七年级下相交线与平行线同步练习
人教版七年级下册第五章《相交线与平行线》同步练习(含答案)

第五章相交线与平行线5.1相交线5.1.1相交线基础题知识点1认识邻补角和对顶角(1)有一条公共边,另一边互为反向延长线,具有这种位置关系的两个角互为邻补角.(2)有一个公共顶点,并且一个角的两边分别是另一个角的两边的反向延长线,具有这种位置关系的两个角互为对顶角.1.(2018·贺州)如图,下列各组角中,互为对顶角的是(A)A.∠1和∠2B.∠1和∠3C.∠2和∠4D.∠2和∠52.下面四个图形中,∠1与∠2是邻补角的是(D)3.如图,AB与CD相交所成的四个角中,∠1的邻补角是∠2,∠4,∠1的对顶角是∠3.知识点2邻补角和对顶角的性质(1)互为邻补角的两个角相加等于180°.(2)对顶角相等.4.(2017·河池)如图,点O在直线AB上,若∠BOC=60°,则∠AOC的大小是(C)A.60°B.90°C.120°D.150°5.(2018·钦州期末)如图,已知∠1=120°,则∠2的度数是(A)A.120°B.90°C.60°D.30°6.(教材P9复习题T9变式)如图,测角器测得工件(圆台)的角度是40度,其测量角的原理是对顶角相等.7.在括号内填写依据:如图,因为直线a,b 相交于点O,所以∠1+∠3=180°(邻补角互补),∠1=∠2(对顶角相等).8.如图,直线AB,CD 相交于点O,∠EOC=70°,OA 平分∠EOC,求∠BOD 的度数.解:因为OA 平分∠EOC,∠EOC=70°,所以∠AOC=12∠EOC=35°.所以∠BOD=∠AOC=35°.易错点1对对顶角的性质理解不透彻而判断失误9.下列说法正确的有(B )①对顶角相等;②相等的角是对顶角;③若两个角不相等,则这两个角一定不是对顶角;④若两个角不是对顶角,则这两个角不相等.A.1个B.2个C.3个D.4个易错点2未给出图形,考虑不全而致错10.两条直线相交所成的四个角中,有两个角分别是(2x-10)°和(110-x)°,则x=40或80.中档题11.如图,三条直线l 1,l 2,l 3相交于一点,则∠1+∠2+∠3=(C )A.90°B.120°C.180°D.360°12.如图,直线AB 和CD 相交于点O.若∠AOD 与∠BOC 的和为236°,则∠AOC 的度数为(A )A.62°B.118°C.72°D.59°13.(2018·揭阳揭西县期末)如图所示,直线AB 与CD 相交于点O,OE 平分∠BOC.若∠BOE=60°,则∠AOC 的度数为(A )A.60°B.30°C.120°D.45°14.如图,已知直线AB,CD,EF 相交于点O.(1)∠AOD 的对顶角是∠BOC,∠EOC 的对顶角是∠DOF;(2)∠AOC 的邻补角是∠AOD 和∠BOC,∠EOB 的邻补角是∠EOA 和∠BOF.15.如图,直线a,b,c 两两相交,∠1=80°,∠2=2∠3,则∠4=140°.16.如图,直线a,b 相交于点O,已知3∠1-∠2=100°,则∠3=130°.17.如图,直线AB,CD 相交于点O,∠AOE=∠BOE,OB 平分∠DOF.若∠DOE=50°,求∠DOF 的度数.解:因为∠AOE=∠BOE,且∠AOE+∠BOE=180°,所以∠AOE=∠BOE=90°.因为∠DOE=50°,所以∠DOB=∠BOE-∠DOE=40°.因为OB 平分∠DOF,所以∠DOF=2∠DOB=80°.18.如图,l 1,l 2,l 3交于点O,∠1=∠2,∠3∶∠1=8∶1,求∠4的度数.解:设∠1=∠2=x°,则∠3=8x°.由∠1+∠2+∠3=180°,得10x=180.解得x=18.所以∠1=∠2=18°.所以∠4=∠1+∠2=36°.综合题19.探究题:(1)三条直线相交,最少有1个交点,最多有3个交点,分别画出图形,并数出图形中的对顶角和邻补角的对数;(2)四条直线相交,最少有1个交点,最多有6个交点,分别画出图形,并数出图形中的对顶角和邻补角的对数;(3)依次类推,n条直线相交,最少有1个交点,最多有n(n-1)2个交点,对顶角有n(n-1)对,邻补角有2n(n-1)对.解:(1)图略,对顶角有6对,邻补角有12对.(2)图略,对顶角有12对,邻补角有24对.5.1.2垂线基础题知识点1认识垂直如果两条直线相交所成的四个角中的任意一个角等于90°,那么这两条直线互相垂直.其中的一条直线叫做另一条直线的垂线,它们的交点叫做垂足.1.如图,OA⊥OB,若∠1=55°,则∠2=(A)A.35°B.40°C.45°D.60°2.(2018·来宾期末)如图,AB⊥CD于点O,EF为经过点O的一条直线,那么∠1与∠2的关系是(C)A.互为对顶角B.互补C.互余D.相等3.如图,已知直线AB,CD,EF相交于点O,AB⊥CD,∠DOE=127°,求∠AOF的大小.解:因为AB⊥CD,所以∠DOB=90°.又因为∠DOE=127°,所以∠BOE=∠DOE-∠DOB=127°-90°=37°.所以∠AOF=∠BOE=37°.知识点2画垂线4.下列各图中,过直线l外一点P画l的垂线CD,三角板操作正确的是(D)知识点3垂线的性质(1)在同一平面内,过一点有且只有一条直线与已知直线垂直.(2)连接直线外一点与直线上各点的所有线段中,垂线段最短.5.(2017·柳州)如图,经过直线l外一点A画l的垂线,能画出(A)A.1条B.2条C.3条D.4条6.(2018·佛山顺德区期末)如图是小希同学跳远时沙坑的示意图,测量成绩时先用皮尺从后脚印的点A处垂直拉至起跳线l的点B处,然后记录AB的长度,这样做的理由是(C)A.两点之间线段最短B.过两点有且只有一条直线C.垂线段最短D.过一点可以作无数条直线7.下面可以得到在如图所示的直角三角形中斜边最长的原理是(D)A.两点确定一条直线B.两点之间线段最短C.过一点有且只有一条直线和已知直线垂直D.垂线段最短8.下列说法正确的有(C)①在平面内,过直线上一点有且只有一条直线垂直于已知直线;②在平面内,过直线外一点有且只有一条直线垂直于已知直线;③在平面内,可以过任意一点画一条直线垂直于已知直线;④在平面内,有且只有一条直线垂直于已知直线.A.1个B.2个C.3个D.4个知识点4点到直线的距离直线外一点到这条直线的垂线段的长度,叫做点到直线的距离.9.(2017·北京)如图所示,点P到直线l的距离是(B)A.线段PA的长度B.线段PB的长度C.线段PC的长度D.线段PD的长度易错点未给出图形,考虑不周全致错10.已知OA⊥OC,过点O作射线OB,且∠AOB=30°,则∠BOC的度数为120°或60°.中档题11.在数学课上,同学们在练习过点B作线段AC所在直线的垂线段时,有一部分同学画出下列四种图形,请你数一数,错误的有(D)A.1个B.2个C.3个D.4个12.已知直线AB,CB,l在同一平面内,若AB⊥l,垂足为B,CB⊥l,垂足也为B,则符合题意的图形可以是(C)13.如图所示,下列说法不正确的是(C)A.点B到AC的垂线段是线段AB B.点C到AB的垂线段是线段ACC.线段AD是点D到BC的垂线段D.线段BD是点B到AD的垂线段14.(2018·贵港港南区期末)点P是直线l外一点,A,B,C为直线l上的三点,PA=4cm,PB=5cm,PC=2cm,则点P到直线l的距离(C)A.小于2cm B.等于2cm C.不大于2cm D.等于4cm15.如图,当∠1与∠2满足条件∠1+∠2=90°时,OA⊥OB.16.如图,直线AB,CD相交于点O,射线OM平分∠AOC,ON⊥OM.若∠AOM=35°,则∠CON的度数为55°.17.如图,已知DO⊥CO,∠1=36°,∠3=36°.(1)求∠2的度数;(2)AO与BO垂直吗?说明理由.解:(1)因为DO⊥CO,所以∠DOC=90°.因为∠1=36°,所以∠2=90°-36°=54°.(2)AO⊥BO.理由如下:因为∠3=36°,∠2=54°,所以∠3+∠2=90°.所以AO⊥BO.18.如图,两直线AB,CD相交于点O,OE平分∠BOD,∠AOC∶∠AOD=7∶11.(1)求∠COE的度数;(2)若OF⊥OE,求∠COF的度数.解:(1)因为∠AOC∶∠AOD=7∶11,∠AOC+∠AOD=180°,所以∠AOC=70°,∠AOD=110°.所以∠BOD=∠AOC=70°,∠BOC=∠AOD=110°.又因为OE 平分∠BOD,所以∠BOE=∠DOE=12∠BOD=35°.所以∠COE=∠BOC+∠BOE=110°+35°=145°.(2)因为OF⊥OE,所以∠FOE=90°.所以∠FOD=∠FOE-∠DOE=90°-35°=55°.所以∠COF=180°-∠FOD=180°-55°=125°.5.1.3同位角、内错角、同旁内角基础题知识点认识同位角、内错角、同旁内角如图,直线AB,CD与EF相交.(1)图中∠1和∠2分别在直线AB,CD的同一方(或上方),并且都在直线EF的同侧(或右侧),具有这样位置关系的一对角叫做同位角;(2)图中∠2和∠8都在直线AB,CD之间,并且分别在直线EF的两侧,具有这样位置关系的一对角叫做内错角;(3)图中∠2和∠7都在直线AB,CD之间,且都在直线EF的同一旁(或右侧),具有这样位置关系的一对角叫做同旁内角.1.(2017·玉林)如图,直线a,b被c所截,则∠1与∠2是(B)A.同位角B.内错角C.同旁内角D.邻补角2.(2017·柳州期末)如图,与∠1是同位角的是(C)A.∠2B.∠3C.∠4D.∠53.如图,与∠1是同旁内角的是(D)A.∠2B.∠3C.∠4D.∠54.(2018·广州)如图,直线AD,BE被直线BF和AC所截,则∠1的同位角和∠5的内错角分别是(B)A.∠4,∠2B.∠2,∠6C.∠5,∠4D.∠2,∠45.如图,下列说法错误的是(D)A.∠A与∠EDC是同位角B.∠A与∠ABF是内错角C.∠A与∠ADC是同旁内角D.∠A与∠C是同旁内角6.如图,若∠1=∠2,则在①∠3和∠2;②∠4和∠2;③∠3和∠6;④∠4和∠8中,相等的有(C)A.1对B.2对C.3对D.4对7.看图填空:(1)∠1和∠3是直线AB,BC被直线AC所截得的同旁内角;(2)∠1和∠4是直线AB,BC被直线AC所截得的同位角;(3)∠B和∠2是直线AB,AC被直线BC所截得的同位角;(4)∠B和∠4是直线AC,BC被直线AB所截得的内错角.8.如图,如果∠2=100°,那么∠1的同位角等于80°,∠1的内错角等于80°,∠1的同旁内角等于100°.中档题9.(2018·华南师大附中月考)在下列四个图中,∠1与∠2是同位角的图是(B)图①图②图③图④A.①②B.①③C.②③D.③④10.如图,属于内错角的是(D)A.∠1和∠2B.∠2和∠3C.∠1和∠4D.∠3和∠411.如图,下列说法错误的是(B)A.∠A和∠C是同旁内角B.∠1和∠3是同位角C.∠2和∠3是内错角D.∠3和∠B是同旁内角12.如图,∠ABC与∠EAD是同位角;∠ADB与∠DBC,∠EAD是内错角;∠ABC与∠DAB,∠BCD是同旁内角.13.根据图形填空:(1)若直线ED,BC被直线AB所截,则∠1和∠2是同位角;(2)若直线ED,BC被直线AF所截,则∠3和∠4是内错角;(3)∠1和∠3是直线AB,AF被直线ED所截构成的内错角;(4)∠2和∠4是直线AB,AF被直线BC所截构成的同位角.14.根据图形说出下列各对角是什么位置关系?(1)∠1和∠2;(2)∠1和∠7;(3)∠3和∠4;(4)∠4和∠6;(5)∠5和∠7.解:(1)∠1和∠2是同旁内角;(2)∠1和∠7是同位角;(3)∠3和∠4是内错角;(4)∠4和∠6是同旁内角;(5)∠5和∠7是内错角.15.如图,如果内错角∠1与∠5相等,那么与∠1相等的角还有吗?与∠1互补的角有吗?如果有,请写出来,并说明你的理由.解:∠1=∠2,与∠1互补的角有∠3和∠4.理由:因为∠1=∠5,∠5=∠2,所以∠1=∠2.因为∠1=∠5,且∠5与∠3或∠4互补,所以与∠1互补的角有∠3和∠4.综合题16.探究题:(1)如图1,两条水平的直线被一条竖直的直线所截,同位角有4对,内错角有2对,同旁内角有2对;图1图2(2)如图2,三条水平的直线被一条竖直的直线所截,同位角有12对,内错角有6对,同旁内角有6对;(3)根据以上探究的结果,n(n为大于1的整数)条水平直线被一条竖直直线所截,同位角有2n(n-1)对,内错角有n(n-1)对,同旁内角有n(n-1)对.(用含n的式子表示)5.2平行线及其判定5.2.1平行线基础题知识点1认识平行在同一平面内,两条不相交的直线互相平行.1.下列说法中,正确的是(D)A.平面内,没有公共点的两条线段平行B.平面内,没有公共点的两条射线平行C.没有公共点的两条直线互相平行D.互相平行的两条直线没有公共点2.在同一平面内的两条不重合的直线的位置关系(C)A.有两种:垂直或相交B.有三种:平行,垂直或相交C.有两种:平行或相交D.有两种:平行或垂直3.在同一平面内,直线a与b满足下列条件,把它们的位置关系填在后面的横线上.(1)a与b没有公共点,则a与b平行;(2)a与b有且只有一个公共点,则a与b相交;(3)a与b有两个及以上公共点,则a与b重合.4.如图,完成下列各题:(1)用直尺在网格中完成:①画出直线AB的一条平行线;②经过点C画直线垂直于CD;(2)用符号表示上面①、②中的平行、垂直关系.解:(1)如图所示.(2)EF∥AB,MC⊥CD.知识点2平行公理及其推论(1)经过直线外一点,有且只有一条直线与这条直线平行.(2)如果两条直线都与第三条直线平行,那么这两条直线也互相平行,即:如果a∥b,b∥c,那么a∥c.5.若直线a∥b,b∥c,则a∥c的依据是(D)A.平行公理B.等量代换C.等式的性质D.平行于同一条直线的两条直线平行6.点P,Q都是直线l外的点,下列说法正确的是(D)A.连接PQ,则PQ一定与直线l垂直B.连接PQ,则PQ一定与直线l平行C.连接PQ,则PQ一定与直线l相交D.过点P只能画一条直线与直线l平行7.如图,PC∥AB,QC∥AB,则点P,C,Q在一条直线上.理由是经过直线外一点,有且只有一条直线与这条直线平行.8.如图,P,Q分别是直线EF外两点.(1)过点P 画直线AB∥EF,过点Q 画直线CD∥EF;(2)AB 与CD 有怎样的位置关系?为什么?解:(1)如图.(2)AB∥CD.理由:因为AB∥EF,CD∥EF,所以AB∥CD.易错点对平行线的有关概念及公理理解不清9.(2017·玉林北流市期中)下列说法中,正确的有(A)①过一点有无数条直线与已知直线平行;②经过直线外一点有且只有一条直线与已知直线平行;③如果两条线段不相交,那么它们就平行;④如果两条直线不相交,那么它们就平行.A.1个B.2个C.3个D.4个中档题10.如图,AB∥CD,EF∥AB,AE∥MN,BF∥MN,由图中字母标出的互相平行的直线共有(C )A.4组B.5组C.6组D.7组11.如图,因为直线AB,CD 相交于点P,AB∥EF,所以CD 不平行于EF.理由是经过直线外一点,有且只有一条直线与这条直线平行.12.在同一平面内,一条直线和两条平行线中的一条直线相交,那么这条直线与平行线中的另一条直线必相交.13.(教材P17习题T11变式)观察下图所示的长方体,回答下列问题.(1)用符号表示两棱的位置关系:A 1B 1∥AB,AA 1⊥AB,A 1D 1⊥C 1D 1,AD∥BC;(2)AB 与B 1C 1所在的直线不相交,它们不是平行线(填“是”或“不是”).由此可知,在同一平面内,两条不相交的直线才是平行线.14.如图,在∠AOB 内有一点P.(1)过点P 画l 1∥OA;(2)过点P 画l 2∥OB;(3)用量角器量一量l 1与l 2相交的角与∠O 的大小有怎样的关系.解:(1)(2)如图所示.(3)l 1与l 2的夹角有两个:∠1,∠2.量得∠1=∠O,∠2+∠O=180°,所以l1与l2的夹角与∠O相等或互补.15.如图,取一张长方形的硬纸板ABCD,将硬纸板ABCD对折使CD与AB重合,EF为折痕.把长方形ABFE平放在桌面上,另一个面CDEF无论怎么改变位置总有CD∥AB存在,你知道为什么吗?解:因为AB∥EF,CD∥EF,所以CD∥AB.综合题16.利用直尺画图:(1)利用图1中的网格,过点P画直线AB的平行线和垂线;(2)在图2的网格中画一个四边形,满足:①两组对边互相平行;②任意两个顶点都不在一条网格线上;③四个顶点都在格点上.解:(1)如图所示.CD∥AB,PQ⊥AB.(2)如图所示.四边形ABCD是符合条件的四边形.5.2.2平行线的判定基础题知识点1同位角相等,两直线平行1.(2017·玉林陆川县期末)如图,给出了过直线外一点画已知直线的平行线的方法,其依据是(A)A.同位角相等,两直线平行B.内错角相等,两直线平行C.同旁内角互补,两直线平行D.两直线平行,同位角相等2.(2017·绥化)如图,直线AB,CD被直线EF所截,∠1=55°,下列条件中能判定AB∥CD的是(C)A.∠2=35°B.∠2=45°C.∠2=55°D.∠2=125°3.(教材P21例2变式)已知a,b,c为平面内三条不同的直线,若a⊥b,c⊥b,则a与c的位置关系是平行.4.如图,∠3与∠1互余,∠3与∠2互余.试说明:AB∥CD.解:∵∠3与∠1互余,∠3与∠2互余,∴∠1=∠2.∴AB∥CD(同位角相等,两直线平行).知识点2内错角相等,两直线平行5.(2018·深圳龙岗区一模)如图,能判定AB∥CD的条件是(A)A.∠A=∠ACD B.∠A=∠DCE C.∠B=∠ACB D.∠B=∠ACD6.如图,请在括号内填上正确的理由:∵∠DAC=∠C(已知),∴AD∥BC(内错角相等,两直线平行).7.如图,∠BAD=∠DCB,∠BAC=∠DCA,试说明:AD∥BC.解:∵∠BAD=∠DCB,∠BAC=∠DCA(已知),∴∠BAD-∠BAC=∠DCB-∠DCA(等式的性质),即∠DAC=∠BCA.∴AD∥BC(内错角相等,两直线平行).知识点3同旁内角互补,两直线平行8.如图,已知∠1=70°,要使AB∥CD,则须具备的另一个条件是(C)A.∠2=70°B.∠2=100°C.∠2=110°D.∠3=110°9.如图,装修工人向墙上钉木条.若∠2=100°,要使木条b与a平行,则∠1的度数等于80°.10.如图,已知∠ACD=70°,∠ACB=60°,∠ABC=50°.试说明:AB∥CD.解:∵∠ACD=70°,∠ACB=60°,∴∠BCD=130°.∵∠ABC=50°,∴∠BCD+∠ABC=180°.∴AB∥CD(同旁内角互补,两直线平行).易错点不能准确识别截线与被截线,从而误判两直线平行11.(教材P36复习题T8(1)变式)(2018·贵港桂平期末)如图,点E在AC的延长线上,有下列条件:①∠1=∠2;②∠3=∠4;③∠A=∠DCE;④∠D=∠DCE;⑤∠A+∠ABD=180°;⑥∠A+∠ACD=180°,其中能判定AB∥CD的是①③⑥.中档题12.(2018·郴州)如图,直线a,b被直线c所截,下列条件中,不能判定a∥b的是(D)A.∠2=∠4B.∠1+∠4=180°C.∠5=∠4D.∠1=∠313.如图,下列说法错误的是(C)A.若a∥b,b∥c,则a∥c B.若∠1=∠2,则a∥cC.若∠3=∠2,则b∥c D.若∠3+∠5=180°,则a∥c14.(2018·湘潭)如图,点E是AD延长线上一点,如果添加一个条件,使BC∥AD,则可添加的条件为答案不唯一,如:∠C=∠CDE.(任意添加一个符合题意的条件即可)15.如图,用几何语言表示下列句子.(1)因为∠1和∠B相等,根据“同位角相等,两直线平行”,所以DE和BC平行;(2)因为∠1和∠2相等,根据“内错角相等,两直线平行”,所以AB和EF平行;(3)因为∠BDE和∠B互补,根据“同旁内角互补,两直线平行”,所以DE和BC平行.解:(1)∵∠1=∠B(已知),∴DE∥BC(同位角相等,两直线平行).(2)∵∠1=∠2(已知),∴EF∥AB(内错角相等,两直线平行).(3)∵∠BDE+∠B=180°(已知),∴DE∥BC(同旁内角互补,两直线平行).16.(2018·湛江廉江市期末)完成下面的推理.如图,BE平分∠ABD,DE平分∠BDC,且∠α+∠β=90°,试说明:AB∥CD.完成推理过程:∵BE平分∠ABD(已知),∴∠ABD=2∠α(角平分线的定义).∵DE平分∠BDC(已知),∴∠BDC=2∠β(角平分线的定义).∴∠ABD+∠BDC=2∠α+2∠β=2(∠α+∠β)(等量代换).∵∠α+∠β=90°(已知),∴∠ABD+∠BDC=180°(等量代换).∴AB∥CD(同旁内角互补,两直线平行).17.如图,点B在AC上,BD⊥BE,∠1+∠C=90°,问射线CF与BD平行吗?试用两种方法说明理由.解:CF∥BD.方法一:∵BD⊥BE,∴∠DBE=90°.∴∠1+∠2=90°.∵∠1+∠C=90°,∴∠2=∠C.∴CF∥BD(同位角相等,两直线平行).方法二:∵BD⊥BE,∴∠DBE=90°.∵∠1+∠C=90°,∴∠C+∠DBC=∠1+∠DBE+∠C=90°+90°=180°.∴CF∥BD(同旁内角互补,两直线平行).18.如图,直线EF 分别与直线AB,CD 相交于点P 和点Q,PG 平分∠APQ,QH 平分∠DQP,并且∠1=∠2,说出图中哪些直线平行,并说明理由.解:PG∥QH,AB∥CD.∵PG 平分∠APQ,QH 平分∠DQP,∴∠1=∠GPQ=12∠APQ,∠PQH=∠2=12∠PQD.又∵∠1=∠2,∴∠GPQ=∠PQH,∠APQ=∠PQD.∴PG∥QH,AB∥CD(内错角相等,两直线平行).综合题19.如图,AB⊥BD 于点B,CD⊥BD 于点D,∠1+∠2=180°,试问CD 与EF 平行吗?为什么?解:CD∥EF.理由如下:∵AB⊥BD,CD⊥BD,∴∠ABD=∠BDC=90°.∴∠ABD+∠BDC=180°.∴AB∥CD(同旁内角互补,两直线平行).∵∠1+∠2=180°,∴AB∥EF(同旁内角互补,两直线平行).∴CD∥EF(如果两条直线都与第三条直线平行,那么这两条直线也互相平行).周周练(5.1~5.2)(时间:45分钟满分:100分)一、选择题(每小题4分,共32分)1.邻补角是指(D )A.和为180°的两个角B.有一条公共边且相等的两个角C.有公共顶点且互补的两个角D.有公共顶点且有一条公共边,另一边互为反向延长线的两个角2.如图,∠1和∠2是对顶角的是(B )3.如图,直线AB,CD 被EF 所截,下列说法正确的有(C )①∠3与∠5是内错角;②∠2与∠7是同位角;③∠4与∠5是同旁内角;④图中有4对同位角,2对内错角,2对同旁内角;⑤∠1与∠7是内错角.A.1个B.2个C.3个D.4个4.下列说法错误的是(C )A.两条直线相交,有一个角是直角,则两条直线互相垂直B.若互为对顶角的两角之和为180°,则两直线互相垂直C.两直线相交,所构成的四个角中,若有两个角相等,则两直线互相垂直D.在同一平面上,过点A 作直线l 的垂线,这样的垂线只有一条5.如图,直线AB⊥CD 于点O,直线EF 经过点O,若∠1=26°,则∠2的度数是(B )A.26°B.64°C.54°D.以上都不对6.下列说法错误的是(A )A.过一点有且只有一条直线与已知直线平行B.平行于同一条直线的两条直线平行C.若a∥b,b∥c,c∥d,则a∥dD.同一平面内,若一条直线与两平行线中的一条相交,则它也和另一条相交7.如图,∠ACB=90°,CD⊥AB,垂足为D,则下面的结论中,不正确的是(D )A.线段AC 的长度是点A 到BC 的距离B.CD 与AB 互相垂直C.AC 与BC 互相垂直D.点B 到AC 的垂线段是线段CA8.(2017·深圳)下列选项中,哪个不可以得到l 1∥l 2?(C )A.∠1=∠2B.∠2=∠3C.∠3=∠5D.∠3+∠4=180°二、填空题(每小题4分,共24分)9.如图,已知∠1+∠2=100°,则∠3=130°.10.如图,已知OA⊥OB,OC⊥OD,∠AOC=27°,则∠BOD的度数是153°.11.如图,把小河里的水引到田地A处就作AB⊥l,垂足为B,沿AB挖水沟,水沟最短.理由是垂线段最短.12.如图,在同一平面内,OA⊥l,OB⊥l,垂足为O,则OA与OB重合的理由是同一平面内,过一点有且只有一条直线与已知直线垂直.13.如图,已知∠C=105°,增加一个条件答案不唯一,如∠BEC=75°或∠AEC=105°,使得AB∥CD.14.如图,AB与BC被AD所截得的内错角是∠1和∠3;DE与AC被直线AD所截得的内错角是∠2和∠4;图中∠4的内错角是∠5和∠2.三、解答题(共44分)15.(6分)完成下面的推理过程:如图,CB平分∠ACD,∠1=∠3.试说明:AB∥CD.解:∵CB平分∠ACD,∴∠1=∠2(角平分线的定义).∵∠1=∠3,∴∠2=∠3.∴AB∥CD(内错角相等,两直线平行).16.(6分)如图,直线AO,BO 交于点O,过点P 作PC⊥AO 于点C,PD⊥BO 于点D,画出图形.解:作∠ACP=90°,作∠PDB=90°,则直线PC,PD 即为所求.17.(6分)如图,已知∠OEB=130°,∠FOD=25°,OF 平分∠EOD,试说明:AB∥CD.解:∵OF 平分∠EOD,∠FOD=25°,∴∠EOD=2∠FOD=50°.又∵∠OEB=130°,∴∠OEB+∠EOD=180°.∴AB∥CD(同旁内角互补,两直线平行).18.(8分)如图,已知直线l 1,l 2,l 3被直线l 所截,∠α=105°,∠β=75°,∠γ=75°,运用已知条件,你能找出哪两条直线是平行的吗?若能,请写出理由.解:l 1∥l 2∥l 3.理由:∵∠1=∠β,∠β=75°,∴∠1=75°.∵∠α=105°,∴∠α+∠1=180°.∴l 1∥l 2(同旁内角互补,两直线平行).∵∠β=75°,∠γ=75°,∴∠β=∠γ.∴l 2∥l 3(内错角相等,两直线平行).∴l 1∥l 2∥l 3.19.(8分)如图,AB 和CD 交于点O,OD 平分∠BOF,OE⊥CD 于点O,∠AOC=40°,求∠EOF 的度数.解:∵AB,CD 相交于点O,∴∠BOD=∠AOC=40°.∵OD 平分∠BOF,∴∠DOF=∠BOD=40°.∵OE⊥CD,∴∠EOD=90°.∴∠EOF=∠EOD+∠DOF=130°.20.(10分)如图,要判定AB∥CD,需要哪些条件?根据是什么?解:①若考虑截线AD,则需∠D+∠DAB=180°,根据是同旁内角互补,两直线平行.②若考虑截线AE,则需∠CEA+∠EAB=180°,根据是同旁内角互补,两直线平行或∠DEA=∠EAB,根据是内错角相等,两直线平行.③若考虑截线AC,则需∠DCA=∠CAB,根据是内错角相等,两直线平行.④若考虑截线FC,则需∠DCF+∠AFC=180°,根据是同旁内角互补,两直线平行或∠DCF=∠BFC,根据是内错角相等,两直线平行.⑤若考虑截线BC,则需∠DCB+∠B=180°,根据是同旁内角互补,两直线平行.5.3平行线的性质5.3.1平行线的性质基础题知识点1平行线的性质平行线的性质:性质1:两直线平行,同位角相等;性质2:两直线平行,内错角相等;性质3:两直线平行,同旁内角互补.1.(2018·桂林)如图,直线a,b被直线c所截,a∥b,∠1=60°,则∠2的度数是(B)A.120°B.60°C.45°D.30°2.(2018·绵阳)如图,有一块含有30°角的直角三角板的两个顶点放在直尺的对边上,如果∠2=44°,那么∠1的度数是(C)A.14°B.15°C.16°D.17°3.如图,在三角形ABC中,∠B=40°,过点C作CD∥AB,∠ACD=65°,则∠ACB的度数为(D)A.60°B.65°C.70°D.75°4.如图,平行线AB,CD被直线AE所截,∠1=50°,则∠A=50°.5.如图,AB∥CD,∠BAF=115°,则∠ECF的度数为65°.6.如图,EF∥BC,AC平分∠BAF,∠B=80°.求∠C的度数.解:∵EF∥BC,∴∠BAF=180°-∠B=100°(两直线平行,同旁内角互补).∵AC平分∠BAF,∴∠CAF=12∠BAF=50°.∵EF∥BC,∴∠C=∠CAF=50°(两直线平行,内错角相等).知识点2平行线性质的应用7.某商品的商标可以抽象为如图所示的三条线段,若AB∥CD,∠EAB=45°,则∠FDC的度数是(B)A.30°B.45°C.60°D.75°8.一只因损坏而倾斜的椅子,从背后看到的形状如图所示,其中两组对边的平行关系没有发生变化.若∠1=76°,则∠2的度数是(C)A.76°B.86°C.104°D.114°9.如图,在A,B两地挖一条笔直的水渠,从A地测得水渠的走向是北偏西42°,A,B两地同时开工,B地所挖水渠走向应为南偏东42°.10.如图,某次考古发掘出的一块梯形残缺玉片,工作人员从玉片上量得∠A=115°,∠D=100°,已知梯形的两底AD∥BC,请你帮助工作人员求出另外两个角的度数,并说明理由.解:∵AD∥BC,∠A=115°,∠D=100°,∴∠B=180°-∠A=180°-115°=65°,∠C=180°-∠D=180°-100°=80°.易错点误用平行线的性质11.已知∠1与∠2是同旁内角,若∠1=60°,则∠2的度数是(D)A.60°B.120°C.60°或120°D.不能确定中档题12.(2018·汕头澄海区一模)如图,点P是∠AOB的边OA上一点,PC⊥OB于点C,PD∥OB,∠OPC=35°,则∠APD的度数是(B)A.60°B.55°C.45°D.35°13.将一直角三角板与两边平行的纸条如图所示放置,下列结论:①∠1=∠2;②∠3=∠4;③∠2+∠4=90°;④∠4+∠5=180°.其中正确的有(D )A.1个B.2个C.3个D.4个14.(2018·梧州岑溪市期末)如图是一汽车探照灯的纵剖面,从位于O 点的灯泡发出的两束光线OB,OC 经过灯碗反射以后平行射出.若∠ABO=α,∠DCO=β,则∠BOC 的度数是(A )A.α+βB.180°-αC.12(α+β)D.90°+(α+β)15.(2018·柳州期末)如图,AB∥CD∥EF,则下列四个等式中一定成立的有(A )①∠2+∠3=180°;②∠2=∠3;③∠1+∠3=180°;④∠2+∠3-∠1=180°.A.1个B.2个C.3个D.4个16.(2017·柳州期末)如图,已知AB∥CD,BC∥ED,请你猜想∠B 与∠D 之间具有什么数量关系,并说明理由.解:猜想:∠B+∠D=180°.理由如下:∵AB∥CD,∴∠B=∠C(两直线平行,内错角相等).∵BC∥ED,∴∠C+∠D=180°(两直线平行,同旁内角互补).∴∠B+∠D=180°.17.(2017·南宁马山县期末)如图,CD∥AB,OE 平分∠AOD,OF⊥OE,∠D=50°,求∠BOF 的度数.解:∵CD∥AB,∴∠AOD=180°-∠D=180°-50°=130°.∵OE 平分∠AOD,∴∠EOD=12∠AOD=12×130°=65°.∵OF⊥OE,∴∠DOF=90°-∠EOD=90°-65°=25°.∴∠BOF=180°-∠AOD-∠DOF=180°-130°-25°=25°.综合题18.阅读下列解答过程:如图甲,AB∥CD,探索∠P与∠A,∠C之间的关系.解:过点P作PE∥AB.∵AB∥CD,∴PE∥AB∥CD(平行于同一条直线的两条直线互相平行).∴∠1+∠A=180°(两直线平行,同旁内角互补),∠2+∠C=180°(两直线平行,同旁内角互补).∴∠1+∠A+∠2+∠C=360°.又∵∠APC=∠1+∠2,∴∠APC+∠A+∠C=360°.如图乙和图丙,AB∥CD,请根据上述方法分别探索两图中∠P与∠A,∠C之间的关系.解:如图乙,过点P作PE∥AB.∵AB∥CD(已知),∴PE∥AB∥CD(平行于同一条直线的两条直线平行).∴∠A=∠EPA,∠EPC=∠C(两直线平行,内错角相等).∵∠APC=∠EPA+∠EPC,∴∠APC=∠A+∠C(等量代换).如图丙,过点P作PF∥AB.∴∠FPA=∠A(两直线平行,内错角相等).∵AB∥CD(已知),∴PF∥CD(平行于同一条直线的两条直线平行).∴∠FPC=∠C(两直线平行,内错角相等).∵∠FPC-∠FPA=∠APC,∴∠C-∠A=∠APC(等量代换).5.3.2命题、定理、证明基础题知识点1命题的定义及结构判断一件事情的语句叫做命题,命题常可以写成“如果……那么……”的形式,“如果”后面接的部分是题设,“那么”后面接的部分是结论.1.(2018·玉林陆川县期末)下列语句不是命题的是(A)A.画两条相交直线B.互补的两个角之和是180°C.两点之间线段最短D.相等的两个角是对顶角2.把“垂直于同一条直线的两条直线平行”改写成“如果……那么……”的形式是如果两条直线垂直于同一条直线,那么这两条直线平行.3.把下列命题改写成“如果……那么……”的形式,并分别指出它们的题设和结论:(1)两点确定一条直线;(2)同角的补角相等;(3)两个锐角互余.解:(1)如果在平面上有两个点,那么过这两个点确定一条直线.题设:在平面上有两个点;结论:过这两个点确定一条直线.(2)如果两个角是同一个角的补角,那么它们相等.题设:两个角是同一个角的补角;结论:这两个角相等.(3)如果两个角是锐角,那么这两个角互余.题设:两个角是锐角;结论:这两个角互余.知识点2真假命题及其证明(1)题设成立,并且结论一定成立的命题叫做真命题;题设成立,不能保证结论一定成立的命题叫做假命题.(2)经过推理证实为正确并可以作为推理的依据的真命题叫做定理.很多情况下,一个命题的正确性需要经过推理,才能做出判断,这个推理的过程叫做证明.4.(2017·柳州期末)下列命题是真命题的是(C)A.同位角相等B.有且只有一条直线与已知直线垂直C.垂线段最短D.直线外一点到这条直线的垂线段,叫做点到直线的距离5.下列命题中,是假命题的是(A)A.相等的角是对顶角B.若|x|=3,则x=±3C.同一平面内,两条直线的位置关系只有相交和平行两种D.两点确定一条直线6.如图,BD平分∠ABC,若∠BCD=70°,∠ABD=55°.求证:CD∥AB.证明:∵BD平分∠ABC,∠ABD=55°,∴∠ABC=2∠ABD=110°.又∵∠BCD=70°,∴∠ABC+∠BCD=180°.。
北师大版七年级下册数学 第二章 相交线与平行线 同步基础练习

七年级下册数学(北师大版)-第二章-相交线与平行线-同步基础练习(含答案)一、单选题1. ( 2分) 如果一个角的补角是120°,那么这个角的余角是()A.150°B.90°C.60°D.30°2.下列说法:①在同一平面内,不相交的两条线段叫做平行线;②过一点,有且只有一条直线平行于已知直线;③两条平行直线被第三条直线所截,同位角相等;④同旁内角相等,两直线平行.正确的个数有()个.A.1B.2C.3D.43. ( 2分) 如图,点B是△ADC的边AD的延长线上一点,DE△AC,若△C=50°,△BDE=60°,则△CDA 的度数等于()A.70°B.100°C.110°D.120°4. ( 2分) △α的补角是它的3倍,则△α等于()A.45°B.60°C.90°D.120°5. ( 2分) 下列说法中正确的是()A.旋转一定会改变图形的形状和大小B.两条直线被第三条直线所截,同位角相等C.在同一平面内,过一点有且只有一条直线与已知直线垂直D.相等的角是对顶角6. ( 2分) 如图,直线a、b被直线c所截,现给出下列四个条件:①△1=△5,②△1=△7,③△2+△3=180°,④△4=△7,其中能判定a△b的条件的序号是( )A.①②B.①③C.①④D.③④7. ( 2分) 图中,△1与△2是对顶角的是()A. B. C. D.8. ( 2分) 如图,下列结论中,正确的是()A.△DAC与△ACB是一对同位角B.若△DAC=△ACB,则AB△CDC.△D与△DAC是一对同旁内角D.若△D=△B,则AD△BC9. ( 2分) 画一条线段的垂线,垂足在()A.线段上B.线段的端点C.线段的延长线上D.以上都有可能二、填空题10. ( 1分) 如图,直线,将含有角的三角板ABC的直角顶点C放在直线m上,若,则的度数为________11. ( 2分) 如图,若△________=△________,则AD△BC.12. ( 5分) 指出图中各对角的位置关系:(1)△C和△D是________角;(2)△B和△GEF是________角;(3)△A和△D是________角;(4)△AGE和△BGE是________角;(5)△CFD和△AFB是________角.13.如图,直线m△n,△ABC为等腰三角形,△BAC=90°,则△1=________度.14. ( 1分) 一个角是它的余角的2倍,则这个角的补角的度数是________° .15. ( 1分) 如图,已知CD平分△ACB,DE△AC,△1=30°,则△2=________°.三、解答题16. ( 5分) 完成下面的证明。
七年级下册《相交线与平行线》同步训练(含答案 勤学早)

(((((((((((((
第+课时!垂!线
*!如图#直线 $%#&' 相交于点(#若 $%)&'#则 '$(&0 !0(/! ,
+!如上 题 图#若 '%('0,-1#则 $% ! ) !&',
,!点到直线的距离是指!直线外一点到这条直线的垂线段 的长度!!
如图#过点 $#% 分别画(%#($ 的垂线! -点睛.画 线 段 或 射 线 的 垂 线#
((((((((((((((
第一部分!课课清(专题通
第五章!相交线与平行线
)!*!相交线 第*课时!相交线
*!对 顶 角 ! 相 等 ! #邻 补 角 ! 互 补 ! ! +!如 图#直 线 "## 相 交
所 成 的 四 个 角 中# '#0 ! ',!#'& 0!'-!#'#('&0 !*.(/!#''( '.0 !*.(/! !
%+&设 '"#&6,*#'"#$6+*#8,*7+*6*.(/#*6,4/#8 '"#$65+/#8 '%#&6 '"#$65+/)
*-!%+(*0杭州改&如图#直线 $%#&' 相交于点(#() 平分'%('#(* 平分'&()! %#&若'$(&0*/1#求'%(* 的度数, %&&若'%(*0'/1#求'$(& 的度数, %'&请探究'$(& 与'%(* 的数量关系!
人教版最全七年级数学下册全册同步练习及单元测验卷及答案

第五章相交线与平行线5.1.1 相交线复习检测(5分钟):1、如图所示,/1和/2是对顶角的图形有()A.1个B.2 个C.3 个D.4 个2、如图,若/ 1=60° ,那么/ 2=3、如图是一把剪刀,其中 1 40,则24、如图三条直线AB,CD,EF相交于一点O, /AOD勺对顶角是,/AOC勺邻补角是,若/ A0C=50 ,贝U/ BOD= ./ COB= J AOE+ DOB + COF=5、如图,直线AB,CD相交于0,0评分/ AOC若/ AOD/DOB=50 ,?求/EOB勺度数.6、如图,直线a,b,c两两相交,/1=2/ 3, / 2=68° ,求/4的度数5.1.2 垂线复习检测(5分钟):1、两条直线互相垂直,则所有的邻补角都相等.()2、一条直线不可能与两条相交直线都垂直.()3、两条直线相交所成的四个角中,如果有三个角相等,那么这两条直线互相垂直.()4、两条直线相交有一组对顶角互补,那么这两条直线互相垂直.().5、如图1,OAL OB,OCL OC,O为垂足,若/AOC=3 5,则/BOD=.6、如图2,A0± BO,O为垂足,直线CDi点O,且/ BOD=2AOC则/ BOD=.7、如图3,直线AB CD相交于点0,若/E0D=40 , /B0C=130,那么射线0E与直线AB的位置关系是C8、已知:如图,直线AB,射线0位于点的位置关系.9、如图,AC± BC,C为垂足,CD± AB,D为垂足,BC=8,CD=4.8,BD=6.4,AD=3.6,AC= 6 ,那么点C 到AB 的距离是,点A 到BC 的距离是,点B 到CD 的距离是 ,A 、B 两点间的距离是.10、如图,在线段AB AG AD AE AF 中AD 最短.小明说垂线段最短,因此线段AD 的 长是点A 到BF 的距离,对小明的说法,你认为对吗?11、用三角尺画一个是30的/AOB 在边OA±任取一点P,过P 作POL OB,垂足为Q, 量一量OP 的长,你发现点P 到OB 的距离与OP 长的关系吗?5.1.3同位角、内错角、同旁内角3、如图(6),直线DE 截AB, AC,构成八个角: ①、指出图中所有的同位角、内错角、同旁内角复习检测(5分钟):1、如图(4),卜列说法不正确的是( )人./1与/2是同位角 B. / 2与/ 3是同位角C. / 1与/ 3是同位角D. / 1与/ 4不是同位角2、如图(5),直线AB CDM 直线EF 所g, / A 和一 错角,/A 班是同旁内角.^ /\ \ /--- ---------- 4 届 -------------------- R图⑷ 图⑸—是同位角,/ A 和 ________ 是内A40(3) c'②、/人与/5, /A 与/6, /A 与/8,分别是哪一条直线截哪两条直线而成的什么 角?4、如图(7),在直角 ABCt\ / C= 90 , DU AC 于 E,交 A.一 L①、指出当BG DE 被AB 所截时,/ 3的同位角、内错角和礴内他(门②、若/ 3+/ 4=180试说明/ 1 = /2=/3的理由.5.2.1平行线复习检测(5分钟):1、在同一平面内,两条直线的位置关系有2、两条直线L 1与L 2相交点A,如果L 1//L ,那么12与L ()3、在同一平面内,一条直线和两条平行线中一条直线相交,那么这条直线与平行线中的另一边必.D ./3=/4 D. /BACW ACD4、两条直线相交,交点的个数是 ,两条直线平行,交点的个数是 _____________ 个.判断题5、6、7、85、不相交的两条直线叫做平行线.()6、如果一条直线与两条平行线中的一条直线平行,那么它与另一条直线也互相平行.()7、过一点有且只有一条直线平行于已知直线.()8、读下列语句,并画出图形后判断.(1)直线a 、b 互相垂直,点P 是直线a 、b 外一点,过P 点的直线c 垂直于直线b. (2)判断直线a 、c 的位置关系,并借助于三角尺、直尺验证.9、试说明三条直线的交点情况,进而判定在同一平面内三条直线的位置情况5.2.2平行线的判定复习检测(10分钟):1、如图1所示,下列条件中,能判断AB// CD 的是()DAFCA./BADh BCDB. /1 = /2;C.AD C B如图5,直线a,b 被直线c 所截,现给出下列四个条件: ?①/ 1 = /5;②/ 1=/7;③/ 2+/ 3=180 ;@Z4=Z 7.其中能说明 a // b 的条件序号为() A.①② B.①③ C.①④ D. ③④如果/ 9=,那么AD// BC;如果/ 9=,那么AB// CD.7、在同一平面内,若直线a,b,c 满足a±b,a ±c,则b 与c 的位置户系是8、如图所示,BE 是AB 的延长线,量得/ CBEh A=/ C. //.... AB E(1) 由/ CBEh A 可以判断//,根据是.⑵ 由/ CBEh C 可以判断//,根据是2、 如图2所示,如果/ D=/ EFC 那么()A.AD // BCB.EF // BC 3、 F 列说法错误的是()A.同位角不一定相等B. 内错角都相等C. 同旁内角可能相等D.同旁内角互补,两直线平行4、 5、如图5,如果/ 3=/7,那么,理由是 如果/ 5=/ 3,那么 ,理由是 如果/ 2+ /5=那么a // b,理由是6、如图4,若/ 2=/6,则,如果/3+/4+/ 5+/ 6=180 ,那么(4)C.AB // DCD.AD9、已知直线a、b被直线c所截,且/1+/ 2= 试判断直线a、b的位置关系,并说明理由.10、如图,已知AEM DG , 1 2 ,试问EF是否平行GH并说明理由.11、如图所示,已知/ 1=/ 2,AC平分/ DAB试说明DCI AB.12、如图所示,已知直线EF和AB,CM别相交于K,H,且EGL AB,/CHF=60 / E=30°试说明AB// CD.13、提高训练:如图所示,已知直线a,b,c,d,e,且/ 1=/ 2, / 3+/4=180° ,则a与c平行吗?劝什么?5.3.1平行线的性质复习检测(10分钟):1、如图1所示,AB//CD则与/ 1相等的角(/1除外)共有()A.5 个B.4 个C.3 个D.2 个 B AA B —(4) (5) (6)5、如图5,在甲、乙两地之间要修一条笔直的公路,从甲地测得公路的走向是南偏西(3)2、如图 2 所示,CD// AB,O 评分/ AOD,OFOE,/D=50,则/BOF 为(A.35B.30C.253、如图 3 所示,AB II CD,Z D=80CAD=, /ACD=?.4、如图 4,若 AD// BC,则/=/ D.20/ABC 廿=180 ;若 DC/ZAB,则/=/A,/ CAD:/ BAC=3:2则/56° ,甲、乙两地同时开工,若干天后公路准确接通,则乙地所修公路的走向是,因为.6、河南)如图6所示,已知AB// CD直线EF分别交AB,CD于E,F,EG?平分/ B-EF,若/ 1=72 ,贝U/2=.7、如图,AB/ZCQ / 1 = 102° ,求/ 2、/3、/4、/ 5的度数,并说明根据?8、如图,ERiz\ABC勺一个顶点A,且EF// BC 如果/ B= 40° , / 2= 75° ,那么/1、/3、/G / BAO /B+ 是多少度,并说明依据?9、如图,已知:DE/ZCB,/1 = /2,求证:CD平分/ ECB.10、如图所示,把一张长方形纸片ABCD& EF折叠,若/ EFG=50 ,求/ DEG勺度数.1111、如图所示,已知:AE平分/BAC CE平分/ACD且AB//CD求证:/1+/ 2=90° . 证明:・•. AB//CD (已知)・♦/BAC/ACD180 , ()又.. AE平分/ BAC C评分/ ACD (). 1 1•• 1 - BAC , 2 万ACD,( ___________________ ) __________1 1 0 0. .1 2 -( BAC ACD) —1800 90°.2 2即Z1+Z 2=90 .结论:若两条平行线被第三条直线所截,则一组同旁内角的平分线互相.推广:若两条平行线被第三条直线所截,则一组同位角的平分线互相^5.3.2命题、定理、证明复习检测(5分钟):1、判断下列语句是不是命题(1)延长线段AB( ) (3)画线段AB的中点( (2)两条直线相交,只有一交点((4)若|x|=2 ,则x=2 ( )134、命题:①对顶角相等;②垂直于同一条直线的两直线平行;③相等的角是对顶角;④同位角相等.其中假命题有()A.1 个B.2个C.3个D.4个5、分别指出下列各命题的题设和结论(1)如果a// b, b // c,那么all c ⑵ 同旁内角互补,两直线平行 6、分别把下列命题写成“如果……,那么……”的形式 (1)两点确定一条直线; (2)等角的补角相等;(3)内错角相等.7、如图,已知直线a 、b 被直线c 所截,在括号内为下面各小题的推理填上适当的根据(1) '.'all b,「•/ 1=/ 3( ); (2) ・// 1=/ 3, ..・all b( ); (3) '.'all b,「•/ 1=/ 2( );(4) 「a// b,「./ 1+/ 4=180o ( (5) ・// 1=/ 2, ..・all b( ); (6) •// 1+/ 4=180o,「.a// b( ). 8、已知:如图 ABL BG BCLCD 且/ 1=/ 2, 证明:.「AB!BG BCLCD (已知)= =90(5)角平分线是一条射线( 2、下列语句不是命题的是( A.两点之间,线段最短 C.x 与y 的和等于0吗? 3、下列命题中真命题是( )A.两个锐角之和为钝角)B.不平行的两条直线有一个交点 D.对顶角不相等.B.两个锐角之和为锐角D.锐角小于它的余角・ ・•/ 1 = /2 (已知)(等式性质)/ ACB=90 ()・ ••/ BCD^/ ACD 勺余角・ ・•/BCD^/B 的余角(已知) ・•・ / ACDN B ()5.4平移复习检测(5分钟):1、下列哪个图形是由左图平移得到的( )B.沿射线EC 的方向移动C 冰C.沿射线BD 的方向移动BD 长;D.沿射线BD 的方向移动DC 长3、下列四组图形中,?有一组中的两个图形经过平移其中一个能得到 -另一个,这组图形9、已知: 求证: 证明: BE// CF (/ ACDM B・•. ACL BC (已知)2、如图所示,4FDE 经过怎样的平移可得到4A.沿射线EC 的方向移动DB 长; 如图,ACL BCC 垂足为CABC.()4、如图所示,△ DEF经过平移可以得到△ ABC那的对应角和ED的对应边分-别是()A. / F,ACB. / BOD,BA;C. / F,BAD.5、在平移过程中,对应线段()A.互相平行且相等;B.互相垂直且相等C.互相平行(或在同一条直线上)且相等6、在平移过程中,平移后的图形与原来的图形________ 都相同,?因-此对应线段和对应角7、如图所示,平移△ ABC可得到△ DEF,如果// C=60 ,那么/ E=?-度,/ EDF=/F= ______ 度,/DOB= .........8、将正方形ABCDg对角线AC方向平移,且平移后的图形的一个顶点恰好在AC的中点。
人教版数学七年级第五章《相交线与平行线》单元同步检测试题 (附答案)

第五章《相交线与平行线》单元检测题题号一二三总分192021222324分数1.如果∠A和∠B的两边分别平行,那么∠A和∠B的关系是()A.相等B.互余或互补C.互补D.相等或互补2.如图,将△ABC沿BC方向平移得到△DEF,若△ABC的周长为12cm,四边形ABFD的周长为18cm,则平移的距离为()A.2cm B.3cm C.4cm D.6cm3.如图所示,下列结论中正确的是()A.∠1和∠2是同位角B.∠2和∠3是同旁内角C.∠1和∠4是内错角D.∠3和∠4是对顶角4.下列四个图案中,可能通过如图平移得到的是()A.B.C.D.5.如图,将△ABC沿BC方向平移2cm得到△DEF,若△ABC的周长为16cm,则四边形ABFD的周长为()A.16cm B.18cm C.20cm D.22cm6.如图,如果把△ABC的顶点A先向下平移3格,再向左平移1格到达A′点,连接A′B,则线段A′B与线段AC的关系是()A.垂直B.相等C.平分D.平分且垂直7.如图,下列说法错误的是()A.∠A与∠3是同位角B.∠4与∠B是同旁内角C.∠A与∠C是内错角D.∠1与∠2是同旁内角8.如图,下列条件中,能判断a∥b的条件有()①∠1=∠2;②∠1=∠4;③∠1+∠3=180°;④∠1+∠5=180°A.1个B.2个C.3个D.4个9.如图,AB∥CD,AC⊥BC,图中与∠CAB互余的角有()A.1 个B.2个C.3 个D.4个10.如图,直线l1∥l2,线段AB交l1,l2于D,B两点,过点A作AC⊥AB,交直线l1于点C,若∠1=15°,则∠2=()A.95°B.105°C.115°D.125°二、填空题(每题3分,共24分)11.把命题“在同一平面内,垂直于同一条直线的两直线平行”改写成“如果…,那么…”的形式是.12.如图所示,DE∥BF,∠D=53°,∠B=30°,DC平分∠BCE,则∠DCE的度数为.13.如图,直线a∥b∥c,直角三角板的直角顶点落在直线b上.若∠1=35°,则∠2等于.14.如图,直线a∥b,∠1=75°,那么∠2的度数是.15.如图所示,将含有30°角的三角板的直角顶点放在相互平行的两条直线其中一条上,若∠2=24°,则∠1的度数为.16.如图所示,点E在AC的延长线上,有下列条件:①∠1=∠2,②∠3=∠4,③∠A=∠DCE,④∠D=∠DCE,⑤∠A+∠ABD=180°,⑥∠A+∠ACD=180°,其中能判断AB∥CD的是.17.如图,已知直线AB,CD相交于点O,EO⊥AB于O,若∠1=32°,则∠2=°,∠3=°,∠4=°.18.已知:如图,CD平分∠ACB,∠1+∠2=180°,∠3=∠A,∠4=35°,则∠CED=.三.解答题(19题6分,20、21、22、23、24题分别8分,共46分)19.如图AB∥CD,∠B=62°,EG平分∠BED,EG⊥EF,求∠CEF的度数.20.如图,∠ABC+∠ECB=180°,∠P=∠Q.求证:∠1=∠2.在下列解答中,填空:证明:∵∠ABC+∠ECB=180°(已知),∴AB∥DE().∴∠ABC=∠BCD().∵∠P=∠Q(已知),∴PB∥()().∴∠PBC=()(两直线平行,内错角相等).∵∠1=∠ABC﹣(),∠2=∠BCD﹣(),∴∠1=∠2(等量代换).21.(8分)如图,已知AB∥CD,试再添加一个条件,使∠1=∠2成立.(1)写出两个不同的条件;(2)从(1)中选择一个来证明.22.(8分)如图,已知∠1+∠2=180°,∠3=∠B.(1)试判断DE与BC的位置关系,并说明理由.(2)若DE平分∠ADC,∠2=3∠B,求∠1的度数.23.如图①,将一副直角三角板放在同一条直线AB上,其中∠ONM=30°,∠OCD=45°.(1)将图①中的三角板OMN沿BA的方向平移至图②的位置,MN与CD相交于点E,求∠CEN的度数;(2)将图①中的三角板OMN绕点O按逆时针方向旋转,使∠BON=30°,如图③,MN与CD相交于点E,求∠CEN的度数.24.如图1,AB∥CD,E是AB、CD之间的一点.(1)判定∠BAE,∠CDE与∠AED之间的数量关系,并证明你的结论;(2)如图2,若∠BAE、∠CDE的两条平分线交于点F.直接写出∠AFD与∠AED之间的数量关系;(3)将图2中的射线DC沿DE翻折交AF于点G得图3,若∠AGD的余角等于2∠E的补角,求∠BAE的大小.参考答案一、选择题:题号12345678910答案D B B C C D A D B B二、填空题:11.解:把命题“在同一平面内,垂直于同一条直线的两直线平行”改写成“如果…,那么…”的形式,是“在同一平面内,如果两条直线都垂直于同一条直线,那么这两条直线平行”,故答案为:“在同一平面内,如果两条直线都垂直于同一条直线,那么这两条直线平行”.12.解:∵DE∥BF,∠D=53°,∴∠F AC=∠D=53°,∵∠B=30°,∴∠ACB=23°,∵DC平分∠BCE,∴∠DCE=23°.故答案为:23°.13.解:∵a∥b∥c,∴∠1=∠3,∠2=∠4,∵∠1=35°,∴∠3=30°,∵∠4+∠3=90°,∴∠4=55°,∴∠2=55°,故答案为:55°.14.解:∵周长为12的三角形ABC沿BC方向平移2个单位长度得到三角形DEF,∴AD=CF=2,AC=DF,∴四边形ABFD的周长=AB+BC+CF+DF+AD=AB+BC+AC+AD+CF=△ABC 的周长+2AD=12+2×2=16.故答案为16.14.解:如图,∵a∥b,∴∠1=∠3=75°,而∠2+∠3=180°,∴∠2=180°﹣75°=105°.故答案为:105°.15.解:如图,延长AB交CF于E,∵∠ACB=90°,∠A=30°,∴∠ABC=60°,∵GH∥EF,∴∠AEC=∠2=24°,∴∠1=∠ABC﹣∠AEC=36°.故答案为:36°.16.解:①∵∠1=∠2,∴AB∥CD,正确;②∵∠3=∠4,∴BD∥AC,错误;③∵∠A=∠DCE,∴AB∥CD,正确;④∵∠D=∠DCE,∴BD∥AC,错误;⑤∵∠A+∠ABD=180°,∴BD∥AC,错误;⑥∵∠A+∠ACD=180°,∴AB∥CD,正确;故答案为:①③⑥17.解:∵EO⊥AB于O,∴∠AOE=90°,∵∠1=32°,∴∠3=58°,∴∠2=58°,∴∠4=180°﹣58°=122°,故答案为:58;58;122.18.解:∵∠1+∠2=180°,∠1+∠BDC=180°∴∠2=∠BDC∴EF∥AB∴∠3=∠BDE∵∠3=∠A∴∠A=∠BDE∴AC∥DE∴∠ACB+∠CED=180°∵CD平分∠ACB,∠4=35°∴∠ACB=2∠4=2×35°=70°∴∠CED=180°﹣∠ACB=180°﹣70°=110°故答案为:110°.三.解答题:19.解:∵AB∥CD,∠B=62°,∴∠BED=∠B=62°,∵EG平分∠BED,∴∠DEG=∠BED=31°,∵EG⊥EF,∴∠FEG=90°,∴∠DEG+∠CEF=90°,∴∠CEF=90°﹣∠DEG=90°﹣31°=59°.20.证明:∵∠ABC+∠ECB=180°(已知),∴AB∥DE(同旁内角互补,两直线平行).∴∠ABC=∠BCD(两直线平行,内错角相等).∵∠P=∠Q(已知),∴PB∥(CQ)(内错角相等,两直线平行).∴∠PBC=(∠BCQ)(两直线平行,内错角相等).∵∠1=∠ABC﹣(∠PBC),∠2=∠BCD﹣(∠BCQ),∴∠1=∠2(等量代换).故答案为:同旁内角互补,两直线平行;两直线平行,内错角相等;CQ,内错角相等,两直线平行;∠BCQ;∠PBC;∠BCQ.21.解:此题答案不唯一,合理即可.(1)添加∠FCB=∠CBE或CF∥BE.(2)已知AB∥CD,CF∥BE.求证:∠1=∠2.证明:∵AB∥CD,∴∠DCB=∠ABC.∵CF∥BE,∴∠FCB=∠CBE,∴∠DCB-∠FCB=∠ABC-∠CBE,即∠1=∠2.22.解:(1)DE∥BC,理由如下:∵∠1+∠4=180°,∠1+∠2=180°,∴∠2=∠4,∴AB∥EF,∴∠3=∠5,∵∠3=∠B,∴∠5=∠B,∴DE∥BC,(2)∵DE平分∠ADC,∴∠5=∠6,∵DE∥BC,∴∠5=∠B,∵∠2=3∠B,∴∠2+∠5+∠6=3∠B+∠B+∠B=180°,∴∠B=36°,∴∠2=108°,∵∠1+∠2=180°,∴∠1=72°.23.解:(1)由平移得,∠ONM=30°∠DCN=45°在△CEN中,∠CEN=180°﹣∠ONM﹣∠DCN=180°﹣30°﹣45°=105°;(2)由旋转知,∠N=30°,∵∠BON=30°∴∠BON=∠N=30°,∴MN∥BC∴∠CEN=180°﹣∠DCO=180°﹣45°=135°.24.解:(1)∠BAE+∠CDE=∠AED.理由如下:作EF∥AB,如图1,∵AB∥CD,∴EF∥CD,∴∠1=∠BAE,∠2=∠CDE,∴∠BAE+∠CDE=∠AED;(2)如图2,由(1)的结论得∠AFD=∠BAF+∠CDF,∵∠BAE、∠CDE的两条平分线交于点F,∴∠BAF=∠BAE,∠CDF=∠CDE,∴∠AFD=(∠BAE+∠CDE),∵∠BAE+∠CDE=∠AED,∴∠AFD=∠AED;(3)由(1)的结论得∠AGD=∠BAF+∠CDG,而射线DC沿DE翻折交AF于点G,∴∠CDG=4∠CDF,∴∠AGD=∠BAF+4∠CDF=∠BAE+2∠CDE=∠BAE+2(∠AED﹣∠BAE)=2∠AED﹣∠BAE,∵90°﹣∠AGD=180°﹣2∠AED,∴90°﹣2∠AED+∠BAE=180°﹣2∠AED,∴∠BAE=60°.。
北师大版七年级下册第二章-平行线与相交线同步练习题(含答案)

第二章平行线与相交线同步练习题2.1 两条直线的位置关系一、选择题(共18小题)3.如图,在方格纸上给出的线中,平行的有()8.一个角的余角是它的补角的,则这个角为(). B .C .D .11.(2007•济南)已知:如图,AB ⊥CD ,垂足为O ,EF 为过点O 的一条直线,则∠1与∠2的关系一定成立的是( )A . 相等B . 互余C . 互补D . 互为对顶角12.(2003•杭州)如图所示立方体中,过棱BB 1和平面CD 1垂直的平面有( )A . 1个B . 2个C . 3个D . 0个13.(2006•大连)如图,∠PQR 等于138°,SQ ⊥QR ,QT ⊥PQ .则∠SQT 等于( )15.如图,已知0A ⊥m ,OB ⊥m ,所以OA 与OB 重合,其理由是( )16.如图,∠BAC=90°,AD⊥BC,则下列的结论中正确的个数是()①点B到AC的垂线段是线段AB;②线段AC是点C到AB的垂线段;③线段AD是点D到BC的垂线段;④线段BD是点B到AD的垂线段.A.1个B.2个C.3个D.4个17.如图,把水渠中的水引到水池C,先过C点向渠岸AB画垂线,垂足为D,再沿垂线CD开沟才能使沟最短,其依据是()二、填空题(共12小题)19.已知∠1=43°27′,则∠1的余角是_________ ,补角是_________ .20.若一个角的余角是30°,则这个角的补角为_________ °.21.两个角互余或互补,与它们的位置_________ (填“有”或“无”)关.22.一个角的补角是它的余角的4倍,则这个角等于_________ 度.23.若∠α和∠β互为余角,并且∠α比∠β大20°,∠β和∠γ互为补角,则∠α= _________ ,∠β= _________ ,那么,∠γ﹣∠α= _________ .24.如图,已知∠COE=∠BOD=∠AOC=90°,则图中与∠B0C相等的角为_________ ,与∠BOC互补的角为_________ ,与∠BOC互余的角为_________ .25.如图,直线AB,CD相交于点O,∠EOC=60°,OA平分∠EOC,那么∠BOD的度数是_________ .26.(2006•宁波)如图,直线a⊥b,∠1=50°,则∠2= _________ 度.27.如图,点A,B,C在一条直线上,已知∠1=53°,∠2=37°,则CD与CE的位置关系是_________ .28.老师在黑板上随便画了两条直线AB,CD相交于点0,还作∠BOC的平分线OE和CD的垂线OF(如图),量得∠DOE 被一直线分成2:3两部分,小颖同学马上就知道∠AOF等于_________ .29.如图,∠ADB=90°,则AD _________ BD;用“<”连接AB,AC,AD,结果是_________ .30.如图,已知BA⊥BD,CB⊥CD,AD=8,BC=6,则线段BD长的取值范围是_________ .三、解答题(共9小题)31.已知一个角的补角加上10°后等于这个角的余角的3倍,求这个角的余角.32.如图所示,直线a,b,C两两相交,∠1=2∠3,∠2=80°,求∠4的度数.33.如图,直线AB,CD相交于点O,且∠1=∠2.(1)指出∠1的对顶角;(2)若∠2和∠3的度数比是2:5,求∠4和∠AOC的度数.34.如图,直线AB,EF相交于点O,∠AOE=30°,∠BOC=2∠AOC,求∠DOF的度数.35.如图,两条笔直的街道AB,CD相交于点0,街道OE,OF分别平分∠AOC,∠BOD,请说明街道EOF是笔直的.36.如图,OA⊥OB,OB平分∠MON,若∠AON=120°,求∠AOM的度数.37.如图,一辆汽车在直线形公路AB上由A向B行驶,M,N是分别位于公路AB两侧的两所学校.(1)汽车在公路上行驶时,噪声会对两所学校教学都造成影响,当汽车行驶到何处时,分别对两所学校影响最大?请在图上标出来.(2)当汽车从A向B行驶时,在哪一段上对两学校影响越来越大?在哪一段上对两学校影响越来越小?在哪一段上对M学校影响逐渐减小而对N学校影响逐渐增大?38.如图,直线AB,CD相交于O点,OM⊥AB于O.(1)若∠1=∠2,求∠NOD;(2)若∠BOC=4∠1,求∠AOC与∠MOD.2.1 两条直线的位置关系同步练习参考答案与试题解析一、选择题(共18小题)3.如图,在方格纸上给出的线中,平行的有()解:根据方格纸上给出的线可以看出a∥c,c∥b,a∥b,故选:C.本题考查了平行线的判定,熟练掌握网格结构是解题的关键.8.一个角的余角是它的补角的,则这个角为()A.60°B.45°C.30°D.90°先设出这个角,根据题中的数量关系列方程解答.解:设这个角是x,列方程得:90°﹣x=(180°﹣x).解得x=45°.故选B.列方程时一定明确“余角是它的补角的”,不能误为(90°﹣x)=180°﹣x..B.C.D.11.(2007•济南)已知:如图,AB⊥CD,垂足为O,EF为过点O的一条直线,则∠1与∠2的关系一定成立的是()12.(2003•杭州)如图所示立方体中,过棱BB1和平面CD1垂直的平面有()A.1个B.2个C.3个D.0个13.(2006•大连)如图,∠PQR等于138°,SQ⊥QR,QT⊥PQ.则∠SQT等于()A.42°B.64°C.48°D.24°本题是对有公共部分角的性质的考查,解决此类问题的关键是正确画出图形.解:因为过一个钝角的顶点作这个角两边的垂线,所以两个直角的和是180°,而两条垂线的夹角为40°,所以此钝角为140度.故选A.解决此类问题的关键是正确的画出图形.15.如图,已知0A⊥m,OB⊥m,所以OA与OB重合,其理由是()16.如图,∠BAC=90°,AD⊥BC,则下列的结论中正确的个数是()①点B到AC的垂线段是线段AB;②线段AC是点C到AB的垂线段;③线段AD是点D到BC的垂线段;④线段BD是点B到AD的垂线段.A.1个B.2个C.3个D.4个17.如图,把水渠中的水引到水池C,先过C点向渠岸AB画垂线,垂足为D,再沿垂线CD开沟才能使沟最短,其依据是()A.垂线最短二、填空题(共12小题)19.已知∠1=43°27′,则∠1的余角是46°33′,补角是136°33′.20.若一个角的余角是30°,则这个角的补角为120 °.21.两个角互余或互补,与它们的位置无(填“有”或“无”)关.22.一个角的补角是它的余角的4倍,则这个角等于60 度.23.若∠α和∠β互为余角,并且∠α比∠β大20°,∠β和∠γ互为补角,则∠α= 55°,∠β= 35°,那么,∠γ﹣∠α= 90°.24.如图,已知∠COE=∠BOD=∠AOC=90°,则图中与∠B0C相等的角为∠DOE ,与∠BOC互补的角为∠AOD ,与∠BOC互余的角为∠COD,∠AOB .25.如图,直线AB,CD相交于点O,∠EOC=60°,OA平分∠EOC,那么∠BOD的度数是30°.根据角平分线的定义求出∠AOC,再根据对顶角相等的性质解答即可.解:∵∠EOC=60°,OA平分∠EOC,∴∠AOC=∠EOC=×60°=30°,∴∠BOD=∠AOC=30°.故答案为:30°.本题考查了对顶角相等的性质,角平分线的定义,是基础题,准确识图是解题的关键.26.(2006•宁波)如图,直线a⊥b,∠1=50°,则∠2= 40 度.27.如图,点A,B,C在一条直线上,已知∠1=53°,∠2=37°,则CD与CE的位置关系是互相垂直.28.老师在黑板上随便画了两条直线AB,CD相交于点0,还作∠BOC的平分线OE和CD的垂线OF(如图),量得∠DOE 被一直线分成2:3两部分,小颖同学马上就知道∠AOF等于45°.29.如图,∠ADB=90°,则AD ⊥BD;用“<”连接AB,AC,AD,结果是AD<AC<AB .30.如图,已知BA⊥BD,CB⊥CD,AD=8,BC=6,则线段BD长的取值范围是6<BD<8 .三、解答题(共9小题)31.已知一个角的补角加上10°后等于这个角的余角的3倍,求这个角的余角.32.如图所示,直线a,b,C两两相交,∠1=2∠3,∠2=80°,求∠4的度数.33.如图,直线AB,CD相交于点O,且∠1=∠2.(1)指出∠1的对顶角;(2)若∠2和∠3的度数比是2:5,求∠4和∠AOC的度数.34.如图,直线AB,EF相交于点O,∠AOE=30°,∠BOC=2∠AOC,求∠DOF的度数.35.如图,两条笔直的街道AB,CD相交于点0,街道OE,OF分别平分∠AOC,∠BOD,请说明街道EOF是笔直的.对顶角、邻补角.根据对顶角相等可得∠AOC=∠BOD,再根据角平分线的定义可得∠1=∠AOC,∠2=∠BOD,从而得到∠1=∠2,再根据AB是笔直的街道可得∠2+∠AOF=180°,求出∠1+∠AOF=180°,从而得解.解:∵∠AOC和∠BOD是对顶角,∴∠AOC=∠BOD,∵OE,OF分别平分∠AOC,∠BOD,∴∠1=∠AOC,∠2=∠BOD,∴∠1=∠2,∵AB是笔直的街道,∴∠2+∠AOF=180°,∴∠1+∠AOF=180°,即∠EOF=180°,∴EOF是一条直线,即街道EOF是笔直的.本题考查了对顶角相等的性质,角平分线的定义,是基础题,求出∠EOF=180°是解题的关键.36.如图,OA⊥OB,OB平分∠MON,若∠AON=120°,求∠AOM的度数.37.如图,一辆汽车在直线形公路AB上由A向B行驶,M,N是分别位于公路AB两侧的两所学校.(1)汽车在公路上行驶时,噪声会对两所学校教学都造成影响,当汽车行驶到何处时,分别对两所学校影响最大?请在图上标出来.(2)当汽车从A向B行驶时,在哪一段上对两学校影响越来越大?在哪一段上对两学校影响越来越小?在哪一段上对M学校影响逐渐减小而对N学校影响逐渐增大?(2)此题说明时要分3段A到E;由F向B,由E向F分别说明对两学校的影响情况.解:(1)如图所示:过M作ME⊥AB,过N作NF⊥AB,当汽车行驶到点E处时,对M学校影响最大;当汽车行驶到点F处时,对N学校影响最大;(2)由A向E行驶时,对两学校影响逐渐增大;由F向B行驶时,对两学校的影响逐渐减小;由E向F行驶时,对M学校影响逐渐减小而对N学校影响逐渐增大.此题主要考查了应用与设计作图,以及垂线段的性质,关键是正确画出图形.38.如图,直线AB,CD相交于O点,OM⊥AB于O.(1)若∠1=∠2,求∠NOD;(2)若∠BOC=4∠1,求∠AOC与∠MOD.39.如图,点O为直线AB上一点,OC为一射线,OE平分∠AOC,OF平分∠BOC.(1)若∠BOC=50°,试探究OE,0F的位置关系;(2)若∠BOC为任意角α(0°<α<180°),(1)中OE,OF的位置关系是否仍成立?请说明理由.由此你发现什么规律?位置关系.解:(1)OE⊥OF;∵∠BOC=50°,∴∠AOC=180°﹣50°=130°,∵OE平分∠AOC,OF平分∠BOC,∴∠EOC=∠AOC=65°,∠COF=∠COB=25°,∴∠EOF=65°+25°=90°,∴OE⊥OF;(2)∵∠BOC=α,∴∠AOC=180°﹣α,∵OE平分∠AOC,OF平分∠BOC,∴∠EOC=∠AOC=90°﹣,∠COF=∠COB=,∴∠EOF=90°﹣+α=90°,∴OE⊥OF.规律:邻补角的角平分线互相垂直.2.2 探索直线平等的条件一、填空题:(每题5分,共20分)1、如图1,∠1和∠2是直线_______和直线________被直线_____所截得的同位角,∠2和∠3是直线_____和直线________被直线______所截得的__________角。
新版七下数学第五章相交线与平行线复习题五套

第五章相交线与平行线专题(一)相交线1.如图所示,直线AB与CD相交于点O,OE平分∠AOD,∠BOC=80°,求∠BOD和∠AOE的度数.2.如图,三条直线相交于点O,则∠1+∠2+∠3等于()A.90°B.120°C.180°D.360°,(第2题图)),(第3题图))3.如图,三条直线AB,CD,EF相交于点O,若∠BOE=4∠BOD,∠AOE=100°,则∠AOC 等于()A.30°B.20°C.15°D.10°4.如图,AB和CD相交于点O.(1)若∠1+∠3=50°,则∠3=__ __;(2)若∠1∶∠2=2∶3,则∠3=__ __;(3)若∠2-∠3=70°,则∠3=__ __.5.如图,两条直线AB,CD相交于点O,OE平分∠BOC,若∠1=30°,∠2=___ _,∠3=__ __.6.如图所示,直线AB,CD,EF相交于点O.(1)试写出∠AOC,∠AOE,∠EOC的对顶角;(2)试写出∠AOC,∠AOE,∠EOC的邻补角;(3)若∠AOC=40°,求∠BOD,∠BOC的度数.7.如图,一长方形纸片ABCD沿折痕EF对折,得到点D的对应点D′,点C的对应点C′,若∠BFE=50°,试求∠BFC′的度数.8.如图所示,已知直线AB,CD相交于点O,OE平分∠BOD,若∠3∶∠2=8∶1,求∠AOC 的度数.第五章相交线与平行线专题(二)平行线的判定1.如图所示,直线a ,b 被直线c 所截,现给出下列四个条件:①∠1=∠5;②∠1=∠7;③∠2+∠3=180°;④∠4=∠7.其中能说明a ∥b 的条件为( )A .①②B .①③C .①④D .③④2.如图所示,要得到DE ∥BC ,则需要的条件为( )A .CD ⊥AB ,GF ⊥AB B .∠4+∠5=180°C .∠1=∠3D .∠2=∠33.对于图中标记的各角,下列条件能够推理得到a ∥b 的是( )A .∠1=∠2B .∠2=∠4C .∠3=∠4D .∠1+∠4=180°4.如图,在下列给出的条件中,不能判定AB ∥DF 的是( )A .∠A +∠2=180°B .∠3=∠AC .∠1=∠4D .∠1=∠A5.)如图所示,下列判断不正确的是( )A .∵∠1=∠2,∴AE ∥BDB .∵∠1=∠2,∴AB ∥EDC .∵∠3=∠4,∴AB ∥CD D .∵∠5=∠BDC ,∴AE ∥BD6.如图,能说明AB ∥DE 的有( )①∠1=∠D ;②∠CFB +∠D =180°;③∠B =∠D ;④∠D =∠BFD.A .1个B .2个C .3个D .4个(第1题图)(第2题图) (第5题图)(第6题图)7.如图,给出下面的推理:①因为∠B =∠BEF ,所以AB ∥EF ;②因为∠B =∠CDE , 所以AB ∥CD ;③因为∠B +∠BDC =180°,所以AB ∥EF ;④因为AB ∥CD ,CD ∥EF , 所以AB ∥EF.其中正确的推理是( )A .①②③B .①②④C .①③④D .②③④9.如图,下列推理正确的是( )A .∵∠1=∠2,∴AB ∥CD B .∵∠1+∠2=180°,∴AB ∥CDC .∵∠3=∠4,∴AB ∥CD D .∵∠3+∠4=180°,∴AB ∥CD10.如图,已知直线EF 分别交CD ,AB 于点M ,N ,且∠EMD =65°,∠MNB =115°,则下列结论正确的是( )A .AE ∥CFB .AB ∥CDC .∠A =∠D D .∠E =∠F11.如图,BD 平分∠ABC ,若∠1=∠2,则( )A .AB ∥CD B .AD ∥BC C .AD =BC D .AB =CD12.如图所示,AC ⊥BC ,垂足为C ,∠B =50°,∠ACD =40°,则AB 与CD 的位置关系是 AB ∥CD__.13.如图所示,下列条件中:(1)∠B +∠BCD =180°;(2)∠1=∠2;(3)∠3=∠4;(4)∠B =∠5.能判定AB ∥CD的条件有 .(填序号),(第9题图)) ,(第10题图)) ,(第11题图)) ,(第12题图))14.(8分)如图,AE平分∠BAC,CE平分∠ACD,且∠1+∠2=90°,直线AB,CD有何位置关系?说明理由.16.(10分)如图,已知直线a,b,c被直线d,e所截,且∠1=∠2,∠3+∠4=180°,则a与c平行吗?为什么?17.(12分)如图,AC⊥EC,B,C,D在同一直线上,∠A=∠1,∠E=∠2,直线AB与DE平行吗?试说明理由.第五章相交线与平行线专题(三)平行线的性质1.如图,直线m ∥n ,∠α为( )A .70 B .65° C .50° D .40°2.如图,AB ∥ED ,AG 平分∠BAC ,∠ECF =70°,则∠FAG 的度数是( )A .155°B .145°C .110°D .35°3.如图,已知AB ∥CD ,∠1=130°,则∠2=__ .4.如图,EF ∥BC ,AC 平分∠BAF ,∠B =80°,求∠C 的度数5.如图,把三角板的直角顶点放在直尺的一边上,若∠1=30°,则∠2的度数为( )A .60°B .50°C .40°D .30°6. 6.一张长方形的纸条,按如图方式折叠一下,已知∠3=120°,则∠1的度数为( )7.A .30° B .60° C .90° D .120°8.9. ,(第1题图)) ,(第2题图)) ,(第5题图)) ,(第6题图))10.7.(4分)如图,∠1=50°,∠2=140°,∠C =50°,则∠B =____.9.某次考古发掘出的一个梯形残缺玉片如下图,工作人员从玉片上量得∠A =115°,∠D =100°,已知梯形的两底AD ∥BC ,请你帮助工作人员求出另外两个角的度数,并说明理由.10.如图所示,点B 是△ADC 的边AD 的延长线上一点,DE ∥AC ,若∠C =50°, ∠BDE =60°,则∠CDB 的度数等于( )A .70°B .100°C .110°D .120°11.如图所示,已知AB ∥EF ∥DC ,EG ∥BD ,则图中与∠1相等的角共有( )A .6个B .5个C .4个D .2个12.如图所示,已知AB ∥CD ,BC ∥DE ,则∠B +∠D 的度数为____.13.如图,AC ∥BD ,AE 平分∠BAC 交BD 于点E ,若∠1=64°,则∠2=___ _.(第10题图) (第11题图), ( 第 7 题图 )14.(12分)如图所示,已知∠ABC=40°,∠ACB=60°,BO,CO分别平分∠ABC,∠ACB,DE过O点,且DE∥BC,求∠BOC的度数.15.(12分)如图,直线AD与AB,CD相交于A,D两点,EC,BF与AB,CD相交于点E,C,B,F,如果∠1=∠2,∠B=∠C.小明在图上把两组相等角的信息标注出来后,略加分析,便发现CE∥BF,同桌的小慧说:“不光有这个发现,我还能得到∠A=∠D呢?”小明再深入其中,很快也明白了小慧是怎么得到∠A=∠D的了.你能帮助他们写出过程吗?16.(12分)如图,已知直线l1∥l2,且l3和l1,l2分别交于A,B两点,点P在AB上.(1)试找出∠1,∠2,∠3之间的关系并说明理由;(2)如果点P在A,B两点之间运动时,问∠1,∠2,∠3之间的关系是否发生变化?(3)如果点P在A,B两点外侧运动时,试探究∠1,∠2,∠3之间的关系(点P和A,B不重合).第五章相交线与平行线专题(四)平行线的性质与判定的综合运用1.如图,直线AB ,CD 相交于点O ,OT ⊥AB 于点O ,CE ∥AB 交CD 于点C ,若∠ECO =30°,则∠DOT 的度数为( ) A .30° B .45° C .60° D .120°2.如图,AB ∥CD ,∠DFE =135°,则∠ABE 的度数是( )A .30°B .45C .60°D .90°3.如图,a ,b ,c 为三条直线,且a ⊥c ,b ⊥c ,若∠1=70°,则∠2的度数为( )A .70°B .90°C .110°D .80°4.如图所示,已知∠1=∠2=∠3=55°,则∠4的度数是( )A .110°B .115°C .120°D .125°5.(4分)如图所示,已知∠1=∠2,∠3=80°,则∠4等于( )A .80°B .70°C .60°D .50°6.(4分)如图,已知直线a ∥b ,∠1=40°,∠2=60°,则∠3等于( )A .100°B .60°C .40°D .20°(第1题图)(第2题图) (第3题图)(第4题图)7.将一副直角三角板如图所示放置,使含30°角的三角板短直角边和含45°角 的三角板的一条直角边重合,则∠1的度数为__.8.如图所示是一大门的栏杆,AE 为地面,BA ⊥AE 于点A ,CD ∥AE ,则∠ABC +∠BCD= _9.(8分)如图,直线AB ,CD 分别与直线AC 相交于点A ,C ,与直线BD 相交于点B ,D.若∠1=∠2,∠3=75°,求∠4的度数.10.如图,AB ∥CD ,AE 交CD 于C ,∠A =34°,∠DEC =90°,则∠D 的度数为() A .17° B .34° C .56° D .124°11.如图,已知AB ∥CD ,∠C =65°,∠E =30°,则∠A 的度数为( )A .30°B .32.5°C .35°D .37.5°12.如图所示,AB ∥CD ∥EF ,则∠BAD +∠ADE +∠DEF 等于( )A .180°B .270°C .360°D .540°13.如图所示,∠A =60°,∠4=45°,DE ∥BC ,EF ∥AB ,则∠1=___ _, ∠2=__ __, ∠3=__ _,∠B =__ _,∠C =___ _. (第5题图) (第6题图,(第10题图)) ,(第11题图)(第7题图) (第8题图)14.如图,直线l1∥l2∥l3,点A ,B ,C 分别在直线l1,l2,l3上.若∠1=70°,∠2=50°,则∠ABC =____.15.如图,l ∥m ,等边△ABC 的顶点A 在直线m 上,则∠α=__.16.(8分)如图,AD ⊥BC 于点D ,EG ⊥BC 于点G ,∠E =∠3.请问:AD 平分∠BAC 吗?若平分,请说明理由.17.(10分)如图所示,CD ⊥AB ,垂足为D ,F 是BC 上任意一点,EF ⊥AB ,垂足为E ,且∠1=∠2,∠3=80°,求∠BCA 的度数.18.(12分)如图所示,∠1+∠2=180°,∠3=∠B ,试判断∠AED 与∠C 的大小关系,并(第12题图)(第13题图) ,(第14题图)),(第15题图)说明你的理由.第五章相交线与平行线专题(五)平行线的性质与判定变式训练【教材母题】(教材P36第8题(2)改编)如图,∠1+∠2=180°,∠3=108°,求∠4的度数.变式1.(2014·菏泽)如图,直线l∥m∥n,等边△ABC的顶点B,C分别在直线n和m上,边BC与直线n所夹的角为25°,则∠α的度数为()A.25°B.45°C.35°D.30°变式2.(2014·邵阳)如图,在△ABC中,∠B=46°,∠C=54°,AD平分∠BAC,交BC于D,DE∥AB,交AC于E,则∠ADE的大小是()A.45°B.54°C.40°D.50°,(第1题图)),(第2题图))变式3.(2014·聊城)如图,将一块含有30°角的直角三角板的两个顶点叠放在矩形的两条对边上,如果∠1=27°,那么∠2的度数为()A.53°B.55°C.57°D.60°变式4.(2014·遵义)如图,直线l1∥l2,∠A=125°,∠B=85°,则∠1+∠2=() A.30°B.35°C.36°D.40°,(第3题图)),(第4题图))变式5.如果一个角的两边分别与另一个角的两边平行,且一个角比另一个角的3倍少40°,则这两个角的度数分别为__变式6.填写推理理由:如图,CD∥EF,∠1=∠2.求证:∠3=∠ACB.变式7.如图所示,已知AD⊥BC于D,E是AB上一点,EF⊥BC于F,且∠1=∠2,试判断∠B与∠CDG的大小关系,并说明理由.变式8.如图,AB∥CD,∠EAB+∠FDC=180°.求证:AE∥FD.变式9.如图,∠BAP+∠APD=180°,∠1=∠2.求证:∠E=∠F.变式10.若AB∥CD,∠1=∠2,∠3=∠4,AD与BC平行吗?为什么?变式11.如图,已知∠1=∠2,∠MAE=45°,∠FEG=15°,∠NCE=75°,EG平分∠AEC,试说明AB∥EF∥CD.变式12.(探究题)(1)如图①,若AB∥CD,则∠B+∠D=∠E,你能说明理由吗?(2)反之,若∠B+∠D=∠E,直线AB与CD有什么位置关系?(3)若将点E移至图②的位置,此时∠B,∠D,∠E之间有什么关系?(4)若将点E移至图③的位置,此时∠B,∠D,∠E之间的关系又如何?(5)在图④中,AB∥CD,∠E+∠G与∠B+∠F+∠D之间有何关系?。
北师大版数学七年级下册第二章 相交线和平行线同步练习(含答案)

北师大版七年级下册第二章相交线与平行线一、选择题1.如图,AB、CD相交于点E,EF平分∠AEB,若∠BED∶∠DEF=2∶3,则∠BEC的度数为()A. 144°B. 126°C. 150°D. 72°2.同一平面内的四条直线若满足a⊥b,b⊥c,c⊥d,则下列式子成立的是()A.a∥dB.b⊥dC.a⊥dD.b∥c3.如果点P在直线a上,也在直线b上,但不在直线c上,且直线a、b、c两两相交符合以上条件的图形是()A.B.C.D.4.在同一平面内,有8条互不重合的直线,l1,l2,l3…l8,若l1⊥l2,l2∥l3,l3⊥l4,l4∥l5…以此类推,则l1和l8的位置关系是()A.平行B.垂直C.平行或垂直D.无法确定5.如图,点E在直线AB上,EC平分∠AED,∠DEB=100°,如果要使AB∥CD,则∠C的度数为()A. 30°B. 40°C. 50°D. 60°6.如图,直线AB,CD相交于点O,因为∠1+∠3=180°,∠2+∠3=180°,所以∠1=∠2,其推理依据是()A.同角的余角相等B.对顶角相等C.同角的补角相等D.等角的补角相等7.下列说法正确的是()A.相等的角是对顶角B.一对同旁内角的平分线互相垂直C.对顶角的平分线在一条直线上D.同位角相等8.如图,点O在直线AB上,点M,N在直线AB外,若MO⊥AB,NO⊥AB,垂足均为O,则可得点N在直线MO上,其理由是()A.经过两点有且只有一条直线B.在同一平面上,一条直角只有一条垂线C.直线外一点与直线上各点连接的所有线段中,垂线段最短D.经过直线上或直线外一点,有且只有一条直线与已知直线垂直二、填空题9.如图所示,已知三条直线AB、CD、EF两两相交于点P、Q、R,则图中补角共有______对,对顶角共有______对(平角除外).10.已知AB∥CD,CP平分∠ACD.求证:∠1=∠2证明:∵AB∥CD(已知),∴∠2=∠3 ( ).又∵CP平分∠ACD,∴∠1=__________.∴∠1=∠2(等量代换).11.如图,把一块长方形纸片ABCD沿EG折叠,若∠FEG=35°,则∠AEF的补角为__________度.12.如图,在△ABC中,∠ABC=90,过点B作三角形ABC的AC边上的高BD,过D点作三角形ABD的AB边上的高DE.∠A的同位角是__________________________.∠ABD的内错角是__________.点B到直线AC的距离是线段______的长度.点D到直线AB的距离是线段______的长度.13.n条水平直线与倾斜直线a相交可得________条线段,_______对同位角,____对内错角,______对同旁内角.14.如图,BD⊥AC于D,DE⊥BC于E,若DE=9 cm,AB=12 cm,不考虑点与点重合的情况,则线段BD的取值范围是_________.15.如图,l1∥l2,则∠1=________度.16.已知∠A与∠B互余,若∠A=20°15′,则∠B的度数为.三、解答题17.给下面命题的说理过程填写依据.已知:如图,直线AB,CD相交于点O,EO⊥CD,垂足为O,OF平分∠BOD,对∠EOF=∠BOC说明理由.理由:因为∠AOC=∠BOD(),∠BOF=∠BOD(),所以∠BOF=∠AOC().因为∠AOC=180°-∠BOC(),所以∠BOF=90°-∠BOC.因为EO⊥CD(),所以∠COE=90°()因为∠BOE+∠COE=∠BOC(),所以∠BOE=∠BOC-∠COE.所以∠BOE=∠BOC-90°()因为∠EOF=∠BOE+∠BOF()所以∠EOF=(∠BOC-90°)+( )所以∠EOF=∠BOC.18.如图,已知AC∥ED,ED∥GF,∠BDF=90°.(1)若∠ABD=150°,求∠GFD的度数;(2)若∠ABD=θ,求∠GFD-∠CBD的度数.19.如图,已知直线l1∥l2,直线l和直线l1、l2交于点C和D,在直线l有一点P.若P点在C、D之间运动时,问∠PAC,∠APB,∠PBD之间的关系是否发生变化,并说明理由.20.如图,已知AB∥CF,DE∥CF,DE与BC交于点P,若∠ABC=70°,∠CDE=130°.(1)试判断∠ABP与∠BPD之间的数量关系,并说明理由;(2)求∠BCD的度数.21.如图,直线AB,CD相交于点O,∠AOC=60°,∠1∶∠2=1∶2.(1)求∠2的度数;(2)若∠2与∠MOE互余,求∠MOB的度数.22.求出满足下列条件的角的度数:(1)已知一个角的补角是这个角的余角的3倍,求这个角;(2)已知一个角的余角比这个角小18°,求这个角的补角.23.如图,直线AB、CD相交于点O,OE⊥AB,点O为垂足,OF平分∠AOC,且∠COE∶∠AOC =2∶5,求∠DOF的度数.24.如图:把一张长方形纸片ABCD沿EF折叠后.点D与点B重合,点C落在点M,如果∠EFB=66°,求∠EBF及∠DEF的度数.答案解析1.【答案】A【解析】∵EF平分∠AEB,∴∠BEF=90°,∵∠BED∶∠DEF=2∶3,∴∠BED=36°,∴∠BEC=180°-∠BED=144°.故选A.2.【答案】C【解析】∵a⊥b,b⊥c,∴a∥c,∵c⊥d,∴a⊥d.故选C.3.【答案】D【解析】A.不符合直线a、b、c两两相交;B.不符合点P在直线a上;C.不符合点P不在直线c上;D.符合条件,故选D.4.【答案】A【解析】∵l2∥l3,l3⊥l4,l4∥l5,l5⊥l6,l6∥l7,l7⊥l8,∴l2⊥l4,l4⊥l6,l6⊥l8,∴l2⊥l8.∵l1⊥l2,∴l1∥l8.故选A.5.【答案】B【解析】∵∠DEB=100°,∴∠AED=180°-100°=80°,∵EC平分∠AED,∴∠AEC=∠DEC=∠AED=40°,∵AB∥CD,∠C=∠AEC=40°,故选B.6.【答案】C【解析】∵∠1+∠3=180°,∠2+∠3=180°,∴∠1=∠2(同角的补角相等),故选C.7.【答案】C【解析】A.相等的角不一定是对顶角,错误;B.一对同旁内角的平分线不一定互相垂直,错误;C.对顶角的平分线在一条直线上,正确;D.同位角不一定相等,错误;故选C.8.【答案】D【解析】∵MO⊥AB,NO⊥AB,垂足均为O,∴MN⊥AB于点O,即MO与NO是同一条直线,根据是经过直线上或直线外一点,有且只有一条直线与已知直线垂直,故选D.9.【答案】126【解析】如图,一个顶点处∠1与∠2,∠2与∠3,∠3与∠4,∠4与∠1是补角,共4对,图中共有三个顶点,所以补角有4×3=12对;∠1与∠3,∠2与∠4是对顶角,共2对,图中共有3个顶点,所以对顶角有2×3=6对.故应填12,6.10.【答案】两直线平行,内错角相等∠3【解析】∵AB∥CD(已知),∴∠2=∠3 (两直线平行,内错角相等).又∵CP平分∠ACD,∴∠1=∠3,∴∠1=∠2(等量代换).故答案为:两直线平行,内错角相等,∠3.11.【答案】70【解析】∠DEF=∠FEG+∠DEG=35°+35°=70°,即∠AEF的补角是70°.故答案是:70.12.【答案】∠BDC、∠BED、∠EDC∠BDC BD DE【解析】根据两直线被第三条直线所截,位置相同的角是同位角,可得一个角的同位角,根据根据两直线被第三条直线所截,角位于两直线的中间,截线的两侧是内错角,可得一个角的内错角,根据点到直线的垂线段的长度是点到直线的距离,可得答案.∠A的同位角是∠BDC、∠BED、∠EDC,∠ABD的内错角是∠BDC,点B到直线AC的距离是线段BD的长度,点D到直线AB的距离是线段DE的长度,13.【答案】2n(n-1)n(n-1)n(n-1)【解析】n条水平直线与倾斜直线a相交可得条线段,2n(n-1)对同位角,n(n-1)对内错角,n(n-1)对同旁内角,故答案为,2n(n-1),n(n-1),n(n-1).14.【答案】9 cm<DB<12 cm【解析】在△ADB中,∵BD⊥AD,∴AB>BD,∵AB=12 cm,∴BD<12 cm,在△BDE中,∵DE⊥BC,∴BD>DE,∵DE=9 cm,∴BD>9 cm,∴9 cm<DB<12 cm.故答案为9 cm<DB<12 cm.15.【答案】20【解析】∵l1∥l2,∴∠2=70°,∴∠1=90°-∠2=90°-70°=20°.16.【答案】69.75°【解析】∵∠A与∠B互余,∠A=20°15′,∴∠B=90°-20°15′=69°45′=69.75°.故答案为:69.75°.17.【答案】因为∠AOC=∠BOD(对顶角相等),∠BOF=∠BOD(平分线的定义),所以∠BOF=∠AOC(等量代换).因为∠AOC=180°-∠BOC(平角的定义),所以∠BOF=90°-∠BOC.因为EO⊥CD(已知),所以∠COE=90°(垂直的定义)因为∠BOE+∠COE=∠BOC(两角和的定义),所以∠BOE=∠BOC-∠COE.所以∠BOE=∠BOC-90°(等量代换)因为∠EOF=∠BOE+∠BOF(两角和的定义)所以∠EOF=(∠BOC-90°)+(等量代换)所以∠EOF=∠BOC.故答案为:对顶角相等,角平分线的定义,等量代换,平角的定义,已知,垂直的定义,两角和的定义,等量代换,两角和的定义,等量代换.【解析】根据对顶角的性质得到∠AOC=∠BOD,由角平分线的定义得到∠BOF=∠BOD,等量代换得到∠BOF=∠AOC,由垂直的定义得到∠COE=90°,等量代换得到∠BOE=∠BOC-90°,于是得到结论.18.【答案】(1)∵AC∥ED,∴∠ABD+∠BDE=180°,∵∠ABD=150°,∴∠BDE=30°,∵∠BDF=90°,∴∠EDF=60°,∵ED∥GF,∴∠EDF+∠F=180°,∴∠F=120°;(2)∵AC∥ED,∴∠ABD+∠BDE=180°,∵∠ABD=θ,∴∠BDE=180°-θ,∵∠BDF=90°,∴∠EDF=90°-(180°-θ)=θ-90°,∵ED∥GF,∴∠EDF+∠F=180°,∴∠F=270°-θ,∵∠ABD=θ,∴∠CBD=180°-θ,∴∠GFD-∠CBD=(270°-θ)-(180-θ)°=90°.【解析】(1)根据平行线的性质可得∠ABD+∠BDE=180°,进而可得∠BDE=30°,然后再计算出∠EDF的度数,再根据平行线的性质可得∠EDF+∠F=180°,进而可得∠GFD的度数;(2)与(1)类似,表示出∠F的度数,再表示出∠CBD的度数,再求差即可.19.【答案】如图,当P点在C、D之间运动时,∠APB=∠PAC+∠PBD.理由如下:过点P作PE∥l1,∵l1∥l2,∴PE∥l2∥l1,∴∠PAC=∠1,∠PBD=∠2,∴∠APB=∠1+∠2=∠PAC+∠PBD.【解析】当P点在C、D之间运动时,首先过点P作PE∥l1,由l1∥l2,可得PE∥l2∥l1,根据两直线平行,内错角相等,即可求得:∠APB=∠PAC+∠PBD.20.【答案】(1)∠ABP=∠BPD,理由:∵AB∥CF,DE∥CF,∴AB∥DE,∴∠ABP=∠BPD;(2)∵AB∥CF,∠ABC=70°,∴∠BCF=∠ABC=70°,又∵DE∥CF,∠CDE=130°,∴∠DCF+∠CDE=180°,∴∠DCF=50°,∴∠BCD=∠BCF-∠DCF=70°-50°=20°.【解析】(1)根据AB∥CF,DE∥CF,可得AB∥DE,进而得出∠ABP=∠BPD;(2)由AB∥CF,∠ABC=70°,易求∠BCF,又DE∥CF,∠CDE=130°,那么易求∠DCF,于是∠BCD=∠BCF-∠DCF可求.21.【答案】(1)∵∠DOB=∠AOC=60°,∴∠1+∠2=60°,又∠1∶∠2=1∶2.∴∠1=20°,∠2=40°;(2)∵∠2与∠MOE互余,∠2=40°,∴∠MOE=50°,又∠1=20°,∴∠MOB=30°.【解析】(1)根据对顶角相等得到∠DOB=60°,根据已知求出∠2的度数;(2)根据余角的概念求出∠MOE的度数,计算即可.22.【答案】解:(1)设这个角为x°,由题意得:180-x=3(90-x),解得:x=45.答:这个角为45°.(2)设这个角为x°,由题意得:90-x=x-18,解得:x=54.所以这个角的补角为126°.【解析】(1)首先设这个角为x°,则它的余角为(90-x)°,补角为(180-x)°,根据题目所给等量关系列出方程,再解方程即可.(2)首先这个角为x°,则它的余角为(90-x)°,根据题意列出方程即可.23.【答案】∵OE⊥AB,∴∠AOE=∠BOE=90°,设∠EOC=2x,∠AOC=5x.∵∠AOC-∠COE=∠AOE,∴5x-2x=90°,解得x=30°,∴∠COE=60°,∠AOC=150°.∵OF平分∠AOC,∴∠AOF=75°.∵∠AOD=∠BOC=90°-∠COE=30°,∴∠DOF=∠AOD+∠AOF=105°.【解析】先由OE⊥AB得出∠AOE=∠BOE=90°,再设∠COE=2x,∠AOC=5x.根据∠AOC-∠COE=∠AOE,列方程求出x,再根据角平分线定义求出∠AOF=75°,根据对顶角性质及互余的性质得出∠AOD=∠BOC=90°-∠COE=30°,然后由∠DOF=∠AOD+∠AOF即可求解.24.【答案】∵AD∥BC,∴∠DEF=∠EFB=66°,由折叠可得∠DEF=∠BEF,∴∠BEF=66°,∴∠EBF=∠AEB=180°-∠DEF-∠BEF=180°-66°-66°=48°.【解析】首先根据平行线的性质可得∠DEF=∠EFB,再根据折叠可得∠DEF=∠BEF,再利用三角形内角和可得∠EBF=∠AEB=180°-∠DEF-∠BEF,进而得到答案.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1相交线学习要求1.能从两条直线相交所形成的四个角的关系入手,理解对顶角、互为邻补角的概念,掌握对顶角的性质.2.能依据对顶角的性质、邻补角的概念等知识,进行简单的计算.课堂学习检测一、填空题1.如果两个角有一条______边,并且它们的另一边互为____________,那么具有这种关系的两个角叫做互为邻补角.2.如果两个角有______顶点,并且其中一个角的两边分别是另一个角两边的___________ ________,那么具有这种位置关系的两个角叫做对顶角. 3.对顶角的重要性质是_________________.4.如图,直线AB 、CD 相交于O 点,∠AOE =90°. (1)∠1和∠2叫做______角;∠1和∠4互为______角; ∠2和∠3互为_______角;∠1和∠3互为______角; ∠2和∠4互为______角.(2)若∠1=20°,那么∠2=______;∠3=∠BOE -∠______=______°-______°=______°;∠4=∠______-∠1=______°-______°=______°. 5.如图,直线AB 与CD 相交于O 点,且∠COE =90°,则 (1)与∠BOD 互补的角有________________________; (2)与∠BOD 互余的角有________________________; (3)与∠EOA 互余的角有________________________; (4)若∠BOD =42°17′,则∠AOD =__________; ∠EOD =______;∠AOE =______. 二、选择题6.图中是对顶角的是( ).7.如图,∠1的邻补角是( ).(A)∠BOC (B)∠BOC 和∠AOF (C)∠AOF (D)∠BOE 和∠AOF 8.如图,直线AB 与CD 相交于点O ,若AOD AOC ∠=∠31,则∠BOD 的度数为( ). (A)30° (B)45° (C)60° (D)135°9.如图所示,直线l1,l2,l3相交于一点,则下列答案中,全对的一组是( ).(A)∠1=90°,∠2=30°,∠3=∠4=60°(B)∠1=∠3=90°,∠2=∠4=30°(C)∠1=∠3=90°,∠2=∠4=60°(D)∠1=∠3=90°,∠2=60°,∠4=30°三、判断正误10.如果两个角相等,那么这两个角是对顶角.( ) 11.如果两个角有公共顶点且没有公共边,那么这两个角是对顶角.( ) 12.有一条公共边的两个角是邻补角.( ) 13.如果两个角是邻补角,那么它们一定互为补角.( ) 14.对顶角的角平分线在同一直线上.( ) 15.有一条公共边和公共顶点,且互为补角的两个角是邻补角.( )综合运用一、解答题16.如图所示,AB,CD,EF交于点O,∠1=20°,∠BOC=80°,求∠2的度数.17.已知:如图,直线a,b,c两两相交,∠1=2∠3,∠2=86°.求∠4的度数.18.已知:如图,直线AB,CD相交于点O,OE平分∠BOD,OF平分∠COB,∠AOD∶∠DOE=4∶1.求∠AOF的度数.19.如图,有两堵围墙,有人想测量地面上两堵围墙内所形成的∠AOB的度数,但人又不能进入围墙,只能站在墙外,请问该如何测量?2 垂线学习要求1.理解两条直线垂直的概念,掌握垂线的性质,能过一点作已知直线的垂线.2.理解点到直线的距离的概念,并会度量点到直线的距离.课堂学习检测一、填空题1.当两条直线相交所成的四个角中,有一个角是直角时,就说这两条直线______,其中一条直线叫做另一条直线的______线,它们的交点叫做______.2.垂线的性质性质1:平面内,过一点____________与已知直线垂直.性质2:连接直线外一点与直线上各点的_________中,_________最短.3.直线外一点到这条直线的__________________叫做点到直线的距离.4.如图,直线AB,CD互相垂直,记作______;直线AB,CD互相垂直,垂足为O点,记作____________;线段PO的长度是点_________到直线_________的距离;点M到直线AB的距离是_______________.二、按要求画图5.如图,过A点作CD⊥MN,过A点作PQ⊥EF于B.图a 图b 图c6.如图,过A点作BC边所在直线的垂线EF,垂足是D,并量出A点到BC边的距离.图a 图b 图c7.如图,已知∠AOB及点P,分别画出点P到射线OA、OB的垂线段PM及PN.图a 图b 图c8.如图,小明从A村到B村去取鱼虫,将鱼虫放到河里,请作出小明经过的最短路线.综合、运用、诊断一、判断下列语句是否正确(正确的画“√”,错误的画“×”)9.两条直线相交,若有一组邻补角相等,则这两条直线互相垂直. ( ) 10.若两条直线相交所构成的四个角相等,则这两条直线互相垂直. ( ) 11.一条直线的垂线只能画一条. ( ) 12.平面内,过线段AB 外一点有且只有一条直线与AB 垂直. ( ) 13.连接直线l 外一点到直线l 上各点的所有线段中,垂线段最短. ( ) 14.点到直线的距离,是过这点画这条直线的垂线,这点与垂足的距离. ( ) 15.直线外一点到这条直线的垂线段,叫做点到直线的距离. ( ) 16.在三角形ABC 中,若∠B =90°,则AC >AB . ( )二、选择题17.如图,若AO ⊥CO ,BO ⊥DO ,且∠BOC =α,则∠AOD 等于( ).(A)180°-2α (B)180°-α(C)α2190+︒(D)2α-90°18.如图,点P 为直线m 外一点,点P 到直线m 上的三点A 、B 、C 的距离分别为P A =4cm ,PB =6cm ,PC =3cm ,则点P 到直线m 的距离为( ). (A)3cm (B)小于3cm (C)不大于3cm (D)以上结论都不对19.如图,BC ⊥AC ,CD ⊥AB ,AB =m ,CD =n ,则AC 的长的取值范围是( ).(A)AC <m (B)AC >n (C)n ≤AC ≤m (D)n <AC <m 20.若直线a 与直线b 相交于点A ,则直线b 上到直线a 距离等于2cm的点的个数是( ). (A)0 (B)1 (C)2 (D)3 21.如图,AC ⊥BC 于点C ,CD ⊥AB 于点D ,DE ⊥BC于点E ,能表示点到直线(或线段)的距离的线段有( ). (A)3条 (B)4条 (C)7条 (D)8条 三、解答题22.已知:OA ⊥OC ,∠AOB ∶∠AOC =2∶3.求∠BOC 的度数.3 同位角、内错角、同旁内角学习要求当两条直线被第三条直线所截时,能从所构成的八个角中识别出哪两个角是同位角、内错角及同旁内角.课堂学习检测一、填空题1.如图,若直线a,b被直线c所截,在所构成的八个角中指出,下列各对角之间是属于哪种特殊位置关系的角?(1)∠1与∠2是_______;(2)∠5与∠7是______;(3)∠1与∠5是_______;(4)∠5与∠3是______;(5)∠5与∠4是_______;(6)∠8与∠4是______;(7)∠4与∠6是_______;(8)∠6与∠3是______;(9)∠3与∠7是______;(10)∠6与∠2是______.2.如图2所示,图中用数字标出的角中,同位角有______;内错角有______;同旁内角有______.图2 图3 图43.如图3所示,(1)∠B和∠ECD可看成是直线AB、CE被直线______所截得的_______角;(2)∠A和∠ACE可看成是直线_______、______被直线_______所截得的______角.4.如图4所示,(1)∠AED和∠ABC可看成是直线______、______被直线______所截得的_______角;(2)∠EDB和∠DBC可看成是直线______、______被直线_______所截得的______角;(3)∠EDC和∠C可看成是直线_______、______被直线______所截得的______角.综合运用一、选择题5.已知图①~④,在上述四个图中,∠1与∠2是同位角的有( ).图①图②图③图④(A)①②③④(B)①②③C)①③(D)①6.如图,下列结论正确的是( ).(A)∠5与∠2是对顶角(B)∠1与∠3是同位角(C)∠2与∠3是同旁内角(D)∠1与∠2是同旁内角7.如图,∠1和∠2是内错角,可看成是由直线( ).(A)AD,BC被AC所截构成(B)AB,CD被AC所截构成(C)AB,CD被AD所截构成(D)AB,CD被BC所截构成8.如图,直线AB,CD与直线EF,GH分别相交,图中的同旁内角共有( ).(A)4对(B)8对(C)12对(D)16对4 平行线及平行线的判定学习要求1.理解平行线的概念,知道在同一平面内两条直线的位置关系,掌握平行公理及其推论.2.掌握平行线的判定方法,能运用所学的“平行线的判定方法”,判定两条直线是否平行.用作图工具画平行线,从而学习如何进行简单的推理论证.课堂学习检测一、填空题1.在同一平面内,______的两条直线叫做平行线.若直线a与直线b平行,则记作______.2.在同一平面内,两条直线的位置关系只有______、______.3.平行公理是:_______________________________________________________________.4.平行公理的推论是如果两条直线都与______,那么这两条直线也______.即三条直线a,b,c,若a∥b,b∥c,则______.5.两条直线平行的条件(除平行线定义和平行公理推论外):(1)两条直线被第三条直线所截,如果____________,那么这两条直线平行.这个判定方法1可简述为:____________,两直线平行.(2)两条直线被第三条直线所截,如果____________,那么____________.这个判定方法2可简述为:____________,____________.(3)两条直线被第三条直线所截,如果____________,那么____________.这个判定方法3可简述为:____________,____________.二、根据已知条件推理6.已知:如图,请分别依据所给出的条件,判定相应的哪两条直线平行?并写出推理的根据.(1)如果∠2=∠3,那么____________.(____________,____________)(2)如果∠2=∠5,那么____________.(____________,____________)(3)如果∠2+∠1=180°,那么____________.(____________,____________)(4)如果∠5=∠3,那么____________.(____________,____________)(5)如果∠4+∠6=180°,那么____________.(____________,____________)(6)如果∠6=∠3,那么____________.(____________,____________)7.已知:如图,请分别根据已知条件进行推理,得出结论,并在括号内注明理由.(1)∵∠B=∠3(已知),∴______∥______.(____________,____________)(2)∵∠1=∠D(已知),∴______∥______.(____________,____________)(3)∵∠2=∠A(已知),∴______∥______.(____________,____________)(4)∵∠B+∠BCE=180°(已知),∴______∥______.(____________,____________)综合运用一、依据下列语句画出图形8.已知:点P是∠AOB内一点.过点P分别作直线CD∥OA,直线EF∥OB.9.已知:三角形ABC及BC边的中点D.过D点作DF∥CA交AB于M,再过D点作DE∥AB交AC于N点.二、解答题10.已知:如图,∠1=∠2.求证:AB∥CD.(1)分析:如图,欲证AB∥CD,只要证∠1=______.证法1:∵∠1=∠2,(已知)又∠3=∠2,( )∴∠1=_______.( )∴AB∥CD.(___________,___________)(2)分析:如图,欲证AB∥CD,只要证∠3=∠4.证法2:∵∠4=∠1,∠3=∠2,( )又∠1=∠2,(已知)从而∠3=_______.( )∴AB∥CD.(___________,___________)11.绘图员画图时经常使用丁字尺,丁字尺分尺头、尺身两部分,尺头的里边和尺身的上边应平直,并且一般互相垂直,也有把尺头和尺身用螺栓连接起来,可以转动尺头,使它和尺身成一定的角度.用丁字尺画平行线的方法如下面的三个图所示.画直线时要按住尺身,推移丁字尺时必须使尺头靠紧图画板的边框.请你说明:利用丁字尺画平行线的理论依据是什么?5 平行线的性质学习要求1.掌握平行线的性质,并能依据平行线的性质进行简单的推理.2.了解平行线的判定与平行线的性质的区别.3.理解两条平行线的距离的概念.课堂学习检测一、填空题1.平行线具有如下性质:(1)性质1:______被第三条直线所截,同位角______.这个性质可简述为两直线______,同位角______.(2)性质2:两条平行线__________________,_______相等.这个性质可简述为_____________,_____________.(3)性质3:__________________,同旁内角______.这个性质可简述为_____________,__________________.2.同时______两条平行线,并且夹在这两条平行线间的______________叫做这两条平行线的距离.二、根据已知条件推理3.如图,请分别根据已知条件进行推理,得出结论,并在括号内注明理由.(1)如果AB∥EF,那么∠2=______.理由是____________________________________.(2)如果AB∥DC,那么∠3=______.理由是____________________________________.(3)如果AF∥BE,那么∠1+∠2=______.理由是______________________________.(4)如果AF∥BE,∠4=120°,那么∠5=______.理由是________________________.4.已知:如图,DE∥AB.请根据已知条件进行推理,分别得出结论,并在括号内注明理由.(1)∵DE∥AB,( )∴∠2=______.(__________,__________)(2)∵DE∥AB,( )∴∠3=______.(__________,__________)(3)∵DE∥AB( ),∴∠1+______=180°.(______,______)综合运用一、解答题5.如图,∠1=∠2,∠3=110°,求∠4.解题思路分析:欲求∠4,需先证明______∥______.解:∵∠1=∠2,( )∴______∥______.(__________,__________)∴∠4=______=______°.(__________,__________)6.已知:如图,∠1+∠2=180°.求证:∠3=∠4.证明思路分析:欲证∠3=∠4,只要证______∥______.证明:∵∠1+∠2=180°,( )∴______∥______.(__________,__________)∴∠3=∠4.(______,______)7.已知:如图,AB∥CD,∠1=∠B.求证:CD是∠BCE的平分线.证明思路分析:欲证CD是∠BCE的平分线,只要证______=______.证明:∵AB∥CD,( )∴∠2=______.(____________,____________)但∠1=∠B,( )∴______=______.(等量代换)即CD是________________________.8.已知:如图,AB∥CD,∠1=∠2.求证:BE∥CF.证明思路分析:欲证BE∥CF,只要证______=______.证明:∵AB∥CD,( )∴∠ABC=______.(____________,____________)∵∠1=∠2,( )∴∠ABC-∠1=______-______,( )即______=______.∴BE∥CF.(__________,__________)9.已知:如图,AB∥CD,∠B=35°,∠1=75°.求∠A的度数.解题思路分析:欲求∠A,只要求∠ACD的大小.解:∵CD∥AB,∠B=35°,( )∴∠2=∠______=_______°.(____________,____________)而∠1=75°,∴∠ACD=∠1+∠2=______°.∵CD∥AB,( )∴∠A+______=180°.(____________,____________)∴∠A=_______=______.10.已知:如图,四边形ABCD 中,AB ∥CD ,AD ∥BC ,∠B =50°.求∠D 的度数.分析:可利用∠DCE 作为中间量过渡. 解法1:∵AB ∥CD ,∠B =50°,( )∴∠DCE =∠_______=_______°. (____________,______) 又∵AD ∥BC ,( )∴∠D =∠______=_______°.(____________,____________)想一想:如果以∠A 作为中间量,如何求解? 解法2:∵AD ∥BC ,∠B =50°,( )∴∠A +∠B =______.(____________,____________)即∠A =______-______=______°-______°=______°. ∵DC ∥AB ,( )∴∠D +∠A =______.(_____________,_____________) 即∠D =______-______=______°-______°=______°.11.已知:如图,AB ∥CD ,AP 平分∠BAC ,CP 平分∠ACD ,求∠APC 的度数.解:过P 点作PM ∥AB 交AC 于点M .∵AB ∥CD ,( )∴∠BAC +∠______=180°.( ) ∵PM ∥AB ,∴∠1=∠_______,( )且PM ∥_______.(平行于同一直线的两直线也互相平行) ∴∠3=∠______.(两直线平行,内错角相等) ∵AP 平分∠BAC ,CP 平分∠ACD ,( )∠=∠∴211______,∠=∠214______.( ) ο90212141=∠+∠=∠+∠∴ACD BAC .( ) ∴∠APC =∠2+∠3=∠1+∠4=90°.( )总结:两直线平行时,同旁内角的角平分线______.6 命题学习要求1.知道什么是命题,知道一个命题是由“题设”和“结论”两部分构成的.2.对于给定的命题,能找出它的题设和结论,并会把该命题写成“如果……,那么……”的形式.能判定该命题的真假.课堂学习检测一、填空题1.______一件事件的______叫做命题.2.许多命题都是由______和______两部分组成.其中题设是____________,结论是______ _____.3.命题通常写成“如果……,那么…….”的形式.这时,“如果”后接的部分是______,“那么”后接的部分是______.4.所谓真命题就是:如果题设成立,那么结论就______的命题.相反,所谓假命题就是:如果题设成立,不能保证结论______的命题.二、指出下列命题的题设和结论5.垂直于同一条直线的两条直线平行.题设是___________________________________________________________;结论是___________________________________________________________.6.同位角相等,两直线平行.题设是___________________________________________________________;结论是___________________________________________________________.7.两直线平行,同位角相等.题设是___________________________________________________________;结论是___________________________________________________________.8.对顶角相等.题设是___________________________________________________________;结论是___________________________________________________________.三、将下列命题改写成“如果……,那么……”的形式9.90°的角是直角.__________________________________________________________________.10.末位数字是零的整数能被5整除.__________________________________________________________________.11.等角的余角相等.__________________________________________________________________.12.同旁内角互补,两直线平行.__________________________________________________________________.综合运用一、下列语句哪些是命题,哪些不是命题?13.两条直线相交,只有一个交点.( ) 14. 不是有理数.( )15.直线a与b能相交吗?( ) 16.连接AB.( )17.作AB⊥CD于E点.( ) 18.三条直线相交,有三个交点.( )二、判断下列各命题中,哪些命题是真命题?哪些是假命题?(对于真命题画“√”,对于假命题画“×”)19.0是自然数.( )20.如果两个角不相等,那么这两个角不是对顶角.( )21.相等的角是对顶角.( )22.如果AC=BC,那么C点是AB的中点.( )23.若a∥b,b∥c,则a∥c.( )24.如果C是线段AB的中点,那么AB=2BC.( )25.若x2=4,则x=2.( )26.若xy=0,则x=0.( )27.同一平面内既不重合也不平行的两条直线一定相交.( )28.邻补角的平分线互相垂直.( )29.同位角相等.( )30.大于直角的角是钝角.( )7 平移学习要求了解图形的平移变换,知道一个图形进行平移后所得的图形与原图形之间所具有的联系和性质,能用平移变换有关知识说明一些简单问题及进行图形设计.课堂学习检测一、填空题1.如图所示,线段ON是由线段______平移得到的;线段DE是由线段______平移得到的;线段FG是由线段______平移得到的.2.如图所示,线段AB在下面的三个平移中(AB→A1B1→A2B2→A3B3),具有哪些性质.图a图b 图c(1)线段AB上所有的点都是沿______移动,并且移动的距离都________.因此,线段AB,A1B1,A2B2,A3B3的位置关系是____________________;线段AB,A1B1,A2B2,A3B3的数量关系是________________.(2)在平移变换中,连接各组对应点的线段之间的位置关系是______;数量关系是______.3.如图所示,将三角形ABC平移到△A′B′C′.图a 图b在这两个平移中:(1)三角形ABC的整体沿_______移动,得到三角形A′B′C′.三角形A′B′C′与三角形ABC的______和______完全相同.(2)连接各组对应点的线段即AA′,BB′,CC′之间的数量关系是__________________;位置关系是__________________.综合、运用、诊断一、按要求画出相应图形4.如图,AB∥DC,AD∥BC,DE⊥AB于E点.将三角形DAE平移,得到三角形CBF.5.如图,AB∥DC.将线段DB向右平移,得到线段CE.6.已知:平行四边形ABCD及A′点.将平行四边形ABCD平移,使A点移到A′点,得平行四边形A′B′C′D′.7.已知:五边形ABCDE及A′点.将五边形ABCDE平移,使A点移到A′点,得到五边形A′B′C′D′E′.平行线的判断一、选择题:1.如图,能与∠α构成同旁内角的角有( ) A . 5个 B .4个 C . 3个D . 2个α2.如图,AB ∥CD ,直线MN 与AB 、CD 分别交于点E 和点F ,GE ⊥MN ,∠1=130°,则∠2等于 ( )A .50°B .40°C .30°D .65° 3.如图,DE ∥AB ,∠CAE=31∠CAB ,∠CDE=75°,∠B=65°则∠AEB 是 ( ) A .70° B .65° C .60° D .55° 4.如图,如果AB ∥CD ,则∠a 、β∠、γ∠之间的关系是( ) A 、0180=∠+∠+∠γβα B 、0180=∠+∠-∠γβα C 、0180=∠-∠+∠γβα D 、0270=∠+∠+∠γβα 5.如图所示,AB ∥CD,则∠A+∠E+∠F+∠C 等于( )A.180°B.360°C.540°D.720°6.如图,OP ∥QR ∥ST ,则下列各式中正确的是( )A 、∠1+∠2+∠3=180°B 、∠1+∠2-∠3=90°C 、∠1-∠2+∠3=90°D 、∠2+∠3-∠1=180° 7.如图,AB ∥DE ,那么∠BCD 于( )A 、∠2-∠1B 、∠1+∠2C 、180°+∠1-∠2D 、180°+∠2-2∠1二、填空题:8.把一副三角板按如图方式放置,则两条斜边所形成的钝角α=_______度.45°α30°9.求图中未知角的度数,X=_______,y=_______.10.如图,AB∥CD,AF平分∠CAB,CF平分∠ACD.(1)∠B+∠E+∠D=________;(2)∠AFC=________.11.如图,AB∥CD,∠A=120°,∠1=72°,则∠D的度数为__________.12.如图,∠BAC=90°,EF∥BC,∠1=∠B,则∠DEC=________.13.如图,把长方形ABCD沿EF对折,若∠1=500,则∠AEF的度数等于14.如图,已知AB∥CD,∠1=100°,∠2=120°,则∠α=____三、计算证明题:15.如图,在四边形ABCD中,∠A=104°-∠2,∠ABC=76°+∠2,BD⊥CD于D,EF⊥CD于F,能辨认∠1=∠2吗?试说明理由.16..如图,CD∥AB,∠DCB=70°,∠CBF=20°,∠EFB=130°,问直线EF与AB有怎样的位置关系,为什么?17.已知:如图23,AD 平分∠BAC ,点F 在BD 上,FE ∥AD 交AB 于G ,交CA 的延长线于E ,求证:∠AGE =∠E 。