人工蚁群算法的实现与性能分析
蚁群算法

AS算法
下面以蚁周模型为例, 总结蚂蚁系统算法的 流程。
置禁忌表索引s=1;并将其起点城市加入各自 禁忌表中
Y
禁忌表已满?
N
s=s+1 将m只蚂蚁按照其各自计算的转移概率pijk选 择下一城市,并将该城市加入到禁忌表中。 计算所有m只蚂蚁走过的周游长度Lk; 更新当前的最优路径。
计算Δτijk,更新信息素;t=t+n;NC=NC+1
9.4 蚁群算法的参数分析
讨论的参数包括: α——信息素的相对重要程度; β——启发式因子的相对重要程度; ρ——信息素蒸发系数((1-ρ)表示信息素的 持久性系数); Q——蚂蚁释放的信息素量。
1、参数α、β对AS算法性能的影响
在蚂蚁搜索解的过程中,所有蚂蚁都选择同样的路径, 即系统不再搜索较好的解,称为停滞现象。
下面是信息素更新公式:
4 概率转换规则
每只蚂蚁根据路径上的信息素和启发式信息(两 城市间距离)独立地选择下一座城市: 在时刻t,蚂蚁k从城市i转移到城市j的概率为
[ ij (t )] [ij (t )] , k pij (t ) [ is (t )] [is (t )] sJ k (i ) 0, j J k (i ) j J k (i )
9.5 蚁群系统
蚁群系统(ACS)是AS算法的改进版本,与AS算 法主要区别在于: (i)在选择下一座城市时,ACS算法更多地利用了 当前的较好解; (ii)只在全局最优解所属的边上增加信息素; (iii)每次当蚂蚁从城市i转移城市j时,边ij上的信息 素将会适当的减少。
转换规则:
在ACS算法中,蚂蚁使用伪随机比率选择规则 选择下一座城市。即对位于城市i的蚂蚁k,以概率 q0移动到城市l,其中l为使τil (t)*[ηilβ] 达到最大的 城市。该选择方式意味着蚂蚁将以概率q0将最大可 能的城市选入蚂蚁所构造的解;除此之外,蚂蚁以 (1-q 0) 的概率按下式选择下一座城市j。在ACS算 法中,蚂蚁的状态转移公式为:
蚁群算法及案例分析精选全文

群在选择下一条路径的时
候并不是完全盲目的,而是
按一定的算法规律有意识
地寻找最短路径
自然界蚁群不具有记忆的
能力,它们的选路凭借外
激素,或者道路的残留信
息来选择,更多地体现正
反馈的过程
人工蚁群和自然界蚁群的相似之处在于,两者优先选择的都
是含“外激素”浓度较大的路径; 两者的工作单元(蚂蚁)都
正反馈、较强的鲁棒性、全
局性、普遍性
局部搜索能力较弱,易出现
停滞和局部收敛、收敛速度
慢等问题
优良的分布式并行计算机制
长时间花费在解的构造上,
导致搜索时间过长
Hale Waihona Puke 易于与其他方法相结合算法最先基于离散问题,不
能直接解决连续优化问题
蚁群算法的
特点
蚁群算法的特点及应用领域
由于蚁群算法对图的对称性以
及目标函数无特殊要求,因此
L_ave=zeros(NC_max,1);
%各代路线的平均长度
while NC<=NC_max
%停止条件之一:达到最大迭代次数
% 第二步:将m只蚂蚁放到n个城市上
Randpos=[];
for i=1:(ceil(m/n))
Randpos=[Randpos,randperm(n)];
end
Tabu(:,1)=(Randpos(1,1:m))';
scatter(C(:,1),C(:,2));
L(i)=L(i)+D(R(1),R(n));
hold on
end
plot([C(R(1),1),C(R(N),1)],[C(R(1),2),C(R(N),2)])
蚁群算法基本知识

N = {1, 2,..., n} A = {(i , j ) | i, j ∈ N }
城市之间距离
(dij ) n×n
f (w) =
目标函数为
∑d
l =1
n
il −1 i, l
其中
w = (i1 , i2 , " , in )
= i1
。
为城市1,2,…n的
7.1 蚁群优化算法起源
20世纪50年代中期创立了仿生学,人们从生物进化的机理中 受到启发。提出了许多用以解决复杂优化问题的新方法,如进 化规划、进化策略、遗传算法等,这些算法成功地解决了一些 实际问题。
1991年 意大利米兰理学院 M. Dorigo 提出Ant System, 用于求解TSP等组合优化问题。 1995年 Gramdardella和Dorigo提出Ant-Q算法,建 立了AS和Q-learning的联系。 1996年 二人又提出Ant Colony System 1997年 有人提出Max-Min Ant System 1999年 Dorigo等人把先前各种算法归结为Ant Colony Optimization meta-heuristic的统一框架下, 给出抽象而规范的算法描述. 目前,被较广泛的应用
•随机比例规则
⎧ ⎡τ (t ) ⎤α × ⎡η (t ) ⎤ β ⎪ ⎣ ij ⎦ ⎣ ij ⎦ α β ⎪ Pijk (t ) = ⎨ ∑ [τ ik (t ) ] × [ηik (t ) ] ⎪ k∈allowedk ⎪ 0 ⎩ if others j ∈ allowed k
z i、j分别为起点和终点; z ηij = 1 / d ij 为能见度,是两点i、j路距离的倒数; z
蚁群算法

蚁群算法综述摘要:群集智能作为一种新兴的演化计算技术已成为越来越多研究者的关注焦点, 其理论和应用得到了很大的发展。
作为群集智能的代表方法之一,蚁群算法ACO (Ant Colony Optimization, 简称ACO) 以其实现简单、正反馈、分布式的优点得到广泛的应用。
蚁群算法是由意大利学者M. Dorigo 提出的一种仿生学算法。
本文主要讨论了蚁群算法的改进及其应用。
在第一章里介绍了蚁群算法的思想起源及研究现状。
第二章详细的介绍了基本蚁群算法的原理及模型建立,并简要介绍了几种改进的蚁群优化算法。
第三章讨论了蚁群算法的最新进展和发展趋势展望。
关键词:群集智能,蚁群算法,优化问题1 引言1.1 概述人类的知识都来自于对自然界的理解和感悟,如天上的闪电,流淌的河流,挺拔的高山,汪洋的大海,人们从中学会了生存,学会了征服自然和利用自然。
自然界中也存在着很多奇特的现象,水中的鱼儿在发现食物时总能成群结队,天上的鸟儿在迁徙时也是组成很多复杂的阵型,蚂蚁在发现食物时总能找到一条最短的路径。
无论鱼儿,飞鸟或是蜜蜂,蚂蚁他们都有一个共同的特点好像有一种无形的力量将群体中的每个个体组织起来,形成一个统一的整体。
看似庞杂的种群却又有着莫大的智慧,让他们能够完成一个个体所无法完成的使命。
整个群体好像一个社会,形成一个有机整体,这个整体对单个个体要求不高,诸多个体组合起来数量庞大,却极具协调性和统一性,这就是群智能。
群智能算法是利用其个体数量上的优势来弥补单个个体的功能缺陷,使整个群体看起来拥有了个体所无法企及的能力和智慧。
单个个体在探索过程的开始都是处于一种盲目的杂乱的工作状态,因此这些个体所能找到的最优解,对于群体而言却并非是最优的而且这些解也都是无规则的,随着越来越多的个体不断探索,单个个体受到其他成员的影响,大量的个体却逐渐趋向于一个或一条最优的路线,原本杂乱的群体渐渐呈现一种一致性,这样整个群体就具有了寻找最优解的能力。
蚁群算法

基本蚁群算法程序流程图
开始 初始化
循环次数Nc← Nc+1
蚂蚁k=1 蚂蚁k=k+1
按式(1)选择下一元素 修改禁忌表 N Y K≥ m
按式(2)和式(3)进行信息量更新 满足结束条件 Y
Байду номын сангаас输出程序计算结果 结束 N
复杂度分析
对于TSP,所有可行的路径共有(n-1)!/2条,以 此路径比较为基本操作,则需要(n-1)!/2-1次基 本操作才能保证得到绝对最优解。 若1M FLOPS,当n=10, 需要0.19秒 n=20, 需要1929年 n=30, 需要1.4X10e17年
{ ij (t ) | ci , c j C}是t时刻集合C中元素
蚂蚁k(k=1,2,…,m)在运动过程中,根据各条路径上的信息 量决定其转移方向。这里用禁忌表tabuk来记录蚂蚁k当前 所走过的城市,集合随着tabuk进化过程做动态调整。在 搜索过程中,蚂蚁根据各条路径上的信息量及路径的启发 信息来计算状态转移概率。在t时刻蚂蚁k由元素(城市)i 转移到元素(城市)j的状态转移概率:
1) 标有距离的路径图 2) 在0时刻,路径上没有信息素累积,蚂蚁选择路径为任意 3) 在1时刻,路径上信息素堆积,短边信息素多与长边,所以蚂蚁更 倾向于选择ABCDE
特
点
(1)其原理是一种正反馈机制或称增强型学习系统;它通过 信息素的不断更新达到最终收敛于最优路径上; (2)它是一种通用型随机优化方法;但人工蚂蚁决不是对实 际蚂蚁的一种简单模拟,它融进了人类的智能; (3)它是一种分布式的优化方法;不仅适合目前的串行计算 机,而且适合未来的并行计算机; (4)它是一种全局优化的方法;不仅可用于求解单目标优化 问题,而且可用于求解多目标优化问题; 2 (5)它是一种启发式算法;计算复杂性为 O( NC m n ),其 中NC 是迭代次数,m 是蚂蚁数目,n 是目的节点数目。
蚁群算法详解

30
2018/11/1
1.3 启发式算法_性能分析
(1)最坏情形分析(worst case analysis) 利用最坏实例分析计算复杂性、解的效果。
22
2018/11/1
1.2 计算复杂性的概念
定义 多项式算法 给定问题P,算法A,对一个实例I,存在多项式 函数g(x),使(XX )成立,称算法A对实例I是 多项式算法; 若存在多项式函数g(x),使(XX )对问题P的任 意实例I都成立,称算法A为解决该问题P的多项 式算法. 当g(x)为指数函数时,称A为P的指数时间算法。
xi 1Biblioteka ij 1. j 1, 2,
ij
s 1, 2 s n 1, s 1, 2, , n, i j.
xij 0,1 , i, j 1, 2, 其中
d ij :城市i与城市j之间的距离 , s :集合s中元素的个数, 走城市i和城市j之间的路径, 1, xij 0,不走城市i和城市j之间的路径. 对称距离TSP : d ij d ji , i, j 非对称距离TSP : d ij d ji , i, j
2018/11/1
1.1 组合优化问题 ₪ 例2 旅行商问题(TSP,traveling salesman problem) 管梅谷教授1960年首先提出,国际上称之为中 国邮递员问题。 问题描述:一商人去n个城市销货,所有城市 走一遍再回到起点,使所走路程最短。
11
2018/11/1
1.1 组合优化问题
26
2018/11/1
1.3 启发式算法_优点
优点: (1)有可能比简化数学模型解的误差小; (2)对有些难题,计算时间可接受; (3)可用于某些最优化算法(如分支定界算 法)之中的估界; (4)直观易行; (5)速度较快; (6)程序简单,易修改。
蚁群算法

4.蚁群算法应用
信息素更新规则
1.蚁群算法简述 2.蚁群算法原理
最大最小蚂蚁系统
3.蚁群算法改进
4.蚁群算法应用
最大最小蚂蚁系统(MAX-MIN Ant System,MMAS)在基本AS算法的基础 上进行了四项改进: (1)只允许迭代最优蚂蚁(在本次迭代构建出最短路径的蚂蚁),或者至今 最优蚂蚁释放信息素。(迭代最优更新规则和至今最优更新规则在MMAS 中会被交替使用)
p( B) 0.033/(0.033 0.3 0.075) 0.081 p(C ) 0.3 /(0.033 0.3 0.075) 0.74 p( D) 0.075 /(0.033 0.3 0.075) 0.18
用轮盘赌法则选择下城市。假设产生的 随机数q=random(0,1)=0.05,则蚂蚁1将会 选择城市B。 用同样的方法为蚂蚁2和3选择下一访问 城市,假设蚂蚁2选择城市D,蚂蚁3选择城 市A。
蚁群算法
1.蚁群算法简述 2.蚁群算法原理 3.蚁群算法改进 4.蚁群算法应用
1.蚁群算法简述 2.蚁群算法原理
3.蚁群算法改进
4.蚁群算法应用
蚁群算法(ant colony optimization, ACO),又称蚂蚁 算法,是一种用来在图中寻找优 化路径的机率型算法。 由Marco Dorigo于1992年在他 的博士论文中提出,其灵感来源 于蚂蚁在寻找食物过程中发现路 径的行为
4.蚁群算法应用
例给出用蚁群算法求解一个四城市的TSP 3 1 2 3 5 4 W dij 1 5 2 2 4 2
假设蚂蚁种群的规模m=3,参数a=1,b=2,r=0.5。 解:
满足结束条件?
蚁群算法文献综述

1. 前言
蚁群算法(AntColonyOptimization,ACO),它由Marco Dorigo于1992年在他的博士论文“Ant system: optimization by a colony of cooperating agents”中提出,其灵感来源于蚂蚁在寻找食物过程中发现路径的行为。其机理是:生物界中的蚂蚁在搜寻食物源时,能在其走过的路径上释放一种蚂蚁特有的分泌物信息素,使得一定范围内的其他蚂蚁能够觉察并影响其行为.当某些路径上走过的蚂蚁越来越多时,留下的这种信息素轨迹也越多,以至信息素强度增大,使后来蚂蚁选择该路径的概率也越高,从而更增加了该路径的信息素强度.蚁群算法是一种仿生类非线性优化算法,具有并行性、正反馈性和全局极小搜索能力强等特点.蚁群算法最早应用于旅行商问题(Travelling Salesman Problem)简称TSP问题,后来陆续渗透到其他领域,在很多领域已经获得了成功的应用,其中最成功的是在组合优化问题中的应用。组合优化问题分为两类:一类是静态组合优化问题,其典型代表有TSP,车间调度问题;另一类是动态组合优化问题,例如网络路由问题。本次毕业论文主要聚焦于静态组合优化问题。
蚂蚁在选择路径时,那些有更多蚂蚁曾经选择过的路径(也就是具有更高信息素密度的路径),被再次选中的可能性最大。
当t=0时,没有信息素,有30只蚂蚁分别在B和D。蚂蚁走哪条道路是完全随机的。因此,在每个点上蚂蚁将有15只经过H,另外15只经过C。
当t=1时有30只蚂蚁从A到B,它们发现指向H道路上的信息素密度是15,是由从B出发的蚂蚁留下的;指向C道路上的信息素密度是30,其中15是由B出发蚂蚁留下,另外15是从D出发经过C已经到达B的蚂蚁留下。因此,选择经过C到D的可能性就更大,从E出发到D的30只蚂蚁也面临着同样的选择,由此产生一个正反馈过程,选择经过C的蚂蚁越来越多,直到所有的蚂蚁都选择这条较近的道路。图1是著名的双桥实验的简化描述。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
目录 (I)摘要 (V)Abstract (VI)第一章引言 (1)非对称TSP问题(ATSP)及其求解方法概述 (1)人工蚁群算法的主要思想和特点 (1)主要工作 (2)第二章 ATSP问题分析 (3)ATSP问题的数学模型 (3)ATSP问题与TSP问题的比较 (3)第三章求解ATSP问题的人工蚁群算法 (4)ATSP问题的蚁群算法表示 (4)人工蚁群算法的实现 (4)人工蚁群算法的流程图 (5)蚁群的规模、算法终止条件 (6)路径选择方法和信息素的更新方法 (7)第四章实验和分析 (10)测试环境 (10)测试用例 (10)实验结果及参数分析 (10)的测试结果 (10)的测试结果 (12)的测试结果 (13)的测试结果 (13)相关参数修改后的测试结果 (14)第五章总结 (16)致谢 (17)参考文献 (17)摘要旅行商问题(TSP问题)是组合优化的著名难题。
它具有广泛的应用背景,如计算机、网络、电气布线、加工排序、通信调度等。
已经证明TSP问题是NP难题,鉴于其重要的工程与理论价值,TSP常作为算法性能研究的典型算例。
TSP的最简单形象描述是:给定n个城市,有一个旅行商从某一城市出发,访问各城市一次且仅有一次后再回到原出发城市,要求找出一条最短的巡回路径。
TSP分为对称TSP和非对称TSP两大类,若两城市往返距离相同,则为对称TSP,否则为非对称TSP 。
本文研究的是对称的ATSP。
实质上,ATSP问题是在TSP问题上发展而来的,它们的区别就在于两座城市之间的往返距离是否相同。
例如,有A,B两个城市,在TSP问题中,从A到B的距离是等于从B到A得距离的,是一个单向选择的连通问题。
而在ATSP问题中,从A到B的距离就不一定等于从B到A的距离,所以这是双向选择的联通问题。
本文主要阐述了用人工蚁群算法的原理和一些与其相关联的知识结构点。
通过对算法原理的理解,及在函数优化问题上的应用,与优化组合问题的研究来了解ATSP问题以及人工蚁群算法解决实际问题上的应用与研究。
关键词:ATSP ;组合优化;人工蚁群算法;TSPAbstractTraveling salesman problem (TSP) is the Famous combination of the optimization problem. It has broad applications, such as computer, network, electrical wiring, processing, sort and communication scheduling,and already proved TSP is a difficult NP problem, givening its important engineering and theoretical valued, TSP is often used as the typical example of algorithm performance most simple image description of TSP is: given n city, a traveling salesman start from one city, Visit other cities once and only once again return to the start city , asked to identify a shortest path of the can be classificated symmetric TSP and asymmetric TSP two big two cities from the same distance,that is symmetric TSP, or for the asymmetric paper studies the ATSP problem.In essence, ATSP problem is based on the TSP difference lies in two cities round trip distance between the same or example,there are two cities,A and B , in TSP problem,from A to B is equal to the distance from B to have A distance,it s a one-way choice the connected in ATSP problem,from A to B doesn't necessarily equal to the distance from the distance B to A, so this is the two-way choice connectivity problem.This paper mainly expounds the employing workers group of the principle and some associated knowledge structure of the the understanding of the principle of the algorithm,and in the application of the function optimization problems,And the optimized combination problems research to understand ATSP problems and one worker ants group algorithm of solving practical problems with the application of research.Keywords:ATSP ; Combinatorial optimization ; People ants group of algorithm ; TSP第一章引言非对称TSP问题(ATSP)及其求解方法概述非对称旅行商问题是一个NP 完全问题,目前求解 ATSP 问题的主要方法有模拟退火算法、遗传算法、蚁群算法等。
ATSP是指给定n个城市和各城市间的距离,要求确定一条经过各个城市当且仅当一次的最短路线,并且这N个城市之间两两城市的往返距离不一定相等。
它是一种典型的组合优化问题。
基于人工蚁群算法求解ATSP问题,是近年来刚刚兴起的热门课题。
然而在科学管理与经济决策的许多应用领域中,现实世界存在着大量的多目标优化问题。
对于非对称旅行商问题,实际中经常要同时考虑多个目标,如路程最短、时间最短、费用最省、风险最小等多方面的因素。
目标之间往往存在冲突性。
如何在多个目标中寻找一个公平、合理的解是比较复杂的问题。
人工蚁群算法的主要思想和特点蚁群算法是受到真实蚁群集体行为的启发而得到的新型优化算法,人工蚂蚁和真实蚂蚁存在异同。
人工蚂蚁和真蚂蚁的蚂蚁一样,是一群相互合作的个体并且他们有着共同的任务,他们都是通过使用信息素进行间接通讯,而且人工蚂蚁利用了真实蚂蚁觅食行为中的自催化机制。
但人工蚁群也存在真蚂蚁所不具有的一些特性,蚁群这种记忆并非存储于蚂蚁个体,而是分布在路径上。
人工蚂蚁实质上是由一个离散状态到另一个离散状态的跃迁。
信息素的释放时间是根据不同情况而改变的。
为了提高系统总体上的性能。
蚁群被赋予了其他的功能,如局部优化、原路返回等。
蚁群算法是对自然界蚂蚁的寻径方式进行模似而得出的一种仿生算法。
蚂蚁在运动过程中,能够在它所经过的路径上留下一种称之为外激素(pheromone)的物质进行信息传递,而且蚂蚁在运动过程中能够感知这种物质,并以此指导自己的运动方向,因此由大量蚂蚁组成的蚁群集体行为便表现出一种信息正反馈现象:某一路径上走过的蚂蚁越多,则后来者选择该路径的概率就越大。
人工蚁群有一定的记忆能力,能够记忆已经访问过的节点。
同时,人工蚁群在选择下一条路径的时候是按一定算法规律有意识地寻找最短路径,而不是盲目的。
例如在TSP问题中,可以预先知道当前城市到下一个目的地的距离;每只蚂蚁也可以记录自己走过的节点和路径。
主要工作蚁群算法最初是应用在对称的旅行商问题,下面对求解旅行商问题进行简单的说明。
旅行商问题就是指给定 n个城市,并给出两两城市间的距离。
要求确定一条经过各城市最短的路径。
蚂蚁根据城市的距离和连接边上信息素浓度为变量的概率函数选择下一城市。
为了满足问题的约束条件,在完成一次循环前,不允许蚂蚁选择已经访问过的城市,需要由禁忌表控制。
完成循环后,路径上都会留下浓度不同的信息素。
我们可以通过对信息素浓度的强度,从而选择出最短路径。
第二章 ATSP 问题分析ATSP 问题的数学模型ATSP 问题 ( dij ≠dji, v i , j = 1, 2, 3, …, n),非对称旅行商问题较难求解,我们一般是探讨对称旅行商问题的求解。
若对于城市 V = { v1 , v2 , v3 , …, vn }的一个访问顺序为 T= { t 1 , t 2 , t 3 , …, ti, …, t n } ,其中 ti ∈V ( i = 1, 2, 3, …, n) ,且记 t n+1 = t 1 , 则旅行商问题的数学模型为:min L =∑ ni =1dti,ti+1。
ATSP 问题表示为一个N 个城市的有向图G=(N ,A ),其中N={1,2,...,n},A={(i,j)|i,j ∈N}城市之间距离为 ,目标函数为 ,其中 为城市1, 2,… ,n 的一个排列, ATSP 问题与TSP 问题的比较实质上,ATSP 问题是在TSP 问题上发展而来的,它们的区别就在于两座城市之间的往返距离是否相同。
例如,有A,B 两个城市,在TSP 问题中,从A 到B 的距离是等于从B 到A 得距离的,是一个单向选择的连通问题。
而在ATSP 问题中,从A 到B 的距离就不一定等于从B 到A 的距离,所以这是双向选择的联通问题。
TSP 较ATSP 问题简单点,在算法实现上也容易点,但实际上可以看作是ATSP 问题是TSP 问题的发展,在此基础上多了路径往返的问题。
旅行商问题(Traveling Salesman Problem, 简称TSP) 即给定n 个城市和两两城市之间的距离,要求确定一条经过各城市当且仅当一次的最短路线。
其图论描述为:给定图G =(V, A ) ,其中V 为顶点集, A 为各顶点相互连接组成的边集,设D = ( dij ) 是由顶点i 和顶点j 之间的距离所组成的距离矩阵,要求确定一条长度最短的Hamilton 回路,即遍历所有顶点当且仅当一次的最短距离。