经典动态博弈模型
博弈论 第 三 章 完全信息动态博弈讲解

房地产开发博弈
开发
A hA(1) 不开发
h表示信息集
N hN(1)
需求大
需求小
N hN(2)
需求大
需求小
B hB(1)
开发
不开发
B hB(2)
B hB(3)
开发
不开发 开发 不开发 开发
B hB(4)
不开发
(4,4)
(8,0) (-3,-3)
(1,0) (0,8) (0,0) (0,1) 单 位:百万元
定 义 一 个 展 开 式 博 弈 的 子 博 弈G 由 一 个 决 策 结x 和 所 有 该 决 策 结 的 后继结T(x)( 包 括终点结0 组 成, 它 满 足 下 列 条 件:⑴x 是 一 个 单 点 信 息 结即h(x)={x};⑵对于所有的 x′∈T(x),如果x″∈h(x′),则x″∈T(x)。
(3)
N
1/3
2/3
1
Y1
z1
1
x1
w1
(2,6) (5,6)
2
2
a2 (9,0)
b2 (0,3)
a2 (9,5)
b2 (0,3)
3.3 子 博 弈 与 子 博 弈 完 美
Nash 均衡在原则上适用所有的博弈,但对于预 测 参与人的行为来说,Nash均衡可能并不是 一个 合理的预测, 如房地产博弈:
A
开发
不开 发
A
开发
不开发
B
B
B
B
开发 不开发 开发 不开发 开发 不开发 开发
不开发
有了信息集的概念, 展开式表示也可以用来表 示静态博弈, 如“囚徒的困境 ”博弈可以表 示为:
1
坦白
2
数学建模博弈模型

博弈模型在实际问题中的应用前景
政策制定
01
利用博弈模型分析政策制定中的利益关系和策略选择,为政策
制定提供科学依据。
企业竞争策略
02
利用博弈模型分析企业竞争中的策略选择和预期行为,为企业
制定合理的竞争策略。
国际关系
03
利用博弈模型分析国际关系中的利益关系和冲突解决机制,为
国际关系管理提供理论支持。
THANKS
猎鹿博弈
总结词
描述两个猎人合作与竞争的关系,揭示了合作与背叛的平衡。
详细描述
在猎鹿博弈中,两个猎人一起打猎,猎物可以平分。如果一个猎人选择合作而另一个选择背叛,则背叛者可以独 吞猎物。但如果两个猎人都不合作,则都没有猎物可吃。最佳策略是合作,但个体理性可能导致两个猎人都不合 作,造成双输的结果。
03
智猪博弈
总结词
描述大猪与小猪在食槽竞争中的策略,揭示了合作与竞 争的平衡。
详细描述
在智猪博弈中,一个大猪和一个小猪共同生活在一个猪 圈里。每天都有一桶食物放在食槽中,大猪和小猪需要 竞争才能吃到食物。如果大猪和小猪同时到达食槽,大 猪会因为体型优势占据更多食物。但如果小猪先到食槽 等待,大猪到来时已经没有食物可吃。最佳策略是小猪 等待,大猪先吃,然后小猪再吃剩下的食物。
博弈模型的基本要素
参与者
在博弈中作出决策和行动的个体或组织。
策略
参与者为达到目标而采取的行动或决策。
支付
参与者从博弈中获得的收益或损失。
均衡
在博弈中,当所有参与者都选择最优策略时,达到的一种稳定状态。
博弈模型的建立过程
策略空间
确定每个参与者的所有可能采 取的策略。
均衡分析
通过分析收益函数和策略空间 ,找出博弈的均衡点。
聊聊四种经典的博弈论模型

聊聊四种经典的博弈论模型展开全文1、囚徒困境:为什么两个犯人都选择坐牢官差破获了一宗盗窃案,抓住了两名犯罪嫌疑人。
但在审讯过程中,被关在一处的二人始终矢口否认盗窃罪名,说东西不是我们偷的。
为了避免两人达成默契,结成攻守同盟,官差决定对他们进行单独审讯。
官差表示,如果两人中有一人坦白认罪,则可立即释放,另一个不认罪的人判5年徒刑;如果两人都坦白罪刑,则他们将各判2年徒刑。
但还有一种情况,那就是两个人都拒绝坦白,由于缺乏证据,他们只会以扰乱公共场合为名判处3个月拘役。
这就是两名罪犯面临的困境中,他们会做出怎样的选择呢?首先,他们互相之间都不清楚对方是否会坦白,其次,二人都希望将自己的刑期缩至最短。
如此考虑,最终,两名犯人都会选择坦白交代。
上面的案例就是博弈论所说的“囚徒困境”。
犯人们如果彼此合作,可为集体带来最佳利益(刑期最短);但当二人面对同样的情况且不知道对方如何选择时,在理性思考后,双方都会得出相同的结论(坦白交代),以便达到个人利益的最大化。
囚徒困境是博弈论的“非零和博弈”中具代表性的例子,反映的是个人的最佳选择并非是团体的最佳选择。
虽然困境本身只属模型性质,但现实中的价格竞争、环境保护等方面,也会频繁出现类似情况。
2、智猪博弈:赢的总是小猪猪圈里有大小两头猪,它们在同一个食槽里进食。
为了保持饲料的新鲜,在远离猪食槽的另一边有一个踏板,大猪或小猪跑过去,每按动一次踏板,投食口就会掉落10个单位的食物。
于是,在大猪和小猪每次进食前,就会形成这样一种局面:如果小猪跑去按踏板,大猪守在食槽边,则大猪小猪吃到的食物比是9:1;反之,如果大猪去按而小猪守在食槽边,则吃食比例是6:4。
如果二猪同时到食槽边,则吃食比是7:3。
这样一来,从纯收益的角度考虑,小猪就更愿意选择在食槽边等待食物落出,因为“等待优于行动”,而大猪只能被迫奔忙在踏板和食槽之间。
上述“智猪博弈”的案例是经济学家的假设论证模型,这个博弈的结果,用经济学视角看待,可以解释为:谁占有更多资源,谁就必须承担更多义务。
《动态博弈模型》课件

子博弈精炼纳什均 衡
在完全信息动态博弈中,子博 弈精炼纳什均衡是指通过剔除 不可置信威胁和承诺的策略, 得到的均衡结果。
不完全信息动态博弈
不完全信息
在不完全信息动态博弈中,至少有一个参与者不拥有关于博弈 的所有信息,包括其他参与者的类型、策略和支付函数。
贝叶斯纳什均衡
在不完全信息动态博弈中,贝叶斯纳什均衡是一个重要的概念, 它是指所有参与者在给定自己类型和概率分布的条件下,采取的
劳动力市场
经典动态博弈模型用于研究劳动力市场的工 资和就业问题,分析雇主和雇员之间的博弈 关系。
在政治学中的应用
选举博弈
经典动态博弈模型用于分析选举中的竞选策略,如候 选人如何制定竞选纲领、如何进行宣传等。
国际关系
该模型用于研究国家间的外交政策和国际合作,分析 各国在利益冲突下的博弈行为。
立法博弈
触发战略
在重复博弈中,触发战略是指一种报复机制,如果某个参与者在某个阶段采取了不合作 的策略,其他参与者会在未来的阶段采取报复措施。
04
动态博弈模型的求解方法
逆向归纳法
逆向归纳法是一种求解动态博弈的方法,通过逆向推理,从博弈的最后阶段开始分析,逐步向前推导 ,最终得出每个参与者的最优策略。
在求解过程中,逆向归纳法假设每个参与者都了解其他参与者的策略选择,并在此基础上选择自己的最 优策略。
02
经典动态博弈模型介绍
囚徒困境
总结词
描述两个囚犯因相互背叛而导致双方都不利的结果。
详细描述
囚徒困境是一个经典的动态博弈模型,描述了两个囚 犯因被警方逮捕而面临指控的情况。如果两个囚犯都 保持沉默,他们都将得到较轻的刑罚;但如果其中一 个囚犯背叛另一个,他将得到更轻的刑罚,而另一个 囚犯将得到更重的刑罚。然而,如果两个囚犯都背叛 彼此,他们都将得到更重的刑罚。因此,尽管合作是 最佳策略,但每个囚犯都有动机背叛对方,导致双方 都不利的结果。
博弈论3-4经典动态博弈模型

3.4 几个经典动态博弈模型453.4.1 寡占的斯塔克博格模型46动态的寡头产量竞争博弈厂商1先选择,厂商2后选择。
21q q Q +=121111112)](8[)(q q q q q c Q P q u -+-=-=221222222)](8[)(q q q q q c Q P q u -+-=-=策略空间:[0,Q max ]中所有实数。
Q max 为不至于使价格降到亏本的最大限度的产量。
Q Q P P -==8)(价格函数:边际生产成本:无固定成本得益函数:221==c c 2121116q q q q u --=2221226q q q q u --=47两阶段动态博弈。
第一阶段,厂商1选择产量;第二阶段,厂商2选择产量。
1 、第二阶段厂商2的选择目标:得益最大化。
求使自己得益最大化下的产量值,即最大化时的一阶条件:得益函数:2221226q q q q u --=用逆推归纳法进行分析:02602122=--⇒=∂∂q q q u 112213)6(21q q q -=-=求出厂商2对厂商1产量的反应函数:48两阶段动态博弈。
第一阶段,厂商1选择产量;第二阶段,厂商2选择产量。
2 、第一阶段厂商1的选择。
用逆推归纳法进行分析:12213q q -=厂商1可直接求出使自己得益最大化时的产量:厂商1知道2的决策思路:直接将上式代入厂商1的得益函数,得到:2112111121*211*211213)213(66),(q q q q q q q q q q q q u -=---=--=3030*1*111=⇒=-⇒=∂∂q q q u厂商1的最佳产量是生产3单位。
将之代入厂商2的反应函数,得到厂商2的最佳产量5.15.13*2=-=q 此时市场价格为3.5,双方的得益别为4.5和2.25单位。
3*1=q 12213q q -=用逆推归纳法分析得出,该动态博弈的唯一的子博弈完美纳什均衡:厂商1在第一阶段生产3单位产量,厂商2第二阶段生产1.5单位产量。
动态博弈的例子

动态博弈的例子
动态博弈的例子
动态博弈是一种模型,它可以模拟博弈双方的双边行为,以了解两个不同的博弈设置如何产生更有利的结果。
下面给出一些例子。
1)赌博博弈:一对赌徒两人分别在两个桌子前把下注。
他们都有一定的钱数,并且每次赌注都会有变化。
他们可以根据形势来决定赌注数额,以此来获取最大的奖励,类似的还有一个公平的概率,但是未必能立即获胜。
2)资源配置博弈:两家企业各自拥有一定的资源。
他们要根据彼此的期望,把资源配置至最有利的位置上,以此来获取最大的收益。
此类博弈在经济和金融领域中应用很广泛,例如国际市场或者可持续发展。
3)时间博弈:两个人分别有不同的时间限制,必须完成某项任务,在有限的时间内实现最大的收益。
他们必须根据自身的实际情况来决定每个环节的时间限制,以此以最快的时间来完成任务。
4)决策博弈:两家企业各自有不同的增长策略。
他们必须根据彼此的期望和情况,把资源配置到最有利的位置上,以此以最快的速度来达到最优的增长结果。
此类博弈在公司管理领域广泛应用,用来模拟协商、谈判、合作或者竞争等等的情况。
- 1 -。
博弈论第四章 完全且完美信息动态博弈
0,0
需求小的情况 开发商A
开发商B 开发 不开发
开发 -3000,-3000 1000,0
不开发 0,1000
0,0
精的扩展式表述包括四个要素:
✓ 参与人集合(Player) ✓ 每个参与人的战略集合(Strategy) ✓ 博弈的顺序(Order) ✓ 由战略组合决定的每个参与人的支付(Payoff)
( 1, 2 ) ( -1, -1 ) ( 0, 0 ) ( 2, 1 )
( 1, 2 ) ( -1, -1 ) ( 0, 0 ) ( 2, 1 )
( 1, 2 ) ( -1, -1 ) ( 0, 0 ) ( 2, 1 )
精选PPT
12
动态博弈的 战略
精选PPT
13
动态博弈的战略的表述
✓ 战略:参与人在给定信息集的情况下选择行动的规则,它规定参 与人在什么情况下选择什么行动,是参与人的“相机行动方案”。
si表示第i个参与人的特定战略
Si si代表第i个参与人所有可选战 择略 的集合
如果n个参与人每人选择战 一略 个, n维向量s (s1,s2, ,si, ,sn)称为一个战略组合 si表示第i个人选择的战略
精选PPT
6
扩展式表示的一个例子
精选PPT
7
博弈树始于 局中人1 的一个决策结点,这时1
要从L和R中作出选择,如果局中人1选择L,其后就
到达 局中人2 的一个决策结点,这时,局中人2要
从L′和R′中作出选择。类似地,如果局中人1选择R, 则将到达局中人2的另一个决策结点。
这时局中人2从L′和R′中选择行动。无论局中人2 选择了哪一个,都将到达终结点 (即博弈结束)且两 局中人分别得到相应终点节下面的收益。
博弈论的几个经典模型
.
模型二、囚徒困境/非合作博弈
囚徒困境可以用来说明许多现象。 ➢寡头定价 ➢拍卖出价 ➢推销员的努力 ➢政治上的讨价还价 ➢军备竞赛等(冲突中出现两败俱伤的情况, 往往要考虑到囚徒困境)
*(纯策略)纳什均衡
博弈论的几个经典模型
.
问题与思考
• 什么是博弈论?试举两个你生活中的例子说明。 • 某年在荷兰召开了一次“合作及社会两难困境研讨
博弈论的几个经典模型
.
引言
博弈论的应用领域十分广泛,在经济学、 政治科学(国内的以及国际的)、军事战略问 题、进化生物学以及当代的计算机科学等领域 都已成为重要的研究和分析工具。此外,它还与 会计学、统计学、数学基础、社会心理学以及 诸如认识论与伦理学等哲学分支有重要联系。
博弈论的几个经典模型
.
引言
投食仅原来的一半分量,但同时将投食口移到 踏板附近。结果呢,小猪和大猪都在拼命地 抢着踩踏板。等待者不得食,而多劳者多得。 每次的收获刚好消费完。
对于游戏设计者,这是一个最好的方案。 成本不高,但收获最大。
博弈论的几个经典模型
.
模型二、囚徒困境/非合作博弈
在博弈论中,含有占优战略均衡的一个 著名例子是由塔克给出的“囚徒困境” ( prisoners’dilemma ) 博 弈 模 型 。 该 模 型 用 一种特别的方式为我们讲述了一个警察与小 偷的故事。
博弈论的几个经典模型
.
博弈的类型
博弈又可分静态博弈和动态博弈。 • 静态博弈:指参与者同时采取行动,或者尽
管参与者行动的采取有先后顺序,但后行动 的人不知道先采取行动的人采取的是什么行 动。 • 动态博弈:指参与者的行动有先后顺序,并 且后采取行动的人可以知道先采取行动的人 所采取的行动。
博弈论的几个经典模型
模型二、囚徒困境/非合作博 弈
囚徒困境可以用来说明许多现象。
寡头定价 拍卖出价 推销员的努力 政治上的讨价还价 军备竞赛等(冲突中出现两败俱伤的情况,
往往要考虑到囚徒困境)
*(纯策略)纳什均衡
问题与思考
• 什么是博弈论?试举两个你生活中的例子说明。
• 某年在荷兰召开了一次“合作及社会两难困境研讨 会”,与会者都是博弈论的专家。
基本术语
• 博弈涉及哪些内容呢?
博弈涉及至少两个独立的博弈参与者 (player)。
博弈涉及行动者存在着策略(strategy)选 择的可能,博弈论用策略空间来表示参与 者可以选择的策略。
参与者在不同策略组合下会得到一定的支 付(payoff)。
对于博弈参与者来说,存在着一博弈结果。
对于游戏设计者,这是一个最好的
模型二、囚徒困境/非合作博 弈
在博弈论中,含有占优战略均衡的 一个著名例子是由塔克给出的“囚徒困 境” (prisoners’dilemma)博弈模 型。该模型用一种特别的方式为我们讲 述了一个警察与小偷的故事。
模型二、囚徒困境/非合作博 假设:有两个小偷A弈和B联合犯事、私入
第四章 博弈论的几个经典模 型
讲授人 谭建国
引言
博 弈 论 又 被 称 为 对 策 论 ( Game Theory),按照2005年因对博弈论的贡献 而获得诺贝尔经济学奖的Robert Aumann 教授的说法,博弈论就是研究互动决策 的理论。所谓互动决策,即各行动方 (即局中人[player])的决策是相互影响 的,每个人在决策的时候必须将他人的 决策纳入自己的决策考虑之中,当然也 需要把别人对于自己的考虑也要纳入考 虑之中……在如此迭代考虑情形进行决
经典动态博弈模型
3.4.3委托人—代理人理论
此时,代理人的利益也受到了不确定性的影 响。委托代理模型的主要问题就是如何激励 代理人努力工作。
此时,促使代理人选择努力工作的激励相容 约束、参与约束、委托条件?
3.4.3委托人—代理人理论
四、选择报酬和连续努力水平的委托代理模型 (不是选择是否委托,而是选择报酬的水平, 并且努力程度是可以连续变化的)
博弈过程相同,但是成果由自然来选择。
3.4.3委托人—代理人理论
有20和10单位两种产出,代理人努力时产出 为20单位的概率为0.9,产出为10的概率为0.1; 代理人偷懒时,产出为20的概率为0.1,产出 为10的概率为0.9。R(0)=0.
此时引入自然(N)反映不确定性。 此时的激励相容约束、参与约束、委托条件?
3.4.3委托人—代理人理论
根据松散程度、委托内容、监督难易等不同, 委托人—代理人关系有多个不同的情况,其 中最为关键的差异是监督的难易。有些可以 直接从工作成果来监督,比如流水线上的工 人的工作,而有些难以监督,比如:律师、 教练等
委托人如何促使代理人的行为符合委托人的 利益,是委托—代理理论的重要课题。
努力成果不确定,而且不可监督。考虑代理 人有正的机会成本(U1),假设努力的负效应是 努力水平的单调递增凸函数C=C(e)
产出R是努力水平e的随机函数,R=R(e)。 w=w(R)这意味着薪酬至少一部分是利润提成
3.4.3委托人—代理人理论
w与e有关,w=w(R)=w[R(e)]。 委托人与代理人的得益分别为:
3.4.3 讨价还价(Bargaining)博弈
该模型有许多原型:利润分割、债务纠纷, 或财产继承权的争执。第一、第二回合相当 于纠纷的各方以不同形式调解的过程,而第 三回合则相当于最后提交各司法或仲裁机构 进行裁决。而消耗系数则相当于经济纠纷中, 相关各方花费在谈判和诉讼等方面的时间和 金钱代价。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
3.4.3委托人—代理人理论
有20和10单位两种产出,代理人努力时产出 为20单位的概率为0.9,产出为10的概率为0.1; 代理人偷懒时,产出为20的概率为0.1,产出 为10的概率为0.9。R(0)=0.
此时引入自然(N)反映不确定性。 此时的激励相容约束、参与约束、委托条件?
3.4.3委托人—代理人理论
一、无不确定性的委托代理模型(委托人不需要 监督,工作成果完全反映代理人的努力程度)
代理人的产出是努力程度的确定性函数,委 托人可以根据成果掌握代理人的工作情况
博弈过程如下:第一阶段委托人选择委托或 不委托,如果委托,第二阶段代理人选择是 否接受,如果接受则进入第三阶段,选择是 否努力工作。
3.4 几个经典动态博弈模型
3.4.1 寡占的斯塔克博格模型 3.4.2 劳资博弈 3.4.3 讨价还价(Bargaining)博弈 3.4.4 委托人—代理人理论
3.4.2 劳资博弈
里昂惕夫(Leontief)1946年提出了一个分别 代表劳资双方的工会和厂商之间的博弈
模型假设工人工资完全由工会决定,而厂 商则根据工会要求的工资高低决定雇佣工 人的数量
五、委托代理模型的一个数值例子 店主与店员 R为商店利润,e为店员努力,利润取决于店
员努力与随机因素,R=R(e)=4e+η,店员的负 效用函数为C=C(e)=e*e,机会成本为U1=1
3.4.3委托人—代理人理论
R为商店利润,e为店员努力,利润取决于店 员努力与随机因素,R=R(e)=4e+η,店员的负 效用函数为C=C(e)=e*e,机会成本为U1=1
3.4.3委托人—代理人理论
此时,代理人的利益也受到了不确定性的影 响。委托代理模型的主要问题就是如何激励 代理人努力工作。
此时,促使代理人选择努力工作的激励相容 约束、参与约束、委托条件?
3.4.3委托人—代理人理论
四、选择报酬和连续努力水平的委托代理模型 (不是选择是否委托,而是选择报酬的水平, 并且努力程度是可以连续变化的)
店主采用的报酬计算公式: w=A+B[R(e)],其中A、B为参数
这是一种典型的基本工资加提成的形式。 通过分析店主的最优激励工资计算公式为:
w=-3+R
3.4.3委托人—代理人理论
根据松散程度、委托内容、监督难易等不同, 委托人—代理人关系有多个不同的情况,其 中最为关键的差异是监督的难易。有些可以 直接从工作成果来监督,比如流水线上的工 人的工作,而有些难以监督,比如:律师、 教练等
委托人如何促使代理人的行为符合委托人的 利益,是委托—代理理论的重要课题。
3.4.3 讨价还价(Bargaining)博弈
假设每一次一方提出一个方案和另一方选择 是否接受为一个回合,讨价还价每多进行一 个回合,由于谈判费用和利息损失等,双方 的利益都要打一个折扣δ(0<δ<1),δ称为 “消耗系数”。
如果假设讨价还价最多只进行三个回合,到 第三回合乙必须接受甲的方案。
假设工会和厂商的博弈过程为:先由工会决 定工资率,然后厂商根据工资率决定雇佣的 员工数量
3.4.3 讨价还价(Bargaining)博弈
讨价还价(Bargaining)是典型的动态博弈 讨论三回合的讨价还价 假设有两个人就如何分享1万元现金进行谈
判,并且已经定下如下规则:首先由甲提出 一个分割方案比例,对甲提出的比例乙可以 接受也可以拒绝;如果乙拒绝甲的方案,则 他自己应提出另一个方案,让甲选择接受与 否…,如果有一方接受,则博弈结束
3.4.3 讨价还价(Bargaining)博弈
逆向归纳法求解。最终甲、乙双方得益分别 为:10000-10000 δ+ δ*δ*S 10000 δ- δ*δ*S
假设S=10000,则双方得益取决于δ- δ*δ 乙仗义讨价还价的筹码是可以与甲拖时间,
虽然甲可以争得全部利益,但拖延时间给甲 会给甲造成损失。除非δ=1或δ=0
努力水平为2单位,偷懒时努力水平为1单 位。努力的负效应为努力水平,即E=2,S=1. 另外,w(E)=4,w(S)=2.分析数值例子。
3.4.3委托人—代理人理论
二、有不确定性但可以监督的委托代理模型(代 理人的工作成果不确定,且委托人可以完全 监督代理人)
代理人努力与工作成果之间不再一致,存在 根据代理人的工作情况还是成果来支付报酬, 一般地,根据代理人的工作情况而不是成果 来支付。
努力成果不确定,而且不可监督。考虑代理 人有正的机会成本(U1),假设努力的负效应是 努力水平的单调递增凸函数C=C(e)
产出R是努力水平e的随机函数,R=R(e)。 w=w(R)这意味着薪酬至少一部分是利润提成
3.4.3委托人—代理人理论
w与e有关,w=w(R)=w[R(e)]。 委托人与代理人的得益分别为:
R-w=R(e)-w[R(e)] w-C=w[R(e)]-C(e) 参与约束:w[R(e)]-C(e)>=U1 实际上: w[R(e)]=C(e)+U1 委托人得益函数: R(e)-w[R(e)]= R(e)- C(e)-U1
3.4.3委托人—代理人理论
选择努力水平e,使得委托人得益函数最大: max{R(e)-w[R(e)]= R(e)- C(e)-U1} e>0
3.4.3 讨价还价(Bargaining)博弈
第三回合,甲的方案是自己得S,乙得10000S,而乙必须选择接受,双方得益分别为 δ*δ*S2 , δ* δ*(10000 - S2 ) 。
该博弈的两个特点:第一,第三回合甲的方 案具有强制力;第二,每多进行一个回合总 得益就会下降一个比例,因此谈判越长对双 方都可能不利,如果必须让对方得的数额不 如早点让其得到。
3.4.3委托人—代理人理论努力接受委托 1 2拒绝
不委托
[R(0),0]
2
偷懒
[R(0),0]
[R(E)-w (E) , w (E)-E ]
[R(S)-w (S) , w (S)-S ]
无不确定性的委托代理模型
3.4.3委托人—代理人理论
激励相容约束 参与约束 数值例子:假设R(e)=10e-e*e,代理人努力时
在e=e*时,委托人的得益最大。 在满足参与约束时,代理人愿意接受委托,
但努力水平不一定为e*。要激励代理人自觉 选择e*,必须符合代理人自身利益最大化, 即满足:w[R(e*)]-C(e*)>=w[R(e)]-C(e)
3.4.3委托人—代理人理论
这便是激励相容约束,此时代理人与委托人 利益完全一致,代理人的行为就会符合委托 人的最大利益。
3.4.3委托人—代理人理论
三、有不确定性且不可监督的委托代理模型(代 理人的工作成果不确定,且委托人不能监督 代理人)
此时,委托人不可能根据代理人的工作情况 支付报酬,只能根据成果支付报酬。因为委 托人无法判断工作成果是代理人努力或偷懒 的结果还是随机因素影响的结果。
博弈过程相同,但是报酬变为成果的函数。
3.4.3 讨价还价(Bargaining)博弈
第一回合,甲的方案是自己得S1,乙得10000S1,而乙如果选择接受,则博弈结束,如果 不接受,则博弈进入下一个阶段。
第二回合,乙的方案是自己得S2,乙得10000S2,而甲如果选择接受,则博弈结束,而且 双方得益分别为δ*S2 ,δ*(10000 - S2 ) 。如果 不接受,则博弈进入下一个阶段。
工会所代表的劳动力方效用是工资率和雇 佣人数的函数,即 u = u( W, L)
3.4.2 劳资博弈
厂商关心的根本目标是利润,用利润可以直 接代表厂商的效用。
假设收益是劳动力雇佣数量的函数R( L ), 并假设厂商仅有劳动力成本,所以利润函数 为π=π(W , L)= R( L ) – W×L
3.4.3委托人—代理人理论
委托人(Principle)—代理人(Agents)之间博弈 关系的核心内容是两人动态博弈
委托人—代理人关系的特征:双方关系密切, 但委托方不能直接控制被委托方的行为,甚 至对被委托方工作的监督也有困难,只能通 过报酬等间接影响被委托方的行为
不一定双方之间一定存在合同
3.4.3 讨价还价(Bargaining)博弈
该模型有许多原型:利润分割、债务纠纷, 或财产继承权的争执。第一、第二回合相当 于纠纷的各方以不同形式调解的过程,而第 三回合则相当于最后提交各司法或仲裁机构 进行裁决。而消耗系数则相当于经济纠纷中, 相关各方花费在谈判和诉讼等方面的时间和 金钱代价。