中考专题复习等腰三角形的分类讨论(精)
专题11 等腰三角形中的分类讨论 (原卷版)

专题11 等腰三角形中的分类讨论【知识点睛】❖ 在等腰三角形中,没有明确指明边是腰还是底时,要进行分类讨论,且求出未知边的长后,一定要看这三边能否组成三角形;❖ 没有明确指明角是顶角或底角时,也要进行分类讨论 设等腰三角形中有一个角为α时 对应结论 当α为顶角时底角=α2190-︒ 当α为直角或钝角时不需要分类讨论,该角必为顶角 当α为锐角时α可以为顶角;也可以为底角 当等腰三角形的一个外角为α时对应结论 若α为锐角、直角α必为顶角的外角 若α为钝角α可以是顶角的外角,也可以是底角的外角❖ 动态环境下的等腰三角形存在性问题【类题训练】1.已知△ABC 是等腰三角形,它的周长为20cm ,一条边长6cm ,那么腰长是 cm .2.(1)等腰三角形中有一个角是70°,则它的顶角是 .(2)等腰三角形中有一个角是100°,则它的另两个角是 .(3)等腰三角形的一个内角为70°,它一腰上的高与底边所夹的度数为 .3.如果等腰三角形的周长是35cm ,一腰上中线把三角形分成两个三角形,其周长之差是4cm ,则这个等腰三角形的底边长是 .4.等腰三角形一腰上的高与另一腰所成的夹角为45°,则这个等腰三角形的顶角的度数为 .5.如图,已知直角三角形ABC中,∠ACB=90°,∠CAB=60°,在直线BC或AC上取一点P,使得△ABP为等腰三角形,则符合条件的点有()A.4个B.5个C.6个D.7个6.用一根长为21厘米的铁丝围成一个三条边长均为整数厘米的等腰三角形,则方案的种数为()A.5B.6C.7D.87.如图,∠AOB=60°,OC平分∠AOB,如果射线OA上的点E满足△OCE是等腰三角形,那么∠OEC的度数为.8.如图,M,N是∠AOB的边OA上的两个点(OM<ON),∠AOB=30°,OM=a,MN =4.若边OB上有且只有1个点P,满足△PMN是等腰三角形,则a的取值范围是.9.如图,是四张形状不同的纸片,用剪刀沿一条直线将它们分别剪开(只允许剪一次),不能够得到两个等腰三角形纸片的是()A.B.C.D.10.已知△ABC的三条边长分别为3,4,6,在△ABC所在平面内画一条直线,将△ABC 分割成两个三角形,使其中的一个是等腰三角形,则这样的直线最多可画()A.5条B.6条C.7条D.8条11.如图,△ABC中,∠B=60°,∠C=90°,在射线BA上找一点D,使△ACD为等腰三角形,则∠ADC的度数为.12.如图,等边△ABC的边长为6,点P沿△ABC的边从A→B→C运动,以AP为边作等边△APQ,且点Q在直线AB下方,当点P、Q运动到使△BPQ是等腰三角形时,点Q 运动路线的长为.13.如图,在△ABC中,∠ACB=2∠A,过点C的直线能将△ABC分成两个等腰三角形,则∠A的度数为.14.已知等边△ABC的边长为3,点E在直线AB上,点D在直线CB上,且ED=EC,若AE=6,则CD的长为.15.△ABC的高AD、BE所在的直线交于点M,若BM=AC,求∠ABC的度数.16.已知△ABC中,∠ACB=90°,AC=BC,过点C作直线l,BE⊥l于E,AD⊥l于D.若BE=2,AD=6,求DE的长.17.如图,△ABC中,∠ABC=∠ACB,点D在BC所在的直线上,点E在射线AC上,且AD=AE,连接DE.(1)如图①,若∠B=∠C=35°,∠BAD=80°,求∠CDE的度数;(2)如图②,若∠ABC=∠ACB=75°,∠CDE=18°,求∠BAD的度数;(3)当点D在直线BC上(不与点B、C重合)运动时,试探究∠BAD与∠CDE的数量关系,并说明理由.18.定义:如果两条线段将一个三角形分成3个等腰三角形,我们把这两条线段叫做这个三角形的三分线.(1)图①是顶角为36°的等腰三角形,这个三角形的三分线已经画出,请你在图②中用不同于图①的方法画出顶角为36°的等腰三角形的三分线,并标注每个等腰三角形顶角的度数.(若两种方法分得的三角形成3对全等三角形,则视为同一种)(2)图③是顶角为45°的等腰三角形,请你在图③中画出顶角为45°的等腰三角形的三分线,并标注每个等腰三角形顶角的度数.(3)△ABC中,∠B=30°,AD和DE是△ABC的三分线,点D在BC边上,点E在AC边上,且AD=BD,DE=CE,设∠C=x°,则x所有可能的值为.19.如图,在四边形ABCD中,AB∥CD,AE交BC于点P,交DC的延长线于点E,点P 为AE的中点.(1)求证:点P也是BC的中点;(2)若CB⊥AB,且DP=,CD=,AB=4,求AP的长;(3)在(2)的条件下,若线段AE上有一点Q,使得△ABQ是等腰三角形,求AQ的长.。
等腰三角形分类讨论初三压轴题

中考热点3——等腰三角形分类讨论等腰三角形的分类讨论题多见于初三各级各类模拟考试甚至中考的压轴题中,由于这类题目都与图形运动有关,需要学生具有一定的想象能力、分析能力和运算能力,而这正是学生最缺乏的,理清这类题目的解题思路和解题策略将会等到在中考中获得高分的重要砝码。
等腰三角形分类讨论的解题思路粗分有两种,第一种:用含有字母的代数式分别表示等腰三角形的三条边,后用三条线段依次相等建立方程后求解,第二种:分别作出三种等腰三角形条件下图形,利用等腰三角形的有关性质和题目中的条件进行合理的转化后建立方程求解。
下面就常见的题型进行分析、归纳 典型例题【例1】如图,在Rt △ABC 中,∠C =90°,54sin =B ,AC =4;D 是BC 的延长线上的一个动点,∠EDA =∠B ,AE ∥BC . (1)找出图中的相似三角形,并加以证明;(2)设CD =x ,AE =y ,求y 关于x 的函数解析式,并写出函数的定义域;(3)当△ADE 为等腰三角形时,求AE 的长. 【思路分析】思路一:用含有x 或者y 的代数式来表示等腰三角形的三条边长AD 、DE 、AE 三条线段依次相等建立方程后求解,显然AE 和DE 边都不方便用含含有x 或者y 的代数式表示。
思路二:分别作出三种等腰三角形条件下图形,利用第(1)题中证明的△ABD ∽△EDA 将等腰的条件转化到△ABD 中进行求解,最后带入定义域检验。
解:(1)∵AE ∥BC ∴∠EAD =∠ADB ,∠EDA =∠B ∴△ABD ∽△EDA (2)∵△ABD ∽△EDA ∴AEADAD BD = ∴y x x x 1616322+=++即3162++=x x y 0>x (3)情况一:当AE =AD 时AD =BD 即3162+=+x x67=x 情况二:DE =AE 时AB =AD ,AC ⊥BD BC =CD 即3=x情况三:AD =DE 时AB =BD 即53=+x2=x点评:将等腰三角形的条件进行适当转化,计算过程大大简化,既节约时间又提高正确率【例2】已知直线1l 的解析式63+=x y ,直线1l 与x 轴、y 轴分别交于点A 、B ,直线2l 经过B 、C 两点,E点C 的坐标为)0,8(.又知点P 在x 轴上从点A 向点C 移动,点Q 在直线2l 上从点C 向点B 移动.点P 、Q 同时出发,且移动的速度都为每秒1个单位长度,设移动时间为t 秒(100<<t ) (1)求直线2l 的解析式(2)当t 为何值时,△PCQ 是等腰三角形【思路分析】在直角坐标系中对等腰三角形进行讨论,依然遵循两大基本思路此题中PC 、QC 两条边长都方便用含有t 的代数式表示,而PQ 不易表示,将等腰三角形PQ =QC 和PC =PQ 两种情况,通过添加底边上的高转化为直角三角形,再用锐角三角比和相似三角形的方法进行求解则较易求得结果。
等腰三角形性质复习之分类讨论

12攀枝花)已知实数x,y满足
分析: 两边长
(不确定)
4是底边 8是腰 4是腰 8是底边
(不可能) 另一腰是8
另一腰是4
周长是20
练习(关于边的分类)
等腰三角形一腰上的中线把周长分成 27和9两部分, 则它的底边长等于
27
9
9
27
例题精练(关于形的分类)
一个等腰三角形的一腰上的高线和另一腰的夹角为 50度,则等腰三角形的底角为 。 分析:
条件确定
关于分类讨论
分类讨论的定义:当数学问题中的条件、结论不确定时,就 应分类讨论。 分类讨论思想是指在解决一个问题时,将问题 划分成几个能用不同形式去解决的小问题,将这些小问题一 一加以解决,从而使问题得到解决,这就是分类讨论思想。 分类讨论解题的实质:是将整体问题化为部分问题来解决。
分类讨论的原则:是不重复、不遗漏。讨论的方法是逐类进 行,还必须要注意综合讨论的结果,以使解题步骤完整。
巩固练习
4、如图,点O是等边△ABC内一点,∠AOB=110°, ∠BOC=α .将△BOC绕点C按顺时针方向旋转60°得△ADC, 连接OD. (1)求证:△COD是等边三角形; (2)当α=150°时,试判断△AOD的形状,并说明理由; (3)探究:当α为多少度时,△AOD是等腰三角形?
提高练习
1、已知△ABC中,∠C=90°,AC=BC=2,P是AB的中点, (1)如图1,如果点D,点E分别在边AC,BC上移动,在移动过 程中保持 CD=BE, 请判断△PDE的形状(无需说明理由) (2)如图2,如果点D,点E分别在AC,CB的延长线上移动,在 移动过程中仍保持CD=BE,请问:(1)中的结论是否仍成立? 若成立,请给予证明;若不成立,请说明理由。 (3)如图3,将一 块与△ABC全等的三角板如图放置(DE边与 CB边重合),现将三角板绕点C顺时针旋转,当DF边与CA边重 合时停止,不考虑起始和结束时情形,设DE,DF (或它们的延长线)分别交AB(或它的延长线)于G,H点( 可参考图4),问BG长为多少时,△CGH是等腰三角形?(只 需直接写出BG值)
“分类讨论”在等腰三角形中的应用

“分类讨论”在等腰三角形中的应用在最近几年的全国各地中考试卷中,出现了以等腰三角形为背景,考查学生分类讨论能力的试题,为帮助同学们提高对此类问题的解题能力,现列举几例:一、要讨论谁是底边或腰长例1、已知一个等腰三角形的一边长为5,另一边长为7,则这个等腰三角形的周长()A. 12 B 17 C 19 D 17或19分析:题中并未说明5或7是底边,还是腰,应分情况讨论.解:当等腰三角形的一腰长为5时,此时7为底边,满足任意两边之和大于第三边,所以满足题意的三角形的周长为5+5+7=17;当等腰三角形的一腰长为7时,此时5为底边,也满足任意两边之和大于第三边,故满足题意的三角形的周长为7+7+5=19.综上知选D.例2、有一个等腰三角形,三边分别是3x-2,4x-3,6-2x,求等腰三角形的周长.分析:已知等腰三角形三边长,说明有两边相等,但不知谁是腰,必须分三种情况分析.解:(1)当3x-2=4x-3时,即x=1,则三边为1,1,4,由于1+1<4,所以不成立;(2)当3x-2=6-2x时,即85x=,则三边长为141714555、、,由于141417555+>,所以成立;(3)当4x-3=6-2x时,即x=1.5,则三边为2.5,3,3,由于2.5+3>3,所以成立.由上可知等腰三角形周长为9或8.5.说明:如果等腰三角形的腰长为A,底边长为B,则有222b b aa+<<.二、要讨论腰与底谁较大例3、一等腰三角形的周长为20cm,从底边上的一个顶点引腰的中线,分三角形周长为两部分,其中一部分比另一部分长2cm,求腰长.分析:题目中的条件是一部分比另一部分长2cm,这里可能是腰比底长,也可能是底比腰长,应分两种情况讨论,因为是中线,周长分成的两部分之差就是腰长与底边长之差.解:不妨设腰长为x cm,底边长为y cm ,根据题意有(1)当腰长大于底边时,有2220x yx y-=⎧⎨+=⎩,解得221633x y==、;(2)当腰长小于底边时,有2220y xx y-=⎧⎨+=⎩,解得68x y==、;因为两种情形都符合三角形的三边关系定理,故腰长为223cm或6cm.说明:分类讨论后,要用三角形三边关系定理来判断所给三边能否构成三角形,从而避免造成错解.三、要讨论谁是底角或顶角例4、(1)等腰三角形的一个角是30°,求底角.(2)等腰三角形的一个角是100°,求底角.分析:等腰三角形的一个角可能指底角,也可能指顶角,须分情况讨论,但顶角可以是锐有、直角、钝角,而底角只能是锐角.解:(1)当30°是底角时,底角即为30°;当30°是顶角时,底角为180302︒-︒,即为75°;(2)因100°只能是顶角,所以底角是1801002︒-︒,即为40°.说明:等腰三角形的底角只能为锐角,不能为直角、钝角,但顶角可以为锐角、直角、钝角.四、要讨论高在三角形内部或外部例5、已知等腰三角形ABC中,BC边上的高12AD BC=,求∠BAC的度数.分析:题中未交代哪条边是底边,哪条边是腰,所以必须分三种情况讨论.解:(1)当BC为底边时,则D是BC中点,△ABC为等腰直角三角形∠BAC=90°;(2)当BC为腰,且高AD在△ABC内部时,1122AD BC AB==,∠B=30°,所以∠BAC=75°;(3)当BC为腰,且高AD在△ABC的外部时,1122AD BC AB==,∠DBA=30°;所以∠BAC=15°.综上所述∠BAC的度数可以为15°、75°、90°.说明:由于题目的图形未画出,因此考虑情况时要周全,不要出现漏解.试一试:1、在活动课上,小红已有两根长为4cm、8cm的小木棒,现打算拼一个等腰三角形,则小红应取的第三根小木棒长是_____Cm.2、在平面直角坐标系中,已知点为A(-2,0),B(2,0)画出等腰三角形ABC(画出一个即可),并写出你画出的ABC的顶点C的坐标.3、下面是数学课堂的一个学习片段,,阅读后, 请回答下面的问题:学习等腰三角形有关内容后,张老师请同学们交流讨论这样一个问题:“已知等腰三角形ABC的角A等于30°,请你求出其余两角”.同学们经片刻的思考与交流后,李明同学举手说:“其余两角是30°和120°”;王华同学说:“其余两角是75°和75°” ,还有一些同学也提出了不同的看法……(1)假如你也在课堂中,你的意见如何? 为什么?(2)通过上面数学问题的讨论, 你有什么感受? (用一句话表示)“分类讨论”在等腰三角形中的应用当面临的问题不宜用一种方法处理或同一种形式叙述时,我们就要想到“分类讨论”——“分而治之,各个击破”.下面就让“分类讨论”思想在等腰三角形中“大放光彩”吧!例1 等腰三角形一腰上的高与另一腰的夹角为30°,则顶角的度数为()A、60°B、120°C、60°或150°D、60°或120°分析:分两种情况,①当顶角是锐角时,如图1,∵∠ABD=30°,∠ADB=90°,∴∠A=60°;②当顶角是钝角时,如图2,∵∠ABD=30°,∠ADB=90°,∴∠BAD=60°,∴∠BAC =120°.所以顶角度数为60°或120°,所以选D .例2 等腰三角形的周长为13,其中一边长为3,则该等腰三角形的底边长为( ) A 、7 B 、3 C 、5或3 D 、5分析:长为3的边可能是底边,也可能是腰,因此有两种情况,①若长为3的边为底边,则该等腰三角形的底边长为3; ②若长为3的边为腰,则该等腰三角形的底边长为(13-3)÷2=5.故选C .说明:边长为3的边、可能是底边,不要只认为它是腰.例3 已知点A 和点B ,以点A 和点B 为其中两个点作位置不同的等腰直角三角形,一共可以作出( )A 、2个B 、4个C 、6个D 、8个分析:如图3,以线段AB 为底边可作出两个等腰直角三角形,以AB 为腰可作出4个等腰直角三角形,因此,共可作出6个等腰直角三角形,故选C . 说明:解题时容易忽视为腰长的情况,因此,分析问题一定要用心,充分考虑各种情形. 例4 如图4,在等边△ABC 所在的平面内求一点P ,使△P AB 、△PBC 、△P AC 都是的等腰三角形,你能找到几个这样的点?画图描述它们的位置.分析:如图4,△ABC 三条边的垂直平分线的交点1p 满足条件,分别以点A 、点B 为圆心,AB 为半径画圆弧,交AC 的垂直平分线于2p 、3p 两点,则△、、、AC P BC P AB P 222∆∆、、、AC P BC P AB P 333∆∆也是等腰三角形,同样可以在AB 、BC 的垂直平分线上再找到4个点P ,使△P AB 、△PBC 、△P AC 是等腰三角形.所以共有7个点.画出的图形如图4.说明:此题乍一看只能确定在△ABC 内一点,关键要注意三个等腰三角形的腰是哪两条边.分类讨论探究题既是中考热点又是考生易错点,克服方法是解题时常提醒自己:“还有其它情况吗?”切记!…图1B 图2 图3B。
等腰三角形的分类讨论

等腰三角形的分类讨论模块一等腰三角形的分类讨论例1(1)等腰三角形的一边长为3,一边长为7,那么它的周长是。
(2)等腰三角形的一边长为4,周长为9,那么它的腰长是。
(3)已知等腰三角形一腰上的中线将它的周长分为6和12两部分,求此等腰三角形的腰长。
练习(1)已知一个等腰三角形两内角的度数之比为1:2,求这个等腰三角形顶角的度数。
(2)若等腰三角形中有一个角等于50°,则这个等腰三角形的顶角的度数为。
例2(1)若等腰三角形一腰上的高和另一腰的夹角为25°,求该三角形的底角的度数。
(2)(2016—2017武昌区八上期中第16题)已知△ABC是等腰三角形,由点A作BC边上的高恰好等于BC的一半,则∠BAC的度数为。
练习例3如图,在△ABC 中,∠ABC=90°,∠A=30°.将△ABC 绕B 点逆时针旋转α(0<α≤60°)角度后得到△A ’BC ’,A ’C ’与AC 交于点F ,与AB 交于点E ,连BF 。
当△BEF 为等腰三角时,α= 。
A模块二 两圆一中垂知识导航已知线段AB ,在平面上找一点C ,使△ABC 为等腰三角形。
图1 图2 图3AABB① 如图1,以A 为圆心,AB 为半径作圆,此圆上的所有点C 均满足AC=AB 。
② 如图2,以B 为圆心,BA 为半径作圆,此圆上的所有点C 均满足BC=BA 。
③ 如图3,作AB 的垂直平分线,此垂直平分线上的所有点C 均满足CA=CB 。
“两圆一中垂”上的所有点C 均满足△ABC 为等腰三角形,即满足“等腰”条件的C 点有无数个。
因此,题目会对C 点再加上另外一个限定条件----例如还限定C 点在坐标轴上或格点,这样,C 点的个数就只有几个了。
例4(2014—2016江岸区八上期末)如图:在4×4的网格中存在线段AB ,每格表示一个单位长度,并构建了平面直角坐标系。
在现有的网格中(包括网格的边界)存在一点P,点P 的横纵坐标都为整数,连接PA 、PB 后得到△PAB 为等腰三角形,则满足条件的点P 有 个。
八年级等腰三角形的分类讨论专题

专题一:等腰三角形中的分类讨论(一)角分类:顶角和底角+ 三角形内角和;外角1.已知一个等腰三角形两内角的度数之比为1:4,求顶角的度数。
2.一个等腰三角形的一个内角比另一个内角的2倍少30o,求这个三角形的三个内角的度数。
3.如果一个等腰三角形的一个外角等于100°,则该等腰三角形的底角的度数是.(二)边分类:底边和腰+ 三角形三边关系4.等腰三角形的两边分别是8,6,这个等腰三角形的周长为5.等腰三角形的两边分别是8,3,这个等腰三角形的周长为6.在等腰三角形ABC中,AB的长是AC的2倍,三角形的周长是40,则AB的长等于_______________.(三)中线分类7.已知等腰三角形一腰上的中线将它的周长分为9和12两部分,求腰长和底长。
8.等腰三角形的底边长为6cm,一腰上的中线把这个三角形的周长分为两部分,这两部分之差是3cm,求这个等腰三角形的腰长(四)高、垂直平分线分类9.已知等腰三角形一腰上的高与另一腰的夹角为25°,求底角的度数10.在ΔABC中,AB=AC,AB的中垂线与AC所在直线相交所得的锐角为50°,则底角∠B=____________11.(2018·哈尔滨中考)在△ABC中,AB=AC,∠BAC=100°,点D在BC边上,连接AD,若△ABD为直角三角形,则∠ADC的度数12.(2019·白银中考)定义:等腰三角形的顶角与其一个底角的度数的比值b 称为这个等腰三角形的“特征值”.若等腰三角形ABC中,∠A=80°,则它的特征值k=13.(2018·绍兴中考)数学课上,张老师举了下面的例题:例1等腰三角形ABC中,∠A=110°,求∠B的度数.(答案:35°)例2等腰三角形ABC中,∠A=40°,求∠B的度数.(答案:40°或70°或100°)张老师启发同学们进行变式,小敏编了如下一题:等腰三角形ABC中,∠A=80°,求∠B的度数.(1)请你解答以上的变式题。
专题训练等腰三角形中的分类讨论

专题复习——等腰三角形中的分类讨论例1. 已知等腰△ABC中,有一个内角为40o,则另两个内角分别为________________.例2. 在△ABC中,∠A的外角等于110°,△ABC是等腰三角形,那么∠B=。
例3.等腰三角形两内角的度数比为2∶1,则顶角为。
例1.等腰三角形有两条边长为4cm和9cm,则该三角形的周长是例2. 等腰三角形的周长为22 cm,其中一边的长是8 cm,则其余两边长分别为_________.例3. 一等腰三角形的周长是25cm,作某一腰上的中线分得两个三角形的周长一个比另一个长5cm,则腰长是例1. 等腰三角形一腰上的高等于腰长的一半,它的底角为例2. 等腰三角形一腰上的高与另一腰的夹角等于20 ,则等腰三角形的顶角度数为例1. 如图,点B在直线L上,点A在直线L外,在直线L上找点C,使得△ABC为等腰三角形。
(要求保留作图痕迹,写清点C的个数)LB例2.在直角坐标系中,O点为坐标原点,A(2,-4),动点B在坐标轴上。
则满足△OAB为等腰三角形的有B点共有个例3. P为直线1:32l y x A=-上一点,(2,0),求使△PAO为等腰三角形的点P的坐标.等腰三角形中的分类讨论练习姓名:日期:指导老师:侯尧等腰三角形是一种特殊的三角形,它除了具有一般三角形的基本性质以外,还具有许多独特的性质,最主要的体现就是它的两底角相等,两腰相等,正是由于具有这两个相等,所以在解等腰三角形的有关题目时必须全面思考,分类讨论,以防漏解。
下面就常见题型举例说明如下:一、角不确定时需分类讨论1、若等腰三角形的一个角为40°,则其他两个角分别为若等腰三角形的一个角为100°,则其他两个角分别为二、边不确定时需分类讨论2、等腰三角形一边长是10cm,另一边长是6cm,则它的周长是等腰三角形的两边长分别是9cm和4cm,则它的周长是等腰三角形周长是20cm,一边长为8cm,则其他两边长分别是等腰三角形周长是20cm,一边长为4cm,则其他两边长分别是等腰三角形周长是13,其中一边长为3,则该等腰三角形的底边长为三、高不确定时需分类讨论3、等腰三角形一腰上的高与另一腰的夹角为30°,则顶角的度数为等腰三角形一腰上的高与底边的夹角为30°,则顶角的度数为等腰三角形一腰上的高与底边的夹角等于顶角的若等腰三角形一腰上的高等于腰长的一半,则底角的度数为四、其它(1)等腰三角形一腰上的中线把该三角形的周长分成12cm和15cm的两部分,求三角形各边的长(2)等腰三角形一腰上的中线把该三角形的周长分成12cm和21cm两部分,求三角形的三边长(3)一等腰三角形的周长为20cm,从底边上的一个顶点引腰的中线,分三角形周长为两部分,其中一部分比另一部分长2cm,求腰长5、已知点A和点B,以点A和点B为其中两个点作位置不同的等腰三角形,一共可以作个6、有一个等腰三角形,三边分别是3x-2,4x-3,6-2x,求等腰三角形的周长7、如图,在等边ΔABC所在的平面内求一点P,使ΔPAB、ΔPBC、ΔPAC都是等腰三角形,你能找到几个这样的点?画图描述他们的位置。
专题14图形中的等腰三角形分类讨论(解析版)

专题14图形中的等腰三⾓形分类讨论(解析版)专题14 图形中的等腰三⾓形分类讨论教学重难点1.理解等腰三⾓形的性质和判定定理;2.能⽤等腰三⾓形的判定定理进⾏相关计算和证明;3.初步体会等腰三⾓形中的分类讨论思想;4.体会在函数动点中寻找某些特殊的点形成的等腰三⾓形;5.培养学⽣进⾏独⽴思考,提⾼独⽴解决问题的能⼒。
【备注】:1.此部分知识点梳理,根据第1个图先提问引导学⽣回顾学过的等腰三⾓形的性质,可以在⿊板上举例让学⽣画图;2再根据第2个图引导学⽣总结出题⽬中经常出现的⼀些等腰三⾓形的题型;3.和学⽣⼀起分析⼆次函数背景下等腰三⾓形的基本考点,为后⾯的例题讲解做好铺垫。
建议时间5分钟左右。
等腰三⾓形的性质:等腰三⾓形常见题型分类:函数背景下的等腰三⾓形的考点分析:1.求解相应函数的解析式;2.根据函数解析式求解某些特殊点的坐标;3.根据点的位置进⾏等腰三⾓形的讨论:分“指定腰长”和“不指定腰长”两⼤类;4.根据点的位置和形成的等腰三⾓形⽴等式求解。
【备注】:1.以下每题教法建议,请⽼师根据学⽣实际情况参考;2.在讲解时:不宜采⽤灌输的⽅法,应采⽤启发、诱导的策略,并在读题时引导学⽣发现⼀些题⽬中的条件(相等的量、不变的量、隐藏的量等等),使学⽣在复杂的背景下⾃⼰发现、领悟题⽬的意思;3.可以根据各题的“参考教法”引导学⽣逐步解题,并采⽤讲练结合;注意边讲解边让学⽣计算,加强师⽣之间的互动性,让学⽣参与到例题的分析中来;4.例题讲解,可以根据“教法指导”中的问题引导学⽣分析题⽬,边讲边让学⽣书写,每个问题后⾯有答案提⽰;5.引导的技巧:直接提醒,问题式引导,类⽐式引导等等;6.部分例题可以先让学⽣⾃⼰试⼀试,之后再结合学⽣做的情况讲评;7.每个题⽬的讲解时间根据实际情况处理,建议每题7分钟,选讲例题在时间⾜够的情况下讲解。
1.(2019青浦⼆模)如图1,已知扇形MON的半径为,∠MON=90°,点B在弧MN上移动,联结BM,作OD⊥BM,垂⾜为点D,C为线段OD上⼀点,且OC=BM,联结BC并延长交半径OM于点A,设OA=x,∠COM的正切值为y.(1)如图2,当AB⊥OM时,求证:AM=AC;(2)求y关于x的函数关系式,并写出定义域;(3)当△OAC为等腰三⾓形时,求x的值.整体分析:(1)先判断出∠ABM=∠DOM,进⽽判断出△OAC≌△BAM,即可得出结论;(2)先判断出BD=DM,进⽽得出,进⽽得出AE=,再判断出,即可得出结论;(3)分三种情况利⽤勾股定理或判断出不存在,即可得出结论.详解:(1)∵OD⊥BM,AB⊥OM,∴∠ODM=∠BAM=90°.∵∠ABM+∠M=∠DOM+∠M,∴∠ABM=∠DOM.∵∠OAC=∠BAM,OC=BM,∴△OAC≌△BAM,∴AC=AM.(2)如图2,过点D作DE∥AB,交OM于点E.∵OB=OM,OD⊥BM,∴BD=DM.∵DE∥AB,∴,∴AE=EM.∵OM=,∴AE=.∵DE∥AB,∴,∴.()(3)(i)当OA=OC时.∵.在Rt△ODM中,.∵.解得,或(舍).(ii)当AO=AC时,则∠AOC=∠ACO.∵∠ACO>∠COB,∠COB=∠AOC,∴∠ACO>∠AOC,∴此种情况不存在.(ⅲ)当CO=CA时,则∠COA=∠CAO=α.∵∠CAO>∠M,∠M=90°﹣α,∴α>90°﹣α,∴α>45°,∴∠BOA=2α>90°.∵∠BOA≤90°,∴此种情况不存在.即:当△OAC为等腰三⾓形时,x的值为.点睛:本题是圆的综合题,主要考查了相似三⾓形的判定和性质,圆的有关性质,勾股定理,等腰三⾓形的性质,建⽴y关于x 的函数关系式是解答本题的关键.图形背景下等腰三⾓形分类讨论的解题⽅法和策略:1.先寻找题⽬中的条件:相等的⾓、相等的边、相似的三⾓形等;2.根据题⽬中的条件求解相关线段的长度;3.等腰三⾓形讨论中,分三步⾛:分类、画图、计算;4.等腰讨论中,当不能直接利⽤边长相等求解时,⼀般情况下通过“画底边上的⾼”辅助线结合三⾓⽐计算求解;5.注意点的位置取舍答案;6.根据题⽬条件,注意快速、正确画图,⽤好数形结合思想;7.利⽤⼏何定理和性质或者代数⽅法建⽴⽅程求解都是常⽤⽅法。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
15、如图,在平面直角坐标系中,直角三角形AOB的顶点A、B分别落在坐标轴上,O为原点,点A的坐标为(6,0,点B的坐标为(0,8.动点M从点O出发,沿OA向O向终
点A以每秒1个单位的速度运动,同时动点N从点A出发,沿AB向终点B以每秒5
3
个单
位的速度运动,当一个动点到达终点时,另一个动点也随之停止运动,设动点M、N运动的时间为t秒(t>0.
5、为美化环境,计划在某小区内用2
30m的草皮铺设一块一边长为10m的等腰三角形绿地,请你求出这个等腰三角形绿地的另两边长。
五、遇中垂线需讨论
7、在ΔABC中,AB=AC ,AB的中垂线与AC所在直线相交所得的锐角为50°,则底角∠B=____________。
六、动点与等腰三角形(重点,考点
类型之一:三角形中已经有一边确定
10、如图,直线33+=x y交x轴于A点,交y轴于B点,过A、B两点的抛物线交x轴于另一点C (3,0.
⑴求抛物线的解析式;
⑵在抛物线的对称轴上是否存在点Q ,使△ABQ是等腰三角形?若存在,求出符合条件的Q点坐标;若不存在,请说明理由.
11、在如图的直角坐标系中,已知点A (1,0;B (0,-2,将线段AB绕点A按逆时针方向旋转90°至AC .
13、(2010浙江台州市如图,Rt △ABC中,∠C =90°,BC =6,AC =8.点P ,Q都是斜边AB上的动点,点P从B向A运动(不与点B重合,点Q从A向B运动,BP=AQ .点D ,E分别是点A ,B以Q ,P为对称中心的对称点, HQ ⊥AB于Q ,交AC于点H .当点E到达顶点A时,P ,Q同时停止运动.设BP的长为x ,△HDE的面积为y .
(2动点P从点A出发.沿线段AB向终点B运动,同时点Q从点C出发,沿线段CD
向终点D运动.速度均为每秒1个单位长度,运动时间为t秒.过点P作PE⊥AB交AC于点E
①过点E作EF⊥AD于点F,交抛物线于点G.当t为何值时,线段EG最长?
②连接EQ.在点P、Q运动的过程中,判断有几个时刻使得△CEQ是等腰三角形?
(1求证:△DHQ ∽△ABC ;
(2求y关于x的函数解析式并求y的最大值;
(3当x为何值时,△HDE为等腰三角形?
x
(第24题H
14、如图,在平面直角坐标系中,已知矩形ABCD的三个顶点B(4,0、C(8,0、D(8, 8.抛物线y=ax2+bx过A、C两点.
(1直接写出点A的坐标,并求出抛物线的解析式;
P y
中考专题复习等腰三角形的分类讨论
一、遇角需讨论
1、已知等腰三角形的一个内角为75°其顶角为(
A. 30°
B. 75°
C. 105°
D. 30°或75°
二、遇边需讨论
2、(1一个等腰三角形两边长分别为4和5,则它的周长等于_________。
(2一个等腰三角形的两边长分别为3和7,则它的周长等于。
(1当t=3秒时,直接写出点N的坐标,并求出经过点O、A、N三点的抛物线的解析
式;
(2在此运动的过程中,ΔMNA的面积是否存在最大值,若存在,请求出最大值;若
不存在,请说明理由;
(3当t为何值时,ΔAMN是一个等腰三角形?
3、(1如果一个等腰三角形的周长为24,一边长为10,则另两边长为。
(2如果一个等腰三角形的周长为24,一边长为6,则另两边长为。
三、遇中线需讨论
4、若等腰三角形一腰上的中线分周长为9cm和12cm两部分,求这个等腰三角形的底和腰的长。
四、遇高需讨论
5、等腰三角形一腰上的高与另一腰所成的夹角为45°,求这个等腰三角形的顶角的度数。
8、在直角坐标系中,O为坐标原点,A (1,1;在坐标轴上确定一点P ,使ΔAOP为等腰三角形,则符合条件的点P共有(
A、4个
B、6个
C、8个
D、1个
9、已知:O为坐标原点,四边形OABC为矩形,A (10,0,C (0,4,点D是OA的中点,点P在BC上运动,当ΔODP是腰长为5的等腰三角形时,点P的坐标为。
⑴求点C的坐标;
⑵若抛物线22
12++-=ax x y经过点C . ①求抛物线的解析式;
②在抛物线上是否存在点P (点C除外使△ABP是以AB为直角边的等腰直角三角
形?若存在,求出所有点P的坐标;若不存在,请说明理由.
类型之二:三角形没有确定的边
12、如图,P是抛物线212(2-=x y对称轴上的一个动点,直线x =t平行于y轴,分别与直线y =x、抛物线y 1交于点A、B .若△ABP是以点A或点B为直角顶点的等腰直角三角形,求满足条件的t的值,则t = .