历年高考数学压轴题集锦

合集下载

历届高考数学压轴题汇总及答案

历届高考数学压轴题汇总及答案

历届高考数学压轴题汇总及答案一、2019年高考数学上海卷:(本题满分18分)已知等差数列{}n a 的公差(0,]d π∈,数列{}n b 满足()sin n n b a =,集合{}*|,n S x x b n N ==∈.(1)若120,3a d π==,求集合S ; (2)若12a π=,求d 使得集合S 恰好有两个元素;(3)若集合S 恰好有三个元素:n T n b b +=,T 是不超过7的正整数,求T 的所有可能的值.二、2019年高考数学浙江卷:(本小题满分15分)已知实数0a ≠,设函数()=ln 0.f x a x x +> (Ⅰ)当34a =-时,求函数()f x 的单调区间;(Ⅱ)对任意21[,)e x ∈+∞均有()2f x a≤ 求a 的取值范围. 注: 2.71828e =为自然对数的底数.设2*012(1),4,n n n x a a x a x a x n n +=++++∈N .已知23242a a a =.(1)求n 的值;(2)设(1na =+*,ab ∈N ,求223a b -的值.四、2018年高考数学上海卷:(本题满分18分,第1小题满分4分,第2小题满分6分,第3小题满分8分)给定无穷数列{}n a ,若无穷数列{}n b 满足:对任意*n N ∈,都有1n n b a -≤,则称{}n b 与{}n a “接近”。

(1)设{}n a 是首项为1,公比为12的等比数列,11n n b a +=+,*n N ∈,判断数列{}n b 是否与{}n a 接近,并说明理由;(2)设数列{}n a 的前四项为:12341,248a a a a ====,,,{}n b 是一个与{}n a 接近的数列,记集合1,2,|,4{3,}i M x x b i ===,求M 中元素的个数m ;(3)已知{}n a 是公差为d 的等差数列,若存在数列{}n b 满足:{}n b 与{}n a 接近,且在2132201200,,,b b b b b b ﹣﹣﹣中至少有100个为正数,求d 的取值范围.已知函数l (n )f x x =.(Ⅰ)若()f x 在1x x =,212()x x x ≠处导数相等,证明:12()()88ln2f x f x +>-; (Ⅱ)若34ln2a <-,证明:对于任意0k >,直线y kx a =+与曲线()y f x =有唯一公共点.六、2018年高考数学江苏卷:(本小题满分16分)设{}n a 是首项为1a ,公差为d 的等差数列,{}n b 是首项1b ,公比为q 的等比数列. (Ⅰ)设10a =,11b =,2q =若1||n n a b b -≤对1,2,3,4n =均成立,求d 的取值范围;(Ⅱ)若110a b =>,m ∈*N ,q ∈,证明:存在d ∈R ,使得1||n n a b b -≤对2,3,1n m =+…,均成立,并求d 的取值范围(用1b ,m ,q 表示).七、2017年高考数学上海卷:(本小题满分18分)设定义在R 上的函数()f x 满足:对于任意的1x 、2x ∈R ,当12x x <时,都有12()()f x f x ≤. (1)若3()1f x ax =+,求a 的取值范围;(2)若()f x 是周期函数,证明:()f x 是常值函数;(3)设()f x 恒大于零,g()x 是定义在R 上的、恒大于零的周期函数,M 是g()x 的最大值.函数()()()h x f x g x =.证明:“()h x 是周期函数”的充要条件是“()f x 是常值函数”.八、2017年高考数学浙江卷:(本题满分15分)已知数列{}n x 满足:1=1x ,()()*11ln 1N n n n x x x n ++=++∈. 证明:当*N n ∈时, (I )10n n x x +<<;(I I )1122n n n n x x x x ++-≤; (III )1-21122n n n x -≤≤.高考压轴题答案一、2019年上海卷: 解:(1)等差数列{}n a 的公差(0,]d π∈,数列{}n b 满足()sin n n b a =,集合{}*|,n S x x b n N ==∈.当120,3a d π==,集合22S ⎧⎪=⎨⎪⎪⎩⎭. (2)12a π=,数列{}n b 满足()sin n n b a =,集合{}*|,n S x x b n N ==∈恰好有两个元素,如图:根据三角函数线,①等差数列{}n a 的终边落在y 轴的正负半轴上时,集合S 恰好有两个元素,此时d π=,②1a 终边落在OA 上,要使得集合S 恰好有两个元素,可以使2a ,3a 的终边关于y 轴对称,如图OB ,OC ,此时23d π=, 综上,23d π=或者d π=.(3)①当3T =时,3n n b b +=,集合{}123,,S b b b =,符合题意.②当4T =时,4n n b b +=,()sin 4sin n n a d a +=,42n n a d a k π+=+,或者42n n a d k a π+=-,等差数列{}n a 的公差(0,]d π∈,故42n n a d a k π+=+,2k d π=,又1,2k ∴= 当1k =时满足条件,此时{,1,1}S =--.③当5T =时,5n n b b +=,()sin 5sin ,52n n n n a d a a d a k π+=+=+,或者52n n a d k a π+=-,因为(0,]d π∈,故1,2k =.当1k =时,sin ,1,sin 1010S ππ⎧⎫=-⎨⎬⎩⎭满足题意.∴④当6T =时,6n n b b +=,()sin 6sin n n a d a +=,所以62n n a d a k π+=+或者62n n a d k a π+=-,(0,]d π∈,故1,2,3k =.当1k =时,S =⎪⎪⎩⎭,满足题意.⑤当7T =时,()7,sin 7sin sin n n n n n b b a d a a +=+==,所以72n n a d a k π+=+,或者72n n a d k a π+=-,(0,]d π∈,故1,2,3k =当1k =时,因为17~b b 对应着3个正弦值,故必有一个正弦值对应着3个点,必然有2m n a a π-=,227d m n ππ==-,7,7m n m -=>,不符合条件. 当2k =时,因为17~b b 对应着3个正弦值,故必有一个正弦值对应着3个点,必然有2m n a a π-=,247d m n ππ==-,m n -不是整数,不符合条件. 当3k =时,因为17~b b 对应着3个正弦值,故必有一个正弦值对应着3个点,必然有2m n a a π-=或者4π,267d m n ππ==-,或者467d m n ππ==-,此时,m n -均不是整数,不符合题意. 综上,3,4,5,6T =.二、2019年浙江卷:解:(1)当34a =-时,()3ln 4f x x =-()0,∞+,且:()3'4f x x =-==, 因此函数()f x 的单调递增区间是12ω=,单调递减区间是()0,3.(2)由1(1)2f a ≤,得04a <当0a <()f x 2ln 0x -≥,令1t a=,则t ≥设()22ln g t t x =,t ≥则2()2ln g t t x=-,(i )当1,7x ⎡⎫∈+∞⎪⎢⎣⎭则()(22)2ln g x g x =,记1()ln ,7p x x x =≥,则1()p x x '===∴p(x)≥p(1)=0,∴g(t)≥g(2√2)=2p(x)≥0(ii )当211,7x e ⎡⎫∈⎪⎢⎣⎭时,()g t g ≥,令211()(1),,7q x x x x e ⎡⎤=++∈⎢⎥⎣⎦,则()10q x'=+>,故()q x 在211,7e ⎡⎤⎢⎥⎣⎦上单调递增,1()7q x q ⎛⎫∴≤ ⎪⎝⎭,由(i )得11(1)077q p p ⎛⎫⎛⎫=<= ⎪ ⎪⎝⎭⎝⎭,()0,()0q x g t g ∴<∴≥=>,由(i )(ii )知对任意21,,),()0x t g t e ⎡⎫∈+∞∈+∞≥⎪⎢⎣⎭,即对任意21,x e ⎡⎫∈+∞⎪⎢⎣⎭,均有()f x ≤综上所述,所求的a 的取值范围是⎛ ⎝⎦.三、2019年江苏卷:解:(1)因为0122(1)C C C C 4n n nn n n n x x x x n +=++++≥,, 所以2323(1)(1)(2)C ,C 26n nn n n n n a a ---====, 44(1)(2)(3)C 24nn n n n a ---==. 因为23242a a a =,所以2(1)(2)(1)(1)(2)(3)[]26224n n n n n n n n n ------=⨯⨯,解得5n =.(2)由(1)知,5n =.5(1(1n +=+02233445555555C C C C C C =++++a =+因为*,a b ∈N ,所以024*********C 3C 9C 76,C 3C 9C 44a b =++==++=,从而222237634432a b -=-⨯=-.四、2018年上海卷:解:(1)数列{}n b 与{}n a 接近.理由:{}n a 是首项为1,公比为12的等比数列,可得112n n a -=,11112n n nb a +=+=+, 则011111111222n n n n b a ---=+-=-<,*n N ∈, 可得数列{}n b 与{}n a 接近;(2){}n b 是一个与{}n a 接近的数列, 可得11n n n a b a +-≤≤,数列{}n a 的前四项为:11a =,22a =,34a =,48a =, 可得1[0,2]b ∈,2[1,3]b ∈,3[3,5]b ∈,4[7,9]b ∈,可能1b 与2b 相等,2b 与3b 相等,但1b 与3b 不相等,4b 与3b 不相等,集合1234{|,}i M x x b i ===,,,, M 中元素的个数3m =或4;(3){}n a 是公差为d 的等差数列,若存在数列{}n b 满足:{}n b 与{}n a 接近,可得11n a a n d =+-(), ①若0d >,取n n b a =,可得110n n n n b b a a d ++-=-=>, 则21b b -,32b b -,⋯,201200b b -中有200个正数,符合题意; ②若0d =,取11n b a n=-,则11111n n b a a a n n -=--=<,*n N ∈,可得11101n n b b n n +-=->+, 则21b b -,32b b -,⋯,201200b b -中有200个正数,符合题意; ③若20d ﹣<<,可令21211n n b a --=-,221n n b a =+,则()2212211120n n n n b b a a d ---=+--=+>,则21b b -,32b b -,⋯,201200b b -中恰有100个正数,符合题意; ④若2d-,若存在数列{}n b 满足:{}n b 与{}n a 接近,即为11n n n a b a -+,11111n n n a b a +++-+, 可得()111120n n n n b b a a d ++-+--=+,21b b -,32b b -,⋯,201200b b -中无正数,不符合题意.综上可得,d 的范围是(2,)-+∞.五、2018年浙江卷:解:(Ⅰ)函数()f x的导函数1()f x x'=-, 由12()()f x f x ''=1211x x -=-, 因为12x x ≠12+=.= 因为12x x ≠,所以12256x x >.由题意得121212()()ln ln ln()f x f x x x x x ++=.设()ln g x x =,则1()4)4g x x'=,所以()g x 在[256,)+∞上单调递增, 故12()(256)88ln 2g x x g >=-,即12()()88ln 2f x f x +>-. (Ⅱ)令()e a k m -+=,211a n k ⎛+⎫=+ ⎪⎝⎭,则 ()?0f m km a a k k a -->+-≥,(0)f n kn a a n k n ⎫----<⎪⎭<, 所以,存在0(,)x m n ∈)使00()f x kx a =+,所以,对于任意的a ∈R 及k ∈(0,+∞),直线y kx a =+与曲线()y f x =有公共点. 由()f x kx a =+得k =.设()h x =,则22ln 1()12()x a g x a h x x x +--+'==,其中()ln g x x =-. 由(Ⅰ)可知()(16)g x g ≥,又34ln2a -≤,故–11613420g x a g a ln a -+-+=-++()≤()-≤,所以()0h x '≤,即函数()h x 在(0,+∞)上单调递减,因此方程()0f x kx a --=至多1个实根.综上,当34ln2a -≤时,对于任意0k >,直线y kx a =+与曲线()y f x =有唯一公共点.六、2018江苏卷:解:(Ⅰ)由题意得||1n n a b -≤对任意1,2,3,4n =均成立 故当10a =,121q b ==时可得|01|1|2|1|24|1|38|1d d d -⎧⎪-⎪⎨-⎪⎪-⎩≤≤≤≤即1335227532d d d ⎧⎪⎪⎪⎨⎪⎪⎪⎩≤≤≤≤≤≤所以7532d ≤≤(Ⅱ)因为110a b =>,1||n n a b b -≤对2,3,1n m =+…均能成立把n a ,n b 代入可得1111|(1)|(2,3,1n b n d b q b n m -+--=+≤…,) 化简后可得11111112(22)(222)0(2,3,1)111n n n m b q b b b q n n n m n n n ----=-+=-+=+---≤…, 因为q ∈,所以122n m -≤,22(2,3,1)n n m -=+≤…,而110(2,3,,11nb q n m n->=+-…) 所以存在d ∈R ,使得1||n n a b b -≤对2,3,1n m =+…,均成立 当1m =时,112)b d ≤当2m ≥时,设111n n b q c n -=-,则111111(1)(2,3,)1(1)n n n n n b q b q q n q c c b q n m nn n n --+---=-==--… 设()(1)f n q n q =--,因为10q ->,所以()f n 单调递增,又因为q ∈所以11()(1)(1)2(1)2111m m m f m q m q m m m m ⎛⎫ ⎪⎛⎫=----=-- ⎪ ⎪-⎝⎭ ⎪-⎝⎭≤ 设111,0,2x x x m m ⎛⎤==∈ ⎥⎝⎦,且设1()21x g x x =+-,那么'21()2ln 2(1)x g x x =-- 因为2ln 22ln 2x ≤,214(1)x -≥所以'21(x)2ln 20(1)x g x =-<-在10,2x ⎛⎤∈ ⎥⎝⎦上恒成立,即()f x 单调递增。

2024年高考数学(新高考压轴卷)(全解全析)

2024年高考数学(新高考压轴卷)(全解全析)

2024年高考压轴卷【新高考卷】数学·全解全析一、单选题1.已知集合105x A x x ⎧⎫+=≥⎨⎬-⎩⎭,(){}22log 16B x y x ==-,则()R A B ⋂=ð()A .()1,4-B .[]1,4-C .(]1,5-D .()4,52.宋代是中国瓷器的黄金时代,涌现出了五大名窑:汝窑、官窑、哥窑、钧窑、定窑.其中汝窑被认为是五大名窑之首.如图1,这是汝窑双耳罐,该汝窑双耳罐可近似看成由两个圆台拼接而成,其直观图如图2所示.已知该汝窑双耳罐下底面圆的直径是12厘米,中间圆的直径是20厘米,上底面圆的直径是8厘米,高是14厘米,且上、下两圆台的高之比是3:4,则该汝窑双耳罐的体积是()A .1784π3B .1884π3C .2304π3D .2504π33.如图,左车道有2辆汽车,右车道有3辆汽车等待合流,则合流结束时汽车通过顺序共有()种.A .10B .20C .60D .120【答案】A【分析】合流结束时5辆车需要5个位置,第一步从5个位置选2个位置安排左边的2辆汽车,第二步剩下3个位置安排右边的3辆汽车,从而由分步乘法计数原理可得结果.【详解】设左车辆汽车依次为12,A A ,右车辆汽车依次为123,,B B B ,则通过顺序的种数等价于将12,A A 安排在5个顺序中的某两个位置(保持12,A A 前后顺序不变),123,,B B B 安排在其余3个位置(保持123,,B B B 前后顺序不变),123,,B B B ,所以,合流结束时汽车通过顺序共有2353C C 10=.故选:A.4.已知等比数列{}n a 的各项均为负数,记其前n 项和为n S ,若6467813,8S S a a a -=-=-,则2a =()A .-8B .-16C .-32D .-485.已知圆C :22()1x y m +-=,直线l :()1210m x y m ++++=,则直线l 与圆C 有公共点的必要不充分条件是()A .11m -≤≤B .112m -≤≤C .10m -≤≤D .102m ≤≤6.已知函数2()log f x x =,则对任意实数,a b ,“0a b +≤”是“()()0f a f b +≤”的()A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件故选:C.7.已知0.50.2a =,cos2b =,lg15c =,则()A .a b c <<B .c a b <<C .b c a <<D .b a c<<8.从椭圆22:1(0)x y C a b a b+=>>外一点()00,P x y 向椭圆引两条切线,切点分别为,A B ,则直线AB 称作点P关于椭圆C 的极线,其方程为00221x x y ya b+=.现有如图所示的两个椭圆12,C C ,离心率分别为12,e e ,2C 内含于1C ,椭圆1C 上的任意一点M 关于2C 的极线为l ,若原点O 到直线l 的距离为1,则2212e e -的最大值为()A .12B .13C .15D .14二、多选题9.已知非零复数1z ,2z 在复平面内对应的点分别为1Z ,2Z ,O 为坐标原点,则下列说法正确的是()A .若1211z z -=-,则12=z z B .若1212z z z z +=-,则120OZ OZ ⋅=C .若1212z z z z +=-,则120z z ⋅=D .若1212z z z z +=+,则存在实数t ,使得21z tz =10.已知四面体ABCD的一个平面展开图如图所示,其中四边形AEFD是边长为B,C分别为AE,FD的中点,BD=)⊥A.BE CDB.BE与平面DCE所成角的余弦值为15C.四面体ABCD的内切球半径为30D.四面体ABCD的外接球表面积为8π【点睛】11.对于数列{}n a (N n a +∈),定义k b 为1a ,2a ,…,k a 中最大值(1,2,,k n =⋅⋅⋅)(N n +∈),把数列{}n b 称为数列{}n a 的“M 值数列”.如数列2,2,3,7,6的“M 值数列”为2,2,3,7,7,则()A .若数列{}n a 是递减数列,则{}n b 为常数列B .若数列{}n a 是递增数列,则有n na b =C .满足{}n b 为2,3,3,5,5的所有数列{}n a 的个数为8D .若()1()2N n n a n -+=-∈,记n S 为{}n b 的前n 项和,则1001002(21)3S =-三、填空题12.已知向量()1,1,4a b == ,且b 在a 上的投影向量的坐标为()2,2--,则a 与b的夹角为.13.已知公比q 大于1的等比数列{}n a 满足135a a +=,22a =.设22log 7n n b a =-,则当5n ≥时,数列{}n b 的前n 项和n S =.14.已知椭圆2222:1(0)x y C a b a b+=>>的左、右焦点分别为12,F F ,过点2F 且斜率为34-的直线与C 交于,A B两点.若112AF F F ⊥,则C 的离心率为;线段AB 的垂直平分线与x 轴交于点D ,则22BF DF =.5.【点睛】方法点睛:椭圆求离心率或者范围关键是找到关于,a c 的齐次式求得.四、解答题15.如图,在平面四边形ABCD ,已知1BC =,3cos 5BCD ∠=-.(1)若AC 平分BCD ∠,且2AB =,求AC 的长;(2)若45CBD ∠=︒,求CD 的长.16.如图,在三棱柱111ABC A B C -中,ABC △是边长为2的正三角形,侧面11BB C C 是矩形,11AA A B =.(1)求证:三棱锥1A ABC -是正三棱锥;(2)若三棱柱111ABC A B C -的体积为221AC 与平面11AA B B 所成角的正弦值.【答案】(1)证明见解析(2)23【分析】(1)根据线面垂直的判定定理及性质定理,证明1A O ⊥平面ABC 即可;(2)建立空间直角坐标系,利用向量法求线面角正弦即可.【详解】(1)分别取AB ,BC 中点D ,E ,连接CD ,AE 交于点O ,则点O 为正三角形ABC 的中心.因为11AA A B CA CB ==,得1CD AB AD AB ⊥⊥,,又11,,A D CD D A D CD =⊂ 平面1A CD ,所以AB ⊥平面1A CD ,又1A O ⊂平面1A CD ,则1AB A O ⊥;取11B C 中点1E ,连接111A E E E ,,则四边形11AA E E 是平行四边形,因为侧面11BB C C 是矩形,所以1BC EE ⊥,又BC AE ⊥,又11,,EE AE E EE AE =⊂ 平面11AA E E ,所以BC ⊥平面11AA E E ,又1A O ⊂平面11AA E E ,则1BC A O ⊥;又AB BC B ⋂=,,AB BC ⊂平面ABC ,所以1A O ⊥平面ABC ,所以三棱锥1A ABC -是正三棱锥.17.某学校为了解本学期学生参加公益劳动的情况,从学校内随机抽取了500名高中学生进行在线调查,收集了他们参加公益劳动时间(单位:小时)分配情况等数据,并将样本数据分成[0,2],(2,4],(4,6],(6,8],(8,10],(10,12],(12,14],(14,16],(16,18]九组,绘制成如图所示的频率分布直方图.(1)为进一步了解这500名学生参加公益劳动时间的分配情况,从参加公益劳动时间在(12,14],(14,16],(16,18]三组内的学生中,采用分层抽样的方法抽取了10人,现从这10人中随机抽取3人.记参加公益劳动时间在(14,16]内的学生人数为X ,求X 的分布列和期望;(2)以调查结果的频率估计概率,从该学校所有高中学生中随机抽取20名学生,用“20()P k ”表示这20名学生中恰有k 名学生参加公益劳动时间在(10,12](单位:小时)内的概率,其中0,1,2,,20k = .当20()P k 最大时,写出k 的值.18.已知双曲线(22:10,0x y C a b a b-=>>)的左右焦点分别为12,F F ,C 的右顶点到直线2:a l x c =的距离为1,双曲线右支上的点到1F 的最短距离为3(1)求双曲线C 的方程;(2)过2F 的直线与C 交于M 、N 两点,连接1MF 交l 于点Q ,证明:直线QN 过x 轴上一定点.【点睛】方法点睛:求解直线过定点问题常用方法如下:(1)“特殊探路,一般证明(2)“一般推理,特殊求解”:即设出定点坐标,根据题设条件选择参数,建立一个直线系或曲线的方程,再根据参数的任意性得到一个关于定点坐标的方程组,以这个方程组的解为坐标的点即为所求点;(3)求证直线过定点()00,x y ,常利用直线的点斜式方程()00y y k x x -=-或截距式y kx b =+来证明.19.函数()e xf x a x=-图像与x 轴的两交点为()()()1221,0,0A x B x x x >,(1)令()()ln h x f x x x =-+,若()h x 有两个零点,求实数a 的取值范围;(2)证明:121x x <;(3)证明:当5a ≥时,以AB 为直径的圆与直线)1y x =+恒有公共点.(参考数据:0.25 2.5e 1.3e 12.2≈≈,)。

高考数学压轴题汇总及答案

高考数学压轴题汇总及答案

历届高考数学压轴题汇总及答案一、2019年高考数学上海卷:(本题满分18分)已知等差数列{}n a 的公差(0,]d π∈,数列{}n b 满足()sin n n b a =,集合{}*|,n S x x b n N ==∈.(1)若120,3a d π==,求集合S ;(2)若12a π=,求d 使得集合S 恰好有两个元素;(3)若集合S 恰好有三个元素:n T n b b +=,T 是不超过7的正整数,求T 的所有可能的值.二、2019年高考数学浙江卷:(本小题满分15分)已知实数0a ≠,设函数()=ln 0.f x a x x +>(Ⅰ)当34a =-时,求函数()f x 的单调区间;(Ⅱ)对任意21[,)e x ∈+∞均有()f x ≤求a 的取值范围.注: 2.71828e =L 为自然对数的底数.设2*012(1),4,nnn x a a x a x a x n n +=++++∈N .已知23242a a a =.(1)求n 的值;(2)设(1n a =+*,a b ∈N ,求223a b -的值.四、2018年高考数学上海卷:(本题满分18分,第1小题满分4分,第2小题满分6分,第3小题满分8分)给定无穷数列{}n a ,若无穷数列{}n b 满足:对任意*n N ∈,都有1n n b a -≤,则称{}n b 与{}n a “接近”。

(1)设{}n a 是首项为1,公比为12的等比数列,11n n b a +=+,*n N ∈,判断数列{}n b 是否与{}n a 接近,并说明理由;(2)设数列{}n a 的前四项为:12341,248a a a a ====,,,{}n b 是一个与{}n a 接近的数列,记集合1,2,|,4{3,}i M x x b i ===,求M 中元素的个数m ;(3)已知{}n a 是公差为d 的等差数列,若存在数列{}n b 满足:{}n b 与{}n a 接近,且在2132201200,,,b b b b b b L ﹣﹣﹣中至少有100个为正数,求d 的取值范围.已知函数l (n )f x x -=.(Ⅰ)若()f x 在1x x =,212()x x x ≠处导数相等,证明:12()()88ln2f x f x +>-;(Ⅱ)若34ln2a <-,证明:对于任意0k >,直线y kx a =+与曲线()y f x =有唯一公共点.六、2018年高考数学江苏卷:(本小题满分16分)设{}n a 是首项为1a ,公差为d 的等差数列,{}n b 是首项1b ,公比为q 的等比数列.(Ⅰ)设10a =,11b =,2q =若1||n n a b b -≤对1,2,3,4n =均成立,求d 的取值范围;(Ⅱ)若110a b =>,m ∈*N ,q ∈,证明:存在d ∈R ,使得1||n n a b b -≤对2,3,1n m =+…,均成立,并求d 的取值范围(用1b ,m ,q 表示).七、2017年高考数学上海卷:(本小题满分18分)设定义在R 上的函数()f x 满足:对于任意的1x 、2x ∈R ,当12x x <时,都有12()()f x f x ≤.(1)若3()1f x ax =+,求a 的取值范围;(2)若()f x 是周期函数,证明:()f x 是常值函数;(3)设()f x 恒大于零,g()x 是定义在R 上的、恒大于零的周期函数,M 是g()x 的最大值.函数()()()h x f x g x =.证明:“()h x 是周期函数”的充要条件是“()f x 是常值函数”.八、2017年高考数学浙江卷:(本题满分15分)已知数列{}n x 满足:1=1x ,()()*11ln 1N n n n x x x n ++=++∈.证明:当*N n ∈时,(I )10n n x x +<<;(I I )1122n n n n x x x x ++-≤;(III )1-21122n n n x -≤.高考压轴题答案一、2019年上海卷:解:(1) 等差数列{}n a 的公差(0,]d π∈,数列{}n b 满足()sin n n b a =,集合{}*|,n S x x b n N ==∈.∴当120,3a d π==,集合S ⎧⎪=⎨⎪⎪⎩⎭.(2)12a π= ,数列{}n b 满足()sin n n b a =,集合{}*|,n S x x b n N ==∈恰好有两个元素,如图:根据三角函数线,①等差数列{}n a 的终边落在y 轴的正负半轴上时,集合S 恰好有两个元素,此时d π=,②1a 终边落在OA 上,要使得集合S 恰好有两个元素,可以使2a ,3a 的终边关于y 轴对称,如图OB ,OC ,此时23d π=,综上,23d π=或者d π=.(3)①当3T =时,3n n b b +=,集合{}123,,S b b b =,符合题意.②当4T =时,4n n b b +=,()sin 4sin n n a d a +=,42n n a d a k π+=+,或者42n n a d k a π+=-,等差数列{}n a 的公差(0,]d π∈,故42n n a d a k π+=+,2k d π=,又1,2k ∴=当1k =时满足条件,此时{,1,1}S =--.③当5T =时,5n n b b +=,()sin 5sin ,52n n n n a d a a d a k π+=+=+,或者52n n a d k a π+=-,因为(0,]d π∈,故1,2k =.当1k =时,sin,1,sin 1010S ππ⎧⎫=-⎨⎬⎩⎭满足题意.④当6T =时,6n n b b +=,()sin 6sin n n a d a +=,所以62n n a d a k π+=+或者62n n a d k a π+=-,(0,]d π∈,故1,2,3k =.当1k =时,22S =⎨⎬⎪⎪⎩⎭,满足题意.⑤当7T =时,()7,sin 7sin sin n n n n n b b a d a a +=+==,所以72n n a d a k π+=+,或者72n n a d k a π+=-,(0,]d π∈,故1,2,3k =当1k =时,因为17~b b 对应着3个正弦值,故必有一个正弦值对应着3个点,必然有2m n a a π-=,227d m n ππ==-,7,7m n m -=>,不符合条件.当2k =时,因为17~b b 对应着3个正弦值,故必有一个正弦值对应着3个点,必然有2m n a a π-=,247d m n ππ==-,m n -不是整数,不符合条件.当3k =时,因为17~b b 对应着3个正弦值,故必有一个正弦值对应着3个点,必然有2m n a a π-=或者4π,267d m n ππ==-,或者467d m n ππ==-,此时,m n -均不是整数,不符合题意.综上,3,4,5,6T =.二、2019年浙江卷:解:(1)当34a =-时,()3ln 4f x x =-+,函数的定义域为()0,∞+,且:()3'4f x x -+=-+,因此函数()f x 的单调递增区间是12ω=,单调递减区间是()0,3.(2)由1(1)2f a ≤,得04a <≤,当204a <时,()f x ,等价于2ln 0x ≥,令1t a=,则t ≥,设()22ln g t t x =--,t ≥,则2()2ln g t t x=--,(i )当1,7x ⎡⎫∈+∞⎪⎢⎣⎭≤则()2ln g x g x =-- ,记1()ln ,7p x x x =--≥,则1()p x x '==列表讨论:x17117⎛⎫ ⎪⎝⎭,1(1,)+∞()'p x ﹣0+()P x 17P ⎛⎫⎪⎝⎭单调递减极小值()1P 单调递增∴p(x)≥p(1)=0,∴g(t)≥g(2√2)=2p(x)≥0(ii )当211,7x e ⎡⎫∈⎪⎢⎣⎭时,()g t g ≥=令211()(1),,7q x x x x e ⎡⎤=++∈⎢⎥⎣⎦,则()10q x'=+>,故()q x 在211,7e ⎡⎤⎢⎥⎣⎦上单调递增,1()7q x q ⎛⎫∴≤ ⎪⎝⎭,由(i )得11(1)07777q p p ⎛⎫⎛⎫=-<-= ⎪ ⎪⎝⎭⎝⎭,()0,()0q x g t g ∴<∴≥=-,由(i )(ii )知对任意21,,),()0x t g t e ⎡⎫∈+∞∈+∞≥⎪⎢⎣⎭,即对任意21,x e ⎡⎫∈+∞⎪⎢⎣⎭,均有()2f x a≤,综上所述,所求的a 的取值范围是4⎛ ⎝⎦.三、2019年江苏卷:解:(1)因为0122(1)C C C C 4n n nn n n n x x x x n +=++++≥ ,,所以2323(1)(1)(2)C ,C 26n nn n n n n a a ---====,44(1)(2)(3)C 24nn n n n a ---==.因为23242a a a =,所以2(1)(2)(1)(1)(2)(3)[]26224n n n n n n n n n ------=⨯⨯,解得5n =.(2)由(1)知,5n =.5(1(1n=+02233445555555C C C C C C =++++a =+因为*,ab ∈N ,所以024135555555C 3C 9C 76,C 3C 9C 44a b =++==++=,从而222237634432a b -=-⨯=-.四、2018年上海卷:解:(1)数列{}n b 与{}n a 接近.理由:{}n a 是首项为1,公比为12的等比数列,可得112n n a -=,11112n n nb a +=+=+,则011111111222n n n n b a ---=+-=-<,*n N ∈,可得数列{}n b 与{}n a 接近;(2){}n b 是一个与{}n a 接近的数列,可得11n n n a b a +-≤≤,数列{}n a 的前四项为:11a =,22a =,34a =,48a =,可得1[0,2]b ∈,2[1,3]b ∈,3[3,5]b ∈,4[7,9]b ∈,可能1b 与2b 相等,2b 与3b 相等,但1b 与3b 不相等,4b 与3b 不相等,集合1234{|,}i M x x b i ===,,,,M 中元素的个数3m =或4;(3){}n a 是公差为d 的等差数列,若存在数列{}n b 满足:{}n b 与{}n a 接近,可得11n a a n d =+-(),①若0d >,取n n b a =,可得110n n n n b b a a d ++-=-=>,则21b b -,32b b -,⋯,201200b b -中有200个正数,符合题意;②若0d =,取11n b a n=-,则11111n n b a a a n n -=--=<,*n N ∈,可得11101n n b b n n +-=->+,则21b b -,32b b -,⋯,201200b b -中有200个正数,符合题意;③若20d ﹣<<,可令21211n n b a --=-,221n n b a =+,则()2212211120n n n n b b a a d ---=+--=+>,则21b b -,32b b -,⋯,201200b b -中恰有100个正数,符合题意;④若2d - ,若存在数列{}n b 满足:{}n b 与{}n a 接近,即为11n n n a b a -+ ,11111n n n a b a +++-+ ,可得()111120n n n n b b a a d ++-+--=+ ,21b b -,32b b -,⋯,201200b b -中无正数,不符合题意.综上可得,d 的范围是(2,)-+∞.五、2018年浙江卷:解:(Ⅰ)函数()f x的导函数1()f x x'=-,由12()()f x f x ''=1211x x -,因为12x x ≠,所以12+=.=+.因为12x x ≠,所以12256x x >.由题意得121212()()ln ln ln()f x f x x x x x +=-+-=.设()ln g x x =-,则1()4)4g x x'=-,所以()g x 在[256,)+∞上单调递增,故12()(256)88ln 2g x x g >=-,即12()()88ln 2f x f x +>-.(Ⅱ)令()e a k m -+=,211a n k ⎛+⎫=+ ⎪⎝⎭,则()–0f m km a a k k a -->+-≥,(0)f n kn a a n k n ⎫----<⎪⎭<,所以,存在0(,)x m n ∈)使00()f x kx a =+,所以,对于任意的a ∈R 及k ∈(0,+∞),直线y kx a =+与曲线()y f x =有公共点.由()f x kx a =+得k =.设ln ()x x a h x x --=,则22ln 1()12()x a g x a h x x x --+--+'==,其中()ln 2x g x x =-.由(Ⅰ)可知()(16)g x g ≥,又34ln2a -≤,故–11613420g x a g a ln a -+-+=-++()≤()-≤,所以()0h x '≤,即函数()h x 在(0,+∞)上单调递减,因此方程()0f x kx a --=至多1个实根.综上,当34ln2a -≤时,对于任意0k >,直线y kx a =+与曲线()y f x =有唯一公共点.六、2018江苏卷:解:(Ⅰ)由题意得||1n n a b -≤对任意1,2,3,4n =均成立故当10a =,121q b ==时可得|01|1|2|1|24|1|38|1d d d -⎧⎪-⎪⎨-⎪⎪-⎩≤≤≤≤即1335227532d d d ⎧⎪⎪⎪⎨⎪⎪⎪⎩≤≤≤≤≤≤所以7532d ≤≤(Ⅱ)因为110a b =>,1||n n a b b -≤对2,3,1n m =+…均能成立把n a ,n b 代入可得1111|(1)|(2,3,1n b n d b q b n m -+--=+ ≤…,)化简后可得11111112(22)(222)0(2,3,1)111n n n m b q b b b q n n n m n n n ----=-+=-+=+--- ≤…,因为q ∈,所以122n m -≤,22(2,3,1)n n m -=+≤…,而110(2,3,,11n b q n m n ->=+- …)所以存在d ∈R ,使得1||n n a b b -≤对2,3,1n m =+…,均成立当1m =时,112)b d ≤当2m ≥时,设111n n b q c n -=- ,则111111(1)(2,3,)1(1)n n n n n b q b q q n q c c b q n m n n n n --+---=-==-- …设()(1)f n q n q =--,因为10q ->,所以()f n单调递增,又因为q ∈所以11()(1)(1)(1)2111m m f m q m q m m m m ⎛⎫ ⎪⎫=---=-- ⎪⎪-⎭ ⎪-⎝⎭ ≤设111,0,2x x x m m ⎛⎤==∈ ⎥⎝⎦,且设1()21x g x x =+-,那么'21()2ln 2(1)x g x x =--因为2ln 2ln 2x ,214(1)x -≥所以'21(x)2ln 20(1)x g x =-<- 在10,2x ⎛⎤∈ ⎥⎝⎦上恒成立,即()f x 单调递增。

历届高考数学压轴题汇总及答案

历届高考数学压轴题汇总及答案

历届高考数学压轴题汇总及答案1.2019年高考数学上海卷:已知等差数列$\{a_n\}$的公差$d\in(0,\pi]$,数列$\{b_n\}$满足$b_n=\sin(a_n)$,集合$S=\{x|x=b_n,n\in N^*\}$。

1) 若$a_1=0,d=\frac{\pi}{6}$,求集合$S$的元素个数;2) 若$a_1=\frac{2\pi}{3}$,求集合$S$;3) 若集合$S$有三个元素$b_{n+T}=b_n$,其中$T$是不超过$7$的正整数,求$T$的所有可能值。

2.2019年高考数学浙江卷:已知实数$a\neq0$,函数$f(x)=a\ln x+x+1$,$x>0$。

1) 当$a=-1$时,求函数$f(x)$的单调区间;2) 对任意$x\in[\frac{3}{4},+\infty)$,有$f(x)\leq\frac{1}{2}e^{2a}$,求$a$的取值范围。

3.2019年高考数学江苏卷:设$(1+x)=a+a_1x+a_2x^2+\cdots+a_nx^n$,$n^2,n\in N^*$,已知$a_3=2a_2a_4$。

1) 求$n$的值;2) 设$(1+3x)=a+b\sqrt{3}$,其中$a,b\in N^*$,求$a^2-3b^2$的值。

4.2018年高考数学上海卷:给定无穷数列$\{a_n\}$,若无穷数列$\{b_n\}$满足对任意$n\in N^*$,都有$b_n-a_n\leq1$,则称$\{b_n\}$与$\{a_n\}$“接近”。

1) 设$\{a_n\}$是首项为$1$,公比为$\frac{1}{2}$的等比数列,构造一个与$\{a_n\}$接近的数列$\{b_n\}$,并说明理由;2) 设数列$\{a_n\}$的前四项为:$a_1=1,a_2=2,a_3=4,a_4=8$,$\{b_n\}$是一个与$\{a_n\}$接近的数列,记集合$M=\{x|x=b_i,i=1,2,3,4\}$,求$M$中元素的个数$m$;3) 已知$\{a_n\}$是公差为$d$的等差数列,若存在数列$\{b_n\}$满足:$\{b_n\}$与$\{a_n\}$接近,且在$1$的等比数列,$b_n=a_{n+1}+1$,$n\in N^*$,判断数列$\{b_n\}$是否满足$b_2-b_1,b_3-b_2,\cdots,b_{201}-b_{200}$中至少有$100$个为正数,求$d$的取值范围。

2023-2024学年高考数学专项复习——压轴题(附答案)

2023-2024学年高考数学专项复习——压轴题(附答案)

决胜3.已知函数,曲线在处的切线方程为.()2e xf x ax =-()y f x =()()1,1f 1y bx =+(1)求的值:,a b (2)求在上的最值;()f x []0,1(3)证明:当时,.0x >()e 1e ln 0x x x x +--≥4.已知函数,.()()ln 1f x x x a x =-++R a ∈(1)若,求函数的单调区间;1a =()f x (2)若关于的不等式在上恒成立,求的取值范围;x ()2f x a≤[)2,+∞a (3)若实数满足且,证明.b 21a b <-+1b >()212ln f x b <-5.椭圆的离心率是,点是椭圆上一点,过点2222:1(0)x y E a b a b +=>>22()2,1M E 的动直线与椭圆相交于两点.()0,1P l ,A B (1)求椭圆的方程;E (2)求面积的最大值;AOB (3)在平面直角坐标系中,是否存在与点不同的定点,使恒成立?存在,xOy P Q QA PAQB PB=求出点的坐标;若不存在,请说明理由.Q 6.已知函数,.()21ln 2f x a x x⎛⎫=-+ ⎪⎝⎭()()()2R g x f x ax a =-∈(1)当时,0a =(i )求曲线在点处的切线方程;()y f x =()()22f ,(ii )求的单调区间及在区间上的最值;()f x 1,e e ⎡⎤⎢⎥⎣⎦(2)若对,恒成立,求a 的取值范围.()1,x ∀∈+∞()0g x <(1)求抛物线的表达式和的值;,t k (2)如图1,连接AC ,AP ,PC ,若△APC 是以(3)如图2,若点P 在直线BC 上方的抛物线上,过点的最大值.12CQ PQ +(1)【基础训练】请分别直接写出抛物线的焦点坐标和准线l 的方程;22y x =(2)【技能训练】如图2所示,已知抛物线上一点P 到准线l 的距离为6,求点P 的坐218y x =标;(3)【能力提升】如图3所示,已知过抛物线的焦点F 的直线依次交抛物线及准()20y ax a =>线l 于点,若求a 的值;、、A B C 24BC BF AF ==,(4)【拓展升华】古希腊数学家欧多克索斯在深入研究比例理论时,提出了分线段的“中末比”问题:点C 将一条线段分为两段和,使得其中较长一段是全线段与另一AB AC CB AC AB 段的比例中项,即满足:,后人把这个数称为“黄金分割”,把CB 512AC BC AB AC -==512-点C 称为线段的黄金分割点.如图4所示,抛物线的焦点,准线l 与y 轴AB 214y x=(0,1)F 交于点,E 为线段的黄金分割点,点M 为y 轴左侧的抛物线上一点.当(0,1)H -HF 时,求出的面积值.2MH MF=HME 10.已知双曲线的一条渐近线方程的倾斜角为,焦距为4.2222:1(0,0)x y C a b a b -=>>60︒(1)求双曲线的标准方程;C (2)A 为双曲线的右顶点,为双曲线上异于点A 的两点,且.C ,M N C AM AN ⊥①证明:直线过定点;MN ②若在双曲线的同一支上,求的面积的最小值.,M N AMN(1)试用解析几何的方法证明:(2)如果将圆分别变为椭圆、双曲线或抛物线,你能得到类似的结论吗?13.对于数集(为给定的正整数),其中,如果{}121,,,,n X x x x =-2n ≥120n x x x <<<< 对任意,都存在,使得,则称X 具有性质P .,a b X ∈,c d X ∈0ac bd +=(1)若,且集合具有性质P ,求x 的值;102x <<11,,,12x ⎧⎫-⎨⎬⎩⎭(2)若X 具有性质P ,求证:;且若成立,则;1X ∈1n x >11x =(3)若X 具有性质P ,且,求数列的通项公式.2023n x =12,,,n x x x 14.已知,是的导函数,其中.()2e xf x ax =-()f x '()f x R a ∈(1)讨论函数的单调性;()f x '(2)设,与x 轴负半轴的交点为点P ,在点P()()()2e 11x g x f x x ax =+-+-()y g x =()y g x =处的切线方程为.()y h x =①求证:对于任意的实数x ,都有;()()g x h x ≥②若关于x 的方程有两个实数根,且,证明:()()0g x t t =>12,x x 12x x <.()2112e 11e t x x --≤+-15.在平面直角坐标系中,一动圆经过点且与直线相切,设该动圆圆心xOy 1,02A ⎛⎫ ⎪⎝⎭12x =-的轨迹为曲线K ,P 是曲线K 上一点.(1)求曲线K 的方程;(2)过点A 且斜率为k 的直线l 与曲线K 交于B 、C 两点,若且直线OP 与直线交//l OP 1x =于Q 点.求的值;||||AB ACOP OQ ⋅⋅(3)若点D 、E 在y 轴上,的内切圆的方程为,求面积的最小值.PDE △()2211x y -+=PDE △16.已知椭圆C :,四点中恰有三()222210x y a b a b +=>>()()1234331,1,0,1,1,,1,22P P P P ⎛⎫⎛⎫- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭点在椭圆C 上.(1)求椭圆C 的方程;(2)设直线l 不经过P 2点且与C 相交于A ,B 两点,若直线与直线的斜率的和为,2P A 2P B 1-证明:l 过定点.18.给定正整数k ,m ,其中,如果有限数列同时满足下列两个条件.则称2m k ≤≤{}n a 为数列.记数列的项数的最小值为.{}n a (,)k m -(,)k m -(,)G k m 条件①:的每一项都属于集合;{}n a {}1,2,,k 条件②:从集合中任取m 个不同的数排成一列,得到的数列都是的子列.{}1,2,,k {}n a 注:从中选取第项、第项、…、第项()形成的新数列{}n a 1i 2i 5i 125i i i <<<…称为的一个子列.325,,,i i i a a a ⋯{}n a (1)分别判断下面两个数列,是否为数列.并说明理由!(33)-,数列;1:1,2,3,1,2,3,1,2,3A 数列.2:1,2,3,2,1,3,1A (2)求的值;(),2G k (3)求证.234(,)2k k G k k +-≥答案:1.(1)极大值为,无极小值2e (2)证明见解析【分析】(1)求导,根据导函数的符号结合极值的定义即可得解;(2)构造函数,利用导数求出函数的最小值,再()21()()()2ln 12F x f x g x x x x x x =+=+->证明即可或者转换不等式为,通过构造函数可得证.()min0F x >()112ln 012x x x +->>【详解】(1)的定义域为,,()f x (0,)+∞()2(1ln )f x x '=-+当时,,当时,,10e x <<()0f x '>1e x >()0f x '<所以函数在上单调递增,在上单调递减,()f x 10,e ⎛⎫ ⎪⎝⎭1,e ⎛⎫+∞ ⎪⎝⎭故在处取得极大值,()f x 1e x =12e e f ⎛⎫= ⎪⎝⎭所以的极大值为,无极小值;()f x 2e (2)设,()21()()()2ln 12F x f x g x x x x x x =+=+->解法一:则,()2ln 1F x x x '=--令,,()()2ln 11h x x x x =-->22()1x h x x x -'=-=当时,,单调递减,当时,,单调递增,12x <<()0h x '<()h x 2x >()0h x '>()h x 又,,,(2)1ln 40h =-<(1)0h =(4)32ln 40h =->所以存在,使得,即.0(2,4)x ∈0()0h x =002ln 10x x --=当时,,即,单调递减,01x x <<()0h x <()0F x '<()F x 当时,,即,单调递增,0x x >()0h x >()0F x '>()F x 所以当时,在处取得极小值,即为最小值,1x >()F x 0x x =故,22000000(11()()12ln )222F x F x x x x x x ≥=+-=-+设,因为,2000122()p x x x =-+0(2,4)x ∈由二次函数的性质得函数在上单调递减,2000122()p x x x =-+(2,4)故,0()(4)0p x p >=所以当时,,即.1x >()0F x >()()0f x g x +>解法二:要证,即证,()0F x >()1()12ln 012p x x x x =+->>因为,所以当时,,单调递减,()124()122x p x x x x -'=-=>()1,4x ∈()0p x '<()p x 当时,,单调递增,()4,x ∞∈+()0p x '>()p x 所以,所以,即.()()4212ln 434ln 20p x p ≥=+-=->()0F x >()()0f x g x +>方法点睛:利用导数证明不等式问题,方法如下:(1)直接构造函数法:证明不等式(或)转化为证明()()f xg x >()()f xg x <(或),进而构造辅助函数;()()0f xg x ->()()0f xg x -<()()()h x f x g x =-(2)适当放缩构造法:一是根据已知条件适当放缩;二是利用常见放缩结论;(3)构造“形似”函数,稍作变形再构造,对原不等式同解变形,根据相似结构构造辅助函数.2.(1)0(2)证明详见解析(3)2a ≤【分析】(1)利用导数求得的最小值.()g x (2)根据(1)的结论得到,利用放缩法以及裂项求和法证得不等式成立.2211ln 1n n ⎛⎫+≤ ⎪⎝⎭(3)由不等式分离参数,利用构造函数法,结合导数求得的取ln (2)10xx x x a x -+--≥a a 值范围.【详解】(1)依题意,,()21ln (,0)2f x x x x t t x =-+∈>R 所以,()()()()ln 1ln 10g x f x x x x x x '==-+=-->,所以在区间上单调递减;()111x g x x x -'=-=()g x ()0,1()()0,g x g x '<在区间上单调递增,()1,+∞()()0,g x g x '>所以当时取得最小值为.1x =()g x ()11ln110g =--=(2)要证明:对任意正整数,都有,(2)n n ≥222211111111e 234n ⎛⎫⎛⎫⎛⎫⎛⎫+⋅+⋅++< ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭ 即证明,22221111ln 1111ln e234n ⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫+⋅+⋅++< ⎪ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦ 即证明,222111ln 1ln 1ln 1123n ⎛⎫⎛⎫⎛⎫++++++< ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ 由(1)得,即()()()10f xg x g '=≥=ln 10,ln 1x x x x --≥≤-令,所以, *211,2,N x n n n =+≥∈222111ln 111n n n ⎛⎫+≤+-= ⎪⎝⎭所以222222111111ln 1ln 1ln 12323n n ⎛⎫⎛⎫⎛⎫++++++≤+++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ ,()111111111122312231n n n n <+++=-+-++-⨯⨯-- 111n=-<所以对任意正整数,都有.(2)n n ≥222211111111e 234n ⎛⎫⎛⎫⎛⎫⎛⎫+⋅+⋅++< ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭ (3)若不等式恒成立,此时,ln (2)10xx x x a x -+--≥0x >则恒成立,ln 21x x x x x a x -+-≤令,()ln 21xx x x x h x x -+-=令,()()()e 10,e 10x x u x x x u x '=--≥=-≥所以在区间上单调递增,()u x[)0,∞+所以,当时等号成立,()0e 010,e 10,e 1x x u x x x ≥--=--≥≥+0x =所以,()ln e ln 21ln 1ln 212x x x x x x x x x x h x x x -+-+-+-=≥=当时等号成立,所以.ln 0,1x x x ==2a ≤利用导数求函数的最值的步骤:求导:对函数进行求导,得到它的导函数.导函数()f x ()f x '表示了原函数在不同点处的斜率或变化率.找出导数为零的点:解方程,找到使得导()0f x '=数为零的点,这些点被称为临界点,可能是函数的极值点(包括最大值和最小值),检查每个临界点以及区间的端点,并确认它们是否对应于函数的最值.3.(1),1a =e 2b =-(2);()max e 1f x =-()min 1f x =(3)证明见解析【分析】(1)利用切点和斜率列方程组,由此求得.,a b (2)利用多次求导的方法求得在区间上的单调性,由此求得在上的最值.()f x []0,1()f x []0,1(3)先证明时,,再结合(2)转化为,从0x >()()e 21f x x ≥-+()21e ln e x x x x x+--≥+而证得不等式成立.【详解】(1),()e 2x f x ax'=-∴,解得:,;()()1e 21e 1f a b f a b ⎧=-=⎪⎨=-=+'⎪⎩1a =e 2b =-(2)由(1)得:,()2e xf x x =-,令,则,()e 2x f x x '=-()e 2x h x x=-()e 2x h x '=-是增函数,令解得.()h x ()0h x '=ln 2x =∴,也即在上单调递减,()h x ()f x '()0,ln2()()0,h x h x '<在上单调递增,()ln2,+∞()()0,h x h x '>∴,∴在递增,()()ln 2ln222ln20h f ==->'()f x []0,1∴;;()()max 1e 1f x f ==-()()min 01f x f ==(3)∵,由(2)得过,()01f =()f x ()1,e 1-且在处的切线方程是,()y f x =1x =()e 21y x =-+故可猜测且时,的图象恒在切线的上方,0x >1x ≠()f x ()e 21y x =-+下面证明时,,设,,0x >()()e 21f x x ≥-+()()()e 21g x f x x =---()0x >∴,∴令,()()e 2e 2x g x x =---'()()()e 2e 2x x x g m x '--==-,()e 2x m x '=-由(2)得:在递减,在递增,()g x '()0,ln2()ln2,+∞∵,,,∴,()03e 0g '=->()10g '=0ln21<<()ln20g '<∴存在,使得,()00,1x ∈()0g x '=∴时,,时,,()()00,1,x x ∈⋃+∞()0g x '>()0,l x x ∈()0g x '<故在递增,在递减,在递增.()g x ()00,x ()0,1x ()1,+∞又,∴当且仅当时取“”,()()010g g ==()0g x ≥1x ==()()2e e 210x g x x x =----≥故,,由(2)得:,故,()e e 21x x xx+--≥0x >e 1x x ≥+()ln 1x x ≥+∴,当且仅当时取“=”,∴,1ln x x -≥1x =()e e 21ln 1x x x x x+--≥≥+即,∴,()21ln 1e e x x x x+--≥+()21e ln e x x x x x+--≥+即成立,当且仅当时“=”成立.()1ln 10e e x x x x +---≥1x =求解切线的有关的问题,关键点就是把握住切点和斜率.利用导数研究函数的单调性,如果一次求导无法求得函数的单调性时,可以考虑利用多次求导来进行求解.利用导数证明不等式恒成立,如果无法一步到位的证明,可以先证明一个中间不等式,然后再证得原不等式成立.4.(1)单调增区间为,单调减区间为;()0,1()1,+∞(2)(],2ln 2-∞(3)证明见解析【分析】(1)求导,再根据导函数的符号即可得解;(2)分离参数可得,构造函数,利用导数求出函数的最小ln 1x x a x ≤-ln (),21x xg x x x =≥-()g x 值即可得解;(3)由,得,则,要证21a b <-+21a b -<-2112()(e )e e 1a a b f x f a b ---≤=+<-+,即证,即证,构造函数()212ln f x b<-222e112ln bb b --+<-22212ln 0eb b b +-<,证明即可.()()()12ln e x h x x x x =>-()1h x <-【详解】(1)当时,,1a =()ln 1,0f x x x x x =-++>,由,得,由,得,()ln f x x '=-()0f x '>01x <<()0f x '<1x >故的单调增区间为,单调减区间为;()f x ()0,1()1,+∞(2),()ln 2,1x xf x a a x ≤∴≤- 令,ln (),21x x g x x x =≥-则,21ln ()(1)x xg x x --'=-令,则,()ln 1t x x x =-+11()1xt x x x -'=-=由,得,由,得,()0t x '>01x <<()0t x '<1x >故在递增,在递减,,()t x ()0,1()1,+∞max ()(1)0t x t ==,所以,()0t x ∴≤ln 1≤-x x 在上单调递增,,()0,()g x g x '≥∴[)2,+∞()min ()2g x g ∴=,(2)2ln 2a g ∴≤=的取值范围;a ∴(],2ln 2-∞(3),221,1b a b a <-+∴-<- 又,在上递增,11()(e )e a a f x f a --≤=+1e a y a -=+ R a ∈所以,2112()(e )e e 1a a b f x f a b ---≤=+<-+下面证明:,222e 112ln b b b --+<-即证,22212ln 0ebb b +-<令,则,21x b =>12ln 0e x x x +-<即,(2ln )e 1xx x -⋅<-令,则,()()()12ln e xh x x x x =>-()22ln 1e xh x x x x '⎛⎫=-+-⋅ ⎪⎝⎭令,则,()2()2ln 11x x x x x ϕ=-+->()()2221122()101x x x x x x ϕ---=--=<>∴函数在上单调递减,()x ϕ()1,+∞,()(1)0x ϕϕ∴<=在递减,()()0,h x h x '∴<(1,)+∞,()()1e 1h x h ∴<=-<-所以.()212ln f x b <-方法点睛:利用导数证明不等式问题,方法如下:(1)直接构造函数法:证明不等式(或)转化为证明()()f xg x >()()f xg x <(或),进而构造辅助函数;()()0f xg x ->()()0f xg x -<()()()h x f x g x =-(2)适当放缩构造法:一是根据已知条件适当放缩;二是利用常见放缩结论;(3)构造“形似”函数,稍作变形再构造,对原不等式同解变形,根据相似结构构造辅助函数.5.(1)22142x y +=(2)2(3)存在,.()0,2Q 【分析】(1)由离心率及过点列方程组求解.()2,1M,a b (2)设直线为与椭圆方程联立,将表达为的函数,由基本不l 1y kx =+1212AOB S x x =⋅- k 等式求最大值即可.(3)先讨论直线水平与竖直情况,求出,设点关于轴的对称点,证得()0,2Q B y B '三点共线得到成立.,,Q A B 'QA PAQB PB=【详解】(1)根据题意,得,解得,椭圆C 的方程为.2222222211c a a b c a b ⎧=⎪⎪⎪=+⎨⎪⎪+=⎪⎩222422a b c ⎧=⎪=⎨⎪=⎩22142x y +=(2)依题意,设,直线的斜率显然存在,()()1122,,,A x y B x y l 故设直线为,联立,消去,得,l 1y kx =+221142y kx x y =+⎧⎪⎨+=⎪⎩y ()2212420k x kx ++-=因为直线恒过椭圆内定点,故恒成立,,l ()0,1P 0∆>12122242,1212k x x x x k k +=-=-++故,()2221212221224212111214414222122AOBk S x x x x x x k k k k ⋅+⎛⎫⎛⎫=⋅=⨯-=⨯-⨯= ⎪ ⎪+⎝-+-⎝++⎭⎭- 令,所以,当且仅当,即时取得214,1t k t =+≥22222211AOB t S t t t=×=×£++1t =0k =等号,综上可知:面积的最大值为.AOB 2(3)当平行于轴时,设直线与椭圆相交于两点,如果存在点满足条件,l x ,C D Q 则有,即,所以点在轴上,可设的坐标为;||||1||||QC PC QD PD ==QC QD =Q y Q ()00,y 当垂直于轴时,设直线与椭圆相交于两点,如果存在点满足条件,l x ,M N Q 则有,即,解得或,||||||||QM PM QN PN =00221212y y --=++01y =02y =所以若存在不同于点的定点满足条件,则点的坐标为;P Q Q ()0,2当不平行于轴且不垂直于轴时,设直线方程为,l x x l 1y kx =+由(2)知,12122242,1212k x x x x k k --+==++又因为点关于轴的对称点的坐标为,B y B '()22,x y -又,,11111211QA y kx k k x x x --===-22222211QB y kx k k x x x '--===-+--.方法点睛:直线与椭圆0Ax By C ++=时,取得最大值2222220a A b B C +-=MON S 6.(1)(i );(322ln 220x y +--=(2)11,22⎡⎤-⎢⎥⎣⎦故曲线在点处的切线方程为,()y f x =()()22f ,()()32ln 222y x --+=--即;322ln 220x y +--=(ii ),,()21ln 2f x x x =-+()0,x ∈+∞,()211x f x x x x -'=-+=令,解得,令,解得,()0f x ¢>()0,1x ∈()0f x '<()1,x ∈+∞当时,,1,e e x ⎡⎤∈⎢⎥⎣⎦()()max 112f x f ==-又,,221111ln 1e 2e e 2e f ⎛⎫=-+=-- ⎪⎝⎭()2211e e ln e e 122f =-+=-+其中,()222211111e 1e 1e 20e 2e 222ef f ⎛⎫⎛⎫-=----+=--> ⎪ ⎪⎝⎭⎝⎭故,()()2min 1e e 12f x f ==-+故的单调递增区间为,单调递减区间为;()f x ()0,1()1,+∞在区间上的最大值为,最小值为;()f x 1,e e ⎡⎤⎢⎥⎣⎦12-21e 12-+(2),()21ln 22xg x a x x a ⎭-+⎛=⎪-⎫ ⎝对,恒成立,()1,x ∀∈+∞21ln 202a x x ax ⎛⎫-+-< ⎪⎝⎭变形为对恒成立,ln 122x a xa x<--⎛⎫ ⎪⎝⎭()1,x ∀∈+∞令,则,()(),1,ln x h x x x ∈=+∞()21ln xh x x -'=当时,,单调递增,()1,e x ∈()0h x '>()ln xh x x =当时,,单调递减,()e,+x ∈∞()0h x '<()ln xh x x =其中,,当时,恒成立,()10h =()ln e 1e e e h ==1x >()ln 0x h x x =>故画出的图象如下:()ln x h x x =其中恒过点122y xa a ⎛⎫ ⎪⎝=⎭--(2,1A 又,故在()210111h -'==()ln x h x x =又在上,()2,1A 1y x =-()对于2111644y x x =-+-∴点,即()0,6C -6OC =∵2114,14P m m m ⎛-+- ⎝∴点,3,64N m m ⎛⎫- ⎪⎝⎭∴,22111316624444PN m m m m m⎛⎫=-+---=-+ ⎪⎝⎭∵轴,PN x ⊥∴,//PN OC ∴,PNQ OCB ∠=∠∴,Rt Rt PQN BOC ∴,PN NQ PQ BC OC OB ==∵,8,6,10OB OC BC ===∴,34,55QN PN PQ PN==∵轴,NE y ⊥∴轴,//NE x ∴,CNE CBO ∴,5544CN EN m ==∴,2215111316922444216CQ PQ m m m m ⎛⎫+=-+=--+⎪⎝⎭当时,取得最大值.132m =12CQ PQ+16916关键点点睛:熟练的掌握三角形相似的判断及性质是解决本题的关键.8.(1)详见解析;(2)①具有性质;理由见解析;②P 1346【分析】(1)当时,先求得集合,由题中所给新定义直接判断即可;10n =A (2)当时,先求得集合, 1010n =A ①根据,任取,其中,可得,{}2021|T x x S =-∈02021t x T =-∈0x S ∈0120212020x ≤-≤利用性质的定义加以验证,即可说明集合具有性质;P T P ②设集合有个元素,由(1)可知,任给,,则与中必有个S k x S ∈12020x ≤≤x 2021x -1不超过,从而得到集合与中必有一个集合中至少存在一半元素不超过,然后利1010S T 1010用性质的定义列不等式,由此求得的最大值.P k【详解】(1)当时,,10n ={}1,2,,19,20A = 不具有性质,{}{}|910,11,12,,19,20B x A x =∈>= P 因为对任意不大于的正整数,10m 都可以找到该集合中的两个元素与,使得成立,110b =210b m =+12||b b m -=集合具有性质,{}*|31,N C x A x k k =∈=-∈P 因为可取,对于该集合中任一元素,110m =<,(),都有.112231,31c k c k =-=-*12,N k k ∈121231c c k k -=-≠(2)当时,集合,1010n ={}()*1,2,3,,2019,2020,1010N A m m =≤∈ ①若集合具有性质,那么集合一定具有性质.S P {}2021|T x x S =-∈P 首先因为,任取,其中.{}2021|T x x S =-∈02021t x T =-∈0x S ∈因为,所以.S A ⊆{}01,2,3,,2020x ∈ 从而,即,所以.0120212020x ≤-≤t A ∈T A ⊆由具有性质,可知存在不大于的正整数,S P 1010m 使得对中的任意一对元素,都有.s 12,s s 12s s m -≠对于上述正整数,从集合中任取一对元素,m {}2021|T x x S =-∈112021t x -=,其中,则有.222021t x =-12,x x S ∈1212t t s s m --≠=所以,集合具有性质P ;{}2021|T x x S =-∈②设集合有个元素,由(1)可知,若集合具有性质,S k S P 那么集合一定具有性质.{}2021|T x x S =-∈P 任给,,则与中必有一个不超过.x S ∈12020x ≤≤x 2021x -1010所以集合与中必有一个集合中至少存在一半元素不超过.S T 1010不妨设中有个元素不超过.S 2k t t ⎛⎫≥ ⎪⎝⎭12,,,t b b b 1010由集合具有性质,可知存在正整数.S P 1010m ≤使得对中任意两个元素,都有.S 12,s s 12s s m -≠所以一定有.12,,,t b m b m b m S +++∉ 又,故.100010002000i b m +≤+=121,,,b m b m b m A +++∈ 即集合中至少有个元素不在子集中,A t S 因此,所以,得.20202k k k t +≤+≤20202k k +≤1346k ≤当时,取,{}1,2,,672,673,,1347,,2019,2020S = 673m =则易知对集合中的任意两个元素,都有,即集合具有性质.S 12,y y 12673y y -≠S P 而此时集合S 中有个元素,因此,集合元素个数的最大值为.1346S 1346解新定义题型的步骤:(1)理解“新定义”——明确“新定义”的条件、原理、方法、步骤和结论.(2)重视“举例”,利用“举例”检验是否理解和正确运用“新定义”;归纳“举例”提供的解题方法.归纳“举例”提供的分类情况.(3)类比新定义中的概念、原理、方法,解决题中需要解决的问题.9.(1),10,8⎛⎫ ⎪⎝⎭18y =-(2)或()42,4()42,4-(3)14a =(4)或51-35-【分析】(1)根据焦点和准线方程的定义求解即可;(2)先求出点P 的纵坐标为4,然后代入到抛物线解析式中求解即可;(3)如图所示,过点B 作轴于D ,过点A 作轴于E ,证明,推BD y ⊥AE y ⊥FDB FHC ∽出,则,点B 的纵坐标为,从而求出,证明16FD a =112OD OF DF a =-=112a 36BD a =,即可求出点A 的坐标为,再把点A 的坐标代入抛物线解析式AEF BDF ∽123,24a ⎛⎫ ⎪⎝+⎭-中求解即可;(4)如图,当E 为靠近点F 的黄金分割点的时候,过点M 作于N ,则,MN l ⊥MN MF=先证明是等腰直角三角形,得到,设点M 的坐标为,则MNH △NH MN=21,4m m ⎛⎫⎪⎝⎭过点B 作轴于D ,过点BD y ⊥由题意得点F 的坐标为F ⎛ ⎝1FH =当E 为靠近点F 的黄金分割点的时候,过点∵在中,Rt MNH △sin MHN ∠∴,∴是等腰直角三角形,45MHN ︒=MNH △双曲线方程联立,利用韦达定理及题目条件可得,后由题意可得AM AN ⋅= ()()222131t t m -+=-所过定点坐标;②结合①及图形可得都在左支上,则可得,后由图象可得,M N 213m <,后通过令,结合单调性229113m S m +=-223113m λλ⎛⎫+=≤< ⎪⎝⎭()423313f x x x x ⎛⎫=-≤< ⎪⎝⎭可得答案.【详解】(1)设双曲线的焦距为,C 2c 由题意有解得.2223,24,,ba c c ab ⎧=⎪⎪=⎨⎪=+⎪⎩1,3,2a b c ===故双曲线的标准方程为;C 2213y x -=(2)①证明:设直线的方程为,点的坐标分别为,MN my x t =+,M N ()()1122,,,x y x y 由(1)可知点A 的坐标为,()1,0联立方程消去后整理为,2213y x my x t ⎧-=⎪⎨⎪=+⎩x ()222316330m y mty t --+-=可得,2121222633,3131mt t y y y y m m -+==--,()212122262223131m t tx x m y y t t m m +=+-=-=--,()()()()222222222121212122223363313131m t m t m t x x my t my t m y y mt y y t t m m m -+=--=-++=-+=----由,()()11111,,1,AM x y AN x y =-=-有()()()1212121212111AM AN x x y y x x x x y y ⋅=--+=-+++,()()()()22222222222222222132331313131313131t t t t t t m t t t m m m m m m -----++-=--++===------由,可得,有或,AM AN ⊥0AM AN ⋅=1t =-2t =当时,直线的方程为,过点,不合题意,舍去;1t =-MN 1my x =-()1,0当时,直线的方程为,过点,符合题意,2t =MN 2my x =+()2,0-②由①,设所过定点为121224,31x x x x m +==-若在双曲线的同一支上,可知,M N 有12240,31x x x m +=<-关键点睛:求直线所过定点常采取先猜后证或类似于本题处理方式,设出直线方程,通过题一方面:由以上分析可知,设椭圆方程为一方面:同理设双曲线方程为()22221y m x a b +-=,()2222221b x a k x m a b -+=化简并整理得()(2222222112ba k x a mk x a m ---+一方面:同理设抛物线方程为(22x p y =,()212x p k x n =+化简并整理得,由韦达定理可得12220pk x x pn --=2,2x x pk x x pn +=⋅=-(2)构造,故转化为等价于“对任()()()()()13131931x x xx f x k k g x f x +--==+++()()()123g x g x g x +>意,,恒成立”,换元后得到(),分,和1x 2x 3R x ∈()()11k g x q t t -==+3t ≥1k >1k =三种情况,求出实数k 的取值范围.1k <【详解】(1)由条件①知,当时,有,即在R 上单调递增.12x x <()()12f x f x <()f x 再结合条件②,可知存在唯一的,使得,从而有.0R x ∈()013f x =()093x x f x x --=又上式对成立,所以,R x ∀∈()00093x x f x x --=所以,即.0001393x x x --=0009313x x x ++=设,因为,所以单调递增.()93x x x xϕ=++()9ln 93ln 310x x x ϕ'=++>()x ϕ又,所以.()113ϕ=01x =所以;()931x x f x =++(2)构造函数,()()()()()13131931x x xx f x k k g x f x +--==+++由题意“对任意的,,,1x 2x 3R x ∈均存在以,,为三边长的三角形”()()()11113x f x k f x +-()()()22213x f x k f x +-()()()33313x f x k f x +-等价于“对任意,,恒成立”.()()()123g x g x g x +>1x 2x 3R x ∈又,令,()111313x x k g x -=+++1131231333x x x x t ⋅=++≥+=当且仅当时,即时取等号,91x=0x =则(),()()11k g x q t t -==+3t ≥当时,,因为且,1k >()21,3k g x +⎛⎤∈ ⎥⎝⎦()()122423k g x g x +<+≤()3213k g x +<≤所以,解得,223k +≤4k ≤即;14k <≤当时,,满足条件;1k =()()()1231g x g x g x ===当时,,因为且,1k <()2,13k g x +⎡⎫∈⎪⎢⎣⎭()()122423k g x g x ++<≤()3213k g x +<≤所以,即.2413k +≤112k -≤<综上,实数k 的取值范围是.1,42⎡⎤-⎢⎥⎣⎦复合函数零点个数问题处理思路:①利用换元思想,设出内层函数;②分别作出内层函数与外层函数的图象,分别探讨内外函数的零点个数或范围;③内外层函数相结合确定函数交点个数,即可得到复合函数在不同范围下的零点个数.13.(1)14x =(2)证明过程见解析(3),()112023k n k x --=1k n≤≤【分析】(1)由题意转化为对于,都存在,使得,其中(),m a b =(),n c d =0m n ⋅= ,选取,,通过分析求出;,,,a b c d X ∈()1,,2m a b x ⎛⎫== ⎪⎝⎭ ()(),1,n c d d ==- 14x =(2)取,,推理出中有1个为,则另一个为1,即,()()11,,m a b x x == (),n c d =,c d 1-1X ∈再假设,其中,则,推导出矛盾,得到;1k x =1k n <<101n x x <<<11x =(3)由(2)可得,设,,则有,记11x =()11,m s t =()22,n s t =1212s t t s =-,问题转化为X 具有性质P ,当且仅当集合关于原点对称,得到,,s B s X t X s t t ⎧⎫=∈∈>⎨⎬⎩⎭B ,共个数,由对称性可知也有个数,(){}234,0,,,,n B x x x x -∞=---- ()1n -()0,B +∞ ()1n -结合三角形数阵得到,得到数列为首项为1的等比123212321n n n n n n x x x x x x x x x x -----===== 12,,,n x x x 数列,设出公比为,结合求出公比,求出通项公式.q 2023n x =【详解】(1)对任意,都存在,使得,,a b X ∈,c d X ∈0ac bd +=即对于,都存在,使得,其中,(),m a b =(),n c d =0m n ⋅= ,,,a b c d X ∈因为集合具有性质P ,11,,,12x ⎧⎫-⎨⎬⎩⎭选取,,()1,,2m a b x ⎛⎫== ⎪⎝⎭ ()(),1,n c d d ==-则有,12x d -+=假设,则有,解得,这与矛盾,d x =102x x -+=0x =102x <<假设,则有,解得,这与矛盾,1d =-12x --=12x =-102x <<假设,则有,解得,这与矛盾,1d =12x -+=12x =102x <<假设,则有,解得,满足,12d =14x -+=14x =102x <<故;14x =(2)取,,()()11,,m a b x x == (),n c d =则,()10c d x +=因为,所以,即异号,120n x x x <<<< 0c d +=,c d 显然中有1个为,则另一个为1,即,,c d 1-1X ∈假设,其中,则,1k x =1k n <<101n x x <<<选取,,则有,()()1,,n m a b x x ==(),n s t =10n sx tx +=则异号,从而之中恰有一个为,,s t ,s t 1-若,则,矛盾,1s =-11n x tx t x =>≥若,则,矛盾,1t =-1n n x sx s x =<≤故假设不成立,所以;11x =(3)若X 具有性质P ,且,20231n x =>由(2)可得,11x =设,,则有,()11,m s t =()22,n s t =1212s t t s =-记,则X 具有性质P ,当且仅当集合关于原点对称,,,s B s X t X s t t ⎧⎫=∈∈>⎨⎬⎩⎭B 注意到是集合中唯一的负数,1-X 故,共个数,(){}234,0,,,,n B x x x x -∞=---- ()1n -由对称性可知也有个数,()0,B +∞ ()1n -由于,已经有个数,123421n n n n n nn n n n x x x x x x x x x x x x ----<<<<<< ()1n -对于以下三角形数阵:123421n n n n n n n n n n x x x x x xx x x x x x ----<<<<<< 1111123421n n n n n n n n x x x x xx x x x x --------<<<<< ……3321x x x x <21x x 注意到,123211111n n n x x x x x x x x x x -->>>>> 所以有,123212321n n n n n n x x x x x x x x x x -----===== 从而数列为首项为1的等比数列,设公比为,12,,,n x x x q 由于,故,解得,2023n x =112023n nx q x -==()112023n q -=故数列的通项公式为,.12,,,n x x x ()112023k n k x --=1k n ≤≤集合新定义问题,命题新颖,且存在知识点交叉,常常会和函数或数列相结合,很好的考虑了知识迁移,综合运用能力,对于此类问题,一定要解读出题干中的信息,正确理解问题的本质,转化为熟悉的问题来进行解决,要将“新”性质有机地应用到“旧”性质上,创造性的解决问题.14.(1)答案见解析(2)①证明见解析;②证明见解析【分析】(1)求出的导数,结合解不等式可得答案;()e 2x f x ax'=-(2)①,利用导数的几何意义求得的表达式,由此构造函数,()y h x =()()()F x g x h x =-利用导数判断其单调性,求其最小值即可证明结论;②设的根为,求得其表达式,()h x t=1x '并利用函数单调性推出,设曲线在点处的切线方程为,设11x x '≤()y g x =()0,0()y t x =的根为,推出,从而,即可证明结论.()t x t=2x '22x x '≥2121x x x x ''-≤-【详解】(1)由题意得,令,则,()e 2x f x ax'=-()e 2x g x ax=-()e 2x g x a'=-当时,,函数在上单调递增;0a ≤()0g x '>()f x 'R 当时,,得,,得,0a >()0g x '>ln 2x a >()0g x '<ln 2x a <所以函数在上单调递减,在上单调递增.()f x '(),ln 2a -∞()ln 2,a +∞(2)①证明:由(1)可知,令,有或,()()()1e 1x g x x =+-()0g x ==1x -0x =故曲线与x 轴负半轴的唯一交点P 为.()y g x =()1,0-曲线在点处的切线方程为,()1,0P -()y h x =则,令,则,()()()11h x g x '=-+()()()F x g x h x =-()()()()11F x g x g x '=--+所以,.()()()()11e 2e x F x g x g x '''=-=+-()10F '-=当时,若,,1x <-(],2x ∈-∞-()0F x '<若,令,则,()2,1x --()1()e 2e x m x x =+-()()e 30xm x x '=+>故在时单调递增,.()F x '()2,1x ∈--()()10F x F ''<-=故,在上单调递减,()0F x '<()F x (),1-∞-当时,由知在时单调递增,1x >-()()e 30x m x x '=+>()F x '()1,x ∈-+∞,在上单调递增,()()10F x F ''>-=()F x ()1,-+∞设曲线在点处的切线方程为()y g x =()0,0令()()()()(1e x T x g x t x x =-=+当时,2x ≤-()()2e x T x x =+-'()()2e xn x x =+-设,∴()()1122,,,B x y C x y 1x 又1211,22AB x AC x =+=+依题意,即,则,0bc <02x >()()220220004482x y c x x b =+---因为,所以,2002y x =0022x b c x -=-所以,()()00000242248122424S b c x x x x x -⋅=-++≥-⋅+=-=-当且仅当,即时上式取等号,00422x x -=-04x =所以面积的最小值为8.PDE △方法点睛:圆锥曲线中最值或范围问题的常见解法:(1)几何法,若题目的条件和结论能明显体现几何特征和意义,则考虑利用几何法来解决;(2)代数法,若题目的条件和结论能体现某种明确的函数关系,则可首先建立目标函数,再求这个函数的最值或范围.16.(1)2214x y +=(2)证明见解析(3)存在,7,,777⎛⎫⎛⎫-∞- ⎪ ⎪ ⎪ ⎪⎝+∞⎝⎭⎭ 【分析】(1)根据椭圆的对称性,得到三点在椭圆C 上.把的坐标代入椭圆234,,P P P 23,P P C ,求出,即可求出椭圆C 的方程;22,a b (2)当斜率不存在时,不满足;当斜率存在时,设,与椭圆方程联立,利():1l y kx t t =+≠用判别式、根与系数的关系,结合已知条件得到,能证明直线l 过定点;21t k =--()2,1-(3)利用点差法求出直线PQ 的斜率,从而可得直线PQ 的方程,与抛物线方程联14PQ k t =立,由,及点G 在椭圆内部,可求得的取值范围,设直线TD 的方程为,0∆>2t 1x my =+与抛物线方程联立,由根与系数的关系及,可求得m 的取值范围,进而可求得直线11DA TB k k =的斜率k 的取值范围.2l【详解】(1)根据椭圆的对称性,两点必在椭圆C 上,34331,,1,22P P ⎛⎫⎛⎫- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭又的横坐标为1,4P ∴椭圆必不过,()11,1P ∴三点在椭圆C 上.()234330,1,1,,1,22P P P ⎛⎫⎛⎫- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭把代入椭圆C ,()3231,20,1,P P ⎛⎫- ⎪ ⎪⎝⎭得,解得,222111314b a b ⎧=⎪⎪⎨⎪+=⎪⎩2241a b ⎧=⎨=⎩∴椭圆C 的方程为.2214x y +=(2)证明:①当斜率不存在时,设,,:l x m =()(),,,A A A m y B m y -∵直线与直线的斜率的和为,2P A 2P B 1-∴,221121A A P A P B y y k k m m m ----+=+==-解得m =2,此时l 过椭圆右顶点,不存在两个交点,故不满足.②当斜率存在时,设,,,:l y kx t =+1t ≠()()1122,,,A x y B x y 联立,消去y 整理得,22440y kx tx y =+⎧⎨+-=⎩()222148440k x ktx t +++-=则,,122814kt x x k -+=+21224414t x x k -=+则()()()()222112************111111P A P B x y x y x kx t x kx t y y k k x x x x x x -+-+-++---+=+==,()()()()()()12121222222448218114141144411142t k k kx x t tk t k t k k t t x t x x x +-+=--⋅+-⋅-++===--+-+又,∴,此时,1t ≠21t k =--()()222222644144464161664k t k t k t k ∆=-+-=-+=-故存在k ,使得成立,0∆>∴直线l 的方程为,即21y kx k =--()12y k x +=-∴l 过定点.()2,1-(3)∵点P ,Q 在椭圆上,所以,,2214P P x y +=2214Q Q x y +=两式相减可得,()()()()04PQ P Q P Q P Q y xy x x x y y +-++-=又是线段PQ 的中点,()1,G t -∴,2,2P Q P Q x x x x t+=-=∴直线PQ 的斜率,()144P Q P QP Q P QPQ x x k ty y x y y x +==-=--+∴直线PQ 的方程为,与抛物线方程联立消去x 可得,()114y x t t =++()22164410y ty t -++=由题可知,∴,()2161210t ∆=->2112t >又G 在椭圆内部,可知,∴,故,2114t +<234t <213124t <<设,,由图可知,,221212,,,44y y A y B y ⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭223434,,,44y y T y D y ⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭2134,y y y y >>∴,()2121216,441y y t y y t +==+当直线TD 的斜率为0时,此时直线TD 与抛物线只有1个交点,不合要求,舍去,设直线TD 的方程为,与抛物线方程联立,消去x 可得,()10x my m =+≠2440y my --=∴,34344,4y y m y y +==-由,可知,即,11//ATB D 11DA TB k k =3142222234214444y y y y y y y y --=--∴,即,1342y y y y +=+1243y y y y -=-∴,()()221212343444y y y y y y y y +-=+-∵,()()()()()222212124161641161210,128y y y y t t t +-=-+=-∈∴,解得,即,()()223434416160,128y y y y m +-=+∈27m <()7,7m ∈-∴直线TD 即的斜率.2l 771,77,k m ⎛⎫⎛⎫=∈-∞- ⎪ ⎪ ⎪ ⎪⎝+∞⎝⎭⎭ 思路点睛:处理定点问题的思路:(1)确定题目中的核心变量(此处设为),k (2)利用条件找到与过定点的曲线的联系,得到有关与的等式,k (),0F x y =k ,x y (3)所谓定点,是指存在一个特殊的点,使得无论的值如何变化,等式恒成立,()00,x y k 此时要将关于与的等式进行变形,直至找到,k ,x y ()00,x y ①若等式的形式为整式,则考虑将含的式子归为一组,变形为“”的形式,让括号中式k ()k ⋅子等于0,求出定点;②若等式的形式是分式,一方面可考虑让分子等于0,一方面考虑分子和分母为倍数关系,可消去变为常数.k 17.(1)1y =-(2)2ln23-+【分析】(1)由题意,将代入函数的解析式中,对函数进行求导,得到1m =()f x ()f x 和,代入切线方程中即可求解;()1f '()1f (2)得到函数的解析式,对进行求导,利用根的判别式以及韦达定理对()g x ()g x 进行化简,利用换元法,令,,可得,12122()()y x x b x x =--+12x t x =01t <<2(1)ln 1t y t t -=-+根据,求出的范围,构造函数,对进行求导,利用导数得到322m ≥t 2(1)()ln 1t h t tt -=-+()h t 的单调性和最值,进而即可求解.()h t 【详解】(1)已知(为常数),函数定义域为,()ln f x x mx =-m (0,)+∞当时,函数,1m =()ln f x x x =-可得,此时,又,11()1x f x x x -'=-=()=01f '()11=f -所以曲线在点处的切线方程为,即.()y f x =()()1,1f (1)0(1)y x --=⨯-1y =-(2)因为,函数定义域为,22()2()2ln 2g x f x x x mx x =+=-+(0,)+∞可得,222(1)()22x mx g x m x x x -+=-+='此时的两根,即为方程的两根,()0g x '=1x 2x 210x mx -+=因为,所以,由韦达定理得,,322m ≥240m ∆=->12x x m +=121=x x 又,所以1212lnx x b x x =-121212121212ln 22()()()()xx y x x b x x x x x x x x =--=--++-,11211211222212()ln 2ln 1x x x x x x x x x x x x --=-=⨯-++令,,所以,12x t x =01t <<2(1)ln 1t y t t -=-+因为,整理得,2212()x x m +=22212122x x x x m ++=因为,则,121=x x 2221212122x x x x m x x ++=等式两边同时除以,得,12x x 212212=x x m x x ++可得,因为,212t m t ++=322m ≥所以,,152t t +≥()()2252=2210t t x x -+--≥解得 或,则,12t ≤2t ≥102t <≤不妨设,函数定义域为,2(1)()ln 1t h t t t -=-+10,2⎛⎤⎥⎝⎦可得,22(1)()0(1)t h t t t -'=-<+所以函数在定义域上单调递减,()h t 此时,min 12()()ln223h t h ==-+故的最小值为.12122()()y x x b x x =--+2ln23-+利用导数求解在曲线上某点处的切线方程,关键点有两点,第一是切线的斜率,第二是切点。

2024全国数学高考压轴题(数列选择题)附答案

2024全国数学高考压轴题(数列选择题)附答案

2024全国数学高考压轴题(数列)一、单选题1.若数列{b n }、{c n }均为严格增数列 且对任意正整数n 都存在正整数m 使得b m ∈[c n ,c n+1] 则称数列{b n }为数列{c n }的“M 数列”.已知数列{a n }的前n 项和为S n 则下列选项中为假命题的是( )A .存在等差数列{a n } 使得{a n }是{S n }的“M 数列”B .存在等比数列{a n } 使得{a n }是{S n }的“M 数列”C .存在等差数列{a n } 使得{S n }是{a n }的“M 数列”D .存在等比数列{a n } 使得{S n }是{a n }的“M 数列”2.已知函数f(x)及其导函数f ′(x)的定义域均为R 记g(x)=f ′(x).若f(x +3)为奇函数 g(32+2x)为偶函数 且g(0)=−3 g(1)=2 则∑g 2023i=1(i)=( ) A .670B .672C .674D .6763.我们知道按照一定顺序排列的数字可以构成数列 那么按照一定顺序排列的函数可以构成函数列.设无穷函数列{f n (x)}(n ∈N +)的通项公式为f n (x)=n 2+2nx+x 2+1(n+x)(n+1)x ∈(0,1) 记E n 为f n (x)的值域 E =U n=1+∞E n 为所有E n 的并集 则E 为( )A .(56,109)B .(1,109)C .(56,54)D .(1,54)4.已知等比数列{x n }的公比q >−12则( )A .若|x 1+x 2+⋅⋅⋅+x 100|<1 则√|x 1|+√|x 2|+⋅⋅⋅+√|x 100|<10B .若|x 1+x 2+⋅⋅⋅+x 100|>1 则√|x 1|+√|x 2|+⋅⋅⋅+√|x 100|>10C .若|x 1+x 2+⋅⋅⋅+x 101|<1 则√|x 1|+√|x 2|+⋅⋅⋅+√|x 101|<10D .若|x 1+x 2+⋅⋅⋅+x 101|>1 则√|x 1|+√|x 2|+⋅⋅⋅+√|x 101|>105.已知数列{a n } {b n }满足a 1=2 b 1=12 {a n+1=b n +1an b n+1=a n +1bn,,,n ,∈,N ∗ 则下列选项错误的是( ) A .a 2b 2=14B .a 50⋅b 50<112C .a 50+b 50=52√a 50⋅b 50D .|a 50−b 50|≤156.已知数列{a n }满足:a 1=2 a n+1=13(√a n +2a n )(n ∈N ∗).记数列{a n }的前n 项和为S n 则( )A .12<S 10<14B .14<S 10<16C .16<S 10<18D .18<S 10<207.已知数列 {a n } 满足: a 1=100,a n+1=a n +1an则( )A .√200+10000<a 101<√200.01+10000B .√200.01+10000<a 101<√200.1+10000C .√200.1+10000<a 101<√201+10000D .√201+10000<a 101<√210+100008.已知数列 {a n } 满足 a 1=a(a >0) √a n+1a n =a n +1 给出下列三个结论:①不存在 a 使得数列 {a n } 单调递减;②对任意的a 不等式 a n+2+a n <2a n+1 对所有的 n ∈N ∗ 恒成立;③当 a =1 时 存在常数 C 使得 a n <2n +C 对所有的 n ∈N ∗ 都成立.其中正确的是( ) A .①②B .②③C .①③D .①②③9.已知F 为抛物线y 2=4x 的焦点 点P n (x n ,y n )(n =1,2,3,⋯)在抛物线上.若|P n+1F|−|P n F|=1 则( ) A .{x n }是等差数列 B .{x n }是等比数列 C .{y n }是等差数列D .{y n }是等比数列10.已知数列 11 21 12 31 22 13 41 32 23 14… 其中每一项的分子和分母均为正整数.第一项是分子与分母之和为2的有理数;接下来两项是分子与分母之和为3的有理数 并且从大到小排列;再接下来的三项是分子与分母之和为4的有理数 并且从大到小排列 依次类推.此数列第n 项记为 a n 则满足 a n =5 且 n ≥20 的n 的最小值为( ) A .47B .48C .57D .5811.已知△A n B n C n (n =1,2,3,⋯)是直角三角形 A n 是直角 内角A n ,B n ,C n 所对的边分别为a n ,b n ,c n 面积为S n .若b 1=4,c 1=3,b n+12=a n+12+c n 23,c n+12=a n+12+b n 23则下列选项错误的是( )A .{S 2n }是递增数列B .{S 2n−1}是递减数列C .数列{b n −c n }存在最大项D .数列{b n −c n }存在最小项12.已知数列{a n }的各项都是正数 a n+12−a n+1=a n (n ∈N ∗).记b n =(−1)n−1a n −1数列{b n }的前n 项和为S n 给出下列四个命题:①若数列{a n }各项单调递增 则首项a 1∈(0,2)②若数列{a n }各项单调递减 则首项a 1∈(2,+∞)③若数列{a n }各项单调递增 当a 1=32时 S 2022>2④若数列{a n }各项单调递增 当a 1=23时S2022<−5则以下说法正确的个数()A.4B.3C.2D.113.已知正项数列{a n}对任意的正整数m、n都有2a m+n≤a2m+a2n则下列结论可能成立的是()A.a nm+a mn=a mn B.na m+ma n=a m+n C.a m+a n+2=a mn D.2a m⋅a n=a m+n14.古希腊哲学家芝诺提出了如下悖论:一个人以恒定的速度径直从A点走向B点要先走完总路程的三分之一再走完剩下路程的三分之一如此下去会产生无限个“剩下的路程” 因此他有无限个“剩下路程的三分之一”要走这个人永远走不到终点.另一方面我们可以从上述第一段“三分之一的路程”开始通过分别计算他在每一个“三分之一距离”上行进的时间并将它们逐个累加不难推理出这个人行进的总时间不会超过一个恒定的实数.记等比数列{a n}的首项a1=13公比为q 前n项和为S n则造成上述悖论的原理是()A.q=16,∃t∈R,∀n∈N ∗,Sn<t B.q=13,∃t∈R,∀n∈N∗,S n<tC.q=12,∃t∈R,∀n∈N ∗,Sn<t D.q=23,∃t∈R,∀n∈N∗,S n<t15.已知sinx,siny,sinz依次组成严格递增的等差数列则下列结论错误的是()A.tanx,tany,tanz依次可组成等差数列B.cosx,cosy,cosz依次可组成等差数列C.cosx,cosz,cosy依次可组成等差数列D.cosz,cosx,cosy依次可组成等差数列16.记U={1,2,⋯,100}.对数列{a n}(n∈N∗)和U的子集T 若T=∅定义S T=0;若T={t1,t2,⋯,t k}定义S T=a t1+a t2+⋯+a tk.则以下结论正确的是()A.若{a n}(n∈N∗)满足a n=2n−1,T={1,2,4,8}则S T=15B.若{a n}(n∈N∗)满足a n=2n−1则对任意正整数k(1≤k≤100),T⊆{1,2,⋯,k},S T< a kC.若{a n}(n∈N∗)满足a n=3n−1则对任意正整数k(1≤k≤100),T⊆{1,2,⋯,k},S T≥a k+1D .若{a n }(n ∈N ∗)满足a n =3n−1 且C ⊆U ,D ⊆U ,S C ≥S D 则S C +S C∩D ≥2S D17.已知数列 {a n }、{b n }、{c n } 满足 a 1=b 1=c 1=1,c n =a n+1−a n ,c n+2=bn+1b n ⋅c n (n ∈N ∗),S n =1b 2+1b 3+⋯+1b n (n ≥2),T n =1a 3−3+1a 4−4+⋯+1a n −n (n ≥3) 则下列有可能成立的是( )A .若 {a n } 为等比数列 则 a 20222>b 2022B .若 {c n } 为递增的等差数列 则 S 2022<T 2022C .若 {a n } 为等比数列 则 a 20222<b 2022D .若 {c n } 为递增的等差数列 则 S 2022>T 202218.已知数列{a n }满足a 1=1 a n =a n−1+4(√a n−1+1√an−1)(n ∈N ∗,n ≥2) S n 为数列{1a n }的前n 项和 则( ) A .73<S 2022<83B .2<S 2022<73C .53<S 2022<2 D .1<S 2022<5319.已知数列{a n }满足a n ⋅a n+1⋅a n+2=−1(n ∈N ∗),a 1=−3 若{a n }的前n 项积的最大值为3 则a 2的取值范围为( ) A .[−1,0)∪(0,1] B .[−1,0)C .(0,1]D .(−∞,−1)∪(1,+∞)20.已知正项数列{a n }的前n 项和为S n (a n +1)2=4S n 记b n =S n ⋅sin nπ2+S n+1⋅sin (n+1)π2若数列{b n }的前n 项和为T n 则T 100=( ) A .-400B .-200C .200D .40021.设S n 是等差数列{a n }的前n 项和 a 2=−7 S 5=2a 1 当|S n |取得最小值时 n =( )A .10B .9C .8D .722.已知数列{a n }中 a 2+a 4+a 6=285 na n =(n −1)a n+1+101(n ∈N ∗) 当数列{a n a n+1a n+2}(n ∈N ∗)的前n 项和取得最大值时 n 的值为( ) A .53B .49C .49或53D .49或5123.定义在R 上的函数序列{f n (x)}满足f n (x)<1nf n ′(x)(f n ′(x)为f n (x)的导函数) 且∀x ∈N ∗ 都有f n (0)=n .若存在x 0>0 使得数列{f n (x 0)}是首项和公比均为q 的等比数列 则下列关系式一定成立的是( ).A .0<q <2√2e x 0B .0<q <√33e x 0C .q >2√2e x 0D .q >√33e x 024.已知数列{a n }的前n 项和为S n 满足a 1=1 a 2=2 a n =a n−1⋅a n+1(n ≥2) 则( )A .a 1:a 2:a 3=a 6:a 7:a 8B .a n :a n+1:a n+2=1:2:2C .S 6 S 12 S 18成等差数列D .S 6n S 12n S 18n 成等比数列25.已知S n 为数列{a n }的前n 项和 且a 1=1 a n+1+a n =3×2n 则S 100=( )A .2100−3B .2100−2C .2101−3D .2101−226.已知 {a n } 为等比数列 {a n } 的前n 项和为 S n 前n 项积为 T n 则下列选项中正确的是( )A .若 S 2022>S 2021 则数列 {a n } 单调递增B .若 T 2022>T 2021 则数列 {a n } 单调递增C .若数列 {S n } 单调递增 则 a 2022≥a 2021D .若数列 {T n } 单调递增 则 a 2022≥a 2021二、多选题27.“冰雹猜想”也称为“角谷猜想” 是指对于任意一个正整数x 如果x 是奇数㩆乘以3再加1 如果x 是偶数就除以2 这样经过若干次操作后的结果必为1 犹如冰雹掉落的过程.参照“冰雹猜想” 提出了如下问题:设k ∈N ∗ 各项均为正整数的数列{a n }满足a 1=1 a n+1={a n2,a n 为偶数,a n +k ,a n 为奇数,则( )A .当k =5时 a 5=4B .当n >5时 a n ≠1C .当k 为奇数时 a n ≤2kD .当k 为偶数时 {a n }是递增数列28.已知数列{a n } a 2=12且满足a n+1a n 2=a n −a n+1 n ∈N ∗ 则( ) A .a 4−a 1=1929B .a n 的最大值为1C .a n+1≥1n+1D .√a 1+√a 2+√a 3+⋅⋅⋅+√a 35>1029.已知数列{a n }的前n 项和为S n a 1=1 且4a n ⋅a n+1=a n −3a n+1(n =1 2 …) 则( )A .3a n+1<a nB .a 5=1243C .ln(1an )<n +1D .1≤S n <171430.如图 已知正方体ABCD −A 1B 1C 1D 1顶点处有一质点Q 点Q 每次会随机地沿一条棱向相邻的某个顶点移动 且向每个顶点移动的概率相同.从一个顶点沿一条棱移动到相邻顶点称为移动一次.若质点Q 的初始位置位于点A 处 记点Q 移动n 次后仍在底面ABCD 上的概率为P n 则下列说法正确的是( )A .P 2=59B .P n+1=23P n +13C .点Q 移动4次后恰好位于点C 1的概率为0D .点Q 移动10次后仍在底面ABCD 上的概率为12(13)10+1231.已知数列{a n } {b n } 有a n+1=a n −b n b n+1=b n −a n n ∈N ∗ 则( )A .若存在m >1 a m =b m 则a 1=b 1B .若a 1≠b 1 则存在大于2的正整数n 使得a n =0C .若a 1=a a 2=b 且a ≠b 则b 2022=−b ×22020D .若a 1=−1 a 2=−3 则关于x 的方程2a 3+(2a 3+1)cosx +2cos2x +cos3x =0的所有实数根可构成一个等差数列32.已知△A n B n C n (n =1,2,3,⋯)是直角三角形 A n 是直角 内角A n 、B n 、C n 所对的边分别为a n 、b n 、c n 面积为S n 若b 1=4 c 1=3 b n+12=a n+12+c n 23 c n+12=a n+12+b n 23则( ) A .{S 2n }是递增数列 B .{S 2n−1}是递减数列 C .{b n −c n }存在最大项D .{b n −c n }存在最小项33.已知S n 是数列{a n }的前n 项和 且S n+1=−S n +n 2 则下列选项中正确的是( ).A .a n +a n+1=2n −1(n ≥2)B .a n+2−a n =2C .若a 1=0 则S 100=4950D .若数列{a n }单调递增 则a 1的取值范围是(−14,13)三、填空题34.已知n ∈N ∗ 将数列{2n −1}与数列{n 2−1}的公共项从小到大排列得到新数列{a n } 则1a 1+1a 2+⋯+1a 10= .35.若函数f(x)的定义域为(0,+∞) 且f(x)+f(y)=f(xy) f(a n )=n +f(n) 则∑f ni=1(a i i )= .36.在数列{a n }中 a 1=1 a n+1=a n +1an(n∈N ∗) 若t ∈Z 则当|a 7−t|取得最小值时 整数t 的值为 .37.已知函数f(x)满足f(x −2)=f(x +2),0≤x <4时 f(x)=√4−(x −2)2 g(x)=f(x)−k n x(n ∈N ∗,k n >0).若函数g(x)的图像与x 轴恰好有2n +1个不同的交点 则k 12+k 22+⋅⋅⋅+k n 2= .38.已知复数z =1+i 对于数列{a n } 定义P n =a 1+2a 2+⋅⋅⋅+2n−1a n n为{a n }的“优值”.若某数列{a n}的“优值”P n =|z|2n 则数列{a n }的通项公式a n = ;若不等式a n 2−a n +4≥(−1)nkn 对于∀n ∈N ∗恒成立 则k 的取值范围是 .39.数列{a n }是公比为q(q ≠1)的等比数列 S n 为其前n 项和. 已知a 1⋅a 3=16 S3q=12 给出下列四个结论: ①q <0 ;②若存在m 使得a 1,a 2,⋅⋅⋅,a m 的乘积最大 则m 的一个可能值是3; ③若存在m 使得a 1,a 2,⋅⋅⋅,a m 的乘积最大 则m 的一个可能值是4; ④若存在m 使得a 1,a 2,⋅⋅⋅,a m 的乘积最小 则m 的值只能是2. 其中所有正确结论的序号是 .40.如图 某荷塘里浮萍的面积y (单位:m 2)与时间t (单位:月)满足关系式:y =a t lna (a 为常数) 记y =f(t)(t ≥0).给出下列四个结论:①设a n=f(n)(n∈N∗)则数列{a n}是等比数列;②存在唯一的实数t0∈(1,2)使得f(2)−f(1)=f′(t0)成立其中f′(t)是f(t)的导函数;③常数a∈(1,2);④记浮萍蔓延到2m23m26m2所经过的时间分别为t1t2t3则t1+t2>t3.其中所有正确结论的序号是.41.在现实世界很多信息的传播演化是相互影响的.选用正实数数列{a n}{b n}分别表示两组信息的传输链上每个节点处的信息强度数列模型:a n+1=2a n+b n,b n+1=a n+2b n(n=1,2⋯)描述了这两组信息在互相影响之下的传播演化过程.若两组信息的初始信息强度满足a1>b1则在该模型中关于两组信息给出如下结论:①∀n∈N∗,a n>b n;②∀n∈N∗,a n+1>a n,b n+1>b n;③∃k∈N∗使得当n>k时总有|a nb n−1|<10−10④∃k∈N∗使得当n>k时总有|a n+1a n−2|<10−10.其中所有正确结论的序号是答案解析部分1.【答案】C2.【答案】D3.【答案】C4.【答案】A5.【答案】D6.【答案】B7.【答案】A8.【答案】A9.【答案】A10.【答案】C11.【答案】B12.【答案】B13.【答案】D14.【答案】D15.【答案】B16.【答案】D17.【答案】B18.【答案】D19.【答案】A20.【答案】C21.【答案】C22.【答案】D23.【答案】D24.【答案】C25.【答案】D26.【答案】D27.【答案】A,C,D28.【答案】B,C,D29.【答案】A,D30.【答案】A,C,D 31.【答案】A,C,D 32.【答案】A,C,D 33.【答案】A,C 34.【答案】102135.【答案】n(n+1)236.【答案】4 37.【答案】n 4(n+1) 38.【答案】n+1;[−163,5] 39.【答案】①②③ 40.【答案】①②④ 41.【答案】①②③。

高考数学压轴题100题汇总(含答案)

高考数学压轴题100题汇总(含答案)

高考数学压轴题100题汇总(含答案)1. 设函数f(x) = x^3 3x + 1,求f(x)的极值点和极值。

答案:f(x)的极值点为x = 1和x = 1,极值分别为f(1) = 1和f(1) = 3。

2. 已知等差数列{an}的前n项和为Sn = n^2 + n,求该数列的通项公式。

答案:an = 2n + 1。

3. 已知三角形ABC中,AB = AC = 5,BC = 8,求三角形ABC的面积。

答案:三角形ABC的面积为12。

4. 设直线y = kx + b与圆x^2 + y^2 = 1相切,求k和b的值。

答案:k = ±√3/3,b = ±√6/3。

5. 已知函数f(x) = log2(x^2 + 1),求f(x)的导数。

答案:f'(x) = 2x/(x^2 + 1)ln2。

6. 已知向量a = (2, 3),向量b = (1, 4),求向量a和向量b的夹角。

答案:向量a和向量b的夹角为arccos(1/√5)。

7. 已知矩阵A = [1 2; 3 4],求矩阵A的逆矩阵。

答案:矩阵A的逆矩阵为[4 2; 3 1]。

8. 已知函数f(x) = x^3 6x^2 + 9x + 1,求f(x)的零点。

答案:f(x)的零点为x = 1和x = 3。

9. 已知函数f(x) = sin(x) cos(x),求f(x)在区间[0, π/2]上的最大值。

答案:f(x)在区间[0, π/2]上的最大值为√2。

10. 已知函数f(x) = x^2 + 4x + 4,求f(x)的顶点坐标。

答案:f(x)的顶点坐标为(2, 0)。

高考数学压轴题100题汇总(含答案)11. 已知函数f(x) = e^x 2x,求f(x)的导数。

答案:f'(x) = e^x 2。

12. 已知函数f(x) = x^2 4x + 4,求f(x)的极值点和极值。

答案:f(x)的极值点为x = 2,极值为f(2) = 0。

数学高考压轴题大全精选

数学高考压轴题大全精选

数学高考压轴题大全已知函数.(1)当时,如果函数仅有一个零点,求实数的取值范围;(2)当时,试比较与的大小;(3)求证:().2、设函数,其中为常数.(Ⅰ)当时,判断函数在定义域上的单调性;(Ⅱ)若函数的有极值点,求的取值范围及的极值点;(Ⅲ)当且时,求证:.3、在平面直角坐标系中,已知椭圆.如图所示,斜率为且不过原点的直线交椭圆于,两点,线段的中点为,射线交椭圆于点,交直线于点.(Ⅰ)求的最小值;(Ⅱ)若∙,(i )求证:直线过定点;(ii )试问点,能否关于轴对称?若能,求出此时的外接圆方程;若不能,请说明理由.二、计算题评卷人得分(每空?分,共?分)4、设函数的图象在点处的切线的斜率为,且函数为偶函数.若函数满足下列条件:①;②对一切实数,不等式恒成立.(Ⅰ)求函数的表达式;(Ⅱ)求证:.5、已知函数:(1)讨论函数的单调性;(2)若函数的图像在点处的切线的倾斜角为,问:在什么范围取值时,函数在区间上总存在极值?(3)求证:.6、已知函数=,.(Ⅰ)求函数在区间上的值域;(Ⅱ)是否存在实数,对任意给定的,在区间上都存在两个不同的,使得成立.若存在,求出的取值范围;若不存在,请说明理由;(Ⅲ)给出如下定义:对于函数图象上任意不同的两点,如果对于函数图象上的点(其中总能使得成立,则称函数具备性质“”,试判断函数是不是具备性质“”,并说明理由.7、已知函数(Ⅰ)若函数是定义域上的单调函数,求实数的最小值;(Ⅱ)方程有两个不同的实数解,求实数的取值范围;(Ⅲ)在函数的图象上是否存在不同两点,线段的中点的横坐标为,有成立?若存在,请求出的值;若不存在,请说明理由.8、已知函数:⑴讨论函数的单调性;⑵若函数的图象在点处的切线的倾斜角为45o,对于任意的,函数在区间上总不是单调函数,求m的取值范围;⑶求证:.9、已知正方形的中心在原点,四个顶点都在函数图象上.(1)若正方形的一个顶点为,求,的值,并求出此时函数的单调增区间;(2)若正方形唯一确定,试求出的值.10、已知函数,曲线在点处的切线方程为.(I)求a,b的值;(II)如果当x>0,且时,,求k的取值范围.11、设函数f(x)=x2+b ln(x+1),其中b≠0.(Ⅰ)当b>时,判断函数f(x)在定义域上的单调性;(Ⅱ)求函数f(x)的极值点;(Ⅲ)证明对任意的正整数n,不等式ln)都成立.12、如图7,椭圆的离心率为,x轴被曲线截得的线段长等于的长半轴长.(Ⅰ)求,的方程;(Ⅱ)设与y轴的焦点为M,过坐标原点O的直线与相交于点A,B,直线MA,MB分别与相交与D,E. (i)证明:MD⊥ME;(ii)记△MAB,△MDE的面积分别是,.问:是否存在直线l,使得=?请说明理由.13、已知点是直角坐标平面内的动点,点到直线的距离为,到点的距离为,且.(1)求动点P所在曲线C的方程;(2)直线过点F且与曲线C交于不同两点A、B(点A或B不在x轴上),分别过A、B点作直线的垂线,对应的垂足分别为,试判断点F与以线段为直径的圆的位置关系(指在圆内、圆上、圆外等情况);(3)记,,(A、B、是(2)中的点),问是否存在实数,使成立.若存在,求出的值;若不存在,请说明理由.进一步思考问题:若上述问题中直线、点、曲线C:,则使等式成立的的值仍保持不变.请给出你的判断 (填写“不正确”或“正确”)(限于时间,这里不需要举反例,或证明).14、如图,在轴上方有一段曲线弧,其端点、在轴上(但不属于),对上任一点及点,,满足:.直线,分别交直线于,两点.(1)求曲线弧的方程;(2)求的最小值(用表示);(3)曲线上是否存点,使为正三角形?若存在,求的取值范围;若不存在,说明理由.15、设、是函数的两个极值点.(1)若,求函数的解析式;(2)若,求的最大值.(3)若,且,,求证:.16、已知函数.(Ⅰ)求函数的单调区间;(Ⅱ)设,若对任意,,不等式恒成立,求实数的取值范围.17、已知函数(1)若曲线处的切线平行,求a的值;(2)求的单调区间;(3)设是否存在实数a,对均成立;若存在,求a的取值范围;若不存在,请说明理由.18、已知函数图象的对称中心为,且的极小值为.(1)求的解析式;(2)设,若有三个零点,求实数的取值范围;(3)是否存在实数,当时,使函数在定义域[a,b] 上的值域恰为[a,b],若存在,求出k的范围;若不存在,说明理由.19、已知函数.(1)若方程在区间内有两个不相等的实根,求实数的取值范围;(2)如果函数的图像与x轴交于两点,且,求证:(其中,是的导函数,正常数满足).20、已知函数f(x)=a x+x2-x ln a(a>0,a≠1).(1)当a>1时,求证:函数f(x)在(0,+∞)上单调递增;(2)若函数y=|f(x)-t|-1有三个零点,求t的值;(3)若存在x1,x2∈[-1,1],使得|f(x1)-f(x2)|≥e-1,试求a的取值范围.21、已知函数处取得极小值,其图象过点A(0,1),且在点A处切线的斜率为—1.(Ⅰ)求的解析式;(Ⅱ)设函数上的值域也是,则称区间为函数的“保值区间”.证明:当不存在“保值区间”;22、已知函数(1)求证函数上的单调递增;(2)函数有三个零点,求t的值;(3)对恒成立,求a的取值范围.23、已知函数,其中(Ⅰ)若函数上有极值,求的取值范围;(Ⅱ)若函数有最大值(其中为无理数,约为2.71828),求的值;(Ⅲ)若函数有极大值,求的值.24、已知函数.(1)若函数在区间上存在极值,其中,求实数的取值范围;(2)如果当时,不等式恒成立,求实数的取值范围;(3)求证:25、已知函数,,其中R.(Ⅰ)讨论的单调性;(Ⅱ)若在其定义域内为增函数,求正实数的取值范围;(Ⅲ)设函数,当时,若,,总有成立,求实数的取值范围.26、已知函数.(1)求函数的单调区间;(2)设m>0,求在[m,2m]上的最大值;(3)试证明:对任意N+,不等式<恒成立.27、已知函数(1)求函数的单调区间;(2)设,求证:;(3)设,求证:.28、已知二次函数对都满足且,设函数(,).(Ⅰ)求的表达式;(Ⅱ)若,使成立,求实数的取值范围;(Ⅲ)设,,求证:对于,恒有.29、已知函数不等式求实数的取值范围;(3)若函数30、已知函数(Ⅰ)若函数是定义域上的单调函数,求实数的最小值;(Ⅱ)在函数的图象上是否存在不同两点,线段的中点的横坐标为,直线的斜率为,有成立?若存在,请求出的值;若不存在,请说明理由.31、已知函数的图象在点(为自然对数的底数)处的切线斜率为3.⑴求实数的值;⑵若,且对任意恒成立,求的最大值;⑶当时,证明.32、已知函数在点的切线方程为.(Ⅰ)求函数的解析式;(Ⅱ)设,求证:在上恒成立;(Ⅲ)已知,求证:.33、已知(1)若,函数在其定义域内是增函数,求的取值范围;(2)当时,证明:函数只有一个零点;(3)若的图象与轴交于两点,AB中点为,求证:参考答案一、综合题1、解:(1)当时,,定义域是,,令,得或.…2分当或时,,当时,,函数在、上单调递增,在上单调递减.……………4分的极大值是,极小值是.当时,;当时,,当仅有一个零点时,的取值范围是或.……………5分(2)当时,,定义域为.令,,在上是增函数. (7)分①当时,,即;②当时,,即;③当时,,即.…………………………………9分(3)(法一)根据(2)的结论,当时,,即.令,则有,.……………12分.……………………………………14分(法二)当时,.,,即时命题成立.………………………………10分设当时,命题成立,即.时,.根据(2)的结论,当时,,即.令,则有,则有,即时命题也成立.……………13分因此,由数学归纳法可知不等式成立.………………………………14分(法三)如图,根据定积分的定义,得.……11分,.………………………………12分,又,,..…………………………………14分【说明】本题主要考查函数导数运算法则、利用导数求函数的极值、证明不等式等基础知识,考查分类讨论思想和数形结合思想,考查考生的计算能力及分析问题、解决问题的能力和创新意识.2、解:(1)由题意知,的定义域为,当时,,函数在定义域上单调递增.(2)①由(Ⅰ)得,当时,函数无极值点.②时,有两个相同的解,时,时,函数在上无极值点.③当时,有两个不同解,时,,,此时,随在定义域上的变化情况如下表:减极小值增由此表可知:时,有惟一极小值点,ii) 当时,0<<1此时,,随的变化情况如下表:增极大值减极小值增由此表可知:时,有一个极大值和一个极小值点;综上所述:当且仅当时有极值点;当时,有惟一最小值点;当时,有一个极大值点和一个极小值点(3)由(2)可知当时,函数,此时有惟一极小值点且令函数3、【解析】(Ⅰ)由题意:设直线,由消y得:,设A、B,AB的中点E,则由韦达定理得: =,即,,所以中点E的坐标为E,因为O、E、D三点在同一直线上,所以,即,解得,所以=,当且仅当时取等号,即的最小值为2.(Ⅱ)(i)证明:由题意知:n>0,因为直线OD的方程为,所以由得交点G的纵坐标为,又因为,,且∙,所以,又由(Ⅰ)知: ,所以解得,所以直线的方程为,即有,令得,y=0,与实数k无关,所以直线过定点(-1,0).(ii)假设点,关于轴对称,则有的外接圆的圆心在x轴上,又在线段AB的中垂线上,由(i)知点G(,所以点B(,又因为直线过定点(-1,0),所以直线的斜率为,又因为,所以解得或6,又因为,所以舍去,即,此时k=1,m=1,E,AB的中垂线为2x+2y+1=0,圆心坐标为,G(,圆半径为,圆的方程为.综上所述, 点,关于轴对称,此时的外接圆的方程为.二、计算题4、(Ⅰ)解:由已知得:.……………1分由为偶函数,得为偶函数,显然有.…………2分又,所以,即.…………3分又因为对一切实数恒成立,即对一切实数,不等式恒成立.…………4分显然,当时,不符合题意.…………5分当时,应满足注意到,解得.…………7分所以.……………8分(Ⅱ)证明:因为,所以.………9分要证不等式成立,即证.…………10分因为, …………12分所以.所以成立.……………14分5、解:(1)(1分),当时,的单调增区间为,减区间为;…………2分当时,的单调增区间为,减区间为;…………3分当时,不是单调函数…………4分(2)因为函数的图像在点处的切线的倾斜角为,所以,所以,,……………..…6分,…………………………………….……7分要使函数在区间上总存在极值,所以只需,..................ks5u.. (9)分解得………………………………………………………10分⑶令此时,所以,由⑴知在上单调递增,∴当时,即,∴对一切成立,………12分∵,则有,∴…………14分6、解:(Ⅰ)在区间上单调递增,在区间上单调递减,且的值域为………………3分(Ⅱ)令,则由(Ⅰ)可得,原问题等价于:对任意的在上总有两个不同的实根,故在不可能是单调函数…………………5分当时, ,.s 在区间上递减,不合题意当时, ,在区间上单调递增,不合题意当时, ,在区间上单调递减,不合题意当即时, 在区间上单调递减; 在区间上单递增,由上可得,此时必有的最小值小于等于0 而由可得,则综上,满足条件的不存在.………………………..8分(Ⅲ)设函数具备性质“”,即在点处的切线斜率等于,不妨设,则,而在点处的切线斜率为,故有………………10分即,令,则上式化为,………………12分令,则由可得在上单调递增,故,即方程无解,所以函数不具备性质“”. (14)分7、解(Ⅰ) 1分若函数在上递增,则对恒成立,即对恒成立,而当时,若函数在上递减,则对恒成立,即对恒成立,这是不可能的.综上,的最小值为1. 4分(Ⅱ)解1、由令得=0的根为1,所以当时,,则单调递增,当时,,则单调递减,所以在处取到最大值,又,,所以要使与有两个不同的交点,则有……………8分(Ⅲ)假设存在,不妨设9分若则,即,即.(*) 12分令,(),则>0.∴在上增函数,∴,∴(*)式不成立,与假设矛盾.∴因此,满足条件的不存在. 15分8、9、⑴因为,所以,因此,所以函数的图象在点处的切线方程为,…………………………2分由得,由,得.…4分⑵因为,所以,由题意知在上有解,因为,设,因为,则只要解得,所以b的取值范围.………………………………………………………………8分⑶不妨设.因为函数在区间上是增函数,所以,函数图象的对称轴为,且,(ⅰ)当时,函数在区间上是减函数,所以,所以等价于,即,等价于在区间上是增函数,等价于在区间上恒成立,等价于在区间上恒成立,所以,又,所以;………………………………………………………………………………………10分(ⅱ)当时,函数在区间上是减函数,在上为增函数.①当时,等价于,等价于在区间上是增函数,等价于在区间上恒成立,等价于在区间上恒成立,所以,又,所以;……………………………………………………………………………12分②当时,等价于,等价于在区间上是增函数,等价于在区间上恒成立,等价于在区间上恒成立,所以,故.………………………………………………………………14分③当时,由图象的对称性知,只要对于①②同时成立,那么对于③,则存在,使恒成立;或存在,使恒成立.因此,.综上,b的取值范围是.……………………………………………………16分10、解:(Ⅰ)由于直线的斜率为,且过点,故即解得,.(Ⅱ)由(Ⅰ)知,所以.考虑函数,则.(i)设,由知,当时,.而,故当时,,可得;当x(1,+)时,h(x)<0,可得 h(x)>0从而当x>0,且x1时,f(x)-(+)>0,即f(x)>+.(ii)设0<k<1.由于当x(1,)时,(k-1)(x2 +1)+2x>0,故 (x)>0,而h(1)=0,故当x(1,)时,h(x)>0,可得h(x)<0,与题设矛盾.(iii)设k 1.此时(x)>0,而h(1)=0,故当x(1,+)时,h(x)>0,可得 h(x)<0,与题设矛盾.综合得,k的取值范围为(-,0]解:(2)由(1)知.故要证:只需证为去分母,故分x>1与0<x<1两种情况讨论:当x>1时,需证即即需证.(1)设,则由x>1得,所以在(1,+)上为减函数.又因g(1)=0所以当x>1时 g(x)<0 即(1)式成立.同理0<x<1时,需证(2)而由0<x<1得,所以在(0,1)上为增函数.又因g(1)=0所以当0<x<1时 g(x)<0 即(2)式成立.综上所证,知要证不等式成立.点评:抓住基本思路,去分母化简问题,不可死算.11、(I) 函数的定义域为.,令,则在上递增,在上递减,.当时,,在上恒成立.即当时,函数在定义域上单调递增.(II)分以下几种情形讨论:(1)由(I)知当时函数无极值点.(2)当时,,时,时,时,函数在上无极值点.(3)当时,解得两个不同解,.当时,,,此时在上有唯一的极小值点.当时,在都大于0 ,在上小于0 ,此时有一个极大值点和一个极小值点.综上可知,时,在上有唯一的极小值点;时,有一个极大值点和一个极小值点;时,函数在上无极值点.(III)当时,令则在上恒正,在上单调递增,当时,恒有.即当时,有,对任意正整数,取得12、13、解(1) 设动点为,1分依据题意,有,化简得. 3分因此,动点P所在曲线C的方程是:.…………4分(2) 点F在以MN为直径的圆的外部.理由:由题意可知,当过点F的直线的斜率为0时,不合题意,故可设直线:,如图所示.5分联立方程组,可化为,则点的坐标满足. 7分又、,可得点、.点与圆的位置关系,可以比较点到圆心的距离与半径的大小来判断,也可以计算点与直径形成的张角是锐角、直角、钝角来加以判断.因,,则=.9分于是,为锐角,即点F在以MN为直径的圆的外部. 10分(3)依据(2)可算出,,则,.14分所以,,即存在实数使得结论成立. 15分对进一步思考问题的判断:正确.18分14、解:(1)由椭圆的定义,曲线是以,为焦点的半椭圆,. ……………………………………………1分∴的方程为. ……………………………………………3分(注:不写区间“”扣1分)(2)解法1:由(1)知,曲线的方程为,设,则有,即……①………………………………4分又,,从而直线的方程为AP:; BP:……………5分令得,的纵坐标分别为;.∴……②………………………………………7分将①代入②,得.∴.当且仅当,即时,取等号.即的最小值是. ……………………………………………9分解法2:设,则由三点共线,得..①同理,由三点共线得:…②…………………5分由①×②得:.由,代入上式,.即 . …………………………………………………………7分,当且仅当,即时,取等号.即的最小值是 . ………………………………………………9分(3)设,依题设,直线∥轴,若为正三角形,则必有,…………………………………………………10分从而直线的斜率存在,分别设为、,由(2)的解法1知,;,……………………………11分于是有,而,矛盾.………………………13分∴不存在点P,使为正三角形.……………………………………………14分注:如上各题若有其它解法,请评卷老师酌情给分.15、解:(1)∵是函数的两个极值点,∴,.∴,,解得.∴.-------------------4分(2)∵是函数的两个极值点,∴.∴是方程的两根.∵,∴对一切恒成立.,,∵,∴.∴.由得,∴.∵,∴,∴.令,则.当时,,∴在(0,4)内是增函数;当时,,∴在(4,6)内是减函数.∴当时,有极大值为96,∴在上的最大值是96,∴的最大值是.---------------------------------------8分(3)∵是方程的两根,∴,∵,,∴.∴∵,.-------------------------------12分16、解:(I)的定义域是...........1分............... 2分由及得;由及得,故函数的单调递增区间是;单调递减区间是........4分(II)若对任意,,不等式恒成立,问题等价于,.........5分由(I)可知,在上,是函数极小值点,这个极小值是唯一的极值点,故也是最小值点,所以;...................6分当时,;当时,;当时,;............8分问题等价于或或........11分解得或或即,所以实数的取值范围是.................12分17、18、解:(1)…………………………………………4分(2)……………………7分(3) ,①当时,在上单调减,…………………9分…………………11分②且,在上不单调时,,,…………………14分综上得:…………………15分19、解:(1)∵,, -----1分∴当时,,单调递增;当时,,单调递减.----3分∴当x=1时,有极大值,也是最大值,即为-1,但无最小值.故的单调递增区间为,单调递减区间为;最大值为-1,但无最小值.方程化为,-----3分由上知,在区间上的最大值为-1,,,.故在区间上有两个不等实根需满足,∴,∴实数m的取值范围为. -----6分(2)∵,又有两个实根,∴两式相减,得∴ -----8分于是=.∵,∴,∵,∴. -----9分要证:,只需证:.只需证:.(*)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高考数学压轴题集锦1.椭圆的中心是原点O,它的短轴长为(,)0F c (0>c )的准线l 与x 轴相交于点A ,2OF FA =,过点A 的直线与椭圆相交于P 、Q 两点。

(1)求椭圆的方程及离心率;(2)若0OP OQ ⋅=,求直线PQ 的方程;(3)设AP AQ λ=(1λ>),过点P 且平行于准线l 的直线与椭圆相交于另一点M ,证明FM FQ λ=-. (14分)2. 已知函数)(x f 对任意实数x 都有1)()1(=++x f x f ,且当]2,0[∈x 时,|1|)(-=x x f 。

(1) )](22,2[Z k k k x ∈+∈时,求)(x f 的表达式。

(2) 证明)(x f 是偶函数。

(3) 试问方程01log )(4=+xx f 是否有实数根?若有实数根,指出实数根的个数;若没有实数根,请说明理由。

3.(本题满分12分)如图,已知点F (0,1),直线L :y=-2,及圆C :1)3(22=-+y x 。

(1) 若动点M 到点F 的距离比它到直线L 的距离小1,求动点M 的轨迹E 的方程; (2) 过点F 的直线g(3) 过轨迹E 上一点P 点P 的坐标及S4.以椭圆222y ax +=1(a >1)短轴一端点为直角顶点,作椭圆内接等腰直角三角形,试判断并推证能作出多少个符合条件的三角形.5 已知,二次函数f (x )=ax 2+bx +c 及一次函数g (x )=-bx ,其中a 、b 、c ∈R ,a >b >c ,a +b +c =0.(Ⅰ)求证:f (x )及g (x )两函数图象相交于相异两点; (Ⅱ)设f (x )、g (x )两图象交于A 、B 两点,当AB 线段在x 轴上射影为A 1B 1时,试求|A 1B 1|的取值范围.6 已知过函数f (x )=123++ax x 的图象上一点B (1,b )的切线的斜率为-3。

(1) 求a 、b 的值;(2) 求A 的取值范围,使不等式f (x )≤A -1987对于x ∈[-1,4]恒成立;(3) 令()()132++--=tx x x f x g 。

是否存在一个实数t ,使得当]1,0(∈x 时,g (x )有最大值1?7 已知两点M (-2,0),N (2,0),动点P 在y 轴上的射影为H ,︱PH ︱是2和→→⋅PN PM 的等比中项。

(1) 求动点P 的轨迹方程,并指出方程所表示的曲线; (2) 若以点M 、N 为焦点的双曲线C 过直线x+y=1上的点Q ,求实轴最长的双曲线C 的方程。

8.已知数列{a n }满足aa aa b a a a a a a a n nn n n n +-=+=>=+设,2),0(32211 (1)求数列{b n }的通项公式;(2)设数列{b n }的前项和为S n ,试比较S n 与87的大小,并证明你的结论. 9.已知焦点在x 轴上的双曲线C 的两条渐近线过坐标原点,且两条渐近线与以点)2,0(A 为圆心,1为半径的圆相切,又知C 的一个焦点与A 关于直线x y =对称.(Ⅰ)求双曲线C 的方程;(Ⅱ)设直线1+=mx y 与双曲线C 的左支交于A ,B 两点,另一直线l 经过M (-2,0)及AB 的中点,求直线l 在y 轴上的截距b 的取值范围;(Ⅲ)若Q 是双曲线C 上的任一点,21F F 为双曲线C 的左,右两个焦点,从1F 引21QF F ∠的平分线的垂线,垂足为N ,试求点N 的轨迹方程.10. )(x f 对任意R x ∈都有.21)1()(=-+x f x f(Ⅰ)求)21(f 和)( )1()1(N n nn f nf ∉-+的值. (Ⅱ)数列{}n a 满足:n a =)0(f +)1()1()2()1(f nn f n f n f +-+++ ,数列}{n a 是等差数列吗?请给予证明;(Ⅲ)令.1632,,1442232221nS b b b b T a b n n n n n -=++++=-=试比较n T 与n S 的大小.11. :如图,设OA 、OB 是过抛物线y 2=2px 顶点O 的两条弦,且OA →·OB →=0,求以OA 、OB 为直径的两圆的另一个交点P 的轨迹.(13分)12.知函数f (x )=log 3(x 2-2mx +2m 2+9m 2-3)的定义域为R (1)求实数m 的取值集合M ;(2)求证:对m ∈M 所确定的所有函数f (x )中,其函数值最小的一个是2,并求使函数值等于2的m 的值和x 的值.13.设关于x 的方程2x 2-tx-2=0的两根为),(,βαβα<函数f(x)=.142+-x tx (1). 求f()()βαf 和的值。

(2)。

证明:f(x)在[],βα上是增函数。

(3)。

对任意正数x 1、x 2,求证:βααββα-<++-++2)()(21212121x x x x f x x x x f14.已知数列{a n }各项均为正数,S n 为其前n 项的和.对于任意的*n N ∈,都有()241n n S a =+.I 、求数列{}n a 的通项公式.II 、若2n n tS ≥对于任意的*n N ∈恒成立,求实数t 的最大值.15.( 12分)已知点H (-3,0),点P 在y 轴上,点Q 在x 轴的正半轴上,点M 在直线PQ 上,且满足HP ·PM =0,PM =-23MQ , (1)当点P 在y 轴上移动时,求点M 的轨迹C ;(2)过点T (-1,0)作直线l 与轨迹C 交于A 、B 两点,若在x 轴上存在一点E (x 0,0),使得△ABE 为等边三角形,求x 0的值.16.(14分)设f 1(x )=x+12,定义f n +1 (x )=f 1[f n (x )],a n =2)0(1)0(+-n n f f ,其中n ∈N *.(1) 求数列{a n }的通项公式;(2)若T 2n =a 1+2a 2+3a 3+…+2na 2n ,Q n =144422+++n n n n ,其中n ∈N *,试比较9T 2n 与Q n 的大小.17. 已知→a =(x,0),→b =(1,y ),(→a +3→b )⊥(→a –3→b ).(I ) 求点P (x ,y )的轨迹C 的方程;(II ) 若直线L :y=kx+m(m ≠0)与曲线C 交于A 、B 两点,D (0,–1),且有 |AD|=|BD|,试求m 的取值范围.18.已知函数)(x f 对任意实数p 、q 都满足()()(),f p q f p f q +=⋅1(1).3f =且(1)当n N +∈时,求)(n f 的表达式;(2)设),()(+∈=N n n nf a n 求证:13;4nk k a =<∑(3)设1(1)(),,()nn n k k nf n b n N S b f n +=+=∈=∑试比较11nk kS =∑与6的大小. 19.已知函数),10(log )(≠>=a a x x f a 且若数列:),(),(,221a f a f …,)(42),(*∈+N n n a f n 成等差数列.(1)求数列}{n a 的通项n a ;(2)若}{,10n a a 数列<<的前n 项和为S n ,求n n S ∞→lim ;(3)若)(,2n n n a f a b a ⋅==令,对任意)(,1t fb N n n -*>∈都有,求实数t 的取值范围.20.已知△OFQ 的面积为.,62m =⋅且(1)设θ与求向量m ,646<<正切值的取值范围;(2)设以O 为中心,F 为焦点的双曲线经过点Q (如图),2)146(,||c m c OF -==, 当||取得最小值时,求此双曲线的方程.(3)设F 1为(2)中所求双曲线的左焦点,若A 、B 分别为此双曲线渐近线l 1、l 2上的动点,且2|AB|=5|F 1F|,求线段AB 的中点M 的轨迹方程,并说明轨迹是什么曲线.21、已知函数13)(2++=bx x x f 是偶函数,c x x g +=5)(是奇函数,正数数列{}n a 满足11211=+-+=++)a a a (g )a a (f ,a n n n n n n① 求{}n a 的通项公式;②若{}n a 的前n 项和为n S ,求n n S ∞→lim .22、直角梯形ABCD 中∠DAB =90°,AD ∥BC ,AB =2,AD =23,BC =21.椭圆C 以A 、B 为焦点且经过点D .(1)建立适当坐标系,求椭圆C 的方程; (2)若点E 满足EC 21=AB ,问是否存在不平行AB 的直线l 与椭圆C 交于M 、N 两点且||||NE ME =,若存在,求出直线l 与AB 夹角的范围,若不存在,说明理由.23、.设函数,241)(+=xx f (1)求证:对一切)1()(,x f x f R x -+∈为定值; (2)记*),()1()1()2()1()0(N n f nn f n f n f f a n ∈+-++++= 求数列}{n a 的通项公式及前n 项和.24. 已知函数)(x f 是定义在R 上的偶函数.当X ≥0时, )(x f =172++-x x x. (I)求当X<0时, )(x f 的解析式;(II)试确定函数y =)(x f (X ≥0)在[)+∞,1的单调性,并证明你的结论.(III) 若21≥x 且22≥x ,证明:|)(1x f -)(2x f |<2.25、已知抛物线x y 42=的准线与x 轴交于M 点,过M 作直线与抛物线交于A 、B 两点,若线段AB 的垂直平分线与X 轴交于D (X 0,0) ⑴求X 0的取值范围。

⑵△ABD 能否是正三角形?若能求出X 0的值,若不能,说明理由。

26、已知□ABCD ,A (-2,0),B (2,0),且∣AD ∣=2 ⑴求□ABCD 对角线交点E 的轨迹方程。

⑵过A 作直线交以A 、B 为焦点的椭圆于M 、N 两点,且∣MN ∣=238,MN 的中点到Y 轴的距离为34,求椭圆的方程。

⑶与E 点轨迹相切的直线l 交椭圆于P 、Q 两点,求∣PQ ∣的最大值及此时l 的方程。

27.(14分)(理)已知椭圆)1(1222>=+a y ax ,直线l 过点A (-a ,0)和点B (a ,ta )(t >0)交椭圆于M.直线MO 交椭圆于N.(1)用a ,t 表示△AMN 的面积S ;YD CEA OB X(2)若t∈[1,2],a为定值,求S的最大值.x28.已知函数f (x )=bx +cx +1的图象过原点,且关于点(-1,1)成中心对称. (1)求函数f (x )的解析式;(2)若数列{a n }(n ∈N*)满足:a n >0,a 1=1,a n +1= [f (a n )]2,求数列{a n}的通项公式a n ,并证明你的结论.30、已知点集},|),{(y y x L ⋅==其中),1,1(),1,2(+=-=b b x 点列),(n n n b a P 在L 中,1P 为L 与y 轴的交点,等差数列}{n a 的公差为1,+∈N n 。

相关文档
最新文档