高等代数试卷及答案1
高等代数(一)试题及参考答案汇编

高等代数(一)考试试卷一、单选题(每一小题备选答案中,只有一个答案是正确的,请把你认为正确答案的题号填入答题纸内相应的表格中。
错选、多选、不选均不给分,6小题,每小题4分,共24分)1. 以下乘积中( )是4阶行列式ij D a =展开式中取负号的项.A 、11223344a a a a .B 、14233142a a a a .C 、12233144a a a a .D 、23413214a a a a .2.行列式13402324a --中元素a 的代数余子式是( ).A 、0324-. B 、0324--. C 、1403-. D 、1403. 3.设,A B 都是n 阶矩阵,若AB O =,则正确的是( ). A 、()()r A r B n +≤. B 、0A =. C 、A O =或B O =. D 、0A ≠.4.下列向量组中,线性无关的是( ).A 、{}0.B 、{},,αβ0.C 、{}12,,,r ααα,其中12m αα=.D 、{}12,,,r ααα,其中任一向量都不能表示成其余向量的线性组合.5.设A 是n 阶矩阵且()r A r n =<,则A 中( ).A 、必有r 个行向量线性无关.B 、任意r 个行向量线性无关.C 、任意r 个行向量构成一个极大线性无关组.D 、任意一个行向量都能被其它r 个行向量线性表出.6.n 阶矩阵A 具有n 个不同的特征值是A 与对角阵相似的( )条件. A 、充要. B 、充分非必要. C 、必要非充分. D 、非充分非必要. 二、判断题(正确的打√,错误的打×,5小题,每小题2分,共10分).1.若A 为n 阶矩阵,k 为非零常数,则kA k A =. ( ) 2.若两个向量组等价,则它们包含的向量个数相同. ( ) 3.对任一排列施行偶数次对换后,排列的奇偶性不变. ( ) 4.正交矩阵的逆矩阵仍是正交矩阵. ( ) 5.任何数域都包含有理数域. ( ) 三、填空题(每空4分,共24分).1.行列式000100200100D n n==- . 2.已知5(1,0,1)3(1,0,2)(1,3,1),(4,2,1)αβ---=--=-,则α= ,(,)αβ= .3.矩阵12311211022584311112A ---⎡⎤⎢⎥--⎢⎥=⎢⎥---⎢⎥--⎣⎦,则()r A = . 4.设线性方程组11112211211222221122n n n n n n nn n na x a x a xb a x a x a x b a x a x a x b +++=⎧⎪+++=⎪⎨⎪⎪+++=⎩有解,其系数矩阵A 与增广矩阵A 的秩分别为s 和t ,则s 与t 的大小关系是 .5.设111123111,124111051A B ⎡⎤⎡⎤⎢⎥⎢⎥=-=--⎢⎥⎢⎥⎢⎥⎢⎥-⎣⎦⎣⎦,则1A B -= .四、计算题(4小题,共42分)1.计算行列式(1)111111111111a a a a;(2)111116541362516121612564.(每小题6分,共12分)2.用基础解系表出线性方程组123451234512345123452321236222223517105x x x x x x x x x x x x x x x x x x x x ++-+=⎧⎪+++-=⎪⎨+++-=⎪⎪+--+=⎩的全部解.(10分)3.求与向量组123(1,1,1,1),(1,1,0,4),(3,5,1,1)ααα==-=-等价的正交单位向量组.(10分)4.求矩阵211020413A -⎡⎤⎢⎥=⎢⎥⎢⎥-⎣⎦的特征根和特征向量.(10分)一、单选题(每题4分,共24分)二、判断题(每题2分,共10分)三、填空题(每空4分,共24分)1.(1)2(1)!n n n --⋅; 2.(1 (2)0;3.3; 4.s t =;5.351222312212112-⎡⎤⎢⎥-⎢⎥⎢⎥-⎣⎦. 四、计算题(共42分)1.(12分,每小题各6分) (1)解:11131111111111311111(3)111311111111311111a a a a a a a a a a a aa a a++==+++ ..............(3分)31111010(3)(3)(1)001001a a a a a a -=+=+--- ...................(3分)注:中间步骤形式多样,可酌情加分(2)解:222233331111111116541654136251616541216125641654=,此行列式为范德蒙行列式 ......(3分)进而2222333311111654=(61)(51)(41)(56)(46)(45)12016541654=------=-原式 .......(3分) 2.(10分)解:用初等变换把增广矩阵化为阶梯形1213211213211213212111360317740115411122220115410317742351710501711630171163---⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥-------⎢⎥⎢⎥⎢⎥→→⎢⎥⎢⎥⎢⎥------⎢⎥⎢⎥⎢⎥--------⎣⎦⎣⎦⎣⎦1213211213210115410115410317740048510171163000000--⎡⎤⎡⎤⎢⎥⎢⎥------⎢⎥⎢⎥→→⎢⎥⎢⎥-----⎢⎥⎢⎥---⎣⎦⎣⎦..................(3分) 得同解方程组12345234534523215414851x x x x x x x x x x x x ++-+=⎧⎪--+=-⎨⎪+-=-⎩取45,x x 为自由未知量,得方程的一般解为12345234534521321544185x x x x x x x x x x x x++=+-⎧⎪-=+-⎨⎪=--+⎩(其中45,x x 为自由未知量) 将450,0x x ==代入得特解01551(,,,0,0)444γ=--. ................(3分)用同样初等变换,得到与导出组同解的方程组12345234534523205404850x x x x x x x x x x x x ++-+=⎧⎪--+=⎨⎪+-=⎩仍取45,x x 为自由未知量,得一般解12345234534523254485x x x x x x x x x x x x++=-⎧⎪-=-⎨⎪=-+⎩,将451,0x x ==和450,4x x ==分别代入得到一个基础解系:12(1,3,2,1,0),(9,11,5,0,4)ηη=--=- ...............(3分)所以,原方程组的全部解为01122k k γηη++,12,k k 为数域P 中任意数。
高等代数试卷含答案

1 1.已知)2,1,2,1(1-=a ,3),(1,2,2,(2,3,1,0),32-==a a 则),,(321a a a L 的维数为的维数为①① , ,此生成空间的一组基为此生成空间的一组基为此生成空间的一组基为 ②② . 2.已知)0,0,1(),0,1,1(),1,1,1(321===a a a 是3P 的一个基,由基)0,0,1(1=e ,)1,0,0(),0,1,0(32==e e 到基321,,a a a 的过渡矩阵为① ,向量),,(c b a =b关于基321,,a a a 的坐标为的坐标为② .3.3. 设123,,a a a 是3维欧氏空间V 的一组基,这组基的度量矩阵为212121212-æöç÷--ç÷ç÷-èø, 则向量12x a a =+的长度x 为 .三.(16分)已知复系数矩阵=A ÷÷÷øöçççèæ100021032104321,(1) 求矩阵A 的行列式因子、不变因子和初等因子;的行列式因子、不变因子和初等因子; (2) 求矩阵A 的若当标准形;的若当标准形; (3)求矩阵A 的有理标准形。
的有理标准形。
2 三.解:(1)÷÷÷÷øöççççèæ--------=-1000210032104321λλλλλA E 因因为)1(4210321432+--------λλλλ=-,而3)1(100210321-=------λλλλ ………………………44分 故故行列式因子1)(3=λD ,显然,1)(,1)(12==λλD D 44)1()(-=λλD …………22分 不不变因子为 )(1λd =)(2λd =1)(3=λd ,44)1()(-=λλd ………………22分初初等因子为4)1(-λ ………………22分(2)若当标准型ççççèæ÷÷÷÷øö=1100011000110001J ………………………………33分 (3)1464)(2344+-+-=λλλλλd故有理标准型为:3 ççççèæ÷÷÷÷øö--4100601040011000 ………………………………33分七.七.(10(10分) 1、设σ是n 维欧式空间V 的一个线性变换。
【最新试题库含答案】高等代数习题及答案(1)

高等代数习题及答案(1)篇一:高等代数习题解答(第一章)高等代数习题解答第一章多项式补充题1.当a,b,c取何值时,多项式f(x)?x?5与g(x)?a(x?2)2?b(x?1) ?c(x2?x?2)相等?6136提示:比较系数得a??,b??,c?. 555补充题2.设f(x),g(x),h(x)??[x],f2(x)?xg2(x)?x3h2(x),证明:f(x)?g(x)?h(x)?0.证明假设f(x)?g(x)?h(x)?0不成立.若f(x)?0,则?(f2(x))为偶数,又g2(x),h2(x)等于0或次数为偶数,由于g2(x),h2(x)??[x],首项系数(如果有的话)为正数,从而xg2(x)?x3h2(x)等于0或次数为奇数,矛盾.若g(x)?0或h(x)?0则?(xg2(x)?x3h2(x))为奇数,而f2(x)?0或?(f2(x))为偶数,矛盾.综上所证,f(x)?g(x)?h(x)?0.1.用g (x) 除 f (x),求商q (x)与余式r (x):1)f (x) = x3- 3x2 -x-1,g (x) =3x2 -2x+1;2)f (x) = x4 -2x+5,g (x) = x2 -x+2.1)解法一待定系数法.由于f (x)是首项系数为1的3次多项式,而g (x)是首项系数为3的2次多项式,1所以商q(x)必是首项系数为的1次多项式,而余式的次数小于 2.于是可设 31 q(x) =x+a , r(x) =bx+c 3根据 f (x) = q(x) g(x) + r(x),即1 x3-3x2 -x-1 = (x+a)( 3x2 -2x+1)+bx+c 3右边展开,合并同类项,再比较两边同次幂的系数,得21 ?3?3a?, ?1??2a??b, ?1?a?c 337262解得 a?? , b?? , c?? ,故得 99917262q(x)?x?, r(x)??x?.3999解法二带余除法.3-21 1 -3-1 -11 ???21 3374 ?-1 337147 ? 399262 ? 9917 ? 39?得17262q(x)?x?, r(x)??x?. 39992) q(x)?x2?x?1,r(x)??5x?7. r(x)??2.m,p,q适合什么条件时,有1)x2?mx?1x3?px?q;2)x2?mx?1x4?px2?q.?1除x3?px1)解 x2?mx得余式为: ?q262x?. 99 r(x)?(p?m2?1)x?(q?m),?p?m2?1?0;令r(x)?0,即 ? ?q?m?0.故x2?mx?1x3?px?q的充要条件是?m?q; ? 2p?m?1?0.??1除x4?px2?q得余式为: 2)解 x2?mxr(x)??m(p?m2?2)x?(q?p?m2?1),2???m(p?m?2)?0;令r(x)?0,即 ? 2??q?p?m?1?0. 解得x2?mx?1x4?px2?q的充要条件是?m?0; ? 或 p?q?1??q?1; ?2p?2?m.?3.求g(x)除f(x)的商q(x)与余式r(x):。
高等代数期末试题及答案

高等代数期末试题及答案1. 选择题1.1 题目:解线性方程组已知线性方程组:\[\begin{cases}2x - 3y + z = 7 \\4x + y - 2z = -1 \\3x - 2y + 2z = 5\end{cases}\]其中,x、y、z为实数。
求解该线性方程组的解。
1.1 答案:解线性方程组的步骤如下:通过高斯消元法,将方程组化为行简化阶梯形式:\[\begin{cases}x - \frac{12}{7}z = 5 \\y - \frac{5}{7}z = 2 \\0 = 0\end{cases}\]由最后一行可以看出,方程存在自由变量z。
令z为任意实数,可以得到:\[\begin{cases}x = 5 + \frac{12}{7}z \\y = 2 + \frac{5}{7}z \\z = z\end{cases}\]因此,该线性方程组的解为:\[\begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 5 +\frac{12}{7}z \\ 2 + \frac{5}{7}z \\ z \end{pmatrix}\]2. 填空题2.1 题目:求行列式的值计算行列式的值:\[D = \begin{vmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{vmatrix}\]2.1 答案:计算行列式的值,可以通过按任意行或列展开的方法来求解。
选择第一行进行展开计算:\[D = 1 \cdot \begin{vmatrix} 5 & 6 \\ 8 & 9 \end{vmatrix} - 2 \cdot\begin{vmatrix} 4 & 6 \\ 7 & 9 \end{vmatrix} + 3 \cdot \begin{vmatrix} 4 & 5 \\ 7 & 8 \end{vmatrix}\]计算上述三个二阶行列式的值,得到:\[D = 1 \cdot (5 \cdot 9 - 6 \cdot 8) - 2 \cdot (4 \cdot 9 - 6 \cdot 7) + 3\cdot (4 \cdot 8 - 5 \cdot 7) = 0\]因此,行列式的值为0。
(完整word版)高等代数期中考试题答案

高等代数期中考试题答案一、填空题(每小题3分,共15分)1、___1___,__1/a__2、______3_.3、若4、 (n+1)类5、___n-r__二、1 D 2、 C 3、( D )4、( B )5、 A三、1、解:(1)由于A ),,(),,(321321αααβββ=,其中⎪⎪⎪⎭⎫ ⎝⎛---=101110111A于是 1321321),,(),,(-=A βββααα………………………… (2分) 故由基321,,βββ到基321,,ααα的过渡矩阵为⎪⎪⎪⎭⎫ ⎝⎛--==-1111010111A C ………………………… (3分)(2)⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛=241),,(321),,(321),,(321321321ββββββααααC即向量3α在基321,,βββ下的坐标为)2,4,1('.………………………… (5分) 2、故该向量组的一个极大线性无关组为124,,ααα。
3、所以解空间的维数是2, 它的一组基为⎪⎭⎫ ⎝⎛-=0,1,38,911a ,⎪⎭⎫ ⎝⎛-=1,0,37,922a 四、 证明题(本题共4个小题,每小题10分,共计40分) 1、证:因为复数域C 作为实数域R 上的向量空间,维数是2; 而2dim 2=R ,两者维数相同,所以同构。
另证:建立映射),(;:2b a bi a R C →+→σ,验证它为同构映射。
2、证明:向量β可以由r ααα,,,21 线性表示, 则不妨设r r r r a a a a ααααβ++++=--112211 ,其中0≠r a , 若0=r a ,则112211--+++=r r a a a αααβ , 这与β不能由121,,,-r ααα 表示矛盾。
于是11111-----=r rr r r r a a a a a ααβα 。
故向量r α可以由βααα,,,,121-r 线性表示, 即向量组),,,,(121r r αααα- 与),,,,(121βααα-r 能够相互线性表示, 从而),,,,(121r r αααα- 与),,,,(121βααα-r 等价。
高等代数期末考试题库及答案解析

高等代数期末考试题库及答案解析第一部分:选择题(共10题,每题2分,总分20分)1.高等代数是一门研究什么的数学学科?a.研究高等数学b.研究代数学c.研究线性代数d.研究数论–答案:b2.什么是矩阵的秩?a.矩阵中非零行的个数b.矩阵中非零列的个数c.矩阵中线性无关的行向量或列向量的最大个数d.矩阵的行数与列数的乘积3.给定一个方阵A,如果存在非零向量x使得Ax=0,那么矩阵A的秩为多少?a.0b.1c.方阵A的行数d.方阵A的列数–答案:a4.什么是特征值和特征向量?a.矩阵A与它的转置矩阵的乘积b.矩阵A的负特征值和负特征向量的乘积c.矩阵A与它的逆矩阵的乘积d.矩阵A与一个非零向量的乘积等于该向量的常数倍,并且这个向量成为特征向量,该常数成为特征值。
5.什么是行列式?a.矩阵A所有元素的和b.矩阵A中所有元素的乘积c.矩阵A的转置矩阵与它自身的乘积d.矩阵A的行列式是一个标量,表示矩阵A所表示的线性变换的倍数比例。
–答案:d6.什么是矩阵的逆?a.矩阵的行向量与列向量交换位置b.矩阵A的转置矩阵c.存在一个矩阵B,使得矩阵AB=BA=I(单位矩阵)d.矩阵的所有元素取倒数7.给定一个2x2矩阵A,当且仅当什么时候矩阵A可逆?a.矩阵A的行列式为0b.矩阵A的行列式不为0c.矩阵A的特征值为0d.矩阵A的特征值不为0–答案:b8.什么是矩阵的转置?a.矩阵的行与列互换b.矩阵的行与行互换c.矩阵的列与列互换d.矩阵的所有元素取相反数–答案:a9.对于矩阵A和B,满足AB=BA,则矩阵A和B是否可逆?a.可逆b.不可逆c.只有A可逆d.只有B可逆–答案:b10.什么是矩阵的秩-零空间定理?a.矩阵中非零行的个数加上零行的个数等于行数b.矩阵中非零列的个数加上零列的个数等于列数c.矩阵的秩加上矩阵的零空间的维数等于列数d.矩阵的秩加上矩阵的零空间的维数等于行数–答案:c第二部分:计算题(共4题,每题15分,总分60分)1.计算矩阵的秩: A = \[1, 2, 3; 4, 5, 6; 7, 8, 9\]–答案:矩阵A的秩为22.计算特征值和特征向量: A = \[1, 2; 3, 4\]–答案:矩阵A的特征值为5和-1,对应的特征向量分别为\[1; 1\]和\[-2; 1\]3.计算行列式: A = \[3, 1, 4; 1, 5, 9; 2, 6, 5\]–答案:矩阵A的行列式为-364.计算逆矩阵: A = \[1, 2; 3, 4\]–答案:矩阵A的逆矩阵为\[-2, 1/2; 3/2, -1/2\]第三部分:证明题(共2题,每题25分,总分50分)1.证明:当矩阵A为可逆矩阵时,有出现在矩阵A的行列式中的每个元素,将该元素与其对应的代数余子式相乘之后的结果,再求和得到的值等于矩阵A的行列式的值。
高代一期末考试试题及答案

高代一期末考试试题及答案高等代数一期末考试试题一、选择题(每题2分,共10分)1. 以下哪个不是线性代数中的基本概念?A. 向量空间B. 线性变换C. 矩阵D. 微积分2. 矩阵的秩是指:A. 矩阵中非零行的最大数量B. 矩阵中非零列的最大数量C. 矩阵中线性无关行的最大数量D. 矩阵中线性无关列的最大数量3. 线性方程组有唯一解的条件是:A. 系数矩阵的行列式不为零B. 系数矩阵的秩等于增广矩阵的秩C. 系数矩阵的秩等于未知数的个数D. 所有选项都是4. 以下哪个矩阵是可逆的?A. 零矩阵B. 单位矩阵C. 行阶梯形矩阵D. 非方阵5. 特征值和特征向量的计算与下列哪个矩阵运算相关?A. 矩阵的加法B. 矩阵的乘法C. 矩阵的转置D. 矩阵的行列式二、填空题(每空1分,共10分)6. 一个向量空间 \( V \) 的基 \( B \) 包含 \( n \) 个线性无关向量,则 \( V \) 的维数为 _______。
7. 若 \( A \) 是 \( m \times n \) 矩阵,\( B \) 是 \( n\times p \) 矩阵,则 \( AB \) 是 _______ 矩阵。
8. 线性变换 \( T: V \rightarrow W \) 的核是所有满足 \( T(v) = 0 \) 的向量 \( v \) 的集合,记为 _______。
9. 矩阵 \( A \) 与 \( B \) 相等,当且仅当它们具有相同的_______。
10. 一个 \( n \) 阶方阵的迹是其对角线上元素的 _______。
三、简答题(每题5分,共20分)11. 解释什么是线性相关和线性无关,并给出一个线性无关向量组的例子。
12. 描述矩阵的行列式计算的几何意义。
13. 说明如何使用高斯消元法求解线性方程组。
14. 什么是特征值分解?它在哪些领域有应用?四、证明题(每题10分,共20分)15. 证明如果矩阵 \( A \) 可逆,则 \( A \) 的行列式不为零。
高代(一)期末试题

高等代数(一)期末试题一.填空题(每空2分,共20分):1.在由几个不同元素组成的一个排列中,所有逆序的总数,叫做这个排列的( )。
2.1020003400-⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦( )。
3.设A 为三阶方阵,det 3A =-,则det (2)A A -=( )。
4.若矩阵A 的秩1r >,则A 的1r -阶子式的值( )。
5.设2是多项式43228x x ax bx -++-的二重根,则a =( ),b =( )。
6.设,A B 都是n 阶可逆矩阵,矩阵00A C B⎛⎫=⎪⎝⎭的逆矩阵为( )。
7.如行列式111213212223313233a a a a a a d a a a =,则111213212223313233333222a a a a a a a a a =---( )。
8.设,a b 是整数且( ),那么存在一对整数q 和r ,使得b aq r =+且( )。
满足以上条件的整数q 和r 是唯一确定的。
二.选择题(每小题2分,共10分):1.一个n 阶行列式,如果他的第1列上除了1111n a a ==外其余元素都为零,那么这行列式等于( )。
(A )1111(1)n n M M +-- (B )111n A A + (C )111n M M - (D )1111(1)n n A A ++-2.设3512A --⎛⎫=⎪⎝⎭,则A 的伴随矩阵*A =( )。
(A )3512--⎛⎫ ⎪⎝⎭ (B )2513⎛⎫⎪--⎝⎭(C)2153-⎛⎫ ⎪-⎝⎭(D) 1235⎛⎫⎪--⎝⎭3.初等方阵()(A )都是可逆阵 (B )所对应的行列式的值等于1(C )相乘仍为初等方阵 (D )相加仍为初等方阵 4.若集合{}|,F a bi a b R =+∈(这里R 是实数集)是数域,则,a b 应满足条件( )。
(A ),a b 是整数 (B ),a b 是有理数 (C )a 是有理数,b 是实数 (D ),a b 是任意数5.设A 是三阶方阵,*A 是其伴随矩阵。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高等代数一、填空题 (共10题,每题2分,共20 分)1.只于自身合同的矩阵是 矩阵。
2.二次型()()11212237,116x f x x x x x ⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭的矩阵为__________________。
3.设A 是实对称矩阵,则当实数t _________________,tE A +是正定矩阵。
4.正交变换在标准正交基下的矩阵为_______________________________。
5.标准正交基下的度量矩阵为_________________________。
6.线性变换可对角化的充要条件为__________________________________。
7.在22P ⨯中定义线性变换σ为:()a b X X c d σ⎛⎫= ⎪⎝⎭,写出σ在基11122122,,,E E E E 下的矩阵_______________________________。
8.设1V 、2V 都是线性空间V 的子空间,且12V V ⊆,若12dim dim V V =,则_____________________。
9.叙述维数公式_________________________________________________________________________。
10.向量α在基12,,,n ααα⋅⋅⋅(1)与基12,,,n βββ⋅⋅⋅(2)下的坐标分别为x 、y ,且从基(1)到基(2)的过渡矩阵为A ,则x 与y 的关系为_____________________________。
二、判断题 (共10 题,每题1分,共10分)1.线性变换在不同基下的矩阵是合同的。
( ) 2.设σ为n 维线性空间V 上的线性变换,则()10V V σσ-+=。
( ) 3.平面上不平行于某一向量的全部向量所成的集合,对于向量的加法和数量乘法,构成实数域上的线性空间。
( ) 4.设1V 与2V 分别是齐次线性方程组120n x x x ++⋅⋅⋅+=与12n x x x ==⋅⋅⋅=的解空间,则12n V V P ⊕= ( )5.2211nn i i i i n x x ==⎛⎫- ⎪⎝⎭∑∑为正定二次型。
( )6.数域上任意一个矩阵都合同于一对角矩阵。
( )7.把复数域C 看作复数域上的线性空间,C ξ∀∈,令σξξ=,则σ是线性变换。
( ) 8.若σ是正交变换,那么σ的不变子空间的真正交补也是σ的不变子空间。
( ) 9.欧氏空间中不同基的度量矩阵是相似的。
( ) 10.若σ为[]n P x (1n >)中的微分变换,则σ不可对角化。
( )三、计算题 (共3题,每题10分,共30分)1.设线性变换σ在基123,,εεε下的矩阵为122212221A ⎛⎫ ⎪= ⎪ ⎪⎝⎭,求σ的特征值与特征向量,并判断σ是否可对角化?2.t 取什么值时,下列二次型是正定的?()222123123121323,,5224f x x x x x x tx x x x x x =+++-+3.设三维线性空间V 上的线性变换σ在基123,,εεε下的矩阵为:111213212223313233a a a A a a a a a a ⎛⎫⎪= ⎪ ⎪⎝⎭,求σ在基()12,,0k k P k εε∈≠且,3ε下的矩阵B 。
四、证明题 (共4题,每题10分,共40分)1.证明:12n A λλλ⎛⎫⎪ ⎪= ⎪ ⎪⎝⎭O 与12i i in B λλλ⎛⎫⎪⎪= ⎪ ⎪⎝⎭O 相似,其中12,,,ni i i ⋅⋅⋅是1,2,,n ⋅⋅⋅的一个排列。
2.证明:和1sii V =∑是直和的充要条件为:{}()1102,3,,i ijj V V i s -===⋅⋅⋅∑I 。
3.设A 是n 级实对称矩阵,且2A A =,证明:存在正交矩阵T ,使得:111100T AT -⎛⎫ ⎪ ⎪ ⎪⎪=⎪ ⎪ ⎪ ⎪ ⎪⎝⎭O O4.证明:12n A λλλ⎛⎫⎪ ⎪= ⎪ ⎪⎝⎭O 与 12i i in B λλλ⎛⎫⎪⎪= ⎪ ⎪⎝⎭O 合同, 其中12,,,n i i i ⋅⋅⋅是1,2,,n ⋅⋅⋅的一个排列。
答案一.1.零 2.3996⎛⎫⎪⎝⎭3.充分大4.正交矩阵5. E6.有n 个线性无关的特征向量7.0000000a b a b c dc d ⎛⎫ ⎪ ⎪ ⎪ ⎪⎝⎭8.12V V = 9.()()121212dim dim dim dim V V V V V V +=+-I10. X AY =二.1. ⨯ 2. ⨯ 3. ⨯ 4.√ 5. ⨯ 6. ⨯ 7. ⨯ 8. √ 9. ⨯ 10. √三.1.解:()()()212221251221A f E A λλλλλλλ---=-=---=-+--- (3分) 所以,σ的特征值为11λ=-(二重)和25λ=。
把11λ=-代入方程组()0E A X λ-=得:122122122222022202220x x x x x x x x x ---=⎧⎪---=⎨⎪---=⎩基础解系为1101n ⎡⎤⎢⎥=⎢⎥⎢⎥-⎣⎦ 2011n ⎡⎤⎢⎥=⎢⎥⎢⎥-⎣⎦因此,σ属于1-得两个线性无关得特征向量为: 112223,ξεεξεε=-=- 因而属于1-的全部特征向量就是1122k k εε+ ,1k 、2k 取遍P 中不全为零的全部数对 (6分),再用25λ=代入()0E A X λ-=得:基础解系3111n ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦,因此,属于5的全部特征向量是3k ξ,k 是P 中任意不等于零的数。
(9分)因为σ有三个线性无关的特征向量,所以σ可能对角化。
(10分)2.解:f 的矩阵为:1112125t A t -⎛⎫⎪= ⎪ ⎪-⎝⎭10>Q ,21101tt t =-> , 2540A t t =--> 。
得:405t -<<∴当405t -<<时,f 是正定的。
3.解:()11112123131a a k a kσεεεε=++Q (2.5分)()()2121222323k ka a k ka σεεεε=++ (2.5分)()()31312323331a a k a kσεεεε=++ (2.5分)∴σ在基下的矩阵为11121321222331323311a ka a B a a a k k a ka a ⎛⎫⎪ ⎪= ⎪ ⎪⎝⎭(2.5分) 四.1.证:任意n 维向量空间V ,V ∀的基12,,,n ααα⋅⋅⋅,则∃唯一()L V σ∈使()()121212n n n λλσααααααλ⎛⎫⎪⎪⋅⋅⋅=⋅⋅⋅ ⎪ ⎪⎝⎭O (3分) 即()i i i σαλα= 1,2,,i n =⋅⋅⋅()111i i i σαλα∴=()222i i i σαλα=⋅⋅⋅⋅⋅⋅⋅()in in in σαλα=∴σ在基12,,,i i in ααα⋅⋅⋅下的矩阵为B (6分) ∴A 与B 相似(1分)2.证:1sji V=⇒∑Q是直和 {}0i i j iV V ≠∴=∑I(3分)11i i ji jj j iV VV V-=≠⊆∑∑Q II{}110i i j j V V -=∴=∑I(2分)⇐令110s s ααα-+⋅⋅⋅++= ()11s s ααα-∴=-+⋅⋅⋅+11s s s jj V Vα-=∴∈∑I(3分)0s α∴=,同理1210s ααα-=⋅⋅⋅===1si i V =∴∑是直和。
(2分)3.证:设λ是A 的任一特征值 0α∴∃≠ ,使A αλα=()22A A αλαλα∴== 2A A =Q ,2λαλα∴=()20λλα∴-= 0α≠Q 20λλ∴-=1λ∴=或0λ= A Q 实对称矩阵∴∃正交矩阵T ,使11100T AT -⎛⎫⎪ ⎪ ⎪=⎪⎪ ⎪ ⎪ ⎪⎝⎭O O 4.证:A 、B 对应的二次型分别为()22211122,,n n n f x x x x x λλλ⋅⋅⋅=++⋅⋅⋅+ ()22211122,,n i i in ing y y y y y λλλ⋅⋅⋅=++⋅⋅⋅+ 令1122i i n iny x y x y x =⎧⎪=⎪⎨⋅⋅⋅⋅⋅⋅⎪⎪=⎩ , ()()221111,,,,n i i in in n g y y x x f x x λλ⋅⋅⋅=+⋅⋅⋅+=⋅⋅⋅ 所以,A 与B 合同。
云南大学。