演化博弈论基础

合集下载

第四章 进化博弈论

第四章 进化博弈论

采用A的得益:xi (t ) 50 [2 xi (t )] 49 采用B的得益:xi (t ) 0 [2 xi (t )] 60 当xi (t ) 22 / 61 时,采用A;当xi (t ) 22 / 61 时,采用B
最优反应动态模拟:初次博弈1个A
A
B
A A B A B B A
最优反应动态:有快速学习能力的小群体成员的 反复博弈 复制动态:学习速度很慢的成员组成的大群体随 机配对的反复博弈 进化稳定策略(ESS)
4.2 最优反应动态
4.2.1 协调博弈的有限博弈方 快速学习模型 4.2.2 古诺调整过程
4.2.1 协调博弈的有限博弈方快速学习模型
考虑5个有限理性的局中人之间,相邻局中人相互 博弈,快速学习并动态调整。
4.1.3 合作的行为生态
动物的适应性是在和生存环境的相互作用中形成的。 在竞争中,动物最终选择进化稳定策略(Evolutionary Stable Strategy,简称ESS)——该策略是被种群大多数 成员所采取的,而且不会受到其它对策的侵蚀。 一种ESS一旦确立,社会稳定下来,偏离的行为将 会受到自然的惩罚。 有利它主义和合作行为在动物界普遍存在。该行为 也可能发生在没有亲缘关系的情况:如共生现象。
这时博弈分析的核心不是博弈方的最优策略的选择, 而是有限理性的博弈方组成的群体成员的策略调整过 程、趋势和稳定性,这里的稳定性是指采用特定策略 的成员的比例不变,而非某个博弈方的策略不变。
引例: 签协议博弈的复制动态和进化稳定策略
签协议博弈:
局中人2 同意(y) 不同意(n) 同意(y) 不同意(n)
最优反应动态模拟1 博弈方1 博弈方2 2. 32 1.5 1.75
dr 1 2 收敛条件 | dr || | 1 dq2 dq1

演化博弈

演化博弈

Taylor和Jonker提出了演化博弈理论的基本动态概念——复制动态
• 经济学家把演化博弈理论引入到经济学领域,用于分析社会制度变迁、产业演化以及股票 市场等,同时对演化博弈理论的研究也开始由对称博弈向非对称博弈深入,并取得了一定
1980s
的成果
演化博弈的产生与发展
• 演化博弈理论的发展进入了一个新的阶段。Weibull(1995)比较系统、完整地总结了演 1990s 化博弈理论,其中包含了一些最新的理论研究成果。
令xi(t)为t时期博弈方 i 采用策略A的邻居的数量,则xi(t) = 0,1,2.
协调博弈的有限博弈方快速学习模型
初次博弈1个A
A B B B B A B B B A B A A B A A A
B A
A A A
A
A A
初次博弈为相邻两个A
B A A B A B A A A A A
A
A A
B
初次博弈相连3个A
x0x1签协议博弈的复制动态和进化稳定策略进化稳定策略的检验????比例的博弈方偏离同意策略选择了丌同意????????11?????????????1?????0????00????1?????????????????????????1?????2????????1?????0????????????1是演化稳定策略ess????比例的博弈方偏离丌同意策略选择了同意????????1????????????1?????0????00????1?????????????????????????????2????????????0????????????0丌是演化稳定策略11000000同意博弈方2不同意同意不同意博弈方1一般两人对称博弈复制动态和进化稳定策略一般模型aacbddbc策略1博弈方2策略2策略1策略2博弈方1一般2x2对称博弈?进化博弈设定是在一个大群体的成员中进行随机配对的反复博弈

演化博弈论__谢识予__ppt

演化博弈论__谢识予__ppt

一般2*2对称博弈
dx/dt
复制动态进化博弈的结果 常常取决与带有很大偶然 性的初始状态。
1 x
11/16
5.3.4 鹰鸽博弈的复制动态 和进化稳定策略
博弈方2 鹰
vc 2
鸽 v, 0
v 2
鹰 鸽
, vc
2
0, v
,
v 2
鹰鸽博弈
复制动态方程和相位图
dx x(v c) (1 x)v F ( x) x(1 x)[ ] dt 2 2
(m-z)/(1-P) 1
x
(m-z)/(1-P)<0 0<(m-z)/(1-P)<1
dx/dt
1
x
(m-z)/(1-P)>1
5.4 复制动态和进化稳定性: 两人非对称博弈
5.4.1 市场阻入博弈的复制动态 和进化稳定策略 5.4.2 非对称鹰鸽博弈的进化分析
5.4.1 市场阻入博弈的复制动态和进化稳定策略
最优反应动态模拟
博弈方1 博弈方2
1 2.5 3 2 1.5 1.75
1 2 收敛条件 | dr || dr | 1
dq2
dq1
问题:两寡头始终假设对方产量不变
5.3 复制动态和进化稳定性: 两人对称博弈
5.3.1 签协议博弈的复制动态和进化稳定策略 5.3.2一般两人对称博弈复制动态和进化稳定策略 5.3.3 协调博弈的复制动态和进化稳定博弈 5.3.4 鹰鸽博弈的复制动态和进化稳定策略 5.3.5 蛙鸣博弈的复制动态和进化稳定策略
dy/dt
1 x
x=0
dy/dt
1
x
x=0
两群体复制动态的关系和稳定性
y 1

演化博弈论

演化博弈论
其他的一些理论成果包括Cressman(1992)以及Samuelson(1997)的著 作。
• 演化博弈的发展出现了一些新的思路,对演化稳定策略和合作演化 博弈的研究不断深入,学者开始关注带有随机因素影响的演化过程。
21世纪 进入2l世纪以来,国内的学者也开始关注演化博弈论,也做出了大 量的研究。
如果(S,S)不是纳什均衡,那 么S不是演化稳定策略
纳什均衡和演化稳定(2)
a
X b
a 1,1
Y b
0,0
0,0
0,0
策略b是否是演化稳定的? 有一个规模为E的策略b入侵
策略b的平均适应度: (1 E)*0 E *0 0
策略a的平均适应度:
(1 E)*0 E *1 E
如果(S,S)是严格的纳 什均衡,那么S是演化稳

pi [ u(ei , x) ] pi (1)
对恒等式 p(t)xi (t) pi (t) 两边求t的导数 得:



p xi pi p xi (2)
将式(1)带入(2)中,稍加整理可得:

xi [u(ei , x) u(x, x)]xi (3)
式(3)说明: 采用策略i的总 体比例的增长 率 等于策略收
与传统博弈理论不同,演化博弈理论并不要求参 与人是完全理性的,也不要求完全信息的条件。
演化博弈论(Evolutionary Game Theory)把博弈 理论分析和动态演化过程分析结合起来的一种理 论。在方法论上,它不同于博弈论将重点放在静 态均衡和比较静态均衡上,强调的是一种动态的 均衡。演化博弈理论源于生物进化论。
0
X*
1
x
标准的N总体复制子动态

演化博弈论

演化博弈论

混合策略的演化稳定性
胆小鬼博弈
Y
a(q)
b(1-q)
混合策略纳什均衡 ((1/3,2/3),(1/3,2/3))
a(p) 0,0
2,1
X pq*0 p(1 q)*2 (1 p)q*1 (1 p)(1 q)*0
X b(1-p) 1,2
0,0
X / p (1 q)*2 q 0 q 1/3
纳什均衡指的是这样一种战略组合,这种策略组合由所有参与 人最优策略组成。即在给定别人策略的情况下,没有人有足够 理由打破这种均衡。
纳(1)
a
X b
a 0,0
Y b
1,1
1,1
0,0
策略b是否是演化稳定的? 有一个规模为E的策略a入侵
策略b的平均适应度: (1 E)*0 E *1 E 策略a的平均适应度: (1 E)*1 E *0 1 E
演化博弈论
演讲人: 杜 同 学 号:S201111054
演化博弈论
➢ 第一章 演化博弈论的概述 ➢ 第二章 演化稳定策略 ➢ 第三章 复制子动态 ➢ 第四章 应用案例 ➢ 第五章 前沿介绍
第一章 演化博弈论概述
什么是演化博弈论(1)
传统博弈理论的两个苛刻假设: (1)完全理性(2)完全信息
如果(S,S)不是纳什均衡,那 么S不是演化稳定策略
纳什均衡和演化稳定(2)
a
X b
a 1,1
Y b
0,0
0,0
0,0
策略b是否是演化稳定的? 有一个规模为E的策略b入侵
策略b的平均适应度: (1 E)*0 E *0 0
策略a的平均适应度:
(1 E)*0 E *1 E
如果(S,S)是严格的纳 什均衡,那么S是演化稳

演化博弈

演化博弈


ቤተ መጻሕፍቲ ባይዱ
预先规定好的要素博弈如何确定?既然大家 都是有限理性,那由谁来规定要素博弈的结 构和规则(是人为设计的,还是自发演化形 成的) 现有的一些学习模型是否与现实中群体的理 性水平相符? 对于超出2维空间的动态系统以及非线性系 统难于进行稳定性分析(恰好体现了人的认 知能力有限理性)。
我们以一个简单的“签协议博弈” 为例,说明学习速度很慢、理性层次较 低的有限理性博弈方通过模仿学习博弈 和调整策略的复制动态和策略稳定性。
经济活动中的各种合作都可以用签协 议来代表,因为一旦签订协议,那么重 要的经济合作就有了保证。下图中得益 矩阵表示的就是一个关于签协议的博弈。
博弈方2
同意 博 弈 方 1 同意 不同意 不同意



有限理论博弈的有限分析框架是有限理论博弈方构成的, 一定规模的特定群体内成员的某种反复博弈。 例如某个由缺乏足够预见性的个体组成的小群体,其成 员都对当前局面做出反应,或者相互学习、模仿邻居的 优势策略的情况。也可以是在大量博弈方组成的群体中 成员之间随机配对的反复博弈,相当于现实经济中对象 或伙伴不固定的,多个或大量个体之间的较长经济关系。 这些分析框架通常假设博弈方有一定的统计分析能力和 对不同策略效果的判断能力,但没有事先的预见能力和 预测能力。这种分析框架和人们在享受决策活动中的实 际行为模式是比较接近的。

有限理性意味着博弈方往往不会一开始就找到 最优策略,会在博弈过程中学习博弈,必须通 过试错寻找较好的策略;有限理性也意味着均 衡是不断调整和改进而不是一次性选择的结果, 而且即使达到了均衡也可能再次偏离。
三、有限理性下的博弈分析
1、有限理性博弈分析的目标


A.放宽参与者严格的理性要求,分析有限理性 的参与者通过各种学习过程,如何达到稳定的 均衡状态。 B.有限理性博弈分析主要解决:不同条件下具 体的学习过程(构建的学习模型体现了理性的 不同要求)、学习调整过程中均衡的稳定性 (运用稳定性理论,分析原Nash均衡是否收 敛)。

演化博弈论

演化博弈论

演化博弈论演化博弈论(evolutionary stable strategy)整合了理性经济学与演化生物学的思想,不再将人模型化为超级理性的博弈方,认为人类通常是通过试错的方法达到博弈均衡的,与生物演化具有共性,所选择的均衡是达到均衡的均衡过程的函数,因而历史、制度因素以及均衡过程的某些细节均会对博弈的多重均衡的选择产生影响。

在理论应符合现实意义上,该理论对于生物学以及各种社会科学尤其是经济学,均大有用场。

演化博弈理论最早源于Fisher,Hamilton,Tfive~等遗传生态学家对动物和植物的冲突与合作行为的博弈分析,他们研究发现动植物演化结果在多数情况下都可以在不依赖任何理性假设的前提下用博弈论方法来解释。

但直到Smith andPrice(1973)在他们发表的创造性论文中首次提出演化稳定策略(evolutionary stable strategy)概念以后,才标志着演化博弈理论的正式诞生。

生态学家Taylor and Jonker(1978)在考察生态演化现象时首次提出了演化博弈理论的基本动态概念——模仿者动态(replicator dy—namic),这是演化博弈理论的又一次突破性发展。

模仿者动态与演化稳定策略(RD&ESS)一起构成了演化博弈理论最核心的一对基本概念,它们分别表征演化博弈的稳定状态和向这种稳定状态的动态收敛过程,ESS概念的拓展和动态化构成了演化博弈论发展的主要内容。

编辑本段主要应用领域演化证券学:演化证券学是运用生物进化原理系统阐释股市运行机理的新兴交叉学科,是证券投资研究的一个具有生命力和丰富内涵的新领域。

与现代金融学的“理性人”、“有效市场”相关假设不同,演化证券学重视对“生物本能”和“竞争与适应”的研究,强调人性和市场环境在股市演化中的重要地位,是揭示股市生存法则最有潜力的前沿科学。

其开山之作《股市真面目》颠覆了股市运行机理的传统理论,可称为达尔文式的范式革命。

第_7_章_进化博弈论简介汇总

第_7_章_进化博弈论简介汇总
– 大甲虫期望收益是 8x + 3(1-‐x) = 3 + 5x
– 小甲虫期望收益是 5x + (1-‐x) = 1 + 4x
• 大甲虫的期望收益总是超过小甲虫的, 所以,“大体态”是一个进化稳定策略。
进化博弈中的“军备竞赛”
• 生物学家认为在自然界中存在具有囚徒困 境结构的进化博弈现象
– 例如:树木间高矮的关系;植物根系的竞争
• 然后再看根据在总体中的占比,两种生物体随 机相遇所导致的收益期望(x, p, q 的函数)
• 讨论最后这两个期望的大小,判断是否进化稳定
两个采用不同混合策略者相遇的收益
第一类 S(p) 生物 T(1-‐p)
第二类生物
S(q)
T(1-‐q)
a, a c, b
b, c d, d
• 第一种(p策略者)
• 可见,不存在y,使得x<y时小甲虫的期望收益 超过大甲虫。因此,策略“小体态”不是进 化稳定的。
体态博弈中的进化稳定策略:考察大体态
小的 甲虫1 大的
甲虫2 小的 x
5, 5 8, 1
大的 (1-x) 1, 8 3, 3
• 考虑一个很小的正数x,总体中x占比为小 体态,1-‐x占比甲虫为大体态。
考察小体态是否进化稳定策略
小的 甲虫1 大的
甲虫2 小的 (1-x)
5, 5 8, 1
大的 x
1, 8 3, 3
• 考虑一个小正数x,总体中有x占比的个体使用 策略“大体态” ,有1-‐x占比的个体使用策 略“小体态”。(甲虫们随机相遇争夺食物)
– 一只小甲虫的期望收益是 5(1-‐x)+1x = 5-‐4x – 一只大甲虫的期望收益是 8(1-‐x)+3x = 8-‐5x
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

dt
2
2
x(1 x)(1 6x)
dx/dt 1/6
1
x
5.3.5 蛙鸣博弈的复制动态 和进化稳定策略
动物进化竞争是生物多样性、复杂性的基本机制
蛙鸣博弈:
雄蛙2
鸣叫
不鸣
鸣叫 P-z, P-z m-z, 1-m 不鸣 1-m, m-z 0, 0
蛙鸣博弈不同均衡的条件
M 1
鸣叫 混合策略
不鸣叫
m=1-P+z m=z
5.3.1 签协议博弈的复制动态和进化稳定策略
签协议博弈:
同意 不同意
博弈方2 同意 不同意
1,1 0,0 0,0 0,0
假设群体中采用“同意”比 例x
则 得不益同为策:略期望得益和uy平均x 1 (1 x) 0 x un x 0 (1 x) 0 0 u x u y(1 x) un x2
进化稳定策略的检验
比例的博弈方偏离“同 意”
策略选择了“不同意”
uy (1 y un (1 )2
uy 1 0
x 1是进化稳定策略ESS
比例的博弈方偏离“不 同意”
策略选择了“同意”
uy (1 ) 0 1 un (1 ) 0 0 0 u (1 ) un uy 2
本章分四节
5.1有限理性博弈及其分析框架 5.2最优反应动态 5.3复制动态和进化稳定性:
两人对称博弈 5.4复制动态和进化稳定性:
两人非对称博弈
5.1 有限理性博弈及其分析框架
5.1.1 有限理性及其对博弈的影响 5.1.2 有限理性博弈分析框架
5.1.1 有限理性及其对博弈的影响
有限理性博弈方:不满足完全理性假设的博弈方 有限理性意味着一般至少有部分博弈方不会采用完
全理性博弈的均衡策略 有限理性意味着均衡是不断调整和改进而不是一次
性选择的结果,而且即使到达了均衡也可能再次偏 离 有限理性博弈方会在博弈过程中学习博弈通过试错 寻找较好的策略
5.1.2 有限理性博弈分析框架
最优反应动态:有快速学习能力的小群体成员的 反复博弈
复制动态:学习速度很慢的成员组成的大群体随 机配对的反复博弈
最优反应动态模拟:初次博弈1个A
A
B
A
B
BA
AB
B
B
B
B
B
A
A
A
B
A
A
A
A
A
A
A
A
初次博弈相邻2个A
B
A
A
B
AB
AA
A
B
A
A
A
A
A
初次博弈相连3个A
A
B
A
B
A
A
A
A
A
A
5.2.2 古诺调整过程
古诺模型反应函数 最优反应动态模拟
q1
3
q2 2
q2
3
q1 2
1
2
3
4………
博弈方1 2.5 1.5 2.125 1.875
进化稳定策略(ESS)
5.2 最优反应动态
5.2.1 协调博弈的有限博弈方 快速学习模型
5.2.2 古诺调整过程
5.2.1 协调博弈的有限博弈方快速学习模型
模型:
博弈方2
A
B
A 50,50 49,0 B 0,49 60,60
协调博弈
1
2 5
4
3
反应、策略调整规则推导
采用A的得益:xi (t) 50 [2 xi (t)] 49 采用B的得益:xi (t) 0 [2 xi (t)] 60 当xi (t) 22 / 61时,采用A;当xi (t) 22 / 61时,采用B
第五章 有限理性和进化博弈
本章介绍有限理性基础上的进化博弈分析。 完全理性在现实中很难满足,当社会经济环境 和决策问题较复杂时,人们必须存在很大的理 性局限。有限理性对人们的决策、行为选择方 式有很大影响,有限理性基础上的博弈分析与 完全理性博弈分析也有很大区别。进化博弈分 析是有限理性博弈分析的基本框架。本章介绍 以最优反应动态和复制动态为核心,以进化稳 定策略为基本均衡概念的进化博弈分析,包括 基本方法、概念和各种经典模型等。
x(1 x)(61x 11)
复制动态进化博弈的结果 常常取决与带有很大偶然 性的初始状态。
1
x
5.3.4 鹰鸽博弈的复制动态 和进化稳定策略
博弈方2



vc , vc
2
2
v, 0

0, v
v 2
,v
2
鹰鸽博弈
复制动态方程和相位图
dx F(x) x(1 x)[ x(v c) (1 x)v]
博弈方策略类型比例动态变化是有限理性博弈分 析的核心,其关键是动态变化的速度
以采用“同意”策略类型博弈方的比例为例,其 动态变化速度可用下列微分方程反映:
dx dt
x(u y
u)
x(x
x2)
x2 (1
x)
x2
x3
动态微分方程的相位图
dx/dt 0
0.5
1
x
稳定状态、不动点:x*=0, x*=1
其中abcd可以是任何得益,根据问题设定。
复制动态分析
复制动态的进化规 则是生物学中生物 特征进化规则 设x为采用策略1的 比例
dx/dt
u1 x a (1 x) b u2 x c (1 x) d u x u1 (1 x) u2
dx dt
x(u1
u)
x[u1
xu1
(1
x)u2 ]
x(1 x)(u u)
x(1 x)[ x(a c) (1 x)(b d )]
复制动态 相位图
x
1
x
5.3.3 协调博弈的复制动态 和进化稳定博弈
博弈方2 策略1 策略2 策略1 50,50 49,0 策略2 0,49 60,60 一般2*2对称博弈
dx/dt
11/16
dx F(x) x(1 x)[x(a c) (1 x)(b d)] dt
uy 0 un
x 0不是进化稳定策略
5.3.2一般两人对称博弈复制动态 和进化稳定策略
一般模型
策略1 策略2
博弈方2 策略1 策略2 a, a b, c c, b d, d
一般2X2对称博弈
进化博弈设定是在一个大群体的成员中进行随机配对的反复博 弈。
基本模型是两个博弈方之间的对称博弈。含义是两个博弈位置 是无差异的。
博弈方2 3
1.75 2.25 1.9375
收敛条件 | dr1 || dr2 | 1
dq2 dq1
问题:两寡头始终假设对方产量不变
5.3 复制动态和进化稳定性: 两人对称博弈
5.3.1 签协议博弈的复制动态和进化稳定策略 5.3.2一般两人对称博弈复制动态和进化稳定策略 5.3.3 协调博弈的复制动态和进化稳定博弈 5.3.4 鹰鸽博弈的复制动态和进化稳定策略 5.3.5 蛙鸣博弈的复制动态和进化稳定策略
相关文档
最新文档