固体热容的量子理论
固体物理:3-6晶格热容的量子理论

固体热容主要来自两部分贡献
一是来源于晶格热振动,称为晶格热容; 是固体热容的主要贡献,是本节的主要讨 论内容;
一是来源于电子热运动,称电子热容; 一般贡献很小,除非在很低温度情况下。
求解CV的一般方法
固体中的热容一般指定容比热容CV, 在热力学中,
CV
(
E T
)V
其中,E是指固体的平均内能。
第一步:写出 E 的表达式; 第二步:代入公式计算CV。
j
j
e j / kBT
1
j
(
j )2 e kBT
CVj
(
dE j (T dT
)
)V
kB
kBT
j
(e kBT 1)2
(3)晶格总热容
设晶体中包括N个原子,共有3N个简谐振动模式,则
E(T )
3N
j 3N
E j (T )
CV CV j
j
其中E
j
(T
)
1 2
j
e j
j
1
CVj
(
(1 z)2 n0
讨论: 因为x ,则 D ;
kBT
T
令z
e
x
,
则
x (e x
4e x 1) 2
x 4e x (1 ex )2
x 4e x (n 1)e nx
n0
x4e x
(e x 1)2
x 4 (n 1)e (n1) x
n0
x 4 ne nx
n1
(二)Debye模型的讨论--- 低温情况
gD(
)
gl
(
)
2gt (
)
V 2 2 2
(
固体物理-固体比热容解析

j
kBT e
2
e j
j / kBT 1
/ kBT 2
上式分析了频率为ωj的振子对热容量的贡献,晶体中包含有3N 个简谐振动,总能量为:
3N
E E j (T) j 1
Heat Capacity of Solids 固体热容
总热容就为:
CV
3N
CVj
j 1
3N j 1
d E j (T ) dT
j
2 j exp( ) 1
j
E
j
n
j
1 2
j
其中
1
n j
—— 平均声子数
exp
k
j
T
B
1
在一定温度下,晶格振动的总能量为:
E
1 j2
j
j
E E(T )
j
exp
j
kBT
1
0
Heat Capacity of Solids 固体热容
Ej
1 2
j
j
e j 1
上式对T求C微vj商,d得Ed到jT晶T格热容k:B
回想一下,1卡路里= 4.18焦耳= 4.18×107尔格。
因此,(2.90)所给出的结果
C 6 v
cal/deg mole (2.91)
固体比热的经典理论
杜隆-珀替定律的解释是基于经典统计力学 的均分定理的基础之上的,该定理假设每个原 子关于它的平衡位置做简谐振荡,那么一个原 子的能量就为:
E p2 1 kr2 1 p2x p2 y p2z 1 k x2 y2 z2 (2.92)
exp
0
kBT
当T0时,CV 0,与实验结果定性符合。
固体物理 第13讲晶体热容的量子理论和晶格振动模式密度

在极低温范围内,爱因斯坦理论值下降比较陡,与实验不符合。 爱因斯坦理论值反映了随温度下降的趋势。
11
晶体热容 温度较高时
k B E 0
2 x ex 1 x 2!
CV 3Nk B
—— 与杜隆 — 珀替定律相符
12
晶体热容
温度非常低时
k B E 0
0 2 CV 3Nk B ( ) e k BT
实验测得结果
0 k BT
—— 按温度的指数形式降低
—— 爱因斯坦模型认为各原子的振动是相互独立的,因而3N 个频率是相同的。 —— 爱因斯坦模型忽略了各格波的频率差别。
13
2. 德拜模型 1912年德拜提出以连续介质的弹性波来代表格波,将布喇 菲晶格看作是各向同性的连续介质。
—— 对于一定的波矢量q,有1个纵波和2个独立的横波
频率在 之间振动模式的数目
实际晶体由N个原子组成,自由度为3N个 格波总的数目 德拜认为: 当频率大于某一频率 m时,短波振动不存在, 在m之上的振动可当作弹性波来处理。
18
3V 2 g ( ) 2 3 2 C
N 1/ 3 m C [6 ( )] V
2
晶体总的热容 CV
lognitudinalwave不同的振动模能量不同色散关系1515三维晶格态密度受边界条件限制波矢q分立取值允许的取值在q空间形成了均匀分布的点子体积元态的数目q是近连续变化的dq振动数目1616频率在之间振动模式的数目各向同性的介质振动频率分布函数或者振动模的态密度函数一个振动模的热容晶体总的热容的计算1717频率在之间纵波数目频率在之间格波数目频率在之间横波数目波矢的数值在之间的振动方式的数目1818频率分布函数频率在间格波数目频率在之间振动模式的数目实际晶体由n个原子组成自由度为3n个格波总的数目德拜认为
固体物理-固体比热容解析

经典的能量均分定理可以很好地解释室温下晶格热容的实验结果。
困难:低温下晶格热容的实验值明显偏小,且当T0时, CV 0,经典的能量均分定理无法解释。
2. Einstein模型
假设:晶体中各原子的振动相互独立,且所有原子都 以同一频率0振动。
即: 0 const.
在一定温度下,由N个原子组成的晶体的总振动能为:
Heat Capacity of Solids 固体热容
固体比热的经典理论
在十九世纪,由实验得到在室温下固体的 比热是由杜隆-珀替定律给出的:
Cv 3R 3N AKB
(2.90)
热容是一个与温度和材料都无关的常数。
其中R=NAKB,NA是阿伏伽德罗常数(6.03×1023 atoms /mole)KB是玻尔兹曼常数(1.38×10-16尔 格/开,尔格是功和能量的单位1焦耳=107尔格)。
体中原子的振动采用格波的形式,频率有一个分布, Debye模型 考虑了频率分布。 (1)频率分布函g(ω)的定义
在ω—ω+dω之间的简谐振动数为ΔN,定义频率分布函数为:
g() lim N N g() 0
写出g(ω)的解析表达式就可以计算出热容量。
在-+d之间晶格振动的模式数为
g
d
3
q
4
q2dq
Enj
n
j
1 2
j
(nj=整数)
把晶体看作一个热力学系统,在简谐近 似下引入简正坐标Qi(i=1,2…3N)来描述振 子的振动。可以认为这些振子独立的子系, 每个谐振子的的统计平均能量:
Modern Theory of the Specific Heat
of Solids 固体比热的现代理论
关于对固体热容的探讨.docx

关于对固体热容的探讨(包头轻工职业技术学院,内蒙古包头 014035)摘要:在经典理论的基础上,详细讨论了量子热容理论,通过与实验结果的比较,进一步加深了对这一概念的正确理解。
关键词:热容;德拜温度;爱因斯坦特征温度;光学波;长声学波中图分类号:O482.2 文献标识码:A 文章编号:1007—6921(XX)18—0082—02热容是反映物体热学性质的重要物理量,研究固体热容有助于我们深入了解固体的热学性质。
因此,固体热容的研究在固体理论中占有重要地位。
固体热容理论的建立经历了由经典理论到量子理论的发展过程。
1 固体热容的经典理论热容是与系统能量有关的重要物理里量,它的大小与物体的性质及传递热量的过程有关,可以反映出物体的固有属性。
固体与我们的生活息息相关,因此研究固体热容就具有十分重要的意义。
固体中的原子在其平衡位置附近作微振动,假设各原子的振动是相互独立的简谐振动,原子在一个振动自由度的能量740)this.width=740" border=undefined>,根据能量均分定理,可得出以下结论:热容量为3Nk,是一个与温度无关的常数。
这一结论称作杜隆-珀替定律。
该定律与实验结果相比,在室温附近及较高温度很符合,但在低温时,测得的热容量很小,热容数值随温度降低很快,当温度趋于零时,热容也趋于零。
这种现象是经典统计理论所不能解释的。
在量子论建立以后,发现能量均分定理存在局限性,而需用新公式代替。
2 固体热容的量子理论根据量子热容理论,各个简谐振动的能量是量子化的,即频率为的振动能量为740)this.width=740" border=undefined>利用玻尔兹曼统计理论,得到在温度T时的平均能量为[1]:740)this.width=740" border=undefined>N个原子构成的晶体,晶格振动等价于3N个谐振子的振动,总的热振动能为:740)this.width=740" border=undefined>引入模式密度D:单位频率区间的格波振动模式数。
热容的量子理论

德拜模型
德拜模型认为:
热容的量子理论
晶体对热容的贡献主要是弹性波的振动,即 较长的声频支在低温下的振动 由于声频支的波长远大于晶格常数,故可将 晶体当成是连续介质,声频支也是连续的, 频率具有0~ωmax 高于ωmax的频率在光频支范围,对热容贡献 很小,可忽略
28
德拜模型
热容的量子理论
当温度较高时,T >> θD,Cv = 3Nk 当温度稳低时,T << θD,有:
25
爱因斯坦模型
当 T >> θE 时
热容的量子理论
故有
当T << θE时,有
26
爱因斯坦模型的缺陷
爱因斯坦模型中:
热容的量子理论
1 )低温时, Cv 与温度按指数律随温度 而变化,与实验得出的按 T 的立方变化 规律仍有偏差。
2 )问题主要在于基本假设:各个振子 频率相同有问题,各振子的频率可以不 同,原子振动间有耦合作用 。
=元素 i 的摩尔热容。
经典热容理论的解释
按经典理论,能量按自由度均分。 每个原子三个振动自由度; 每个振动自由度的平均动能、平均位能均为
则一个原子的总能量为3kT。
1 kT ,即一个振动自由度能量为kT。 2
14
1mol 固体中有
个原子,总能量为
= 6.023×1023 / mol =阿佛加德罗常数, = R/N = 1.381×10-23 J/K = 玻尔茨曼常数, = 8.314 J/ (k· mol),T=热力学温度(K)。
这就是按照量子理论求得的热容表达式。但要计算CV 必须知道谐振子的频谱——非常困难(very difficult)。
有关固体热容的两种模型的讨论

有关固体热容的两种模型的讨论【摘要】固体热容是一个反映晶体热学性质的重要物理量,本文先简要介绍了固体热容的经典理论,紧接着又具体阐述了爱因斯坦模型和德拜模型以及它们两者在求解固体热容中的应用,然后通过比较介绍了它们两者的联系与区别,进而说明了他们的好处与局限,同时也将晶格热容的实验测量结果与理论推导进行了比较并分析与讨论了这两种模型与实验测量结果符合或者偏离的原因,最后又对德拜温度进行了具体的讨论。
D【关键词】固体热容;晶格热容;爱因斯坦模型;德拜模型;德拜温度目录绪论 .................................................................................................................................................. 3 第一章爱因斯坦模型与德拜模型 (5)1. Einstein model : ........................................................................................................... 5 2. p.Debye model : ............................................................................................................... 6 3. Einstein model 和 p.Debye model 的区别 ............................................................... 7 4. 德拜模型对晶格热容贡献的优缺点 ................................................................................. 7 第二章 晶格热容的实验测量结果和理论推导的比较 . (10)1高温情况 .............................................................................................................................. 11 2.低温情况 ............................................................................................................................. 11 第三章 两种模型与实验测量结果符合或者偏离的原因分析与讨论 .. (12)1. 德拜温度D Θ高于爱因斯坦温度E Θ ........................................................................... 13 2. 德拜温度是经典概念和量子概念定性解释热容现象的分界线 ................................... 13 3. 关于德拜温度的正确性 ................................................................................................. 13 参考文献:. (14)绪论在固体物理学中,我们所讨论的热容通常指定容热容V C ,而在热学中,我们已经知道v C =(TE ∂∂)V ]2,1[,该式中的E 指平均内能,实验研究表明,对固体热容的贡献主要有两个:贡献一是晶格所进行的热振动,称为晶格热容,贡献二是固体原子中的电子热运动,称电子热容,当固体的温度很低时,电子热运动的贡献不可忽略,因此晶格热振动是热容的主要来源,在经典物理中,由能均分定理得,所有简谐振动的平均能量都是T K B ,其中B K 是波尔兹曼常数。
简述爱因斯坦热容模型的基本假设

简述爱因斯坦热容模型的基本假设爱因斯坦热容模型是爱因斯坦在1907年提出的一种描述固体热容的理论模型。
该模型基于以下假设:一、固体分子振动只有一种频率爱因斯坦假设固体中所有原子都是以相同的频率振动的,这个频率被称为爱因斯坦频率。
这意味着,无论原子是什么类型或者在哪个位置,它们都以相同的频率振动。
二、固体中原子之间没有相互作用爱因斯坦假设固体中原子之间没有相互作用,也就是说,它们只能沿着一个方向振动,并且不能与其他原子发生碰撞或相互作用。
三、固体中原子的振幅是有限的爱因斯坦假设固体中原子的振幅是有限的,也就是说,它们不能无限制地振动。
当温度升高时,原子会以更大的振幅振动,但这种增加是有限制的。
四、固体中所有能量都来自于热运动爱因斯坦假设固体中所有能量都来自于热运动。
这意味着,固体中的原子只能通过热运动来获得能量,而不能通过其他方式。
五、固体中原子的振动是量子化的爱因斯坦假设固体中原子的振动是量子化的,也就是说,它们只能以特定的能量水平振动。
这个假设与普朗克量子论密切相关。
六、固体中所有原子都处于热平衡状态爱因斯坦假设固体中所有原子都处于热平衡状态,也就是说,它们之间没有温度差异。
这个假设是基于熵增加原理和统计物理学的概念。
七、固体是一个三维谐振子系统爱因斯坦假设固体是一个三维谐振子系统,也就是说,它可以被看作由无数个谐振器组成的系统。
每个谐振器都有一个特定的频率和能量水平。
总结:爱因斯坦热容模型基于以上七个假设来描述固体热容。
这些假设使得模型可以用简单的数学公式来计算热容,并且与实验结果非常吻合。
虽然该模型有其局限性,但它为我们理解固体的热学行为提供了一个重要的基础。