(精心整理)相似三角形分类讨论

合集下载

相似三角形分类讨论

相似三角形分类讨论

相似三角形专题一——分类讨论类型一:AX 分类讨论例1、如图,在中,ABC 8cm,16cm AB AC ==,点P 从A 出发,以2cm/s 的速度向B 运动,同时点Q 从C 出发,以3cm/s 的速度向A 运动,当其中一个动点到达端点时,另一个动点也随之停止运动,设运动的时间为t .(1)用含t 的代数式表示:AQ =_______;(2)当以A ,P ,Q 为顶点的三角形与ABC 相似时,运动时间t =________1、如图,Rt △ABC 中,∠ACB =90°,AC =6cm ,BC =8cm ,动点P 从点B 出发,在BA 边上以每秒5cm 的速度向点A 匀速运动,同时动点Q 从点C 出发,在CB 边上以每秒4cm 的速度向点B 匀速运动,运动时间为t 秒(0<t <2),连接PQ .(1)用含t 的代数式表示BP 、BQ ;(2)是否存在某一时刻t 的值,使△BPQ 的面积是△BAC 面积的14;(3)若以B 、P 、Q 为顶点的三角形与△ABC 相似,求t 的值.2、如图,在Rt △ABC 中,∠ACB =90°,AC =8,BC =6,CD ⊥AB 于点D ,点P 从点D 出发,沿线段DC 向点C 运动,点Q 从点C 出发,沿线段CA 向点A 运动,两点同时出发,速度都为每秒1个单位长度,当点P 运动到点C 时,两点都停止运动,设运动时间为t 秒.(1)求线段CD 的长;(2)设△CPQ 的面积为S ,求S 与t 之间的函数关系式,并写出自变量的取值范围;(3)当t 为何值时,△CPQ 与△CAD 相似?请直接写出t 的值.二、直角三角形分类例2、如图所示,已知AB⊥BC于B,CD⊥BC于C,AB=4,CD=6,BC=14,P为BC上一点,试问BP为何值时,△ABP与△PCD相似?1、如图,在平面直角坐标系中,已知OA=12厘米,OB=6厘米.点P从点O开始沿OA 边向点A以1厘米/秒的速度移动;点Q从点B开始沿BO边向点O以1厘米/秒的速度移动.如果P、Q同时出发,用t(秒)表示移动的时间(0≤t≤6),那么,当t为何值时,△POQ与△AOB相似?2、如图,在平面直角坐标系中,点,点、分别在轴、轴的正半轴上,且满足.求点、点的坐标;若点从点出发,以每秒个单位的速度沿线段由向运动,连接,是否存在点,使以点,,为顶点的三角形与相似若存在,请求出点的坐标若不存在,请说明理由.三、等腰三角形分类讨论例3、如图所示,Rt△ABC中,已知∠BAC=90°,AB=AC=2,点D在BC上运动(不能到达点B,C),过点D作∠ADE=45°,DE交AC于点E.(1)求证:△ABD∽△DCE;(2)当△ADE是等腰三角形时,求AE的长.1、如图,在Rt△ABC中,∠C=90°,AC=8cm,BC=6cm.现在有动点P从点B出发,沿线段BA向终点A运动,动点Q从点A出发,沿折线AC—CB向终点运动.如果点P的速度是1cm/s,点Q的速度是1cm/s.它们同时出发,当有一点到达终点时,另一点也停止运动.设运动的时间为t秒.(1)如图1,Q在AC上,当t为多少秒时,以点A、P、Q为顶点的三角形与△ABC相似?(2)如图2,Q在CB上,是否存着某时刻,使得以点B、P、Q为顶点的三角形与△ABC 相似?若存在,求出t的值;若不存在,请说明理由.相似三角形专题二——三角形框四边形问题1、如图,在△ABC中,AD⊥BC于点D,E为BD上一点,过点E作EF⊥BC交AB于点F,过点F作FG⊥EF分别交AD,AC于点N,G,过点G作GH∥EF交BC于点H.(1)求证:△AFG∽△ABC;(2)若AD=3,BC=9,设EF的长度为x,四边形EFGH的面积为y,求y与x之间的函数表达式,并求y的最大值.1、如图,正方形MNPQ内接于△ABC,点M、N在BC上,点P、Q分别在AC和AB边上,且BC边上的高AD=6cm,BC=12cm,求正方形MNPQ的边长.2、如图,在Rt△ABC中,∠A=90°,AB=20cm,AC=15cm,在这个直角三角形内有一个内接正方形,正方形的一边FG 在BC 上,另两个顶点E 、H 分别在边AB 、AC 上.(1)求BC 边上的高;(2)求正方形EFGH 的边长.相似三角形专题三——面积比问题例1.如图,在▱ABCD 中,E 为CD 的中点,连接AE 、BD ,且AE 、BD 交于点F ,则DEF S △:EFBC S 四边形为()1、如图,在▱ABCD 中,AC 、BD 相交于点O ,点E 是OA 的中点,联结BE 并延长交AD 于点F ,如果△AEF 的面积是4,那么△BCE 的面积是____.2、如图,在平行四边形中,点在边上,,交于点,若::,则:.。

例谈相似三角形分类讨论问题

例谈相似三角形分类讨论问题

想方法i 2021年第5期中学数学教学参考(下旬相似三角形分类讨论问题李松(四川省成都市石室天府中学)摘要:分类讨论是重要的数学思想。

分类讨论思想的关键是要清楚为什么要进行分类讨论和分类讨论的依据是什么。

分类讨论思想的培养,需要教师有一个长期的教学规划,为学生提供合适的分类讨论的情境。

关键词:分类讨论;相似三角形;动点问题;折叠问题文章编号:1002-2171 (2021)5-0063-02《义务教育数学课程标准(2011年版)》(以下简 称《课标(2011年版)》)指出,“分类讨论是一种重要的数学思想方法,教学时要通过多次反复的思考和长时间的积累,使学生逐步感悟这种思想方法的精髓。

”例如,在学习“图形的相似”一章时,如果两个相似三角形未指明对应顶点,那么可能存在三种情况,此时 需要分类讨论。

分类讨论思想的渗透是一个较长的过程,所以在教学活动中,教师需要精心准备适切的、足量的、螺旋上升的问题帮助学生积累活动经验,形 成技能.从而使学生体会为什么要分类、如何分类等。

笔者下面以几个经典问题为例,就教学中哪类问题需l_ln(l+f)>l=ln e#0,所以在区间(工。

,|)内/(•T)无零点。

当:|,7r)时,jy^sin单调递减,:y=ln(l+*r)单调递减,则/(X)在区间(|,7t)内单调递减,/(7t)=0—ln(l+7T)<0,所以在区间(晋,K)内 /U)存在一个零点。

当 x6(7r,+°°)时,/(:c)=sin x_ln(1+x) 1—ln(1十7T)<C0 t旦成立,则/(工)在区间(t t,+°°)内无零点。

综上可得,/U)有且仅有2个零点。

7根的分布法对于特定的二次函数零点问题,利用根的分布来 求解也是一个有效的途径。

要分类讨论做归纳整理。

1类型归纳1.1单动点运动的相似问题需要分类讨论单动点运动的相似问题是指一个点在某条直线上运动引起图形变化,而动点运动到某几个位置时,会产生相似三角形的情况。

相似三角形详细讲义

相似三角形详细讲义

知识梳理相似三角形的概念对应角相等,对应边成比例的三角形,叫做相似三角形.相似用符号“∽”表示,读作“相似于”.相似三角形对应边的比叫做相似比(或相似系数).相似三角形对应角相等,对应边成比例.注意:①对应性:即两个三角形相似时,通常把表示对应顶点的字母写在对应位置上,这样写比较容易找到相似三角形的对应角和对应边.②顺序性:相似三角形的相似比是有顺序的.③两个三角形形状一样,但大小不一定一样.④全等三角形是相似比为1的相似三角形.二者的区别在于全等要求对应边相等,而相似要求对应边成比例.相似三角形的基本定理定理:平行于三角形一边的直线和其它两边(或两边延长线)相交,所构成的三角形与原三角形相似.定理的基本图形:用数学语言表述是:BC DE // ,ADE ∽ABC . 相似三角形的等价关系(1)反身性:对于任一ABC 有ABC ∽ABC .(2)对称性:若ABC ∽'''C B A ,则'''C B A ∽ABC .(3)传递性:若ABC ∽C B A '',且C B A ''∽C B A ,则ABC ∽C B A . 三角形相似的判定方法1、定义法:对应角相等,对应边成比例的两个三角形相似.2、平行法:平行于三角形一边的直线和其它两边(或两边的延长线)相交,所构成的三角 形与原三角形相似.3、判定定理1:如果一个三角形的两个角与另一个三角形的两个角对应相等,那么这两 个三角形相似.简述为:两角对应相等,两三角形相似.4、判定定理2:如果一个三角形的两条边和另一个三角形的两条边对应成比例,并且夹 角相等,那么这两个三角形相似.简述为:两边对应成比例且夹角相等,两三角形相似.5、判定定理3:如果一个三角形的三条边与另一个三角形的三条边对应成比例,那么这 两个三角形相似.简述为:三边对应成比例,两三角形相似.(在遇到两个三角形的三边都知道的情况优先考虑,把边长分别从小到大排列,然后分别计算他们的比值是否相等来判断是否相似)6、判定直角三角形相似的方法: (1)以上各种判定均适用.(2)如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似.(3)直角三角形被斜边上的高分成的两个直角三角形与原三角形相似.直角三角形中,斜边上的高是两直角边在斜边上射影的比例中项。

相似三角形-动点问题-分类讨论问题(培优及答案)

相似三角形-动点问题-分类讨论问题(培优及答案)

相似三角形-动点问题-分类讨论问题(培优及答案)1.如图,已知一个三角形纸片ABC ,BC 边的长为8,BC边上的高为6,B ∠和C ∠都为锐角,M 为AB 一动点(点M 与点A B 、不重合),过点M 作MN BC ∥,交AC 于点N ,在AMN △中,设MN 的长为x ,MN 上的高为h . (1)请你用含x 的代数式表示h .(2)将AMN △沿MN 折叠,使AMN △落在四边形BCNM 所在平面,设点A 落在平面的点为1A ,1A MN△与四边形BCNM 重叠部分的面积为y,当x 为何值时,y 最大,最大值为多少?【答案】解:(1)MN BC Q ∥AMN ABC ∴△∽△68h x ∴=34xh ∴= (2)1AMN A MN Q △≌△1A MN ∴△的边MN 上的高为h ,①当点1A 落在四边形BCNM内或BC边上时,1A MNy S =△=211332248MN h x x x ==··(04x <≤) ②当1A 落在四边形BCNM 外时,如下图(48)x <<,设1A EF △的边EF 上的高为1h ,则132662h h x =-=- 11EF MNA EF A MN∴Q ∥△∽△11A MN ABC A EF ABC∴Q △∽△△∽△1216A EF S h S ⎛⎫= ⎪⎝⎭△△ABC168242ABC S =⨯⨯=Q △22363224122462EFx S x x ⎛⎫- ⎪∴==⨯=-+ ⎪⎪⎝⎭1△A1122233912241224828A MN A EF y S S x x x x x ⎛⎫=-=--+=-+- ⎪⎝⎭Q △△所291224(48)8y x x x =-+-<<综上所述:当04x <≤时,238y x =,取4x =,6y =最大当48x <<时,2912248y xx =-+-,取163x =,8y=最大86>Q ∴当163x =时,y 最大,8y=最大2.如图,抛物线经过(40)(10)(02)A B C -,,,,,三点.(1)求出抛物线的解析式;(2)P 是抛物线上一动点,过P 作PM x ⊥轴,垂足为M ,是否存在P 点,使得以A ,P ,M 为顶点的三角形与OAC △相似?若存在,请求出符合条件的点P 的坐标;若不存在,请说明理由; 【答案】解:(1)Q 该抛物线过点(02)C -,,∴可设该抛物线的解析式为22y ax bx =+-.将(40)A ,,(10)B ,代入,M NC BEF AA 1得1642020a b a b .+-=⎧⎨+-=⎩,解得1252a b .⎧=-⎪⎪⎨⎪=⎪⎩,∴此抛物线的解析式为215222y x x =-+-.(2)存在.如图,设P 点的横坐标为m ,则P 点的纵坐标为215222m m -+-,当14m <<时,4AM m =-,215222PM mm =-+-.又90COA PMA ∠=∠=Q °,∴①当21AM AO PM OC ==时,APM ACO △∽△, 即21542222m mm ⎛⎫-=-+- ⎪⎝⎭.解得1224m m ==,(舍去),(21)P ∴,.②当12AM OC PM OA ==时,APM CAO △∽△,即2152(4)222m mm -=-+-.解得14m =,25m =(均不合题意,舍去)∴当14m <<时,(21)P ,.类似地可求出当4m >时,(52)P -,.当1m <时,(314)P --,.综上所述,符合条件的点P 为(21),或(52)-,或(314)--,. 3.如图,已知直线128:33l y x =+与直线2:216ly x =-+相交于点C l l 12,、分别交x 轴于A B 、两点.矩形DEFG 的顶点D E、分别在直线12l l 、上,顶点F G 、都在x 轴上,且点G与点B 重合.(1)求ABC △的面积;(2)求矩形DEFG 的边DE 与EF 的长;(3)若矩形DEFG 从原点出发,沿x 轴的反方向以每秒1个单位长度的速度平移,设移动时间为(012)t t ≤≤秒,矩形DEFG 与ABC △重叠部分的面积为S ,求S 关于t 的函数关系式,并写出相应的t 的取值范围.【答案】(1)解:由28033x +=,得4x A =-∴.点坐标为()40-,由2160x -+=,得8x B =∴.点坐标为()80,.∴()8412AB =--=. 由2833216y x y x ⎧=+⎪⎨⎪=-+⎩,.解得56x y =⎧⎨=⎩,.∴C点的坐标为()56,.∴111263622ABC C S AB y ==⨯⨯=△·.(2)解:∵点D 在1l 上且2888833DB D xx y ==∴=⨯+=,.∴D 点坐标为()88,. 又∵点E 在2l 上且821684ED E E yy x x ==∴-+=∴=,..∴E 点坐标为()48,. ∴8448OE EF =-==,.(3)解法一:①当03t <≤时,如图1,矩形DEFG 与ABC △重叠部分为五边形CHFGR (0t =时,为四边形CHFG ).过C 作CM AB ⊥于M ,则Rt Rt RGB CMB △∽△.∴BG RG BM CM =,即36t RG =,∴2RG t =. Rt Rt AFH AMC Q △∽△,∴()()11236288223ABC BRG AFH S S S S t t t t =--=-⨯⨯--⨯-△△△.即241644333S t t =-++.·············································当83<≤t 时,如图2,为梯形面积,∵G (8-t,0)∴GR=32838)8(32t t -=+-,∴38038]32838)4(32[421+-=-++-⨯=t t t s当128<≤t 时,如图3,为三角形面积,4883)12)(328(212+-=--=t tt t s4.如图,矩形ABCD 中,3AD =厘米,AB a =厘米(3a >).动点M N ,同时从B 点出发,分别沿B A →,B C →运动,速度是1厘米/秒.过M 作直线垂直于AB,分别交AN ,CD 于P Q ,.当点N 到达终点C 时,点M 也随之停止运动.设运动时间为t 秒. (1)若4a =厘米,1t =秒,则PM =______厘米; (2)若5a =厘米,求时间t ,使PNB PAD △∽△,并求(图(图(图出它们的相似比;(3)若在运动过程中,存在某时刻使梯形PMBN 与梯形PQDA 的面积相等,求a 的取值范围; (4)是否存在这样的矩形:在运动过程中,存在某时刻使梯形PMBN ,梯形PQDA积都相等?若存在,求a 明理由.【答案】解: (1)34PM =, (2)2t =,使PNB PAD △∽△,相似比为3:2 (3)PM AB CB AB AMP ABC ∠=∠Q ⊥,⊥,,AMP ABC △∽△,PM AMBN AB∴=即()PM a t t a t PM t a a--==Q ,,(1)3t a QM a-∴=-当梯形PMBN与梯形PQDA的面积相等,即()()22QP AD DQ MP BN BM++=()33(1)()22t a t t a a t t ta a -⎛⎫⎛⎫-+--+ ⎪ ⎪⎝⎭⎝⎭==化简得66a t a =+,3t Q ≤,636a a ∴+≤,则636a a ∴<≤,≤,(4)36a <Q ≤时梯形PMBN 与梯形PQDA 的面积相等NM M∴梯形PQCN 的面积与梯形PMBN 的面积相等即可,则CN PM =()3ta t t a∴-=-,把66a t a =+代入,解之得a =±,所以a =.所以,存在a ,当a =时梯形PMBN 与梯形PQDA 的面积、梯形PQCN 的面积相等.5.如图,已知△ABC 是边长为6cm 的等边三角形,动点P 、Q 同时从A 、B 两点出发,分别沿AB 、BC 匀速运动,其中点P 运动的速度是1cm/s ,点Q 运动的速度是2cm/s ,当点Q 到达点C 时,P 、Q 两点都停止运动,设运动时间为t (s ),解答下列问题:(1)当t =2时,判断△BPQ 的形状,并说明理由;(2)设△BPQ 的面积为S (cm 2),求S 与t 的函数关系式;(3)作QR //BA 交AC 于点R ,连结PR ,当t 为何值时,△APR ∽△PRQ ?【答案】 解:(1)△BPQ 是等边三角形,当t=2时,AP=2×1=2,BQ=2×2=4,所以BP=AB-AP=6-2=4,所以BQ=BP.又因为∠B=600,所以△BPQ 是等边三角形. (2)过Q 作QE ⊥AB,垂足为E,由QB=2y,得QE=2t ·sin600=3t,由AP=t,得PB=6-t,所以S △BPQ=21×BP ×QE=21(6-t)×3t=-23t 2+33t ;(3)因为Q R ∥BA,所以∠QRC=∠A=600,∠RQC=∠B=600,又因为∠C=600,所以△QRC 是等边三角形,所以QR=RC=QC=6-2t.因为BE=BQ ·cos600=21×2t=t, 所以EP=AB-AP-BE=6-t-t=6-2t,所以EP ∥QR,EP=QR,所以四边形EPRQ 是平行四边形,所以PR=EQ=3t,又因为∠PEQ=900,所以∠APR=∠PRQ=900.因为△APR ~△PRQ,所以∠QPR=∠A=600,所以tan600=PRQR,即3326=-tt ,所以t=56,所以当t=56时, △APR ~△PRQ6.在直角梯形OABC 中,CB ∥OA ,∠CO A =90º,CB =3,OA =6,BA =35.分别以OA 、OC 边所在直线为x 轴、y 轴建立如图1所示的平面直角坐标系. (1)求点B 的坐标;(2)已知D 、E 分别为线段OC 、OB 上的点,OD =5,OE =2E B ,直线DE 交x 轴于点F .求直线DE 的解析式;(3)点M 是(2)中直线DE 上的一个动点,在x 轴上方的平面内是否存在另一个点N .使以O 、D 、M 、N 为顶点的四边形是菱形?若存在,请求出点N 的坐标;若不存在,请说明理由.A B D EF C O M Nx y图7-2A DOBC21 MN图7-1ADBM N12图7-3ADOBC21 MNO.7.在图15-1至图15-3中,直线MN 与线段AB 相交于点O ,∠1 = ∠2 = 45°. (1)如图15-1,若AO = OB ,请写出AO与BD 的数量关系和位置关系; (2)将图15-1中的MN 绕点O 顺时针旋转得到图15-2,其中AO = OB .求证:AC = BD ,AC ⊥ BD ; (3)将图15-2中的OB 拉长为AO 的k 倍得到图15-3,求ACBD 的值. 【答案】 解:(1)AO = BD ,AO ⊥BD ;(2)证明:如图4,过点B 作BE ∥CA交DO 于E ,∴∠ACO = ∠BEO .又∵AO = OB ,∠AOC = ∠BOE ,∴△AOC ≌ △BOE .∴AC = BE . 又∵∠1 = 45°, ∴∠ACO = ∠BEO = 135°.∴∠DEB = 45°. ∵∠2 = 45°,∴BE = BD,∠EBD = 90°.∴AC = BD . 延长AC 交DB 的延长线于F ,如图4.∵BE ∥AC ,∴∠AFD = 90°.∴AC ⊥BD . (3)如图5,过点B 作BE ∥CA 交DO 于E ,图4ADO B C21 MNEF A2E∴∠BEO = ∠ACO .又∵∠BOE = ∠AOC,∴△BOE ∽ △AOC .∴AOBOAC BE =. 又∵OB = kAO ,由(2)的方法易得 BE = BD .∴k ACBD =. 10.如图,已知过A (2,4)分别作x 轴、y 轴的垂线,垂足分别为M 、N ,若点P 从O 点出发,沿OM 作匀速运动,1分钟可到达M 点,点Q 从M 点出发,沿MA 作匀速运动,1分钟可到达A 点。

相似三角形中的分类讨论实录加反思

相似三角形中的分类讨论实录加反思

无可奈何“落去”,似曾“相似”归来——“一题一课”模型下的相似复习课课堂实录与反思背景介绍“一题一课”,倡导一个题目上一节课,就是围绕着说题时抽到的那一题来上一节课。

我抽到的题是第18题,主要考查相似三角形的判定与性质,涉及到分类讨论。

这道题对学生来讲说不上难,因为从学生接触相似三角形开始就已经在接触这类题了;可也说不上简单,毕竟分类讨论不是每个学生都能理解的了的。

可光就这个题目讲上一节课,是根本不可能的。

对这课我最初的设想是由浅入深,先温习或做些铺垫性的问题,把起点放在相似三角形的判定的复习上,编制单一的不涉及分类的相似题目,再重点像讲课文例题那样去启发分析,最后拓展提炼。

因此刚开始花了大量的时间去寻找合适的题目,无果之后又尝试着自己去改编题目:赋予△ABC为等腰三角形的背景下,DE∥BC,在BC边上寻一点F,使△DEF与△ABC相似。

试上之后,这道题反响还不错,引入等方面修正完善一下就好。

杭州听课回来还没缓过神来连着清明放假三天,期间我仔细思考教学设计中的这道题目,总觉得偏离了“一题一课”的理念。

可是箭在弦上不得不发,没机会再试上再磨课了!比赛当天,心里还是隐隐觉得不好,于是开始两手准备:一方面将这个课再次仔细整理准备上课;另一方面再次去找寻其他题目,最终决定只将该题作为课后拓展题让学生拓展提升。

感谢教研组听课的同事,每一位都给出了非常宝贵的意见和建议,帮我不断修正与完善。

在磨课的过程中,我受益良多。

课堂实录师:今天这节课我们一起探讨相似三角形中的分类讨论。

首先我们拿出练习纸,动手画画看。

(媒体显示题目,学生动手作图)如图,△ABC中,AB=12,AC=15。

D为AB 边上一点,过点D作一条截线交AC于点E,使△ADE与△ABC相似,你能作出几条?请画出图形。

师:谁来说说看你是怎么画的?生:先做BC的平行线,交AC于点E。

还有一个是做的那条线和AD相等……师:做的那条线和AD相等?生:作AD=AE师:在AC上取一点E,使得AD=AE师:说说看你是怎么想的?(学生回答不出)为什么这种情况下这两个三角形相似?生:因为平行师:依据的是什么?生:相似三角形中(学生说不出来师补充)师:作DE∥BC时,就是说∠ADE与∠ABC相等。

例说“相似”中分类技巧

例说“相似”中分类技巧

1、例说“相似”中分类技巧2、捕捉图形运动中的“相似”3、相似三角形中的“光与影”4、物理中的“相似三角形”5、相似三角形好题放送6、“相似三角形”的实际应用1、例说“相似”中分类技巧在我们的几何题目中,有许多问题需要分类讨论,常因不会分类、分类不确切或讨论不全面发生漏解。

只有全面掌握基础知识和经过严密思考,找准解题的切入点,才能使得出的结论不重复、不遗漏。

下面就相似形三角形中的几个问题加以说明。

例1. △ABC 中,AB=8,AC=6,点D 在AC 上且AD=2,如果要在AB 上找一点E ,使△ADE 与原三角形相似,那么AE= .【分析】要使所得△ADE 与原三角形相似,由于没有指明相似的对应关系...........,因此①当过D 作DE ∥CB 交AB 于E 时,有△AED ∽△ABC ;②当作∠ADE=∠B 交AB 于E 时,有△ADE ∽△ABC ;所以应分这两种情况.解:①如图1,当DE ∥CB 时,则△AED ∽△ABC ,∴ AC AD AB AE =,即628=AE ; ∴AE=38.②如图2,作∠ADE=∠B 交AB 于E 时,则△ADE ∽△ABC ,∴AB AD AC AE =,即826=AE ; ∴AE=23.综合①、②故AE=38或23.例2. 小明想要做两个形状相同的三角形框架,其中一个三角形框架的三边长分别为8cm 、10cm 、14cm ,另一个三角形框架的一边长为4cm ,那么他应怎样选料,才可使这两个三角形相似。

【分析】由于另一个三角形只知一边为4,但没说这一边是最长的,还是最短的,即没有具体说明对应........关系..,因此应分三种情形来讨论. 解:设另两边分别为x 、y 且x <y .则当4为短边时,则有84=10x=14y ,解得:x =5,y =7; 当4为较短边时,则有8x =104=14y ,解得:x =3.2,y =5.6;当4为长边时,则有8x =10y =144,解得:x =716,y =720;所以框架另两边长可选5cm 、7cm ,或3.2cm 、5.6cm ,或716cm 、720cm 。

与三角形有关的分类讨论问题

与三角形有关的分类讨论问题

20 0 9年 第 7期
1 7
为 坐 标 原 点 , 边 形 四 O B 是 矩 形 , A、 AC 点
中 , 腰 梯 形 A B 的 等 OC
四个 顶点为 A 2 2 ) (, , 0( , , ( , , 0 0) B 8 0)
点 C的 坐 标 分 别 为
A( 0 0 , 0 4) 点 1 , ) C( , ,
我 们将 问题 分 为 三类 情 况 来解 决 : 是 当 6 一
I 冬I 1
因为 为 B C中点 , 以 , 所
BE : :21, DE :21—1 5:6 .
为 斜边时 , 二是 当 8为斜边 时 , 三是 当未知 的
第 三边为斜 边时. 解: 分类解 答如下 :
又因 A D上B , F上B 则 A / E 从 CE C, D / F, 而有 A F=
边, OB △ B △ A MO, 四边形 A B 则 O C为 等 腰梯 形 , O 由 A上A 知 O B, C上B . 点 、 C则 点 c重合 , M( , ) 故 62 . ( )当 /O B = /MB 时 , O B ∽ 2 A O A A
在 △ A C内 ( 图 i a ) B 如 ().

况, 然后采 用分类 思想加 以解决 , 在解题 中才
不会 出现 漏解 的情 况. 面 我们 就 以上 四种 下 类 型例析如 下.


直 角三角 形的斜 边不确定


例 1 已知 直角三 角形 两边 分 别 为 6和
8 求此 三角形 的面积. , 分析 : 由直 角三角形 的斜边 的不确 定性 ,
不确定 而进行 的 分类 ; 是 由于三 角形 的形 二

相似三角形中的分类讨论

相似三角形中的分类讨论

相似三角形中的分类讨论新课:问题引入相似三角形中为什么需要分类讨论?由于图形的不确定因素,因而在三角形中需要分类讨论1.图形谁大谁小的不确定需要分类讨论如:若两个相似三角形的相似比为1∶2,且其中一个的面积为20,则另一个三角形的面积为____新课:问题引入相似三角形中为什么需要分类讨论?由于图形的不确定因素,因而在三角形中需要分类讨论1.图形谁大谁小的不确定需要分类讨论如:若两个相似三角形的相似比为1∶2,且其中一个的面积为20,则另一个三角形5或80的面积为____ACD ●AACD ●A• 2.对应角(或者说对应边、对应顶点)的不确定引起相似三角形的分类讨论•标识:如果没有用“∽”符号连接,需要进行分类讨论例题1、在方格纸中,每个小格的顶点称为格点,以格点连线为边的三角形叫做格点三角形,如图所示,在10×10的方格中,已知例题1、在方格纸中,每个小格的顶点称为格点,以格点连线为边的三角形叫做格点三角形,如图所示,在10×10的方格中,已知如图,在直角坐标系中有两点果点C轴上为、C组成的三角形与如图,在直角坐标系中有两点果点C 轴上为 、C 组成的三角形与1,0),(-4,0)小结:•1、在相似三角形中为什么要进行分类讨论?•2、分类讨论的一般步骤:(1)明确讨论的对象;(2)确定分类标准,按一个标准分类;(3)逐步讨论,做到“不重复,不遗漏”;(4)归纳小结,得出结论。

26.(1)两个等式都成立.理由如下:∵△ABC为等边三角形,AD为角平分线,∴AD垂直平分BC,∠CAD=∠BAD=30°,AB=AC,∴DB=CD,∵∠C1AB1=60°,∴∠B1=30°,∴AB1=2AC1,又∵∠DAB1=30°,∴DA=DB1,而DA=2DC1,∴DB1=2DC1,(2)结论仍然成立,理由如下:如右图所示,△ABC为任意三角形,过B点作BE∥AC交AD的延长线于E点,∴∠E=∠CAD=∠BAD,∴BE=AB,∵BE∥AC,∴△EBD∽△ACD,而BE=AB,(3)如图,连DE,。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

D C B
A D
C
B
A C
B
A
C
B
A
C
B C
P
《相似三角形中分类讨论思想的运用》
一、温故知新:
1. 已知△ABC 的三边长分别是4、6、8,△DEF 的一条边为24,如果△DEF 与△ABC 相似,则相似比为
2.两个相似三角形的面积之比是9:25,其中一个三角形一边上的高是6,那么另一个三角形对应边上的高为
3.已知线段AB=2,P 是线段AB 的黄金分割点,则AP 的长为 问题:什么是分类讨论?为什么要分类?
二、新知学习: 题组一:
1.例1.如图所示,在ABC ∆中,AB=6,AC=4,P 是AC 的中点,过P 点的直线交AB 于点Q ,若使APQ ∆与ABC ∆相似,则AQ 的长为
2.变式一:如图所示,
在ABC ∆中,P 是AC 上一点,过P
点的直线截ABC ∆交AB 于点Q ,使截得的三角形与原三角形相似,则满足这样的直线有 条. 3. 变式二:如图所示,在ABC ∆中,P 是AC 上一点,过P 点的直线截ABC ∆,使截得的三角形与原三角形相似,则满足这样的直线最多有 条.
探究:如果ABC ∆是直角三角形,点P 直角边上或点P 在斜边上上述结论还成立吗?等腰三角形呢?
题组二:
1.例2: 己知菱形ABCD 的边长是3,点E 在直线AD 上,DE =1,联结BE 与对角
线AC 相交于点M ,则MC
AM
=
C
B
C
B
C
B
2.变式一: 等腰ABC 中,AB=AC=10,BC=16,点P 在BC 边上,若PA 与腰垂直,则BP= .
3. 变式二: 在△ABC 中∠B=25°,AD 是BC 边上的高,并且AD 2=BD ·DC,则∠BCA= . 题组三
1.在矩形ABCD 中,AB=4,AD=5,P 是射线BC 上的一个动点,作PE ⊥AP ,PE 交射线DC 于点E ,射线AE 交射线BC 于点F ,设BP=x ,CE=y .求y 关于x 的函数解析式,并写出它的定义域;(点P 与点B 、C 都不重合),
2.已知AB=2,AD=4,∠DAB=90°,AD∥BC(如图).E 是射线BC 上的动点(点E 与点B 不重合),M 是线段DE 的中点.联结BD ,交线段AM 于点N ,如果以A 、N 、D 为顶点的三角形与△BME 相似,求线段BE 的长.
三、课后反思:
1. 相似三角形中有哪些几何情境需要分类讨论?分类的原则是什么?
2. 请积累你运用分类讨论思想解决的数学问题.
A
C
D A
C
D
D
C B
A
D C
B
A
Q
P
C
B
A C
B A
C
B A
A
B C 四、检测反馈:
1.已知在Rt ABC ∆中,︒=∠90C ,AB=5,AC=3,点D 是射线BC 上的一点,(不与端点B 重合),联结AD ,如果ACD ∆与ABC ∆相似,则BD= 2.在等腰ABC ∆中,AB=AC ,若一条中线长为6厘米,另一条中线为9厘米,则等腰ABC ∆的底边长为
3. AD ∥BC,∠D=90°,DC=6,AD=2,BC=
4.若在边DC 上有点P 使△PAD 和△PBC 相似,求DP 的长.
4.如图,4,3,90==︒=∠=∠AC BC ABD ACB ,当ABC ∆与ADB ∆相似时 ,求AD 的长.
5.拓展题:如图:在⊿ABC 中,∠C=90°,BC=6,AC=8. P 、Q 分别为AC 、BA 上的动点,且BQ=2AP,联结PQ,设AP=x.
① 在点P 、点Q 移动的过程中,⊿APQ 能否与⊿ABC 相似?若能,请求出AP 的长;若不能,请说明理由。

② 当x 为何值时,⊿APQ 是等腰三角形?
D
A
B C
P
五、作业:
1. 在直角坐标系中有两点A(4,0),B(0,2),如果点C在x轴上(C与A不重合),当点
C的坐标为时,使得由点B、O、C组成的三角形与△AOB相似。

2. 已知:如图,P是边长为4的正方形ABCD内一点,且PB=3,BF⊥BP,垂足为B,请在射
线BF上找一点M,使以B、M、C为顶点的三角形与△ABP相似。

3.已知BD是矩形ABCD的对角线,AB=30cm,BC=40cm,点P、Q同时从A点出发,分别以2cm/s,
4cm/ s的速度由A→B→C→D→A的方向在矩形边上运动,在点Q回到点A的整个运动过程
中:① PQ能否与BD平行?② PQ能否与BD垂直?请分别作出判断。

如果存在,请分别求
出时间t,如果不存在,请说明理由。

4、如图,已知CAB
RT∆中,1
BC
AC
,
90
ACB0=
=
=
∠,点P在斜边AB上移动
(点P不与点A、B重合),以P为顶点作
45
CPQ=
∠,射线PQ交BC边与点Q。

CPQ
∆能否是等腰三角形?如果能够,试求出AP的长,如果不能,试简要说明
理由。

5.已知:在梯形ABCD中,AD∥BC,AD<BC,且AD=5,AB=DC=2.
(1)如图,P为AD上的一点,满足∠BPC=∠A.
①求证;△
ABP∽△DPC ②求AP的长.
(2)如果点P在AD边上移动(点P与点A、D不重合),且满足∠BPE=∠A,
PE交直线BC于点E,同时交直线DC于点Q,设AP=x,CQ=y,求y关于x的函数
解析式,并写出函数的定义域;
P
A
C。

相关文档
最新文档