铝合金车轮设计及结构分析

合集下载

概述铝合金轮毂的造型设计与结构

概述铝合金轮毂的造型设计与结构

概述铝合金轮毂的造型设计与结构铝材具有矿藏资源丰富、易加工、回收利用方便、密度小、强度高、耐蚀性好、导电导热性好等优点。

并且随着科学技术的不断发展,铝合金有着越来越丰富的应用空间。

在汽车制造业中,铝合金材料的运用可以使汽车自身重量大大降低,并且能够提升汽车性能,提高行驶速度,所以铝合金已经越来越多地运用到汽车制造业中。

本文就铝合金在汽车轮毂中的应用做简要探讨。

1 汽车轮毂的结构轮毂是介于汽车半轴和轮胎之间的用于承受汽车自重及外界载荷的旋转部件,轮毂的结构包括胎圈座、胎斗、轮缘、中心孔、安装凸台、中心线、通风口等。

但是组成轮毂最主要的两个部件还是轮辋和轮辐。

轮毂通过轮辋与轮胎配合的同时还通过轮辐与车桥连接,从而实现轮毂承载、行驶、转向、驱动和制动等作用。

1.1 轮辋轮辋,俗称轮圈,是车轮周边安装轮胎的部件,轮辋的规格很重要,因为它直接决定汽车可以用哪些轮胎。

常见的轮辋形式主要有深槽轮辋、平底轮辋、对开式轮辋、半深槽轮辋、整体式轮辋、平底宽式轮辋等。

此外,还可以根据组成轮辋的零件的数量,将轮辋分为一件式轮辋、两件式轮辋和三件式轮辋甚至四件式、五件式轮辋。

轮辋的设计和制造都有相应的标准,这关系着设计制造出来的轮辋是否能够与轮胎的使用相配合。

就目前而言,我国的轮辋在生产时都是按照按国家标准GB/T 3487-2005来生产。

1.2 轮辐轮辐介于轮辋和车轴之间,在轮毂中主要功能是支撑作用。

轮辐的构造是决定轮毂分类的基础,根据轮辐结构的差异,可以将轮毂分为辐板式轮毂和辐条式轮毂。

辐条式轮毂主要靠众多钢丝辐条来达到支撑重力。

辐条式轮毂的优点是通风散热优良,但是由于制作成本高,做工复杂不便于安装和维修,所以应用多见于高级轿车和赛车,很少应用在普通汽车上。

在普通的汽车中应用最广泛的还是辐板式轮毂,辐板的作用是连接轮辋和安装凸台。

轮辐的作用主要是起到重量支撑的作用,所以轮辐的形状在设计和制造的时候可以多种多样,并没有统一的要求。

基于有限元分析的轿车铝合金车轮设计

基于有限元分析的轿车铝合金车轮设计

本科学生毕业设计基于有限元分析的轿车铝合金车轮设计院系名称:汽车与交通工程学院专业班级:车辆工程07-1班学生姓名:沈维梁指导教师:石美玉职称:教授黑龙江工程学院二○一一年六月The Graduation Design for Bachelor's DegreeBased on Finite Element Analysis Design of Car Alloy WheelsCandidate:Shen WeiliangSpecialty:Vehicle EngineeringClass:B07-1Supervisor:Prof. Shi MeiyuHeilongjiang Institute of Technology2011-06·Harbin摘要轻量化是世界汽车工业发展的主要趋势,轻质材料铝及其合金等的使用是一种有效的途径。

目前,大部分汽车车轮已使用铝及其合金做作为材料,利用现代设计方法,在此基础上进一步实现车轮的轻量化则是本文的研究所在。

在研究了CAD软件Pro /E以及有限元分析软件ANSYS的功能及其主要特点后,着重进行了了应用ANSYS对铝合金车轮进行结构强度分析的具体过程。

首先使用Pro/E软件,按照轮辋的国家标准,建构车轮的实体模型;然后把模型导入ANSYS,按2005年中国汽车行业标准中的汽车轻合金车轮的性能要求和实验方法所规定的疲劳实验要求施加荷载;然后进行强度分析和模态分析,分析结果表明,车轮的最大应力远小于铝合金的许用应力,车轮的固有频率满足要求,存在进一步改进的可能和必要。

最后,改进车轮模型,改进结果表明,车轮的重量有了显著的减少。

利用CAE分析技术有助于提高汽车车轮的设计水平、缩短设计周期、减少开发成本。

该方法具有普遍性,适用于指导任何其言型号车轮的设计和分析。

关键词:铝合金车轮;结构设计;有限元分析;强度分析;模态分析ABSTRACTLightweight is the main trends of the world's automotive industry, lightweight materials such as the use of aluminum and its alloys is an effective way. At present, most automotive aluminum and its alloy wheels have been used to do as a material, using modern design methods, based on the further realization of this lightweight wheels is the Institute of this article.In the study of the CAD software Pro / E and ANSYS finite element analysis software functions and the main characteristics, the Emphasis was the application of ANSYS, the structural strength of aluminum alloy wheel analysis of the specific process.First ,uses the Pro / E software, according to the rim of the national standards, building wheel solid model; then the model into ANSYS, by 2005 China's auto industry standard in automotive light-alloy wheels and performance requirements and test methods under the fatigue test requirements defined load and then the strength analysis and the results showed that the wheel is much less than the maximum stress allowable stress of aluminum alloy, there is further improvement possible and necessary. Then, the improved wheel models, improved results show that the weight of the wheels have been significantly reduced.The results show that the use of CAE analysis technology helps improve the design of automobile wheel level, shorten design cycles, reduce development costs. The method is universal, applicable to any of his words and models to guide the design and analysis of the wheel.Key words: Aluminum Alloy Wheels; Structural Design; Finite Element Analysis; Strength Analysis; Modal Analysis目录摘要 (I)Abstract ............................................................................................................... I I 第1章绪论. (1)1.1课题研究的目的意义 (1)1.2铝合金车轮行业现状及发展趋势 (1)1.2.1铝合金车轮的发展及其现状 (1)1.2.2铝合金车轮的发展趋势 (3)1.3国内外研究方法 (4)1.4主要研究内容 (5)第2章车轮三维模型的建立 (6)2.1 Pro/E软件基础 (6)2.2车轮Pro/E模型的建立 (7)2.2.1车轮构造、种类及装配 (7)2.2.2 车轮三维模型建立过程 (9)2.3 本章小结 (15)第3 章车轮强度静态分析 (16)3.1 ANSYS软件基础 (16)3.2 Pro/E与ANSYS的接口创建 (17)3.3车轮几何模型的简化 (18)3.4 A356的材料特性 (18)3.5边界条件的处理 (18)3.6载荷的处理 (19)3.7车轮弯曲疲劳试验有限元模型 ............................................... 错误!未定义书签。

低压铸造铝合金车轮设计要点

低压铸造铝合金车轮设计要点

低压铸造铝合金车轮设计要点铝合金车轮具有质量轻、能耗低、散热快、减震性好、安全可靠、外观漂亮、图案丰富以及平衡性好等优点,被整车制造企业和广大车主所青睐。

我国铝合金轮毂的生产大多采用低压铸造工艺。

该工艺是在20世纪80年代后期由中信戴卡公司引进,经过20多年的发展,已经比较成熟。

但真正意义上的开发设计工作是在最近几年,随着我国整车制造水平的提升,才开始与整车开发同步进行设计。

车轮设计要点铝合金车轮的设计包括外观设计和工程设计。

车轮外观要与整车外观相匹配,车轮不仅是外观件,还是重要的安全部件,因此外观设计时就必须考虑工程要求。

一般情况下,在车轮进行外观设计时,工程人员也要参与,与造型设计师共同完成外观设计工作,以缩短车轮的开发周期。

现以大众车轮设计为例,具体分析低压铸造铝合金车轮设计中关注的要点。

大众车轮执行德国大众标准和欧盟的设计规范,主要考虑的方面有整车造型、车轮装配、车轮生产工艺和车轮试验。

1.整车造型车轮是整车的时尚装饰,是对整车外形设计的一种延伸,因此车轮造型作为整车造型的一部分,必须与整车的造型风格协调一致,给人以美感。

2.车轮装配车轮最终要装配到整车上,装配时与之相配合的零部件有轮胎、平衡块、刹车鼓、安装盘、安装螺栓和气门嘴。

铝合金车轮设计时注意的装配要点如下:(1)轮胎与铝合金车轮装配的轮胎一般情况下是无内胎的子午线轮胎,在轮胎与车轮轮辋之间形成一个封闭的空间。

大众车轮的轮辋结构执行欧洲轮辋标准——ETRTO标准,该标准对轮辋各部位的结构、尺寸做出了明确规定,在车轮设计时必须严格遵守。

同时,为防止车辆行驶过程中路肩石划伤车轮表面(路肩石的高度标准为150mm),要求车轮正面不能超出轮胎外侧面,一般要缩进2.5mm以上。

(2)平衡块平衡块的作用是使车轮在高速旋转下保持平衡,避免车辆在行驶过程中抖动和方向盘振动,提高车辆的舒适性。

车轮设计时,要求平衡块与刹车鼓之间的间隙不小于3mm。

(3)刹车鼓在车辆行驶过程中,车轮是旋转的,刹车鼓是静止的,因此在车轮设计时要保证车轮内表面与刹车鼓之间有一定的间隙,一般控制在3mm以上。

铝合金车轮的制造工艺技术(PPT 42页)

铝合金车轮的制造工艺技术(PPT 42页)
铝合金车轮的制造工艺
提纲
一、铝合金车轮概述 二、铝合金车轮的结构和分类 三、铝合金车轮的设计 四、铝合金车轮使用的材料 五、铝合金车轮的制造工艺 六、铝合金车轮的相关标准
一、铝合金车轮的概述
铝合金车轮是基于“轻量化”的设计目标,首先使用在赛车上。 20世纪初,使用砂模制造铝合金车轮,并应用于赛车 20世纪50年代,使用钢模铸造整体式铝合金车轮,并应用于轿车 20世纪70年代,得到快速发展,被广泛应用 21世纪初,极其迅猛发展,进入国内外OEM配套体系

轮辋
主要由两部分组成
轮辐
1、铝合金车轮按结构形式分: 1片式(整体式)
2片式 3片式
2、铝合金车轮按生产方式分:
1)铸造:重力铸造、低压铸造、液态挤压、反压铸造、离心铸造、
真空压铸、半凝固铸造等
2)锻造
优缺点: 锻造车轮简单说有以下优点:1.强度高,2.重量轻,3.相对铸
本工序控制要点:前处理槽液参数、调漆参数和固化参数。
全涂装车轮的工艺流程: 上料——预处理——烘干——喷粉——固化——喷漆——固化——下料
预处理:通常指在涂装前在工件上进行的除油、除锈、磷化这三个工序的通称。
较典型的铝合金车轮涂装预处理的工艺流程如下: 表面活性剂水溶液除油→水洗(二道) →中和出光→水洗→转化膜处理→水
轮辋名义 直径
轮辋轮 廓代号
安装孔 个数
轮辋名 义宽度
偏距
螺栓孔分 度圆直径
2、铝合金车轮构造图
3、铝合金车轮各部位命名示意图
4、铝合金的设计流程图
新开发产品流程:
外观造型效 果图
轮辐造型A 面三维数模
车轮工程结 构设计
提供供应商工 艺分析
提交客户转供应商 开发模具、试制

《铝合金轮毂的有限元分析》范文

《铝合金轮毂的有限元分析》范文

《铝合金轮毂的有限元分析》篇一一、引言铝合金轮毂以其轻量化、耐腐蚀和良好的造型设计等特点,在现代汽车制造领域得到了广泛应用。

为了确保其设计、制造和使用的可靠性和安全性,有限元分析(FEA)技术被广泛应用于铝合金轮毂的力学性能评估。

本文将通过有限元分析的方法,对铝合金轮毂的力学性能进行深入研究。

二、铝合金轮毂的有限元模型建立1. 模型简化与假设在建立铝合金轮毂的有限元模型时,我们首先对实际结构进行适当的简化,忽略微小细节和次要因素。

同时,我们假设材料具有各向同性的特性,并遵循胡克定律。

2. 材料属性定义铝合金轮毂的材料属性包括弹性模量、泊松比、屈服强度等。

这些参数将直接影响有限元分析的准确性。

因此,在分析前需准确获取这些材料属性。

3. 网格划分网格划分是有限元分析的关键步骤。

我们采用合适的网格尺寸和类型,对铝合金轮毂进行网格划分,确保模型的准确性和计算效率。

三、铝合金轮毂的有限元分析方法1. 边界条件设定在有限元分析中,我们需要设定合理的边界条件,包括约束、载荷等。

这些边界条件将直接影响分析结果的准确性。

2. 静力学分析静力学分析是评估铝合金轮毂在静态载荷下的力学性能的重要手段。

我们通过施加力、压力等载荷,分析轮毂的应力分布、变形等情况。

3. 动力学分析动力学分析则用于评估铝合金轮毂在动态载荷下的力学性能。

我们通过模拟不同工况下的振动、冲击等动态载荷,分析轮毂的动态响应和疲劳寿命。

四、结果与讨论1. 静力学分析结果静力学分析结果显示,铝合金轮毂在承受静态载荷时,应力主要集中在轮辐与轮盘的连接处以及轮辐与轮毂边缘的过渡区域。

通过对比不同设计方案的应力分布情况,我们可以找出最优设计方案,以提高轮毂的承载能力和使用寿命。

2. 动力学分析结果动力学分析表明,铝合金轮毂在受到动态载荷时,会产生一定的振动和变形。

通过分析轮毂的动态响应和疲劳寿命,我们可以评估其在实际使用过程中的可靠性和安全性。

同时,我们还可以通过优化设计,降低轮毂的振动和疲劳损伤,提高其使用寿命。

谈汽车轮毂造型设计与结构

谈汽车轮毂造型设计与结构

关键词:汽车;轮毂;设计;结构分析1铝合金轮毂的应用根据市场的需要,研究中国传统文化和中国人民的美学特征,并讨论如何开发汽车轮毂,同时兼顾本地特色的工业设计美学和虚拟三维软件。

该方法有效地提高了轮毂设计系统的效率和质量,从而使设计过程更加专业化和质量更高。

实用的能源和环境保护的理由对轻型汽车技术的研究在全世界引起了广泛的兴趣,除了使用成品法来改进汽车部件的结构以获得最佳设计之外,该研究还包括:提高汽车部件中轻质合金材料的比例是实现汽车轻质化的主要途径之一。

40多年前,主要工业化国家在石油危机之后,看到了在机械工业特别是汽车工业广泛使用轻合金的可能性。

他们生产和大量使用了轻质合金部件,以减少燃烧量、净化排放气体、延长车辆寿命和改善车辆安全。

为了使轻质合金成为现代汽车制造中使用最多和最先进的材料。

2铝合金轮毂的优势作为汽车的一个重要部分,轮毂对节能、环境保护、汽车安全和控制具有重大影响,而将铝合金材料用于轮毂制造是汽车体重下降的最典型表现。

而中国拥有丰富的铝资源,几乎完全可以回收和再循环,并在环境保护方面具有绝对的优势。

①使用铝合金轮毂可以节省燃料。

同样大小的铝合金轮毂比钢铁轮毂轻2公斤,如果一辆汽车使用4公斤,就会减少8公斤。

每当汽车重量减少1公斤时,每年节省约20升汽油。

虽然铝合金轮圈比钢轮圈贵,但其节省的燃料足以支付每辆车长达20000公里的费用。

由于铝合金轮毂质量低,发动机负荷降低,从而降低发动机的故障率并延长发动机的寿命。

②铝合金轮毂具有良好的散热性,并且整个汽车的安全性很高。

铝合金的热传导系数是钢的三倍,在车辆的高速驾驶中,热效应良好。

地面摩擦产生的热量可以快速分散,轮毂保持在适当的温度,制动鼓和轮胎不能衰老,从而降低了在相同条件下通过高速驾驶线在长距离上断裂汽车地风险。

提高轮胎寿命,保证车辆的正常驾驶,并大大提高汽车高速驾驶的安全性能。

③铝合金轮毂真圆,尺寸精度高,整个汽车的驾驶和操作平衡良好。

低压铸造铝合金车轮设计要点

低压铸造铝合金车轮设计要点
以上 。
( 4 )安 装 盘 、安 装 螺栓
安 装螺 栓 是 将 车 轮 定
准和欧盟的设计规范 ,主要考虑的方面有整车造型、
车轮 装配 、车轮 生产工艺和车轮 试验 。
位 、紧 固到 安装 盘上 的零 件 。在车 轮设 计 时 ,要考 虑
安 装盘 的尺 寸 ,车轮 与 安装 盘的 接触 面积 ,安装 螺栓 的尺 寸 、结 构和 数 量 ,螺栓 的安 装空 间以及 螺栓 孔在 车 轮造 型 中的位 置 ( 车 轮上 的螺 栓 孔最 好对 应车 轮 的 窗 口部位 ) ,保证车轮安 装安全可靠 。 ( 5 )气 门嘴 气门 嘴是 向轮胎 和车轮 轮辋 形成 的
经过 2 O 多年 的发展 ,已经 比较成 熟 。但 真正 意义 上的
标准— —E T R T 0 标准 ,该标 准对轮 辋各部位 的结 构 、
尺 寸做 出 了明确 规定 ,在 车轮 设 计时 必须 严格 遵 守 。
开 发设 计 工作是 在 最近 几年 ,随 着我 国整车 制造 水平
的提升 ,才开始与整车 开发同步进行设 计 。
注意的要 点。
横 截 面 8
低 压 铸 造 铝 合金 车 轮 的 生 产 主 要 包 括 熔 炼 、压 铸 、热处理 、金属加工和喷 涂五大工序 。
图 1
充 ,防止先 冷却 的部位 出现缩松 的现 象。与 图l 相比 , 图2 中螺栓孔 的布 置较 好 。同时 ,在 轮辐减 重窝 的设计 中要避 免如 图3 a 所示的结构 ,该结构对铝液 流动的阻力 大 ,不利于 铝液的流动 、凝 固过程 中的补缩 和车 轮轮辐
1 . 整车造型
车轮是整车的时 尚装饰 ,是对整车外形设计的一
种延 伸 ,因此车轮 造 型作 为整 车造 型 的一 部分 ,必 须 与整车 的造 型风格协调 一致 ,给人 以美感 。

铝合金车轮工艺

铝合金车轮工艺

机加工:
铝合金车轮一般采用数控加工,即CNC加工。 CNC加工在车轮加工中应用非常广泛。
本工序控制要点:所有装车尺寸。 重点控制项目:中心孔直径、PCD位置度、端径跳、动平衡。
数控机床加工工序划分的特点为:先粗后精,先面后孔, 刀具集中。刀具R的大小可按铝合金车轮型面的要求选取。
涂装:
铝合金车轮涂装的目的: 首先是提高车轮的运行可靠性和耐久性;其次是提高它的外观装饰性。
造车轮节省燃油。 但目前受限于行业整体技术状况,包括材料,加工工艺, 成本等因素。目前仅少量用于零售改装市场。
3、铝合金车轮按涂装方式分:
1)车亮面
2)全涂装
3)电镀
4)抛光 5)组合
三、铝合金车轮的设计
1、铝合金车轮的表示方法(乘用车,轻型商用车,整体式铝合金车轮)
简略表示:可省略偏距后内容 表示为:18×8J
铝合金车轮相对于钢制车轮的优缺点:
优点
☞重量轻,节能效果明显 (铝的密度是2.76×103kg/m3 ,钢的密度是7.8×103kg/m3) ☞散热快,整车安全性能高 (铝合金A356的导热系数是128w/m·℃,
含碳量为0.5%的低碳钢导热系数是54w/m·℃) ☞尺寸精度高,整车驾驶性能好 ☞款式多样,更适应现代化整车的造型要求 ☞不易藏污纳垢,不会产生铁锈,易清洁
提纲
一、铝合金车轮概述 二、铝合金车轮的结构和分类 三、铝合金车轮的设计 四、铝合金车轮使用的材料 五、铝合金车轮的制造工艺 六、铝合金车轮的相关标准
一、铝合金车轮的概述
铝合金车轮是基于“轻量化”的设计目标,首先使用在赛车上。 20世纪初,使用砂模制造铝合金车轮,并应用于赛车 20世纪50年代,使用钢模铸造整体式铝合金车轮,并应用于轿车 20世纪70年代,得到快速发展,被广泛应用 21世纪初,极其迅猛发展,进入国内外OEM配套体系
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

铝合金车轮设计及结构分析
【摘要】车轮是汽车行驶系统中重要的安全部件,汽车前进的驱动力通过车轮传递,车轮的结构性能对整车的安全性和可靠性有着重要的影响。

另外,车轮还是汽车外观的重要组成部分。

传统车轮设计多凭借经验展开,存在着设计盲目性大、设计制造周期长、成本高等诸多弊端。

面对日益激烈的市场竞争,企业迫切需要采用科学的手段改善设计方法,本文所采用的CAD技术和有限元分析方法是解决上述问题的理想方法。

本文运用工业设计理论,将造型设计构思表现的方法与技能应用于车轮设计中,结合车轮结构尺寸优化和形状优化,使工程技术与形式美密切结合,综合表现了车轮的性能、结构和外观美。

【关键词】铝合金车轮;有限元分析;结构设计;强度分析;疲劳分析
1.引言
普遍意义的车轮包括轮胎和金属轮辆一轮辐一轮毅两部分,本文所研究的车轮只限于金属轮惘一轮辐一轮毅部分,不包括轮胎。

车轮是介于轮胎和车桥之间承受负荷的旋转件,它不仅承受着静态时车辆本身垂直方向的自重载荷,同时也经受着车轮行驶过程中来自各个方向因起动、制动、转弯、物体冲击、路面凹凸不平等各种动态载荷所产生不规则力的作用,是车辆行驶系统中重要的安全结构部件,其结构性能是车轮设计中主要因素[1]。

另外,车轮作为整车外观的主要元素之一,象征着整车的档次,多变的铝合金车轮轮辐形态和明亮的色泽越来越为人们所关注,因此车轮的外观设计也因此变得越发的重要。

2.铝合金车轮的设计方法
车轮制造企业的设计手段依然采用传统的设计方法,其设计及生产流程如图1所示。

图1 传统的车轮设计流程图
产品的结构强度、疲劳性能则在产品试样制造出来后,通过试验来验证。

这样导致产品的设计周期过长,成本过高。

而且设计时为了保证产品的通过率,避免反复多次修改模型,设计人员往往留有过大的设计欲量,对于大批量生产的企业,这无形中造成了材料浪费,增加成本[2]。

此外,当试验失败进行结构修改时,设计人员也是凭借经验,通过局部增加材料达到提高强度的目的,缺乏理论依据,具有较强的盲目性,对于产品的结构优化更是无从入手[3]。

因此,采用新的技术和手段,使车轮设计由经验类比型向科学分析计算型转变,是车轮行业一项势在必行的工作。

3.载荷的处理
试验中车轮所受到应力有弯曲疲劳试验工况下产生的结构应力和车轮在制造过程(如铸造、机加工、热处理等)中产生的残余应力。

车轮铸造中往往会产生疏松、针孔等缺陷,它们在一定程度上影响了材料的属性及其疲劳强度,机加工过程的进刀量和进刀速度等工艺也会在车轮上留下残余应力,热处理过程有着消除残余应力的作用,但是这些残余应力受众多因素影响[4],难以在有限元仿真中进行定量分析,因此我们只考虑试验工况下车轮结构应力的作用。

在动态弯曲疲劳试验工况下,车轮承受载荷来源有三个,轮毅紧固螺栓产生的预紧力、车轮高速旋转时产生的离心力和试验弯矩载荷。

表1和表2分别为车轮的设计参数及试验参数。

表1 车轮设计参数
产品规格设计载荷静载荷半径偏距安全系数
16×6.5 500kg 350mm 50mm 2
(1)试验弯距
试验弯矩可通过式(1)求得。

最小循环次数也可根据车轮的尺寸及安全系数查SAE J2530得出,车轮试验参数如表2所示。

表2 车轮的试验参数
产品规格试验弯矩实验转速螺纹扭矩要求寿命
1.6×6.5 2880 1700 110 2000000
在有限元模型中,载荷是加在加载轴端,L为加载轴长度:
M=L×Fv (1)
施加载荷:
(2)
(2)螺栓预紧力
在试验过程中车轮通过轮毅的五个螺栓固定在安装盘上,螺纹规格为M12x1.5,试验要求螺栓扭矩达到110Nm,根据机械设计原理,普通螺纹力矩:
(3)
螺栓轴向载荷:
(4)
螺纹中径:
升角λ:
(5)
当量摩擦角:
(6)
其中,普通螺纹的牙型斜角为300}螺栓材料为A3钢,其摩擦系数f为0.20根据上述公式,代入相关数据即可得作用在轮毅上螺栓预紧力。

4.设计载荷的变化对结构应力的影响
为了检测车轮的疲劳性能,改变车轮的设计载荷,对不同的设计载荷分别进行车轮的弯曲疲劳寿命试验。

表3-7是设计载荷及其相应的试验弯矩。

本节利用有限元静力学分析法,计算车轮在各试验弯矩作用下,结构危险点的应力值状况,分析结果如表3所示。

表3 设计载荷及其相应的试验弯矩
试验载荷kg 330 500 690 865
试验弯矩Nm 1920 2880 4000 5000
节点Mpa 71.5 108 149 189
由于螺栓预紧力仅对螺栓孔附近区域产生影响,对车轮结构其他部位影响近乎为零,因此有限元分析时仅考虑离心力及试验弯矩作用(以下分析相同)。

由分析结果可见,随着设计载荷、试验弯矩的增大,车轮结构的应力也随之线性增大。

应力最大点在四种试验弯矩下,结构应力值均低于材料的屈服极限,处于线弹性状态,因此采用线弹性分析是可行的。

5.结论
车轮是介于轮胎和车桥之间承受负荷的旋转件,是车辆行驶系统中重要的安全部件,同时也是汽车外观重要组成部分,车轮的造型设计、结构强度和疲劳强度是车轮设计的关键。

传统的车轮设计主要进行造型设计,结构强度和疲劳强度通过试样的试验验证。

该方法对经验有很强的依赖性,存在设计盲目性大、周期
长、成本高等弊端。

结合有限元方法对车轮进行结构优化、强度分析和疲劳分析,在设计阶段预测车轮的结构强度和疲劳寿命,并实现优化设计。

保证产品质量的前提下,缩短了产品的设计周期,降低了产品的设计和制造成本。

参考文献
[1]赵玉涛编.铝合金车轮制造技术[M].北京:机械工业出版社,2004.
[2]王祖德.中国汽车车轮生产现状及展望[J].汽车与配件,2001(23):21.
[3]姜晋庆,张铎编.结构弹塑性有限元分析法[M].北京:宇航出版社,1990.
[4]翁运忠,张小格.载货车车轮轮辐结构优化分析[J].汽车科技,2002(1).。

相关文档
最新文档