,OD=3,DC=2,由勾股定理可知AD=2,故此可得到DC2=DE•AD,故此可求得DE的长,于是可求得AE的长.详解:(1)∵AB为⊙O的直径,∴∠ACB=90°,∴∠CAB+∠B=90°.∵∠DAC=∠B,∴∠CAB+∠DAC=90°,∴AD⊥AB.∵OA是⊙O半径,∴DA为⊙O的切线;(2)∵OB=OC,∴∠OCB=∠B.∵∠DCE=∠OCB,∴∠DCE=∠B.∵∠DAC=∠B,∴∠DAC=∠DCE.∵∠D=∠D,∴△CED∽△ACD;(3)在Rt△AOD中,OA=1,sin D=13,∴OD=OAsinD=3,∴CD=OD﹣OC=2.∵AD=22OD OA-=22.又∵△CED∽△ACD,∴AD CDCD DE=,∴DE=2CDAD=2,∴AE=AD﹣DE=22﹣2=2.点睛:本题主要考查的是切线的性质、圆周角定理、勾股定理的应用、相似三角形的性质和判定,证得△DEC∽△DCA是解题的关键.3.如图,已知AB为⊙O直径,D是BC的中点,DE⊥AC交AC的延长线于E,⊙O的切线交AD的延长线于F.(1)求证:直线DE与⊙O相切;(2)已知DG⊥AB且DE=4,⊙O的半径为5,求tan∠F的值.【答案】(1)证明见解析;(2)2.【解析】试题分析:(1)连接BC、OD,由D是弧BC的中点,可知:OD⊥BC;由OB为⊙O的直径,可得:BC⊥AC,根据DE⊥AC,可证OD⊥DE,从而可证DE是⊙O的切线;(2)直接利用勾股定理得出GO的长,再利用锐角三角函数关系得出tan∠F的值.试题解析:解:(1)证明:连接OD,BC,∵D是弧BC的中点,∴OD垂直平分BC,∵AB 为⊙O的直径,∴AC⊥BC,∴OD∥AE.∵DE⊥AC,∴OD⊥DE,∵OD为⊙O的半径,∴DE 是⊙O的切线;(2)解:∵D是弧BC的中点,∴DC DB=,∴∠EAD=∠BAD,∵DE⊥AC,DG⊥AB且DE=4,∴DE=DG=4,∵DO=5,∴GO=3,∴AG=8,∴tan∠ADG=84=2,∵BF是⊙O的切线,∴∠ABF=90°,∴DG∥BF,∴tan∠F=tan∠ADG=2.点睛:此题主要考查了切线的判定与性质以及勾股定理等知识,正确得出AG,DG的长是解题关键.4.如图,A是以BC为直径的⊙O上一点,AD⊥BC于点D,过点B作⊙O的切线,与CA 的延长线相交于点E,G是AD的中点,连结CG并延长与BE相交于点F,延长AF与CB的延长线相交于点P.(1)求证:BF=EF:(2)求证:PA是⊙O的切线;(3)若FG=BF,且⊙O的半径长为32,求BD的长度.【答案】(1)证明见解析;(2) 证明见解析;(3)2【解析】分析:(1)利用平行线截三角形得相似三角形,得△BFC∽△DGC且△FEC∽△GAC,得到对应线段成比例,再结合已知条件可得BF=EF;(2)利用直角三角形斜边上的中线的性质和等边对等角,得到∠FAO=∠EBO,结合BE是圆的切线,得到PA⊥OA,从而得到PA是圆O的切线;(3)点F作FH⊥AD于点H,根据前两问的结论,利用三角形的相似性质即可以求出BD 的长度.详解:证明:(1)∵BC是圆O的直径,BE是圆O的切线,∴EB⊥BC.又∵AD⊥BC,∴AD∥BE.∴△BFC∽△DGC,△FEC∽△GAC,∴BFDG=CFCG,EFAG=CFCG,∴BFDG=EFAG,∵G是AD的中点,∴BF=EF;(2)连接AO,AB.∵BC是圆O的直径,∴∠BAC=90°,由(1)得:在Rt△BAE中,F是斜边BE的中点,∴AF=FB=EF,可得∠FBA=∠FAB,又∵OA=OB,∴∠ABO=∠BAO,∵BE是圆O的切线,∴∠EBO=90°,∴∠FBA+∠ABO=90°,∴∠FAB+∠BAO=90°,即∠FAO=90°,∴PA⊥OA,∴PA是圆O的切线;(3)过点F作FH⊥AD于点H,∵BD⊥AD,FH⊥AD,∴FH∥BC,由(2),知∠FBA=∠BAF,∴BF=AF.∵BF=FG,∴AF=FG,∴△AFG是等腰三角形.∵FH⊥AD,∴AH=GH,∴DG =2HG . 即12HG DG =, ∵FH ∥BD ,BF ∥AD ,∠FBD =90°,∴四边形BDHF 是矩形,∴BD =FH ,∵FH ∥BC∴△HFG ∽△DCG ,∴12FH HG CD DG ==, 即12BD CD =, ∴23 2.153≈, ∵O 的半径长为32,∴BC =62,∴BD =13BC =22. 点睛:本题考查了切线的判定、勾股定理、圆周角定理、相似三角形的判定与性质.结合已知条件准确对图形进行分析并应用相应的图形性质是解题的关键.5.如图,正三角形ABC 内接于⊙O ,P 是BC 上的一点,且PB <PC ,PA 交BC 于E ,点F 是PC 延长线上的点,CF=PB ,AB=13,PA=4.(1)求证:△ABP ≌△ACF ;(2)求证:AC 2=PA•AE ;(3)求PB 和PC 的长.【答案】(1)证明见解析;(2)证明见解析;(3)PB=1,PC=3.【解析】试题分析:(1)先根据等边三角形的性质得到AB=AC ,再利用圆的内接四边形的性质得∠ACF=∠ABP ,于是可根据“SAS”判断△ABP ≌△ACF ;(2)先根据等边三角形的性质得到∠ABC=∠ACB=60°,再根据圆周角定理得∠APC=∠ABB=60°,加上∠CAE=∠PAC ,于是可判断△ACE ∽△APC ,然后利用相似比即可得到结论;(3)先利用AC 2=PA •AE 计算出AE=134 ,则PE=AP-AE=34,再证△APF 为等边三角形,得到PF=PA=4,则有PC+PB=4,接着证明△ABP ∽△CEP ,得到PB•PC=PE•A=3,然后根据根与系数的关系,可把PB 和PC 看作方程x 2-4x+3=0的两实数解,再解此方程即可得到PB 和PC 的长.试题解析:(1)∵∠ACP+∠ABP=180°,又∠ACP+∠ACF=180°,∴∠ABP=∠ACF在ABP ∆和ACF ∆中,∵AB=AC ,∠ABP=∠ACF , CF PB =∴ABP ∆≌ACF ∆.(2)在AEC ∆和ACP ∆中,∵∠APC=∠ABC ,而ABC ∆是等边三角形,故∠ACB=∠ABC=60º,∴∠ACE =∠APC .又∠CAE =∠PAC ,∴AEC ∆∽ACP ∆ ∴AC AE AP AC=,即2AC PA AE =⋅. 由(1)知ABP ∆≌ACF ∆,∴∠BAP=∠CAF , CF PB =∴∠BAP+∠PAC=∠CAF+∠PAC∴∠PAF=∠BAC=60°,又∠APC =∠ABC =60°.∴APF ∆是等边三角形∴AP=PF∴4PB PC PC CF PF PA +=+===在PAB ∆与CEP ∆中,∵∠BAP=∠ECP ,又∠APB=∠EPC=60°,∴PAB ∆∽CEP ∆ ∴PB PA PE PC=,即PB PC PA PE ⋅=⋅ 由(2)2AC PA AE =⋅, ∴()22AC PB PC PA AE PA PE PA AE PE PA +⋅=⋅+⋅=+= ∴()22AC PB PC PA AE PA PE PA AE PE PA +⋅=⋅+⋅=+=∴22222243PB PC PA AC PA AB ⋅=-=-=-=因此PB 和PC 的长是方程2430x x --=的解.解这个方程,得11x =, 23x =.∵PB<PB ,∴PB=11x =,PC=23x =,∴PB 和PC 的长分别是1和3。

2019全国中考数学真题分类汇编:与圆有关的位置关系及参考答案

2019全国中考数学真题分类汇编:与圆有关的位置关系及参考答案

(【解析】∵PA是⊙O的切线,切点为A,∴OA⊥AP,∴∠OAP=90°,∵∠APB=40°,∴∠AOP=50°,∵OA=O B,B C一、选择题1.2019·苏州)如图,AB为⊙O的切线.切点为A,连接AO,BO,BO与⊙O交于点C,延长BO与⊙O交于点D,连接AD若∠ABO=36°,则∠ADC的度数为()A.54°B.36°C.32°D.27°(第5题)【答案】D【解析】本题考查了切线的性质、直角三角形的性质、等腰三角形的性质以及三角形的外角性质.∵AB为⊙O的切线,∴∠OAB=90°,∵∠ABO=36°,∴∠AOB=90°-∠ABO=54°,∵OA=O D,∴∠ADC=∠OAD,∵∠AOB=∠ADC+∠OAD,∴∠ADC=∠AOB=27°,故选D.2.(2019·无锡)如图,PA是⊙O的切线,切点为A,PO的延长线交⊙O于点B,若∠P=40°,则∠B的度数为()A.20°B.25°C.40°D.50°AOP A BOBA【答案】B yF E-6O xO∴∠B=∠OAB=∠AOP=25°.故选B.3.(2019·自贡)如图,已知A、B两点的坐标分别为(8,0)、(0,8),点C、F分别是直线x=-5和x轴上的动点,CF=10,点D是线段CF的中点,连接AD交y轴于点E,当△ABE的面积取得最小值时,tan∠BAD的值是()A. B. C. D.【答案】B.【解析】∵A(8,0),B(0,8),∠AOB=900,∴△AOB是等腰直角三角形,∴AB=,∠OBA=450,取D(-5,0),当C、F分别在直线x=-5和x轴上运动时,∵线段DH是△R t CFD斜边上中线,∴DH=CF=10,故D在以H为圆心,半径为5的圆上运动,当AD与圆H相切时,△ABE的面积最小.在△R t ADH中,AH=OH+OA=13,∴AD=.∵∠AOE=∠ADH=900,∠EAO=∠HAD,∴△AOE∽△ADH,∴,即,∴OE=,∴BE=OB-OE=.∵△S ABE BE·OA=AB·EG,=∴EG=.R t BGE中,∠EBG=450,在△∴BG=EG=,∴AG=AB-BG=.R t AEG中,在△tan∠BAD=.故选B.4.(2019·台州)如图,等边三角形ABC的边长为8,以BC上一点O为圆心的圆分别与边AB,AC相切,则 O的半径为()A.23B.3C.4D.4-3【答案】A【解析】∵ O与AB,AC相切,∴OD⊥AB,OE⊥AC,又∵OD=OE,∴∠DAO=∠EAO,又∵AB=AC,∴BO=CO,∴∠DAO=30°,BO=4,∴OD=OAtan∠DAO=3OA,又∵在△R t AOB中,AO=AB2-OB2=43,∴OD=23,故选A.5.(2019·重庆B卷)如图,AB是⊙O的直径,AC是⊙O的切线,A为切点,若∠C=40°则∠B的度数为()A.60°B.50°C.40°D.30°【答案】B【解析】圆的切线垂直于经过切点的半径,因为AC是⊙O的切线,A为切点,所以∠BAC=90°,根据三角形内角和定理,若∠C=40°则∠B的度数为50°.故选B.6.(2019·重庆A卷)如图,AB是⊙O的直径,AC是⊙O的切线,A为切点,BC与⊙O交于点D,连结OD.若∠C=50°,则∠AOD的度数为()A.40°B.50°C.80°D.100°【答案】C【解析】∵AC是⊙O的切线,∴AC⊥AB.∵∠C=50°,∴∠B=90°-∠C=40°.∵OB=OD,∴∠B=∠ODB=40°.∴∠AOD=∠B+∠ODB=80°.故选C.二、填空题1.(2019·岳阳)如图,AB为⊙O的直径,点P为AB延长线上的一点,过点P作⊙O的切线PE,切点为M,过A、B两点分别作PE的垂线AC、BD,垂足分别为C、D,连接AM,则下列结论正确的是_____.(写出所有正确结论的序号)①AM平分∠CAB;②AM2=AC·AB;③若AB=4,∠APE=30°,则BM的长为④若AC=3,BD=1,则有CM=DM=3.3;【答案】①②④【解析】连接OM,BM∵PE是⊙O的切线,∴OM⊥PE.∵AC⊥PE,∴AC∥OM.∴∠CAM=∠AMO.∵OA=OM,∴∠AMO=∠MAO.∴∠CAM=∠MAO.∴AM平分∠CAB.选项①正确;∴ACBM =60π⨯2∴AC∵AB为直径,∴∠AMB=90=∠ACM.∵∠CAM=∠MAO,∴△AMC∽△ABM.AM=AM AB.∴AM2=AC·AB.选项②正确;∵∠P=30°,∴∠MOP=60°.∵AB=4,∴半径r=2.∴l2=π.选项③错误;1803∵BD∥OM∥AC,OA=OB,∴CM=MD.∵∠CAM+∠AMC=90°,∠AMC+∠BMD=90°,∴∠CAM=∠BMD.∵∠ACM=∠BDM=90°,∴△ACM∽△MDB.CM=DM BD.∴CM·DM=3×1=3.∴CM=DM=3.选项④正确;综上所述,结论正确的有①②④.2.(2019·无锡)如图,在△ABC中,AC∶BC∶AB=5∶12∶13,O在△ABC内自由移动,若O的半径为1,且圆心O在△ABC内所能到达的区域的面积为103,则△ABC的周长为__________.之比也是5∶12∶13,∵△O1O2O3的面积=10,∴O1O2=,O2O3=4,O1O3=,连接AO1与CO2,并延长相交共内心,四边形IEO2F四边形IDCG都是正方形,∴IE=IF==,ED=1,∴ID=IE+ED=,333设△ACB的三边分别为5m、12m、13m,则有ID=AC⨯BC=2m=,解得m=,△ABC的周长=30m=25.【答案】25【解析】如图,圆心O在△ABC内所能到达的区域是△O1O2O△3,∵O1O2O3三边向外扩大1得到△ACB,∴它的三边513333于I,过I作ID⊥AC于D,交O1O2于E,过I作IG⊥BC于G交O3O2于F,则I是△Rt ABC与△Rt O1O2O3的公O O⨯O O251223O O+O O+O O1223155AC+BC+AB363.(2019·济宁)如图,O为△R t ABC直角边AC上一点,以OC为半径的⊙O与斜边AB相切于点D,交OA于点E,已知BC=3,AC=3.则图中阴影部分的面积是.BDC O E A∴阴影的面积是S=×π×()2=π.211OA•OB【答案】6-334π【解析】在△R t ABC中,∵tan A=BC3=,∴∠A=30°.AC3∵⊙O与斜边AB相切于点D,∴OD⊥AB.设⊙O的半径为r,在△R t ADO中,tan A=OD r=OA3-r33-3,解得r=,26033-36-3336044.(2019·眉山)如图,在Rt△AOB中,OA=OB=42,⊙O的半径为2,点P是AB边上的动点,过点P作⊙O的一条切线PQ(点Q为切点),则线段PQ长的最小值为.【答案】23【解析】连接OQ,如图所示,∵PQ是⊙O的切线,∴OQ⊥PQ,根据勾股定理知:PQ2=OP2-OQ2,∴当PO⊥AB时,线段PQ最短,∵在△Rt AOB中,OA=OB=42,∴AB=2OA=8,∴S△AOB=∴PQ=OP2-OQ2=42-22=23.故答案为:23.OA•OB=AB•OP,即OP==4,22AB5.(2019·宁波)如图,Rt△ABC中,∠C=90°,AC=12,点D在边BC上,CD=5,BD=13.点P是线段AD上一动点,当半径为6的P与△ABC的一边相切时,AP的长为________.AD=;=,其中,PF=6,AC=12,AB=AC2+BC2=613,∴AP=313;综上所述,AP的长为或313.【答案】132或313【解析】半径为6的P与△ABC的一边相切,可能与AC,BC,AB相切,故分类讨论:①当P与AC相切时,点P到AC的距离为6,但点P在线段AD上运动,距离最大在点D处取到,为5,故这种情况不存在;②当P与AC相切时,点P到BC的距离为6,如图PE=6,PE⊥AC,∴PE为△ACD的中位线,点P为AD中点,∴AP =11322③当P与AB相切时,点P到AB的距离为6,即PF=6,PF⊥AB,过点D作DG⊥AB于点△G∴APF∽△ADG∽△ABC,∴PF ACAP AB132三、解答题1.(2019·衡阳)如图,点A、B、C在半径为8的⊙O上,过点B作BD∥AC,交OA延长线于点D,连接BC,且∠BCA=∠OAC=30°.(1)求证:BD是⊙O的切线;(2)求图中阴影部分的面积.B D B DC A CE AO O解:(1)证明:连接OB交AC于E,由∠BCA=30°,∴∠AOB=60°.在∆AOE中,∵∠OAC=30°,∴∠OEA=90°,所以OB⊥AC.∵BD∥AC,∴OB⊥BD.又B在圆上,∴BD为⊙O的切线;(2)由半径为8,所以OA=OB=8.在∆AOC中,∠OAC=∠OCA=30°,∠COA=120°,∴AC=83.由∠BCA=∠OAC=30°,∴OA∥BC,而BD∥AC,∴四边形ABCD是平行四边形.∴BD=83.∴∆OBD的面积为1132π×8×83=323,扇形OAB的面积为×π×82=,263∴阴影部分的面积为323-32π3.2.(2019·常德,22题,7分)如图6,⊙O与△ABC的AC边相切于点C,与AB、BC边分别交于点D、E,DE∥OA,CE是⊙O的直径.(1)求证:AB是⊙O的切线;(2)若BD=4,CE=6,求AC的长.ADB EO C图6【解题过程】证明:(1)连接OD,∵DE∥OA,∴∠AOC=∠OED,∠AOD=∠ODE,∵OD=OE,∴∠OED=∠ODE,∴∠AOC=∠AOD,又∵OA=OA,OD=△O C,∴AOC≌△AOD(SAS),∴∠ADO=∠ACO.∵CE是⊙O的直径,AC为⊙O的切线,∴OC⊥AC,∴∠OCA=90°,∴∠ADO==90°,∴OD⊥AB,∴BC=8,∵∠BDO=∠OCA=90°,∠B=∠,∴△B BDO∽△BCA,∴BD,∴=,∴AC=6.2∴OA⊥AD,OB⊥BC,OE⊥CD,AD=ED,BC=EC,∠ODE=1∠ADC,∠OCE=∠BCD∵OD为⊙O的半径,∴AB是⊙O的切线.ADB EO C(2)∵CE=6,∴OD=OC=3,∵∠BDO=90°,∴BO2=BD2+OD2,∵BD=4,∴OB=42+32=5,OD43=BC AC8AC3.(2019·武汉)已知AB是⊙O的直径,AM和BN是⊙O的两条切线,DC与⊙O相切于点E,分别交AM、BN于D、C 两点(1)如图1,求证:AB=4AD·BC(2)如图2,连接OE并延长交AM于点F,连接CF.若∠ADE=2∠OFC,AD=1,求图中阴影部分的面积A D M A D F ME EO OB C N B C N图1图2【解题过程】证明:(1)如图1,连接OD,OC,OE.∵AD,BC,CD是⊙O的切线,122∴AD//BC,∴∠ODE+∠OCE=1(∠ADC+∠BCD)=90°,2∵∠ODE+∠DOE=90°,∴∠DOE=∠OCE.又∵∠OED=∠CEO=90°,∴△ODE∽△COE.∴ OE∴S 阴影 2△S OBC -S 扇形 OBE =3 3 -π.EC ,OE 2=ED ·EC=ED OE∴4OE 2=4AD ·BC ,∴AB 2=4AD ·BC(2)解:如图 2,由(1)知∠ADE =∠BOE ,∵∠ADE =2∠OFC ,∠BOE =∠2COF , ∴∠COF =∠OFC ,∴△COF 等腰三角形。

中考数学《圆》真题压轴题总汇【附解析】

中考数学《圆》真题压轴题总汇【附解析】

中考数学《圆》真题压轴题总汇【附解析】1.(2019•阿坝州)如图,AB为⊙O的直径,C为⊙O上的一点,∠BCH=∠A,∠H=90°,HB的延长线交⊙O于点D,连接CD.(1)求证:CH是⊙O的切线;(2)若B为DH的中点,求tan D的值.2.(2019•德阳)如图,AB是⊙O的直径,点C为⊙O上一点,OE⊥BC于点H,交⊙O于点E,点D为OE的延长线上一点,DC的延长线与BA的延长线交于点F,且∠BOD=∠BCD,连结BD、AC、CE.(1)求证:DF为⊙O的切线;(2)过E作EG⊥FD于点G,求证:△CHE≌△CGE;(3)如果AF=1,sin∠FCA=,求EG的长.3.(2019•雅安)如图,已知AB是⊙O的直径,AC,BC是⊙O的弦,OE∥AC交BC于E,过点B作⊙O的切线交OE的延长线于点D,连接DC并延长交BA的延长线于点F.(1)求证:DC是⊙O的切线;(2)若∠ABC=30°,AB=8,求线段CF的长.4.(2019•内江)AB与⊙O相切于点A,直线l与⊙O相离,OB⊥l于点B,且OB=5,OB 与⊙O交于点P,AP的延长线交直线l于点C.(1)求证:AB=BC;(2)若⊙O的半径为3,求线段AP的长;(3)若在⊙O上存在点G,使△GBC是以BC为底边的等腰三角形,求⊙O的半径r的取值范围.5.(2019•广元)如图,AB是⊙O的直径,点P是BA延长线上一点,过点P作⊙O的切线PC,切点是C,过点C作弦CD⊥AB于E,连接CO,CB.(1)求证:PD是⊙O的切线;(2)若AB=10,tan B=,求PA的长;(3)试探究线段AB,OE,OP之间的数量关系,并说明理由.6.(2019•成都)如图,AB为⊙O的直径,C,D为圆上的两点,OC∥BD,弦AD,BC相交于点E.(1)求证:=;(2)若CE=1,EB=3,求⊙O的半径;(3)在(2)的条件下,过点C作⊙O的切线,交BA的延长线于点P,过点P作PQ∥CB 交⊙O于F,Q两点(点F在线段PQ上),求PQ的长.7.(2019•资阳)如图,AC是⊙O的直径,PA切⊙O于点A,PB切⊙O于点B,且∠APB=60°.(1)求∠BAC的度数;(2)若PA=1,求点O到弦AB的距离.8.(2019•绵阳)如图,AB是⊙O的直径,点C为的中点,CF为⊙O的弦,且CF⊥AB,垂足为E,连接BD交CF于点G,连接CD,AD,BF.(1)求证:△BFG≌△CDG;(2)若AD=BE=2,求BF的长.9.(2019•乐山)如图,直线l与⊙O相离,OA⊥l于点A,与⊙O相交于点P,OA=5.C 是直线l上一点,连结CP并延长交⊙O于另一点B,且AB=AC.(1)求证:AB是⊙O的切线;(2)若⊙O的半径为3,求线段BP的长.10.(2019•泰州)如图,四边形ABCD内接于⊙O,AC为⊙O的直径,D为的中点,过点D作DE∥AC,交BC的延长线于点E.(1)判断DE与⊙O的位置关系,并说明理由;(2)若⊙O的半径为5,AB=8,求CE的长.11.(2019•乐山)已知关于x的一元二次方程x2﹣(k+4)x+4k=0.(1)求证:无论k为任何实数,此方程总有两个实数根;(2)若方程的两个实数根为x1、x2,满足+=,求k的值;(3)若Rt△ABC的斜边为5,另外两条边的长恰好是方程的两个根x1、x2,求Rt△ABC的内切圆半径.12.(2019•株洲)四边形ABCD是⊙O的圆内接四边形,线段AB是⊙O的直径,连结AC、BD.点H是线段BD上的一点,连结AH、CH,且∠ACH=∠CBD,AD=CH,BA的延长线与CD的延长线相交于点P.(1)求证:四边形ADCH是平行四边形;(2)若AC=BC,PB=PD,AB+CD=2(+1)①求证:△DHC为等腰直角三角形;②求CH的长度.13.(2019•巴中)如图,在菱形ABCD中,连结BD、AC交于点O,过点O作OH⊥BC于点H,以点O为圆心,OH为半径的半圆交AC于点M.①求证:DC是⊙O的切线.②若AC=4MC且AC=8,求图中阴影部分的面积.③在②的条件下,P是线段BD上的一动点,当PD为何值时,PH+PM的值最小,并求出最小值.14.(2019•广安)如图,在Rt△ABC中,∠ACB=90°,AC=6,BC=8,AD平分∠BAC,AD 交BC于点D,ED⊥AD交AB于点E,△ADE的外接圆⊙O交AC于点F,连接EF.(1)求证:BC是⊙O的切线;(2)求⊙O的半径r及∠3的正切值.15.(2019•达州)如图,⊙O是△ABC的外接圆,∠BAC的平分线交⊙O于点D,交BC于点E,过点D作直线DF∥BC.(1)判断直线DF与⊙O的位置关系,并说明理由;(2)若AB=6,AE=,CE=,求BD的长.16.(2019•凉山州)如图,点D是以AB为直径的⊙O上一点,过点B作⊙O的切线,交AD的延长线于点C,E是BC的中点,连接DE并延长与AB的延长线交于点F.(1)求证:DF是⊙O的切线;(2)若OB=BF,EF=4,求AD的长.17.(2019•遂宁)如图,△ABC内接于⊙O,直径AD交BC于点E,延长AD至点F,使DF =2OD,连接FC并延长交过点A的切线于点G,且满足AG∥BC,连接OC,若cos∠BAC=,BC=6.(1)求证:∠COD=∠BAC;(2)求⊙O的半径OC;(3)求证:CF是⊙O的切线.18.(2019•宜宾)如图,线段AB经过⊙O的圆心O,交⊙O于A、C两点,BC=1,AD为⊙O 的弦,连结BD,∠BAD=∠ABD=30°,连结DO并延长交⊙O于点E,连结BE交⊙O于点M.(1)求证:直线BD是⊙O的切线;(2)求⊙O的半径OD的长;(3)求线段BM的长.19.(2019•南充)如图,在△ABC中,以AC为直径的⊙O交AB于点D,连接CD,∠BCD=∠A.(1)求证:BC是⊙O的切线;(2)若BC=5,BD=3,求点O到CD的距离.20.(2019•自贡)如图,⊙O中,弦AB与CD相交于点E,AB=CD,连接AD、BC.求证:(1)=;(2)AE=CE.参考答案1.(1)证明:连接OC,∵AB为⊙O的直径,∴∠ACB=90°,∴∠ACO+∠BCO=90°,∵OA=OC,∠A=∠ACO,∴∠A+∠BCO=90°,∵∠A=∠BCH,∴∠BCH+∠BCO=90°,∴∠HCO=90°,∴CH是⊙O的切线;(2)解:∵B为DH的中点,∴设BD=BH=x,∴DH=2x,∵∠A=∠D,∠A=∠BCH,∴∠D=∠BCH,∵∠H=∠H,∴△DCH∽△CBH,∴=,∴CH==,∵∠H=90°,∴tan D===.2.(1)证明:如图,连结OC,∵OE⊥BC,∴∠OHB=90°,∴∠OBH+∠BOD=90°,∵OB=OC,∴∠OBH=∠OCB,∵∠BOD=∠BCD,∴∠BCD+∠OCB=90°,∴OC⊥CD,∵点C为⊙O上一点,∴DF为⊙O的切线;(2)解:∵∠OCD=90°,∴∠ECG+∠OCE=90°,∵OC=OE,∴∠OCE=∠OEC,∴∠ECG+∠OEC=90°,∵∠OEC+∠HCE=90°,∴∠ECG=∠HCE,在△CHE和△CGE中,,∴△CHE≌△CGE(AAS);(3)解:∵AB是⊙O的直径,∴∠ACB=90°,∴∠ABC+∠BAC=90°,∵DF为⊙O的切线,∴∠OCA+∠FCA=90°,∵OA=OC,∴∠OAC=∠OCA,∴∠FCA=∠ABC,∴sin∠ABC=sin∠FCA=,设AC=a,则AB=3a,∴BC===a,∵∠FCA=∠ABC,∠AFC=∠CFB,∴△ACF∽△CFB,∴===,∵AF=1,∴CF=,∴BF==2,∴BF﹣AF=AB=1,∴OC=,BC=,∵OE⊥BC,∴CH=BC=,∴OH===,∴HE=OE﹣OH=﹣,∵△CHE≌△CGE,∴EG=HE=﹣.3.(1)证明:连接OC,∵OE∥AC,∴∠1=∠ACB,∵AB是⊙O的直径,∴∠1=∠ACB=90°,∴OD⊥BC,由垂径定理得OD垂直平分BC,∴DB=DC,∴∠DBE=∠DCE,又∵OC=OB,∴∠OBE=∠OCE,即∠DBO=∠OCD,∵DB为⊙O的切线,OB是半径,∴∠DBO=90°,∴∠OCD=∠DBO=90°,即OC⊥DC,∵OC是⊙O的半径,∴DC是⊙O的切线;(2)解:在Rt△ABC中,∠ABC=30°,∴∠3=60°,又OA=OC,∴△AOC是等边三角形,∴∠COF=60°,在Rt△COF中,tan∠COF=,∴CF=4.4.(1)证明:如图1,连接OA,∵AB与⊙O相切,∴∠OAB=90°,∴∠OAP+∠BAC=90°,∵OB⊥l,∴∠BCA+∠BPC=90°,∵OA=OP,∴∠OAP=∠OPA=∠BPC,∴∠BAC=∠BCA,∴AB=BC;(2)解:如图1,连接AO并延长交⊙O于D,连接PD,则∠APD=90°,∵OB=5,OP=3,∴PB=2,∴BC=AB==4,在Rt△PBC中,PC==2,∵∠DAP=∠CPB,∠APD=∠PBC=90°,∴△DAP∽△PBC,∴=,即=,解得,AP=;(3)解:如图2,作BC的垂直平分线MN,作OE⊥MN于E,则OE=BC=AB=×,由题意得,⊙O于MN有交点,∴OE≤r,即×≤r,解得,r≥,∵直线l与⊙O相离,∴r<5,则使△GBC是以BC为底边的等腰三角形,⊙O的半径r的取值范围为:≤r<5.。

中考数学压轴题-圆的压轴题 含解析

中考数学压轴题-圆的压轴题   含解析

圆的压轴题(1)1、如图,BF 为⊙O 的直径,直线AC 交⊙O 于A ,B 两点,点D 在⊙O 上,BD 平分∠OBC ,DE ⊥AC 于点E 。

(1)求证:直线DE 是⊙O 的切线;(2)若 BF=10,sin ∠BDE=,求DE 的长。

2、如图,AN 是M ⊙的直径,NB x ∥轴,AB 交M ⊙于点C .(1)若点()0,6A ,()0,2N ,30ABN =∠°,求点B 的坐标;(2)若D 为线段NB 的中点,求证:直线CD 是M ⊙的切线.x y C D M O B NA3、如图,△ABD是⊙O的内接三角形,E是弦BD的中点,点C是⊙O外一点且∠DBC=∠A,连接OE延长与圆相交于点F,与BC相交于点C.(1)求证:BC是⊙O的切线;(2)若⊙O的半径为6,BC=8,求弦BD的长.4、已知△ABC的内切圆⊙O与AB、BC、AC分别相切于点D、E、F,若=,如图1,.(1)判断△ABC的形状,并证明你的结论;(2)设AE与DF相交于点M,如图2,AF=2FC=4,求AM的长.5、如图,AB是⊙O的直径,AC是上半圆的弦,过点C作⊙O的切线DE交AB的延长线于点E,过点A作切线DE的垂线,垂足为D,且与⊙O交于点F,设∠DAC,∠CEA的度数分别是α,β.(1)用含α的代数式表示β,并直接写出α的取值范围;(2)连接OF与AC交于点O′,当点O′是AC的中点时,求α,β的值.6、如图,在菱形ABCD中,点P在对角线AC上,且PA=PD,⊙O是△PAD的外接圆.(1)求证:AB是⊙O的切线;(2)若AC=8,tan∠BAC=,求⊙O的半径.7、如图,AB为⊙O的直径,CB,CD分别切⊙O于点B,D,CD交BA的延长线于点E,CO的延长线交⊙O于点G,EF⊥OG于点F.(1)求证:∠FEB=∠ECF;(2)若BC=6,DE=4,求EF的长.8、如图,AB是⊙O的直径,C是⊙O上一点,OD⊥BC于点D,过点C作⊙O的切线,交OD的延长线于点E,连接BE.(1)求证:BE与⊙O相切;(2)设OE交⊙O于点F,若DF=1,BC=2 ,求阴影部分的面积.9、如图,已知⊙O的直径CD=6,A,B为圆周上两点,且四边形OABC是平行四边形,过A点作直线EF∥BD,分别交CD,CB的延长线于点E,F,AO与BD交于G点.(1)求证:EF是⊙O的切线;(2)求AE的长.10、如图,C、D是半圆O上的三等分点,直径AB=4,连接AD、AC,DE⊥AB,垂足为E,DE交AC于点F.(1)求∠AFE的度数;(2)求阴影部分的面积(结果保留π和根号).11、如图,MN是⊙O的直径,MN=4,点A在⊙O上,∠AMN=30°,B为的中点,P是直径MN上一动点.(1)利用尺规作图,确定当PA+PB最小时P点的位置(不写作法,但要保留作图痕迹).(2)求PA+PB的最小值.12、如图,已知直线PT与⊙O相切于点T,直线PO与⊙O相交于A,B两点.(1)求证:PT2=PA•PB;(2)若PT=TB=,求图中阴影部分的面积.13、如图,PA、PB是⊙O的切线,A、B为切点,∠APB=60°,连接PO并延长与⊙O交于C点,连接AC,BC.(1)求证:四边形ACBP是菱形;(2)若⊙O半径为1,求菱形ACBP的面积.14、如图,在△ABC中,AB=AC,以AB为直径的⊙O交AC边于点D,过点C作CF ∥AB,与过点B的切线交于点F,连接BD.(1)求证:BD=BF;(2)若AB=10,CD=4,求BC的长.15、如图,梯形ABCD中,AD∥BC,AE⊥BC于E,∠ADC的平分线交AE于点O,以点O为圆心,OA为半径的圆经过点B,交BC于另一点F.(1)求证:CD与⊙O相切;(2)若BF=24,OE=5,求tan∠ABC的值.16、已知:如图,MN为⊙O的直径,ME是⊙O的弦,MD垂直于过点E的直线DE,垂足为点D,且ME平分∠DMN.求证:(1)DE是⊙O的切线;(2)ME2=MD•MN.参考答案1、【解答】解:(1)如图所示,连接OD,∵OD=OB,∴∠ODB=∠OBD,∵BD平分∠OBC,∴∠OBD=∠DBE,∴∠ODB=∠DBE,∴OD∥AC,∵DE⊥AC,∴OD⊥DE,∵OD是⊙O的半径,∴直线DE是⊙O的切线;(2)如图,连接DF,∵BF是⊙O的直径,∴∠FDB=90°,∴∠F+∠OBD=90°,∵∠OBD=∠DBE,∠BDE+∠DBE=90°,∴∠F=∠BDE,在Rt△BDF中,=sinF=sin∠BDE=,∴BD=10×=2,∴在Rt△BDE中,sin∠BDE==,∴BE=2×=2,∴在Rt△BDE中,DE===4。

2019年中考数学全国部分地区有关圆的综合题真题汇编(含答案解析)

2019年中考数学全国部分地区有关圆的综合题真题汇编(含答案解析)

有关圆的综合题1.(2019浙江温州22题)如图,在△ABC中,∠BAC=90°,点E在BC边上,且CA=CE,过A,C,E三点的⊙O交AB于另一点F,作直径AD,连结DE并延长交AB于点G,连结CD,CF.(1)求证:四边形DCFG是平行四边形;(2)当BE=4,CD=38AB时,求⊙O的直径长.2.(2019浙江绍兴21题)在屏幕上有如下内容:如图,△ABC内接于圆O,直径AB的长为2,过点C的切线交AB的延长线于点D.张老师要求添加条件后,编制一道题目,并解答0(1)在屏幕内容中添加条件∠D=30°,求AD的长,请你解答.(2)以下是小明,小聪的对话:小明:我加的条件是BD=1,就可以求出AD的长.小聪:你这样太简单了,我加的条件是∠A=30°,连结OC,就可以证明△ACB与△DCO全等.参考此对话,在屏幕内容中添加条件,编制一道题目(可以添线、添字母),并解答.3.(2019浙江宁波26题)如图1, O 经过等边△ABC 的顶点A ,C (圆心O 在△ABC 内),分别与AB ,CB 的延长线交于点D ,E ,连结DE ,BF ⊥EC 交AE 于点F.(1)求证:BD=BE. (2)当AF :EF=3:2,AC=6时,求AE 的长。

(3)设 EFAF =x,tan ∠DAE=y. ①求y 关于x 的函数表达式;②如图2,连结OF,OB ,若△AEC 的面积是△OFB 面积的10倍,求y 的值4.(2019浙江金华21题)如图,在OABC,以O为图心,OA为半径的圆与C相切于点B,与OC相交于点D.(1)求的度数。

(2)如图,点E在⊙O上,连结CE与⊙O交于点F。

若EF=AB,求∠OCE的度数.5. (2019浙江湖州23题)已知在平面直角坐标系xOy中,直线l1分别交x轴和y轴于点A(-3,0),B(0,3).(1)如图1,已知⊙P经过点O,且与直线l1相切于点B,求⊙P的直径长;(2)如图2,已知直线l2: y=3x-3分别交x轴和y轴于点C和点D,点Q是直线l2上的2为半径画圆.一个动点,以Q为圆心,2①当点Q与点C重合时,求证: 直线l1与⊙Q相切;②设⊙Q与直线l1相交于M,N两点, 连结QM,QN. 问:是否存在这样的点Q,使得△QMN 是等腰直角三角形,若存在,求出点Q的坐标;若不存在,请说明理由.图1 图26.(2019浙江杭州23题)如图,已知锐角三角形ABC 内接于☉O,OD ⊥BC 于点D,连接OA.(1)若∠BAC=60°,①求证:OD=12OA; ②当OA=1时,求△ABC 面积的最大值;(2)点E 在线段OA 上,OE=OD.连接DE,设∠ABC=m ∠OED,∠ACB=n ∠OED(m,n 是正数).若∠ABC<∠ACB,求证:m-n+2=0.7.(2019四川宜宾23题)如图,线段AB经过⊙O的圆心O,交⊙O于A、C两点,BC=1,AD为⊙O的弦,连结BD,∠BAD=∠ABD=30°,连结DO并延长交⊙O于点E,连结BE 交⊙O于点M.(1)求证:直线BD是⊙O的切线;(2)求⊙O的半径OD的长;(3)求线段BM的长.8.(2019四川雅安23题)如图,已知AB是⊙O的直径,AC,BC是⊙O的弦,OE∥AC交BC 于E,过点B作⊙O的切线交OE的延长线于点D,连接DC并延长交BA的延长线于点F.(1)求证:DC是⊙O的切线;(2)若∠ABC=30°,AB=8,求线段CF的长.9.(2019四川遂宁24题)如图,△ABC内接于⊙O,直径AD交BC于点E,延长AD至点F,使DF=2OD,连接FC并延长交过点A的切线于点G,且满足AG∥BC,连接OC,若cos∠BAC=,BC=6.(1)求证:∠COD=∠BAC;(2)求⊙O的半径OC;(3)求证:CF是⊙O的切线.10.(2019四川内江27题)AB与⊙O相切于点A,直线l与⊙O相离,OB⊥l于点B,且OB =5,OB与⊙O交于点P,AP的延长线交直线l于点C.(1)求证:AB=BC;(2)若⊙O的半径为3,求线段AP的长;(3)若在⊙O上存在点G,使△GBC是以BC为底边的等腰三角形,求⊙O的半径r的取值范围.11.(2019四川泸州24题)如图,AB为⊙O的直径,点P在AB的延长线上,点C在⊙O 上,且PC2=PB•PA.(1)求证:PC是⊙O的切线;(2)已知PC=20,PB=10,点D是的中点,DE⊥AC,垂足为E,DE交AB于点F,求EF的长.12.(2019四川广元23题)如图,AB是⊙O的直径,点P是BA延长线上一点,过点P 作⊙O的切线PC,切点是C,过点C作弦CD⊥AB于E,连接CO,CB.(1)求证:PD是⊙O的切线;(2)若AB=10,tan B=,求P A的长;(3)试探究线段AB,OE,OP之间的数量关系,并说明理由.13.(2019四川达州22题)如图,⊙O是△ABC的外接圆,∠BAC的平分线交⊙O于点D,交BC于点E,过点D作直线DF∥BC.(1)判断直线DF与⊙O的位置关系,并说明理由;(2)若AB=6,AE=,CE=,求BD的长.14.(2019四川巴中25题)如图,在菱形ABCD中,连结BD、AC交于点O,过点O作OH⊥BC于点H,以点O为圆心,OH为半径的半圆交AC于点M.①求证:DC是⊙O的切线.②若AC=4MC且AC=8,求图中阴影部分的面积.③在②的条件下,P是线段BD上的一动点,当PD为何值时,PH+PM的值最小,并求出最小值.参考答案第1题答案.第2题答案.第3题答案. (1)证明:∵△ABC 为等边三角形,∴∠BAC=∠C=60 .∵∠DEB=∠BAC=60 ,∠D=∠C=60∴∠DEB=∠D.∴BD=BE(2)解:如图,过点A 作AG ⊥EC 于点G.∵△ABC 为等边三角形,AC=6,∴BG=21 BC= 21AC=3. ∴在Rt △ABG 中,AG=BG=3 . ∵BF ⊥EC ,∴BF ∥AG.∵AF:EF=3:2,∴BE= BG=2.∴EG=BE+BG=3+2=5.∴在Rt △AEG 中,AE=.(3)解:①如图,过点E 作EH ⊥AD 于点H.∵∠EBD=∠ABC=60°,∴在Rt △BEH 中, BE EH =sin60 = 23. ∴∴∵BG=xBE.∴AB=BC=2BG-2xBE.∴AH-AB+BH=2xBE+ 21BE=(2x+ 21)BE. ∴在Rt △AHE 中,tan EAH =143+=x y ②如图,过点O 作OM ⊥EC 于点M.设BE=a.∵∴CG=BG=xBE=x.∴EC=CG+BG+BE=a+2ax.∴AM=21EC= 21a+ax. ∴BM=EM-BE=ax- 21a ∵BF ∥AG , ∴△EBF ∽△EGA.∴∵AG= 3BG= 3ax ∴BF=x+11 AG= x ax +13 ∴△OFB 的面积=∴△AEC 的面积=∵△AEC 的面积是△OFB 的面积10倍 ∴∴ 解得∴ 93=y 或73 第4题答案. (1)如图,连结OB ,设⊙O 半径为r ,∵BC 与⊙O 相切于点B ,∴OB ⊥BC ,又∵四边形OABC 为平行四边形,∴OA ∥BC ,AB=OC ,∴∠AOB=90°,又∵OA=OB=r ,∴AB= 2r ,∴△AOB ,△OBC 均为等腰直角三角形,∴∠BOC=45°,∴弧CD 度数为45°.(2)作OH ⊥EF ,连结OE ,由(1)知EF=AB= 2r ,∴△OEF 为等腰直角三角形,∴OH=21 EF= 22r , 在Rt △OHC 中,∴sin ∠OCE=21222==r r OC OH , ∴∠OCE=30°.第5题答案.【解答】(1)如图1,连结BP ,过点P 作PH ⊥OB 于点H ,图3则BH =OH .∵AO =BO =3, ∴∠ABO =45°,BH =12OB =2,∵⊙P 与直线l 1相切于点B ,∴BP ⊥AB ,∴∠PBH =90°-∠ABO =45°.∴PB =2BH =322, 从而⊙P 的直径长为3 2. (2)证明:如图4过点C 作CE ⊥AB 于点E ,图4将y =0代入y =3x -3,得x =1,∴点C 的坐标为(1,0).∴AC =4,∵∠CAE =45°,∴CE =22AC =2 2. ∵点Q 与点C 重合,又⊙Q 的半径为22,∴直线l 1与⊙Q 相切.②解:假设存在这样的点Q ,使得△QMN 是等腰直角三角形,∵直线l 1经过点A (-3,0),B (0,3),∴l 的函数解析式为y =x +3.记直线l 2与l 1的交点为F ,情况一:如图5,当点Q在线段CF上时,由题意,得∠MNQ=45°.如图,延长NQ交x轴于点G,图5∵∠BAO=45°,∴∠NGA=180°-45°-45°=90°,即NG⊥x轴,∴点Q与N有相同的横坐标,设Q(m,3m-3),则N(m,m+3),∴QN=m+3-(3m-3).∵⊙Q的半径为22,∴m+3-(3m-3)=22,解得m=3-2,∴3m-3=6-22,∴Q的坐标为(3-2,6-22).情况二:当点Q在线段CF的延长线上时,同理可得m=3+2,Q的坐标为(3+2,6+32).∴存在这样的点Q1(3-2,6-32)和Q2(3+2,6+32),使得△QMN是等腰直角三角形.第6题答案. 解析(1)①证明:连接OB,OC.因为OB=OC,OD⊥BC,所以∠BOD=∠BOC=×2∠BAC=60°,所以∠OBD=30°,所以OD=OB=OA.②作AF⊥BC,垂足为点F,所以AF≤AD≤AO+OD=,等号当点A,O,D在同一直线上时取到.由①知,BC=2BD=,所以△ABC的面积=BC·AF≤××=,即△ABC面积的最大值是.(2)证明:设∠OED=∠ODE=α,∠COD=∠BOD=β.因为△ABC是锐角三角形,所以∠ABC+∠ACB+∠BAC=180°,即(m+n)α+β=180°.(*)又因为∠ABC<∠ACB,所以∠EOD=∠AOC+∠DOC=2mα+β.因为∠OED+∠ODE+∠EOD=180°,所以2(m+1)α+β=180°.(**)由(*) (**),得m+n=2(m+1),即m-n+2=0.第7题答案.【解答】(1)证明:∵OA=OD,∠A=∠B=30°,∴∠A=∠ADO=30°,∴∠DOB=∠A+∠ADO=60°,∴∠ODB=180°﹣∠DOB﹣∠B=90°,∵OD是半径,∴BD是⊙O的切线;(2)∵∠ODB=90°,∠DBC=30°,∴OD=OB,∵OC=OD,∴BC=OC=1,∴⊙O的半径OD的长为1;(3)∵OD=1,∴DE=2,BD=,∴BE==,∵BD是⊙O的切线,BE是⊙O的割线,∴BD2=BM•BE,∴BM===.第8题答案.【解答】(1)证明:连接OC,AC,∵OE∥AC,∴∠1=∠ACB,∵AB是⊙O的直径,∴∠1=∠ACB=90°,∴OD⊥BC,由垂径定理得OD垂直平分BC,∴DB=DC,∴∠DBE=∠DCE,又∵OC=OB,∴∠OBE=∠OCE,即∠DBO=∠OCD,∵DB为⊙O的切线,OB是半径,∴∠DBO=90°,∴∠OCD=∠DBO=90°,即OC⊥DC,∵OC是⊙O的半径,∴DC是⊙O的切线;(2)解:在Rt△ABC中,∠ABC=30°,∴∠3=60°,又OA=OC,∴△AOC是等边三角形,∴∠COF=60°,在Rt△COF中,tan∠COF=,∴CF=4.第9题答案. 解:(1)∵AG是⊙O的切线,AD是⊙O的直径,∴∠GAF=90°,∵AG∥BC,∴AE⊥BC,∴CE=BE,∴∠BAC=2∠EAC,∵∠COE=2∠CAE,∴∠COD=∠BAC;(2)∵∠COD=∠BAC,∴cos∠BAC=cos∠COE==,∴设OE=x,OC=3x,∵BC=6,∴CE=3,∵CE⊥AD,∴OE2+CE2=OC2,∴x2+32=9x2,∴x=(负值舍去),∴OC=3x=,∴⊙O的半径OC为;(3)∵DF=2OD,∴OF=3OD=3OC,∴,∵∠COE=∠FOC,∴△COE∽△FOE,∴∠OCF=∠DEC=90°,∴CF是⊙O的切线.第10题答案.(1)证明:如图1,连接OA,∵AB与⊙O相切,∴∠OAB=90°,∴∠OAP+∠BAC=90°,∵OB⊥l ,∴∠BCA+∠BPC=90°,∵OA=OP ,∴∠OAP=∠OPA=∠BPC,∴∠BAC=∠BCA,∴AB=BC;(2)解:如图1,连接AO并延长交⊙O于D,连接PD,则∠APD=90°,∵OB=5,OP=3 ,∴PB=2,∴BC=AB==4,在Rt△PBC中,PC==2,∵∠DAP=∠CPB,∠APD=∠PBC=90°,∴△DAP∽△PBC,∴=,即=,解得,AP=;(3)解:如图2,作BC的垂直平分线MN,作OE⊥MN于E,则OE=BC=AB=×,由题意得,⊙O于MN有交点,∴OE≤r,即×≤r ,解得,r≥,∵直线l与⊙O相离,∴r<5,则使△GBC是以BC为底边的等腰三角形,⊙O的半径r的取值范围为:≤r<5.第11题答案.第12题答案.(1)证明:连接OD,∵PC是⊙O的切线,∴∠PCO=90°,即∠PCD+∠OCD=90°,∵OA⊥CD ,∴CE=DE∴PC=PD∴∠PDC=∠PCD∵OC=OD∴∠ODC=∠OCD,∴∠PDC+∠ODC=∠PCD+∠OCD=90°,∴PD是⊙O的切线.(2)如图2,连接AC,∵AB是⊙O的直径,∴∠ACB=90°,∴tan B==设AC=m,BC=2m,则由勾股定理得:m2+(2m)2=102,解得:m=,AC=2,BC=4,∵CE×AB=AC×BC,即10CE=2×4,∴CE=4,BE=8,AE=2在Rt△OCE中,OE=OA﹣AE=3,OC=5,∴CE===4,∵∴OP×OE=OC×OC,即3OP=5×5,∴OP=,P A=OP﹣OA=﹣5=.(3)AB2=4OE•OP如图2,∵PC切⊙O于C,∴∠OCP=∠OEC=90°,∴△OCE∽△OPC∴,即OC2=OE•OP∵OC=AB∴,即AB2=4OE•OP.第13题答案. (1)DF与⊙O相切,理由:连接OD,∵∠BAC的平分线交⊙O于点D,∴∠BAD=∠CAD ,∴=,∴OD⊥BC,∵DF∥BC ,∴OD⊥DF,∴DF与⊙O相切;(2)∵∠BAD=∠CAD,∠ADB=∠C,∴△ABD∽△AEC,∴,∴=,∴BD=.第14题答案. ①过点O作OG⊥CD,垂足为G,在菱形ABCD中,AC是对角线,则AC平分∠BCD,∵OH⊥BC,OG⊥CD,∴OH=OG,∴OH、OG都为圆的半径,即DC是⊙O的切线;②∵AC=4MC且AC=8,∴OC=2MC=4,MC=OM=2,∴OH=2,在直角三角形OHC中,HO=CO,∴∠OCH=30°,∠COH=60°,∴HC=,S阴影=S△OCH﹣S扇形OHM=CH•OH﹣OH2=2﹣;③作M关于BD的对称点N,连接HN交BD于点P,∵PM=NP,∴PH+PM=PH+PN=HN,此时PH+PM最小,∵ON=OM=OH,∠MOH=60°,∴∠MNH=30°,∴∠MNH=∠HCM,∴HN=HC=2,即:PH+PM的最小值为2,在Rt△NPO中,OP=ON tan30°=,在Rt△COD中,OD=OC tan30°=,则PD=OP+OD=2.。

人教中考数学压轴题专题复习——圆的综合的综合及详细答案

人教中考数学压轴题专题复习——圆的综合的综合及详细答案

一、圆的综合真题与模拟题分类汇编(难题易错题)1.如图,⊙M交x轴于B、C两点,交y轴于A,点M的纵坐标为2.B(﹣33,O),C(3,O).(1)求⊙M的半径;(2)若CE⊥AB于H,交y轴于F,求证:EH=FH.(3)在(2)的条件下求AF的长.【答案】(1)4;(2)见解析;(3)4.【解析】【分析】(1)过M作MT⊥BC于T连BM,由垂径定理可求出BT的长,再由勾股定理即可求出BM的长;(2)连接AE,由圆周角定理可得出∠AEC=∠ABC,再由AAS定理得出△AEH≌△AFH,进而可得出结论;(3)先由(1)中△BMT的边长确定出∠BMT的度数,再由直角三角形的性质可求出CG 的长,由平行四边形的判定定理判断出四边形AFCG为平行四边形,进而可求出答案.【详解】(1)如图(一),过M作MT⊥BC于T连BM,∵BC是⊙O的一条弦,MT是垂直于BC的直径,∴BT=TC=123∴124;(2)如图(二),连接AE,则∠AEC=∠ABC,∵CE⊥AB,∴∠HBC+∠BCH=90°在△COF中,∵∠OFC+∠OCF=90°,∴∠HBC=∠OFC=∠AFH,在△AEH和△AFH中,∵AFH AEHAHF AHE AH AH∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△AEH≌△AFH(AAS),∴EH=FH;(3)由(1)易知,∠BMT=∠BAC=60°,作直径BG,连CG,则∠BGC=∠BAC=60°,∵⊙O的半径为4,∴CG=4,连AG,∵∠BCG=90°,∴CG⊥x轴,∴CG∥AF,∵∠BAG=90°,∴AG⊥AB,∵CE⊥AB,∴AG∥CE,∴四边形AFCG为平行四边形,∴AF=CG=4.【点睛】本题考查的是垂径定理、圆周角定理、直角三角形的性质及平行四边形的判定与性质,根据题意作出辅助线是解答此题的关键.2.如图所示,以Rt△ABC的直角边AB为直径作圆O,与斜边交于点D,E为BC边上的中点,连接DE.(1)求证:DE是⊙O的切线;(2)连接OE,AE,当∠CAB为何值时,四边形AOED是平行四边形?并在此条件下求sin∠CAE的值.【答案】(1)见解析;(2)1010. 【解析】 分析:(1)要证DE 是⊙O 的切线,必须证ED ⊥OD ,即∠EDB+∠ODB=90°(2)要证AOED 是平行四边形,则DE ∥AB ,D 为AC 中点,又BD ⊥AC ,所以△ABC 为等腰直角三角形,所以∠CAB=45°,再由正弦的概念求解即可.详解:(1)证明:连接O 、D 与B 、D 两点,∵△BDC 是Rt △,且E 为BC 中点,∴∠EDB=∠EBD .(2分)又∵OD=OB 且∠EBD+∠DBO=90°,∴∠EDB+∠ODB=90°.∴DE 是⊙O 的切线.(2)解:∵∠EDO=∠B=90°,若要四边形AOED 是平行四边形,则DE ∥AB ,D 为AC 中点,又∵BD ⊥AC ,∴△ABC 为等腰直角三角形.∴∠C AB=45°.过E 作EH ⊥AC 于H ,设BC=2k ,则EH=22k ,AE=5k , ∴sin ∠CAE=1010EH AE .点睛:本题考查的是切线的判定,要证某线是圆的切线,已知此线过圆上某点,连接圆心和这点(即为半径),再证垂直即可.3.函数是描述客观世界运动变化的重要模型,理解函数的本质是重要的任务。

2019中考数学试题及答案分类汇编:圆

2019中考数学试题及答案分类汇编:圆

2019中考数学试题及答案分类汇编:圆、选择题1. (天津3分)已知O O i 与O 。

2的半径分别为3 cm 和4 cm ,若OQ 2=7 cm ,则O O 1与O O 2的位置关系是(A ) 相交 (B ) 相离 (C ) 内切 (D ) 外切 【答案】Db【考点】圆与圆位置关系的判定。

【分析】两圆半径之和 3+4=7,等于两圆圆心距 OQ 2= 7,根据圆与圆位置关系的判定可知两圆外切。

2.(内蒙古包头3分)已知两圆的直径分别是 2厘米与4厘米,圆心距是3厘米,则这两个圆的位置关系是A 、相交B 、外切C 、外离D 、内含【答案】B 。

【考点】两圆的位置关系。

【分析】根据两圆的位置关系的判定:外切(两圆圆心距离等于两圆半径之和),内切(两圆圆心距离等于两 圆半径之差),相离(两圆圆心距离大于两圆半径之和),相交(两圆圆心距离小于两圆半径之和大于两圆半 径之差),内含(两圆圆心距离小于两圆半径之差)。

•••两圆的直径分别是 2厘米与4厘米,•••两圆的半径分别是 •••圆心距是1+2=3厘米,•这两个圆的位置关系是外切。

故选3, (内蒙古包头3分)已知AB 是OO 的直径,点P 是AB 延长线上的 动点,过P 作OO 的切线,切点为 C,Z APC 的平分线交AC 于点D, / CDP 等于A 、30°B 、60°C 、45°D 50°【答案】【考点】角平分线的定义,切线的性质,直角三角形两锐角的关系,三角形外角定理。

【分析】连接OC•/ OC=O , , PD 平分/ APC •••/ CPD M DPA / CAP d ACO •/ PC 为OO 的切线,• OCLPG•••/ CPD # DPA f CAP +/ ACO=90,•/ DPA f CAP =45,即/ CDP=45。

故选 G1厘米与2厘米。

B 。

4. (内蒙古呼和浩特3分)如图所示,四边形ABCD中, DC/ ABBC=1, AB=AC=AD=2 贝U BD 的长为A. 14B. .15C. 3 2D. 2.3【答案】Bo【考点】圆周角定理,圆的轴对称性,等腰梯形的判定和性质,勾股定理。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
•PC=4.:■:
又•••PC?PD=PB?PA
•PA=4也就是半径OB=4在RT^ACB中,
AC=.汗-.「A'-_-=2!■:,
•/AB是直径,
•••/ ADBMACB=90
•••/ FDA+Z BDC=90
/CBA+/ CAB=90
•••/ BDC/CAB
•/FDA/CBA
又•••/AFD/ACB=90
•匹鸟
•CEDC,
△CD0ACAD
•/CDBNDBC
•••四边形ABCD内接于OO,
•BC=CD
(2)解:如图,连接OC
•/BC=CD
•••/ DACMCAB又•••AO=CO
•••/ CABMACO
•••/ DACMACO
•AD// OC
•_l = N
PD PA
••• PB=OB CD=-:,
PC+2J2 3
(2)连接OC先证AD//OC由平行线分线段成比例性质定理求得PC=QE,再由割线定理
PC?PD=PB?P求得半径为4,根据勾股定理求得AC=.,再证明△ACB得
AF_AC_2VjJr-,则可设fd=x,AF祈X,在Rt△AFP中,求得DF一匕.
FDCB2^24
【解答]:(1)证明:••• DC2=CE?CA
【题2](2018?泸州24题)如图,四边形ABCD内接于OO, AB是OO的直径,AC和BD相交于点E,且dC=CE?CA
(1)求证:BC=CD
(2) 分别延长AB, DC交于点P,过点A作AFLCD交CD的延长线于点
【考点]:相似三角形的判定与性质;勾股定理;圆周角定理•菁优
【分析]:(1)求出△CD0ACAD/CDBNDBC得出结论.
①当OP与OO外切时,
如图3,连接op贝y0P=1+t,过点P作PHLOE垂足为
•••/PHEMHEGMPGE=90,
•••四边形PHEG是矩形,
••• HE=PG PH=CE
在Rt△OPH中,
由勾股定理,〔1-幺)+(2-2 )乞仃+t)255
解得t=二.
3
②当OP与OO内切时, 如图4,连接OP贝yOP=t-1,过点O作OMLPG垂足为M.
•••/ MGENOEGMOMG=90,
•四边形OEGMI矩形,•MG=QE OM=EG
•PM=PG MG=t-1,
5
在Rt△OPM中,
由勾股定理,丄:*J — t I-,解得t=2.
55
综上所述,OP与OO相切时,t=2s或t=2s.
3
【点评】:本题考查了圆的性质、两圆相切及通过设边长,表示其他边长关系再利用直角三角形求解等常规考查 点,总体题目难度不高,是一道非常值得练习的题目.
2019
2019年与圆有关的压轴题,考点涉及:垂径定理;圆周角定理;圆内接四边形的性质;切线性质;锐角三 角函数定义;特殊角的三角函数值;相似三角形的判定和性质;勾股定理;特殊四边形性质;等•数学思想涉及:
数形结合;分类讨论;化归;方程•现选取部分省市的2019年中考题展示,以飨读者•
【题1】(2019年江苏南京,26题)如图,在Rt△ABC中,/ACB=90,AC=4cm BC=3cmOOABC的内切圆.
•△AFD^AACB
在Rt△AFP中,设FD=x贝U AF= I,:,•••在APF中有,
求得DF=二.
【点评】:本题主要考查相似三角形的判定及性质,勾股定理及圆周角的有关知识的综合运用能力,关键是
找准对应的角和边求解.
【题3】(2018?济宁21题)阅读材料:
已知,如图(1),在面积为S的厶ABC中,BC=a AC=b AB=c,内切圆O的半径为r.连接OA OB OC△ABC被划分为三个小三角形.
a+b4c
(1) 类比推理:若面积为S的四边形ABCD存在内切圆(与各边都相切的圆),如图(2))各边长分别为AB=a, BC=b, CD=c AD=d求四边形的内切圆半径r;
(2) 理解应用:如图(3),在等腰梯形ABCD中 ,AB// DC AB=21,CD=11, AD=13OO1与OO2分别为△ABD与
r!
△BCD的内切圆,设它们的半径分别为r1和「2,求一的值.
r2
B

【考点】
【分析】
:圆的综合题.
:(1)已知已给出示例,我们仿照例子,连接OAOB OCOD则四边形被分为四个小三角形,且
每个三角形都以内切圆半径为高,以四边形各边作底,这与题目情形类似•仿照证明过程,r易得.
(2) (1)中已告诉我们内切圆半径的求法,如是我们再相比即得结果•但求内切圆半径需首先知道
菁优
三角形各边边长,根据等腰梯形性质,过点D作AB垂线,进一步易得BD的长,则ri、“、
—-易得.
r2
【解答】
:(1)如图2,连接OA OB OC OD
■/S=SaAOB+SaBO(+SaCO[+SaAOD^旺+丄匚(过+b +寸d)
+1
【点评】
…r=
2S
a+b+c+d
(2)如图3,过点D作DEIAB于E, •••梯形ABCD为等腰梯形,
(1)求00的半径;
(2)点P从点B沿边BA向点A以1cm/s的速度匀速运动,以
(2)考虑两圆相切,且一圆已固定,一般就有两种情形,外切与内切•所以我们要分别讨论,当外切时,圆心 距等于两圆半径的和;当内切时,圆心距等于大圆与小圆半径的差•分别作垂线构造直角三角形,类似( 过表示边长之间的关系列方程,易得t的值.
【解】:(1)如图1,设OO与AB BC CA的切点分别为
贝UAD=AF BD=BE CE=CF
TOOABC的内切圆,
•OFLAC OEL BC即/OFCMOEC=90.•••/ Nhomakorabea=90,
•四边形CEOF是矩形,
•/OE=OF
•四边形CEOF是正方形.
设OO的半径为rcm,贝UFC=EC=OE=rcm在Rt△ABC中,MACB=90,AC=4cm BC=3cm
二AE=(朋-CD)(21—11)=5,
••• EB=AB- AE=21-在Rt△AED中,
•/AD=13 AE=5,
•DE=12
5=16•
•db=7de2+eb^
•AB==5cm
•/AD=AF=AC FC=4-r,BD=BE=BC EC=3-r,
•4-r+3-r=5,解得r=1,即OO的半径为1cm.
(2)如图2,过点P作PGLBC垂直为G.
•••/ PGBMC=90, •PG/ AC
•△PBG^AABC•
••• PG—, 9-.
若OP与OO相切,则可分为两种情况,OP与OO外切,
相关文档
最新文档