六年级数学期末知识点
(完整版)六年级数学期末总复习数与代数知识点归纳及经典练习题

The shortest way to do many things is to only one thin 数与代数知识点一整数1、整数的定义:像-3,-2,-1,0,1,2……这样的数称为整数。
在整数中大于零的数称为正整数,小于零的数称为负整数。
正整数、零与负整数统称为整数。
2、整数的范围:除自然数外,整数还包括负整数。
但在小学阶段里,整数通常指的是自然数。
知识点二自然数1、自然数的定义:我们在数物体的时候,用来表示物体个数的0,1,2,3,……叫作自然数。
2、自然数的基本单位:任何非“0”的自然数都是由若干个“1”组成,所以“1”是自然数的基本单位。
3、“0”的含义:一个物体也没有,用“0”表示,但并不是说“0”只表示没有物体。
知识点三比较整数大小的方法知识点四整数的改写把大数改写成用“万”或“亿”作单位的数:一个比较大的多位数,为了读写方便,常常把它改写成用“万”或“亿”作单位的数。
改写有两种情况:一种是把较大的多位数直接改写成用“万”或“亿”作单位的数,不满万、亿的尾数直接改写成小数;另一种是根据需要省略万位或亿位的尾数,把原来的多位数按照“四舍五入”法写成它的近似数。
知识点五倍数和因数1、倍数和因数的定义:自然数a(a≠0)乘自然数b(b≠0),所得的积c就是a和b的倍数,a和b就是c的因数。
2、倍数的特征:一个数的倍数的个数是无限的,其中最小的倍数是它本身,没有最大的倍数。
因数的特征:一个数的因数的个数是有限的,其中最小的因数是1,最大的因数是它本身。
知识点六最大公因数、最小公倍数和互质数1、最大公因数的定义:几个数公有的因数,叫作这几个数的公因数;其中最大的一个,叫作这几个数的最大公因数。
2、最小公倍数的定义:几个数公有的倍数,叫作这几个数的公倍数,其中最小的一个,叫作这几个数的最小公倍数。
3、互质数:公因数只有1的两个数,叫作互质数。
知识点七 2、3、5倍数的特征2的倍数的特征:个位上是0、2、4、6、8 的数是2的倍数。
六年级数学上册期末复习知识点汇总(人教版)

六年级数学上册期末复习知识点汇总(人
教版)
1. 数的读写和数位在数表中的比较
- 掌握百以内数的读写方法
- 进一步练百以内数字的大小比较
- 在数表中比较数位的大小
2. 术语的认识和深化
- 理解单位和量的关系,研究长度、容量、时间等单位的名称和换算
- 认识图线表、拔河运动、神奇图等特殊的数学问题
- 进一步掌握理论题中的数学术语,如加法、减法、乘法、除法等
3. 两位数和三位数的认识
- 认识两位数和三位数,并通过具体的例子进行演算
- 进一步研究如何将两位数和三位数的大小进行比较
- 在实际问题中运用两位数和三位数进行计算
4. 数量和对应关系的探讨
- 了解相等的概念,并通过具体例子进行对比
- 研究图表和表格的分析,找出其中的规律
- 运用对应关系解决实际问题,如物品的分组、排列等
5. 探究几何图形和图形的特征
- 了解常见的平面图形和立体图形,如三角形、四边形、圆、长方体、正方体等
- 掌握几何图形的命名及其特征
- 研究分析和比较不同几何图形的性质和关系
6. 数据的收集和分析
- 研究如何进行数据的收集、整理和表示
- 给出简单的表格和图表,进行数据的分析和总结
- 运用数据分析解决实际问题,如人数统计、天气变化等
以上是六年级数学上册的期末复习知识点汇总,希望同学们认真复习,并做好复习笔记和习题,以便顺利应对期末考试。
祝大家取得好成绩!。
第五单元 圆(期末复习讲义)六年级数学上册重难点知识点(人教版)

人教版六年级数学上册期末复习重难点知识点第五单元圆同学们,经过一个学期的学习,你一定进步了吧!今天,让我们共同回顾一下本学期的知识吧,并且通过完成这些练习,看看自己在哪些方面做得还真不错,以便继续发扬;哪些方面存在不足,需要在今后的学习中注意赶上。
每个人的成功都要经历无数次历练,无论成功还是失败对我们都十分重要。
加油!知识点一:圆的认识1.连接圆心和圆上任意一点的线段叫做半径。
2.通过圆心并且两端都在圆上的线段叫做直径。
3.一个圆有无数条半径,无数条直径。
4.圆是轴对称图形,它有无数条对称轴,任意一条直径所在的直线都是它的对称轴。
5.同一圆内,所有的半径都相等,所有的直径都相等,直径的长度是半径长度的2倍。
把圆沿任意一条直径对折,两边可以重合。
6.圆心确定了,圆的中心位置就确定了。
半径决定了圆的大小。
7.画圆的方法:定好圆心;确定半径的长度;画圆的时候注意线条的流畅。
知识点二:圆的周长1.其实,早就有人研究了周长与直径的关系,发现任意一个圆的周长与它的直径的比值是一个固定的数,我们把它叫做圆周率,用字母π表示。
它是一个无限不循环小数,π=3.1415926535……但在实际应用中常常只取它的近似值,例如π≈3.14。
2.围成圆的曲线的长是圆的周长。
3.圆的周长=直径×圆周率。
4.C=πd 或C=2πr 。
知识点三:圆的面积1.圆的面积公式是由长方形的面积公式推导出来的。
2.圆的面积 S=πr ²。
知识点四:圆的面积公式的应用已知圆的直径求圆的面积时,可以根据公式S=π(2d )²直接求解。
知识点五:圆环的面积S 环=πR 2−πr 2S 环=π(R 2−r 2)知识点六:不规则图形的面积1.外方内圆的图形称为圆外切正方形。
2.外圆内方的图形称为圆内接正方形。
3. 知识点七:扇形1.圆上A 、B 两点之间的部分叫做弧,读作“弧AB ”。
2.一条弧和经过这条弧两端的两条半径所围成的图形叫做扇形。
北师大版六年级下册数学期末复习重点知识要点归纳

北师大版六年级(下册)数学知识要点归纳第一单元圆柱和圆锥1、“点、线、面、体”之间的关系是:点的运动形成线;线的运动形成面;面的旋转形成体。
2、圆柱的特征:(1)圆柱的两个底面是半径相等的两个圆,侧面是曲面。
(2)两个底面间的距离叫做圆柱的高。
(3)圆柱有无数条高,且高的长度都相等。
(4)圆柱是由长方形绕长或宽旋转360度得到的立方体,所以沿高线切割后的切面是长方形。
3、圆锥的特征:(1)圆锥的底面是一个圆,和底面相对的位置有一个顶点。
(2)圆锥的侧面是一个曲面。
(3)圆锥只有一条高。
(4)圆锥是由直角三角形绕一条直角边旋转360度得到的立方体,所以沿高线切割后的切面是等腰三角形。
4、沿圆柱的高剪开,圆柱的侧面展开图是一个长方形(或正方形)(如果不是沿高剪开,有可能还会是平行四边形)。
圆柱的侧面积=底面周长×高,用字母表示为:S侧=Ch。
圆柱的侧面积公式的应用:(1)已知底面周长和高,求侧面积,可运用公式:S侧=ch;(2)已知底面直径和高,求侧面积,可运用公式:S侧=πdh;(3)已知底面半径和高,求侧面积,可运用公式:S侧=2πrh圆柱表面积的计算方法:如果用S侧表示一个圆柱的侧面积,S底表示底面积,d表示底面直径,r表示底面半径,h表示高,那么这个圆柱的表面积为:S表=S侧+2S底或S表=πdh+πd2/2或S表=2πrh+2πr2圆柱表面积的计算方法的特殊应用:(1)圆柱的表面积只包括侧面积和一个底面积的,例如无盖水桶等圆柱形物体。
(2)圆柱的表面积只包括侧面积的,例如烟囱、油管等圆柱形物体。
5、圆柱的体积:一个圆柱所占空间的大小。
6、圆柱体积公式的推导:复习六年级上册圆的面积公式的推导:把圆等分的份数越多,拼成的图形就越接近平行四边形或长方形。
拼成的平行四边形的底相当于圆周长的一半,高相当于圆的半径;拼成的长方形的长相当于圆周长的一半,宽相当于圆的半径。
所以圆的面积=π×半径×半径=π×半径2如同,圆的面积公式的推导,也可以沿着圆柱底面的扇形和圆柱的高把圆柱切开,把它分成若干等份,分得越细越好,再把它拼成一个近似长方体的立体图形,形状改变了,但体积没变,那么就可以发现拼成的这个长方体的底面积与圆柱的底面积是相等的,长方体的高也与圆柱的高相等,而长方体的体积=底面积×高,也就等于圆柱的体积。
苏教版六年级上册数学期末复习全册单元知识点总结

一 长方体和正方体一、长方体的认识1.认识长方体的面、棱、顶点。
(1)从不同的角度观察同一个长方体。
把长方体放在桌面上,无论从哪个角度观察,最多只...能同时观察到长方体的三个面。
.............. (2)长方体的棱和顶点。
长方体两个面相交的线叫作长方体的棱,三条棱相交的点叫作长方体的顶点。
2.长方体的特征。
长方体是由6个长方形(也可能有2个相对的面是正方形)围成的立体图形,它有6个面、12条棱和8个顶点。
在一个长方体中,相对的面完全相同,相对的棱长度相等。
3.长方体长、宽、高的含义。
长方体相交于同一顶点的三条棱的长度.................,.分别叫作....它的长、宽、高。
........4.长方体的长、宽、高不是固定不变的,它与长方体的摆放方式有关。
长方体相交于同一顶点的三条棱中,通常把水平方向的两条棱分别叫作它的长和宽,把竖直方向的一条棱叫作它的高。
二、正方体的认识1.正方体也叫立方体。
它是由6个完全相同的正方形围成的立体图形。
它的6个面是完全相同的正方形,12条棱的长度都相等,有8个顶点。
2.正方体的长、宽、高相等,都叫正方体的棱长。
3.长方体和正方体的特征的异同。
①相同点:都有6个面、12条棱、8个顶点,相对的面完全相同,相对的棱长度相等。
②不同点:长方体的6个面都是长方形(也可能有2个相对的面是正方形);一般情况下,棱有3组,每组4条棱长度相等。
正方体的6个面是完全相同的正方形;每条棱的长度都相等。
三、正方体、长方体的展开图1.把一个正方体沿一条棱剪开,如下图所示。
正方体的展开图是由6个完全相同的正方形组成的,可以通过观察、折叠找到3组相对的面。
2.沿长方体的棱把长方体剪开,展开图中有3组相对的面,相对的面完全相同........,.相对的面完全隔开。
.........易错点:误认为一个长方体中最多有4条相等的棱。
这是错误的,一定要注意长方体的6个面不一定都是长方形,也可能有2个相对的面是正方形。
六年级上册数学知识点大全(期末复习)

第一单元分数乘法(一)分数乘法意义:1、分数乘整数的意义与整数乘法的意义相同,就是求几个相同加数的和的简便运算。
“分数乘整数”指的是第二个因数必须是整数,不能是分数。
2、一个数乘分数的意义就是求一个数的几分之几是多少。
“一个数乘分数”指的是第二个因数必须是分数,不能是整数。
(第一个因数是什么都可以)(二)分数乘法计算法则:1、分数乘整数的运算法则是:分子与整数相乘,分母不变。
(1)为了计算简便能约分的可先约分再计算。
(整数和分母约分)(2)约分是用整数和下面的分母约掉最大公因数。
(整数千万不能与分母相乘,计算结果必须是最简分数)。
2、分数乘分数的运算法则是:用分子相乘的积做分子,分母相乘的积做分母。
(分子乘分子,分母乘分母)(1)如果分数乘法算式中含有带分数,要先把带分数化成假分数再计算。
(2)分数化简的方法是:分子、分母同时除以它们的最大公因数。
(3)在乘的过程中约分,是把分子、分母中,两个可以约分的数先划去,再分别在它们的上、下方写出约分后的数。
(约分后分子和分母必须不再含有公因数,这样计算后的结果才是最简单分数)。
(4)分数的基本性质:分子、分母同时乘或者除以一个相同的数(0除外),分数的大小不变。
(三)积与因数的关系:一个数(0除外)乘大于1的数,积大于这个数。
a×b=c,当b >1时,c>a。
一个数(0除外)乘小于1的数,积小于这个数。
a×b=c,当b <1时,c<a(b≠0)。
一个数(0除外)乘等于1的数,积等于这个数。
a×b=c,当b =1时,c=a 。
在进行因数与积的大小比较时,要注意因数为0时的特殊情况。
(四)分数乘法混合运算1、分数乘法混合运算顺序与整数相同,先乘、除后加、减,有括号的先算括号里面的,再算括号外面的。
2、整数乘法运算定律对分数乘法同样适用;运算定律可以使一些计算简便。
乘法交换律:a×b=b×a 乘法结合律:(a×b)×c=a×(b×c)乘法分配律:a×(b±c)=a×b±a×c(五)倒数的意义:乘积为1的两个数互为倒数。
六年级数学下册期末复习【数的认识】知识点总结

六年级数学下册期末复习【数的认识】知识点总结六年级数学下册复习【数的认识】知识点总结【整数】整数:自然数和0都是整数。
自然数我们在数物体的时候,用来表示物体个数的1,2,3……叫做自然数。
一个物体也没有,用0表示。
0也是自然数。
注:0是最小的自然数,没有最大的自然数。
负数:在正数前面加上“-”的数叫做负数,“-”叫做负号。
整数包括:正整数(1、2、3、4、……)零 (0既不是正数,也不是负数) 负整数(-1、-2、-3、-4……)注:零的作用表示数位。
读写数时,某个单位上一个单位也没有,就用0表示占位作用。
作为界限。
如“零上温度与零下温度的界限”。
计数单位一(个)、十、百、千、万、十万、百万、千万、亿……都是计数单位。
其中“一”是计数的基本单位。
10个1是10,10个10是100……每相邻两个计数单位之间的进率都是10。
这样的计数法叫做十进制计数法。
数位计数单位按一定的顺序排列,它们的位置称为数字。
整数的读法:从高位到低位,一级一级地读。
读亿级、万级时,先按照个级的读法去读,再在后面加一个“亿”或“万”字。
每一级末尾的零不读取,其他位数的几个零只读取一个零。
整数的写法:从高位到低位,一级一级地写,哪一个数位上一个单位也没有,就在那个数位上写0。
整数的改写与省略一个较大的多位数,为了读写方便,常常把它改写成用“万”或“亿”作单位的数。
有时还可以根据需要,省略这个数某一位后面的数,写成近似数。
⑴ 准确数:在实际生活中,为了计数的简便,可以把一个较大的数改写成以万或亿为单位的数。
改写后的数是原数的准确数。
⑵ 近似数:根据实际需要,我们还可以把一个较大的数,省略某一位后面的尾数,用一个近似数来表示。
四舍五入法:求近似数,看尾数最高位上的数是几,比5小就舍去,是5或大于5舍去尾数向前一位进1。
这种求近似数的方法就叫做四舍五入法。
注:改写不改变数的大小整数大小的比较:位数多的那个数就大,如果位数相同,就看最高位,最高位上的数大,那个数就大;最高位上的数相同,就看下一位,哪一位上的数大那个数就大。
2023-2024年小学数学六年级上册期末考点复习 第六单元《百分数(一)》(人教版原卷)

期末知识大串讲人教版数学六年级上册期末章节考点复习讲义第六单元百分数(一)知识点一:百分数的意义和读、写法1.叫做百分数。
百分数指的是,因此百分数也叫做。
2.2.任何一个百分数都不能表示,不能带;表示具体数量且分母是的分数也不能用百分数表示。
知识点二:小数、分数和百分数之间的关系及其转化1.百分率的意义和求法(分数、小数化成百分数)(1)求百分率实质就是去“”,用比较量除以的量。
(2)把小数化成百分数:先把小数改写成,再化成百分数。
或者把小数点,再在后面添上,位数不够用补足。
(3)把分数化成百分数:先把分数化成,然后再写成。
还可以把分数化成,再化成。
2. 求一个数的百分之几是多少(百分数化成分数和小数)(1)求和,意义相同,都是用计算,用单位“1”的量乘分率就得到部分量。
(2)百分数化成小数、分数的方法:百分数化成小数:百分数化成的分数,再化成;小数点向左移动两位,同时去掉百分号即可。
百分数化成分数:先写成的分数,再化成。
3. 求一个数比另一个数多(或少)百分之几方法一:先求一个数比另一个数多(少)多少,然后除以另一个数(即)求出百分之几。
方法二:先求出一个数是另一个数的百分之几,然后减去或用减去求出百分之几。
4. 求比一个数多(或少)百分之几的数是多少方法一:先求出,再与相加(减);方法二:先求出的百分之几,再用乘这个百分数。
5. 用百分数知识解决有关变化幅度的问题解决涨幅(或降幅)问题的一般方法:解决涨幅(或降幅)问题时,一定要找准单位“1”,可以假设原来的价格是一个具体的数,也可以假设为“1”,根据求比一个数多(或少)百分之几的数是多少的解答方法,用乘法计算出结果。
考点01:百分数的意义和读写1.(2021六上·福田期末)下面四句语句中,正确的有()句。
①晚上人在路灯下走,离路灯越近,影子越长;②4m的35和3m的45一样长;③35小时=0.6小时=60%小时;④1吨煤,用去37吨后,还剩全部的47。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
基本概念一、整数和小数1、整数:像…,-3,-2,-1,0,1,2,3,…这样的数叫做整数。
自然数和0都是整数。
2、自然数:我们在数物体的时候,用来表示物体个数的1,2,3……叫做自然数。
一个物体也没有,用0表示。
0也是自然数。
3、小数:把整数1平均分成10份、100份、1000份……得到的十分之几、百分之几、千分之几……可以用小数表示。
一位小数表示十分之几,两位小数表示百分之几,三位小数表示千分之几……一个小数由整数部分、小数部分和小数点组成。
【小数的性质:在小数的末尾添上零或者去掉零,小数的大小不变。
】4、小数的分类纯小数:整数部分是零的小数,叫做纯小数。
例如: 0.25 、 0.368 都是纯小数。
带小数:整数部分不是零的小数,叫做带小数。
(也叫混小数)例如: 3.25 , 5.26 都是带小数。
有限小数:小数部分的数位是有限的小数,叫做有限小数。
例如: 41.7 , 25.3 ,0.23 都是有限小数。
无限小数:小数部分的数位是无限的小数,叫做无限小数。
例如: 4.33 ……,3.1415926 ……无限不循环小数:一个数的小数部分,数字排列无规律且位数无限,这样的小数叫做无限不循环小数。
例如:π循环小数:一个数的小数部分,有一个数字或者几个数字依次不断重复出现,这个数叫做循环小数。
例如: 3.555 …… 0.0333 …… 12.109109 ……【循环小数一定是无限小数。
(√)】一个循环小数的小数部分,依次不断重复出现的数字叫做这个循环小数的循环节。
例如: 3.99 ……的循环节是“ 9 ” , 0.5454 ……的循环节是“ 54 ” 。
写循环小数的时候,为了简便,小数的循环部分只需写出一个循环节,并在这个循环节的首、末位数字上各点一个圆点。
如果循环节只有一个数字,就只在它的上面点一个点。
例如: 3.777 …… 简写作3.7• ,0.5302302 …… 简写作0.5302••。
5、数位顺序表(数位、数级、计数单位)每相邻两个计数单位之间的进率都是10。
这样的计数法叫做十进制计数法。
4、数的读法和写法读法:整数部分从高位到低位,一级一级地读。
读亿级、万级时,先按照个级的读法去读,再在后面加一个“亿”或“万”字。
每一级末尾的0都不读出来,其它数位连续有几个0都只读一个零。
小数点读作“点”,小数部分从左向右顺次读出每一位数位上的数字。
写法:整数部分从高位到低位,一级一级地写,哪一个数位上一个单位也没有,就在那个数位上写0。
小数点写在个位右下角,小数部分顺次写出每一个数位上的数字。
5、数的改写一个较大的多位数,为了读写方便,常常把它改写成用“万”或“亿”作单位的数。
有时还可以根据需要,省略这个数某一位后面的数,写成近似数。
(1)准确数:在实际生活中,为了计数的简便,可以把一个较大的数改写成以万或亿为单位的数。
改写后的数是原数的准确数。
例如把 1254300000 改写成以万小数点位置的移动引起小数大小的变化 【位数不够时,要用“0”补足。
】做单位的数是 125430 万;改写成以亿做单位的数 12.543 亿。
(2)近似数:根据实际需要,我们还可以把一个较大的数,省略某一位后面的尾数,用一个近似数来表示。
例如: 1302490015 省略亿后面的尾数是 13 亿。
6、四舍五入法:要省略的尾数的最高位上的数是4 或者比4小,就把尾数去掉(四舍);如果尾数的最高位上的数是5或者比5大,就把尾数舍去,并向它的前一位进1(五入)。
例如:省略 345900 万后面的尾数约是 35 万。
省略 4725097420 亿后面的尾数约是 47 亿。
【保留哪一位就看那一位右边一位。
】7、大小比较(1)比较整数大小:比较整数的大小,位数多的那个数就大,如果位数相同,就看最高位,最高位上的数大,那个数就大;最高位上的数相同,就看下一位,哪一位上的数大那个数就大。
(2)比较小数的大小:先看它们的整数部分,,整数部分大的那个数就大;整数部分相同的,十分位上的数大的那个数就大;十分位上的数也相同的,百分位上的数大的那个数就大……(3)比较分数的大小:分母相同的分数,分子大的分数比较大;分子相同的数,分母小的分数大。
分数的分母和分子都不相同的,先通分,再比较两个数的大小。
8、数的整除、因数、倍数、质数、合数、奇数、偶数整除:整数a除以整数b(b ≠ 0),除得的商是整数而没有余数,我们就说a能被b整除,或者说b能整除a 。
因数、倍数:如果数a能被数b(b ≠ 0)整除,a就叫做b的倍数,b就叫做a的因数(也叫约数)。
倍数和因数是相互依存的。
【因为35能被7整除,所以35是7的倍数,7是35的因数。
】(1)一个数的因数的个数是有限的,其中最小的因数是1,最大的因数是它本身。
例如:10的因数有1、2、5、10,其中最小的因数是1,最大的因数是10。
(2)一个数的倍数的个数是无限的,其中最小的倍数是它本身。
3的倍数有:3、6、9、12……其中最小的倍数是3 ,没有最大的倍数。
质数:一个数,如果只有1和它本身两个因数,这样的数叫做质数(或素数),100以内的质数有:2、3、5、7、11、13、17、19、23、29、31、37、41、43、47、53、59、61、67、71、73、79、83、89、97。
合数:一个数,如果除了1和它本身还有别的因数,这样的数叫做合数,例如 4、6、8、9、12都是合数。
【1不是质数也不是合数】 1 1个因数【非0自然数按照因数的个数可以分作三类: 质数 2个因数【 合数 超过2质因数:每个合数都可以写成几个质数相乘的形式。
其中每个质数都是这个合数的因数,叫做这个合数的质因数,例如15=3×5,3和5 叫做15的质因数。
【质因数必须是质数。
】分解质因数:把一个合数用质因数相乘的形式表示出来,叫做分解质因数。
【短除法】公因数:几个数公有的因数,叫做这几个数的公因数。
其中最大的一个,叫做这几个数的最大公因数。
例如12的因数有1、2、3、4、6、12;18的因数有1、2、3、6、9、18。
其中,1、2、3、6是12和1 8的公因数,6是它们的最大公因数。
【如果较小数是较大数的因数,那么较小数就是这两个数的最大公因数。
】互质数:公因数只有1的两个数,叫做互质数。
【如果几个数中任意两个都互质,就说这几个数两两互质。
】(1)1和任何非0(2)相邻的两个非0自然数互质。
(3)两个不同的质数互质。
(4)当合数不是质数的倍数时,这个合数和这个质数互质。
公倍数:几个数公有的倍数,叫做这几个数的公倍数,其中最小的一个,叫做这几个数的最小公倍数。
如2的倍数有2、4、6 、8、10、12、14、16、18 …… ,3的倍数有3、6、9、12、15、18 …… 其中6、12、18……是2、3的公倍数,6是它们的最小公倍数。
【如果较大数是较小数的倍数,那么较大数就是这两个数的最小公倍数。
】个位上是0、2、4、6、8的数,都能被2整除,例如:202、480整除。
个位上是0或5的数,都能被5整除,例如:5、30、405都能被一个数的各位上的数的和能被3整除,这个数就能被3被3整除。
偶数:能被2整除的数叫做偶数。
【0也是偶数。
】奇数:不能被2整除的数叫做奇数。
自然数按能否被2 整除的特征可分为奇数和偶数。
二、分数和百分数1、分数:把单位“1”平均分成若干份,表示这样的一份或者几份的数叫做分数。
分数单位:把单位“1例如2、分数的分类 假分数:分子比分母大或者分子和分母相等的分数,叫做假分数。
【假分数大于或等于1。
】1 2 100小数点移动时,位数不够用0补足。
带分数:假分数可以写成整数与真分数合成的数,通常叫做带分数。
3、约分和通分约分:把一个分数化成同它相等但是分子、分母都比较小的分数,叫做约分。
通分:把异分母分数分别化成和原来分数相等的同分母分数,叫做通分。
最简分数:分子分母是互质数的分数,叫做最简分数。
【约分要把分数变成最简分数。
】4、百分数:表示一个数是另一个数的百分之几的数叫做百分数。
(也叫做百分率或百分比)百分数通常用“%”来表示。
5、数的互化6、倒数:乘积是1的两个数互为倒数。
【1的倒数是它本身,0没有倒数。
】求倒数:只需将分子、分母交换位置。
【整数可以看作分母为1的假分数。
】7、常见的百分率:出勤率=出勤人数总人数×100% 合格率=合格数量总数量×100% 出米率=大米重量稻谷总重量×100%出油率=油的重量材料总重量×100% 【一般情况下,这些百分率都是把总量作为单位“1”,当做除数。
】8、与百分数有关几个问题:(1)折扣:80%——八折;65%——六五折。
【成数:80%——八成;65%——六成五。
】折扣问题:现价=原价×折扣(2)利息:存入银行的钱叫做本金。
取款时银行多支付的钱叫做利息。
利息与本金的比值叫做利率。
利息=本金×时间×利率【时间和利率要对应,例如是年利率,时间也要按年算。
】利息税=利息×税率【利息税是上缴给国家的,因此要从利息中减掉。
】本息=本金+利息【如果有利息税则还要减掉利息税。
】(3)纳税:纳税就是把根据国家各种税法的有关规定,按照一定的比率把集体或个人收入的一部分缴纳给国家。
缴纳的税款叫应纳税款。
应纳税额与各种收入(销售额、营业额、应纳税所得额……)的比率叫做税率。
应纳税额=收入×税率运算和规律1、四则运算顺序:1、有括号先算括号内的;(先小括号,再中括号,最后大括号。
)2、先乘除后加减(乘、除都是二级运算,加、减都是一级运算);3、从左到右按顺序计算(只有加减或者只有乘除)。
【例:①327-20×12+77 先算×,再算-,最后算+;②50×(27+57)先算括号内的+,再算×。
】2、运算律:加法交换律a+b=b+a加法结合律﹙a+b﹚+c=a+﹙b+c﹚连减规律 a-b-c=a-﹙b+c﹚乘法交换律 a×b=b×a乘法结合律﹙a×b﹚×c=a×﹙b×c﹚乘法分配律 a×﹙b+c﹚=a×b+a×c 或 a×﹙b-c﹚=a×b-a×ca×b+a×c=a×﹙b+c﹚ a×b-a×c=a×﹙b-c﹚连除规律 a÷b÷c=a÷﹙b×c﹚3、简便计算:1、观察数字,能否凑整,有没有特殊数字(25、125、101、99、199等等);2、观察运算符号,看看是否符合运算定律的要求,如不符合则不能使用运算定律。