中考数学专题复习一《二次根式》同步练习题
中考数学总复习《二次根式》练习题附带答案

中考数学总复习《二次根式》练习题附带答案一、单选题1.√123÷√213×√125值为()A.1B.3C.√33D.√7 2.若√(a−b)2=b﹣a,则()A.a>b B.a<b C.a≥b D.a≤b 3.与√a3b不是同类次根式的是()A.1√abB.√baC.√ab2D.√ba34.下列运算正确的是()A.√3+3=3√3B.4√2−√2=4C.√2+√3=√5D.3√3−√3=2√35.若代数式1x−1+√x有意义,则实数x的取值范围是()A.x≠1B.x≥0C.x≠0D.x≥0且x≠1 6.a、b在数轴上的位置如图所示,那么化简√(b−a)2的结果是()A.a-b B.a+b C.b-a D.-a-b7.设实数a,b在数轴上对应的位置如图所示,化简√a2+|a+b|的结果是()A.-2a+b B.2a+b C.-b D.b8.若√3−m为二次根式,则m的取值为()A.m≤3B.m<3C.m≥3D.m>39.下列运算正确的是()A.(x−y)2=x2−y2B.|√3−2|=2−√3C.√8−√3=√5D.﹣(﹣a+1)=a+110.已知2<a<4,则化简√1−2a+a2+√a2−8a+16的结果是() A.2a﹣5B.5﹣2a C.﹣3D.311.下列运算中正确的是()A.√2+√3=√5B.(−√5)2=5C.3√2−2√2=1D.√16=±4 12.下列计算正确的是()A.(m−n)2=m2−n2B.(2ab3)2=2a2b6C.√8a3=2a√a D.2xy+3xy=5xy 二、填空题13.计算:√45﹣√25× √50=.14.若√12x是一个整数,则x可取的最小正整数是3.(判断对错)15.计算:√24−√12√3=.16.如果x2﹣3x+1=0,则√x2+1x2−2的值是.17.化简:√75=.18.已知实数a,b,c在数轴上的位置如图所示,化简代数式√a2−|a+c|+√(b−c)2−|−b|三、综合题19.完成下列问题:(1)若n(n≠0)是关于x的方程x2+mx+2n=0的根,求m+n的值;(2)已知x,y为实数,且y= √2x−5+√5−2x﹣3,求2xy的值.20.阅读材料,解答问题:(1)计算下列各式:①√4×9=,√4×√9=;②√16×25=,√16×√25=.通过计算,我们可以发现√a×b=(a>0,b>0)从上面的结果可以得到:√8=√2×√4=2√2,√12=√3×√4=2√3(2)根据上面的运算,完成下列问题①化简:√24②计算:√27+√48③化简:√a2b(a>0,b>0)21.在数学课外学习活动中,小明和他的同学遇到一道题:已知a=12+√3,求2a2−8a+1的值.他是这样解答的:∵a=2+√3=√3(2+√3)(2−√3)=2−√3,∴a−2=−√3∴(a−2)2=3,a2−4a+4=3∴a2−4a=−1∴2a2−8a+1=2(a2−4a)+1=2×(−1)+1=−1.请你根据小明的解析过程,解决如下问题:(1)1√3+√2=;(2)化简 √2+1+√3+√2√4+√3⋯+√256+√255 ; (3)若 a =√10−3,求 a 4−6a 3+a 2−12a +3 的值. 22.已知 x =√3+12 , y =√3−12与 m =xy 和 n =x 2−y 2 . (1)求m ,n 的值;(2)若 √a −√b =m +72, √ab =n 2 求 √a +√b 的值. 23.计算: (1)√135•2 √3 •(﹣ 12 √10 ); (2)√3a 2b •( √b a ÷2 √1b). 24.计算下列各题 (1)计算:( 12 )﹣2﹣6sin30°﹣( √7−√5)0+ √2 +| √2 ﹣ √3 | (2)化简:( x+2x 2−2x ﹣ x−1x 2−4x+4 )÷ x−4x ,然后请自选一个你喜欢的x 值,再求原式的值.参考答案1.【答案】A2.【答案】D3.【答案】C4.【答案】D5.【答案】D6.【答案】A7.【答案】D8.【答案】A9.【答案】B10.【答案】D11.【答案】B12.【答案】D13.【答案】√514.【答案】对15.【答案】2√2−216.【答案】√517.【答案】5√318.【答案】019.【答案】(1)将x=n 代入方程x 2+mx+2n=0得n 2+mn+2n=0,则n(n+m+2)=0 因为n≠0,所以n+m+2=0即m+n=-2.(2)因为y=√2x −5+√5−2x -3有意义,则{2x −5≥05−2x ⩾0解得{x ⩾52x ≤52则x=52 所以y=0+0-3=-3即2xy=2×52×(-3)=-15. 20.【答案】(1)6;6;20;20;√a ×√b(2)解:①√24=√4×6=√4×√6=2√6;②√27+√48=√3×9+√3×16=√3×√9+√3×√16=3√3+4√3=7√3 ;③√a 2b =√a 2⋅√b =a √b (a >0,b >0).21.【答案】(1)√3−√2(2)解:原式 =√2−1+√3−√2+√4−√3+⋯+√256−√255=−1+√2−√2+√3−√3+√4−⋯−√255+√256=√256−1=16−1=15 ;(3)解: ∵ a =√10−3 =√10+3 ∴a −3=√10∴(a −3)2=10即 a 2−6a +9=10 .∴a 2−6a =1 .∴a 4−6a 3=a 2∴a 4−6a 3+a 2−12a +3=2a 2−12a +3=2(a 2−6a)+3=2+3=5 .22.【答案】(1)解:由题意得, m =xy =√3+12×√3−12=12 n =(x +y)(x −y)=(√3+12+√3−12)(√3+12−√3−12)=√3 (2)解:由(1)得, √a −√b =4 √ab =3 ∴(√a +√b)2=(√a −√b)2+4√ab =42+4×3=28∵√a +√b >0∴√a +√b =2√723.【答案】(1)解: √135 •2 √3 •(﹣ 12 √10 ) =2×(﹣ 12 ) √135×3×10 =﹣ √16×3=﹣4 √3(2)解: √3a 2b •( √b a ÷2 √1b)= √3a2b × √ba× 12× √b= √3424.【答案】(1)解:原式=4﹣6× 12﹣1+ √2+ √3﹣√2 = √3;(2)解:原式=[x+2x(x−2)﹣x−1(x−2)2]•xx−4= (x+2)(x−2)−x(x−1)x(x−2)2•xx−4=x−4x(x−2)2•xx−4=1 (x−2)2当x=10时,原式= 1 64.。
2022年春北师大版九年级数学中考一轮复习《二次根式的应用》专题达标测试(附答案)

2022年春北师大版九年级数学中考一轮复习《二次根式的应用》专题达标测试(附答案)一.选择题(共8小题,满分40分)1.已知一个长方形面积是,宽是,则它的长是()A.3B.C.2D.42.一个长方体纸盒的体积为4dm3,若这个纸盒的长为2dm,宽为dm,则它的高为()A.1dm B.2dm C.2dm D.48dm3.如图,从一个大正方形中裁去面积为18cm2和32cm2的两个小正方形,则剩余部分(阴影部分)的面积等于()A.98cm2B.60cm2C.48cm2D.38cm24.如图,矩形内两个相邻正方形的面积分别为9和3,则阴影部分的面积为()A.8﹣3B.9﹣3C.3﹣3D.3﹣25.在数学课上,老师将一长方形纸片的长增加,宽增加,就成为了一个面积为192cm2的正方形,则原长方形纸片的面积为()A.18cm2B.20cm2C.36cm2D.48cm26.如图,在正方形ABCD中,正方形AEPF和正方形PHCG的面积分别为12和3,则正方形ABCD的边长为()A.9B.15C.2D.37.如图,已知钓鱼竿AC的长为6m,露在水面上的鱼线BC长为3m,某钓者想看看鱼钩上的情况,把鱼竿AC转动到AC′的位置,此时露在水面上的鱼线B′C′为m,则BB′的长为()A.m B.2m C.m D.2m8.已知a、b、c是△ABC三边的长,则+|a+b﹣c|的值为()A.2a B.2b C.2c D.2(a一c)二.填空题(共8小题,满分40分)9.如图,在长方形ABCD内,两个小正方形的面积分别为2,18,则图中阴影部分的面积等于.10.若矩形的长为(3+)cm,宽为(3﹣)cm,则长方形的面积为cm2.11.已知△ABC中,AC=,BC=2,AB=5,以AB为一边作等腰直角三角形ABD,且D、C两点分别在边AB的两侧,则线段CD的长为.12.如图,两个正方形Ⅰ,Ⅱ和两个矩形Ⅲ,Ⅳ拼成一个大正方形,已知正方形Ⅰ,Ⅱ的面积分别为6和3,那么大正方形的面积是.13.如图,从一个大正方形中裁去面积为8cm2和18cm2的两个小正方形,则留下的阴影部分面积和为.14.一个直角三角形的两直角边长分别为cm和cm,则这个直角三角形的面积是cm2.15.已知三角形三边长分别为,,,则此三角形的最大边上的高等于.16.如图,四边形ABCD和CEFG是两个相邻的正方形,其中B,C,E在同一条直线上,点D在CG上,它们的面积分别为27平方米和48平方米,则BE的长为米.三.解答题(共6小题,满分40分)17.如图,在△ABC中,CD、CE分别是AB上的高和中线,S△ABC=12cm2,AE=2cm,求CD的长.18.三角形的周长为(5+2)cm,面积为(20+4)cm2,已知两边的长分别为cm和cm,求:(1)第三边的长;(2)第三边上的高.19.阅读下列材料,并解决有关问题:观察发现:∵,∴,∵=6+8+2=14+2=14+8,∴====,∵,∴.…建立模型:形如的化简(其中m,n为正整数),只要我们找到两个正整数a、b(a>b),使a+b=m,ab=n,那么=.问题解决:(1)根据观察说明“建立模型”是正确的.(2)化简:①=;②=.(3)已知正方形的边长为a,它的面积与长为、宽为的长方形面积相等,求正方形的边长.20.我国宋代的数学家秦九韶发现:若一个三角形的三边长分别为a,b,c,则这个三角形的面积为s=,其中p=(a+b+c).如图1,在△ABC中,已知AB=9,AC=8,BC=7.(1)求△ABC的面积;(2)如图2,AD,BE为△ABC的两条角平分线,它们的交点为点I,求I到边BC的距离.21.若矩形的长a=,宽b=.(1)求矩形的面积和周长;(2)求a2+b2﹣20+2ab的值.22.某居民小区有块形状为长方形ABCD的绿地,长方形绿地的长BC为8米,宽AB为米,现要在长方形绿地中修建一个长方形花坛(即图中阴影部分),长方形花坛的长为+1米,宽为﹣1米.(1)长方形ABCD的周长是多少?(结果化为最简二次根式)(2)除去修建花坛的地方.其它地方全修建成通道,通道上要铺上造价为6元/m2的地砖,要铺完整个通道,则购买地砖需要花费多少元?(结果化为最简二次根式)参考答案一.选择题(共8小题,满分40分)1.解:∵一个长方形面积是,宽是,∴它的长是:÷==2.故选:C.2.解:设它的高为xdm,根据题意得:2××x=4,解得:x=1.故选:A.3.解:如图.由题意知:,.∴BC=(cm),HG=(cm).∵四边形BCDM是正方形,四边形HMFG是正方形,∴BC=BM=MD=cm,HM=HG=MF=cm.∴S阴影部分=S矩形ABMH+S矩形MDEF=BM•HM+MD•MF==48(cm2).故选:C.4.解:∵两个相邻的正方形,面积分别为3和9,∴两个正方形的边长分别为,3,∴阴影部分的面积=×(3﹣)=3﹣3.故选:C.5.解:∵一个面积为192cm2的正方形纸片,边长为:8cm,∴原矩形的长为:8﹣2=6(cm),宽为:8﹣7=(cm),∴原长方形纸片的面积为:(cm2).故选:A.6.解:∵正方形AEPF和正方形PHCG的面积分别为12和3,∴正方形AEPF和正方形PHCG的边长分别为2和,∴AB=2+=3.故选:D.7.解:∵AC=6m,BC=3m,∴AB===3m,∵AC′=6m,B′C′=m,∴AB′===m,∴BB′=AB﹣AB′=3﹣=2m;故选:B.8.解:∵三角形两边之和大于第三边,两边之差小于第三边,∴a﹣b﹣c<0,a+b﹣c>0∴+|a+b﹣c|=b+c﹣a+a+b﹣c=2b.故选:B.二.填空题(共8小题,满分40分)9.解:∵两个小正方形的面积分别为2,18,∴小正方形的边长为,大正方形边长为3,∴阴影部分的长为3﹣=2,宽为,∴阴影部分的面积=2×=4,故答案为:4.10.解:长方形的面积为(3+)×(3﹣)=9﹣7=2(cm2),故答案为:2.11.解:∵AC=,BC=2,AB=5,∴AB2=AC2+BC2,∴△ABC是直角三角形,∴∠C=90°,①如图1,当∠DAB=90°时,过点D作DG⊥AC交于CA延长线于点G,∵AB=AD,∴∠GAD+∠GDA=90°,∠GAD+∠CAB=90°,∴∠GDA=∠CAB,∴△AGD≌△BCA(AAS),∴GD=AC,AG=BC,∴GD=,AG=2,∴CG=3,在Rt△CDG中,CD===5;②如图2,当∠ABD=90°时,过点D作DF⊥BC交CB延长线于点F,∵∠ABC+∠CAB=90°,∠ABC+∠DBF=90°,∴∠CAB=∠FBD,∵AB=BD,∴△ABC≌△BDF(AAS),∴BF=AC=,DF=BC=2,∴CF=3,在Rt△CDF中,CD===;③如图3,当∠ACB=90°时,过点D作DM⊥AC交CA延长线于点M,过点D作DN⊥BC交于点N,∵∠CAD+∠DBC=180°,∠CAD+∠MAD=180°,∴∠MAD=∠DBN,∵AD=BD,∴△ADM≌△BDN(AAS),∴AM=BN,MD=DN,∴四边形MCND是正方形,∴AC+AM=BC﹣BN=BC﹣AM,∴2AM=BC﹣AC=,∴AM=,∴CM=,∴CD=×=;综上所述:CD的长为或5或,故答案为:或5或.12.解:∵正方形Ⅰ的面积为6,∴正方形Ⅰ的边长为,∵正方形Ⅱ的面积为3,∴正方形Ⅱ的边长为,∴大正方形的边长为+,∴大正方形的面积为()2=9+6,故答案为:9+6.13.解:∵两个小正方形面积为8cm2和18cm2,∴大正方形边长为:+=2+3=5(cm),∴大正方形面积为(5)2=50(cm2),∴留下的阴影部分面积和为:50﹣8﹣18=24(cm2).故答案为:24cm2.14.解:这个直角三角形的面积=cm2,故答案为:215.解:∵2+2=(2)2,∴根据勾股定理的逆定理,△ABC是直角三角形,最长边是2,设斜边上的高为h,则S△ABC=××=×h,解得:h=,故答案为.16.∵正方形ABCD的面积为27,∴BC=.∵正方形CEFG的面积为48,∴CE=.∴BE=BC+CE=.故答案为:.三.解答题(共6小题,满分40分)17.解:在△ABC中,CE是AB上的中线,S△ABC=12cm2,∴S△AEC=S△ABC=6cm2,∵AE=2cm,∴AE•CD=6,即×2•CD=6,∴CD=6.18.解:(1)∵三角形周长为cm,两边长分别为cm和cm,∴第三边的长是:cm;(2)∵面积为(20+4)cm2,∴第三边上的高为==()cm.19.解:(1)将上述式子代入模型进行验证,发现都是正确的即可.(2)①由题意得,解得或,∴=1+.故答案为:1+.②∵=,∴,∴或.∴=﹣=4﹣.故答案为:4﹣.(3)由题意得a2=(+4)×2=18+8,∴a===+=+2.答:正方形的边长是+2.20.解:(1)由题意得:p===12,∴S△ABC===12;(2)连接IC,过点I分别作AB、BC、AC边的垂线交AB、BC、AC于点M、Q、N,由角平分线的性质定理可知:IM=IQ=IN,观察图形易知:S△ABC=S△ABI+S△BCI+S△ACI===12,∴=12,解得:IQ=,故I到边BC的距离为:.21.解:(1)∵矩形的长a=,宽b=.∴矩形的面积为:(+)(﹣)=6﹣5=1;矩形的周长为:2(++﹣)=4;(2)a2+b2﹣20+2ab=(a+b)2﹣20=(++﹣)2﹣20=(2)2﹣20=24﹣20=4.22.解:(1)长方形ABCD的周长=2×()=2(8+7)=16+14(米),答:长方形ABCD的周长是16+14(米),(2)通道的面积==56﹣(13﹣1)=56(平方米),购买地砖需要花费=6×(56)=336﹣72(元).答:购买地砖需要花费336﹣72元;。
中考培优专题之二次根式

备战中考之二次根式习题一、单选题(共15题;)1.对于任意的正数m 、n 定义运算※为:m ※n={√m −√n (m ≥n )√m +√n (m <n )),计算(3※2)×(8※12)的结果为( )A. 2﹣4√6B. 2C. 2√5D. 20 2.要使二次根式√3−2x 有意义,则x 的取值范围是( )A. x ⩾32 B. x ⩽32 C. x ⩾23 D. x ⩽23 3.下列各实数中最大的一个是( ) A. 5× √0.039 B.3.141πC.√14+√7D. √0.3 + √0.24.已知x 为实数,化简√−x 3−x√−1x的结果为( )A. (x −1)√−xB. (−1−x )√−xC. (1−x )√−xD. (1+x )√−x 5.若√x −1+√x +y =0 ,则x 2005+y 2005 的值为: ( )A. 0B. 1C. -1D. 26.等式√xx−3=√x√x−3成立的条件是( ) A. x≠3 B. x≥0 C. x≥0且x≠3 D. x>3 7.下列二次根式中,最简二次根式是( ).A. B.C.D.8.已知是正整数,则实数n 的最大值为( )A. 12B. 11C. 8D. 39.如果最简根式 √3a −8 与√17−2a 是同类二次根式,那么使√4a −2x 有意义的x 的取值范围是( ) A. x≤10 B. x≥10 C. x <10 D. x >10 10.已知 y =√4−x +√x −4+3 ,则 yx 的值为( )A. 43 B. −43 C. 34 D. −34 11.若x +y =3+2 √2 ,x ﹣y =3﹣2 √2 ,则 √x 2−y 2 的值为( ) A. 4 √2 B. 1 C. 6 D. 3﹣2 √2 12.函数 y =1x+1−√2−3x 中,自变量 x 的取值范围是( )A. x ≤23 B. x ≥23 C. x <23 且 x ≠−1 D. x ≤23 且 x ≠−113.利用计算器计算时,依次按键下: ,则计算器显示的结果与下列各数中最接近的一个是( )A. 2.5B. 2.6C. 2.8D. 2.914.把代数式(a-1) √11−a的a-1移到根号内,那么这个代数式等于()A. -√1−aB. √a−1C. √1−aD. -√a−115.一个三角形的三边长分别为1,k,4,化简|2k-5|-√k2−12k+36的结果是( )A. 3k-11B. k+1C. 1D. 11-3k二、填空题(共15题;)16.若|1001−a|+√a−1002=a,则a−10012=________.17.观察下列运算过程:1+√2=√2+1=√2(√2+1)(√2−1)=√2(√2)2−12=√2−1√2+√3=√3+√2=√3√2(√3+√2)(√3−√2)=√3√2(√3)2−(√2)2=√3−√2……请运用上面的运算方法计算:1+√3+√3+√5√5+√7⋯+√2015+√2017√2017+√2019=________.18.如图,数轴上点A表示的数为a,化简:a+√a2−4a+4=________19.√12与最简二次根式5 √a+1是同类二次根式,则a=________.20.读取表格中的信息,解决问题.满足n n n√3+√2≥2014×(√3−√2+1)的n可以取得的最小整数是________.21.已知|6﹣3m|+(n﹣5)2=3m﹣6﹣√(m−3)n2,则m﹣n=________22.若m=√2012−1,则m5﹣2m4﹣2011m3的值是________.23.若√20n是整数,则正整数n的最小值为________.24.已知√a(a﹣√3)<0,若b=2﹣a,则b的取值范围是________.25.如果(x﹣√x2−2008)(y﹣√y2−2008)=2008,求3x2﹣2y2+3x﹣3y﹣2007=________.26.已知a、b为有理数,m、n分别表示5−√7的整数部分和小数部分,且amn+bn2=1,则2a+b=________.27.若实数x,y,m满足等式√3x+5y−3−m+(2x+3y−m)2=√x+y−2−√2−x−y,则m+4的算术平方根为________.28.若x、y都为实数,且y=2008√x−5+2007√5−x+1,则x2+y=________。
中考数学专题《二次根式》复习试卷含答案解析

2018年中考数学专题复习卷: 二次根式一、选择题1.下列计算正确的是()A. B. C. D.2.下列四个数中,是负数的是( )A. B. C. D.3.函数y= 中自变量x的取值范围是()A. x≥-1且x≠1B. x≥-1C. x≠1D. -1≤x<14.下列各式化简后的结果为3 的是()A. B. C. D.5.下列计算正确的是()A. a5+a2=a7B. × =C. 2-2=-4D. x2·x3=x66.计算|2﹣|+|4﹣|的值是()A. ﹣2B. 2C. 2 ﹣6D. 6﹣27.计算之值为何()A. 5B. 33C. 3D. 98.下列运算正确的是()A. B. C. D.9.已知,则代数式的值是()A. 0B.C.D.10.如果(0<x<150)是一个整数,那么整数x可取得的值共有()A. 3个B. 4个C. 5个D. 6个11.化简为()A. 5﹣4B. 4 ﹣lC. 2D. 112.下列计算:①;②;③;④.其中正确的有()A. 1个B. 2个C. 3个D. 4个二、填空题13.函数y=的自变量x的取值范围是________.14.计算:=________.15.计算:________。
16.当x=2时,二次根式的值为________.17.计算的结果是________.18.计算(+1)2016(﹣1)2017=________.19.已知实数a在数轴上的位置如图所示,化简的结果是________.20.若实数a、b满足|a+2|+ =0,则=________.21.计算:=________.22.观察下列等式:第1个等式:a1= = ﹣1,第2个等式:a2= = ﹣,第3个等式:a3= =2﹣,第4个等式:a4= = ﹣2,按上述规律,回答以下问题:(1)请写出第n个等式:a n=________;(2)a1+a2+a3+…+a n=________.三、解答题23.24.计算:()﹣1﹣6cos30°﹣()0+ .25.在平面直角坐标系中,点P(- ,-1)到原点的距离是多少?26.若b为实数,化简|2b-1|- 。
初中数学 中考复习二次根式专题练习(含答案)

二次根式复习一、知识归纳 (一)二次根式定义1注意:(12,(2)被开方数是非负数2、二次根式在实数范围内有意义的条件是 a ≥0 。
(二)二次根式的性质1、二次根式的双重非负性≥0,a ≥0a ≥0)表示非负数a 的算术平方根,≥0,2、)2=a (a ≥0)(0)0(0)(0)a a a a a a ⎧⎪===⎨⎪-⎩><(三)、最简二次根式和同类二次根式 1、最简二次根式的两个条件:(1)被开方数不含 ;(2)被开方数不含 的因数或因式。
满足:(1)根号内不含有分母,有分母的先通分,再将分母开出来 (2)根号内每个因式或因数的指数都小于根指数2,如果根号内含有因式或因数的指数大于根指数2,就利用,将每个因式或因数的指数都小于根指数2(3)分母内不含有根式,如果分母内含有根号,则利用分母有理化,将根号划去。
(1)判断一个二次根式是否是最简二次根式,要紧扣最简二次根式的特点: ①被开方数不含分母;②被开方数不能含开得尽方的因数或因式.即把每一个因数或因式都写成底数较小、乘方的形式后,因数或因式的指数小于2.③若被开方数是和(或差)的形式,则先把被开放方数写成积的形式,再作判定,若无法写成积(或一个数)的形式,则为最简二次根式.=简二次根式.=,且因式2和22()x y +的指数都是1,是最简二次根式.22a b +无法变成一个数(或因式)式.(2)化简二次根式一般例如为两步:一如果被开方数是分数或分式,利用分母有理化化简;二化去被开方数中的分母之后,再将被开方数分解成几个数相乘的形式或分解因式,然后利用积的算术平方根的性质把能开得尽方的因数或因式开出来.若被开方数中不含分母,则只需第二步.同类二次根式:几个二次根式化成最简二次根式以后,如果被开方数相同,这几个二次根式叫做同类二次根式.同类二次根式与同类项类似. 对同类二次根式的理解应注意以下几点:(1)判断几个二次根式是否是同类二次根式时,首先将二次根式化为最简二次根式,其次看被开方数是否相同.(2)几个二次根式是否是同类二次根式,只与被开方数和根指数有关,与根号外的系数无关. 将同类二次根式的系数相加减,根指数与被开方数保持不变.(1)二次根式的系数就是这个二次根式根号外的因式(或因数),它包含前面的符号.(2)当二次根式的系数为带分数时,必须将其化为假分数.(3)不是同类二次根式,千万不要合并.(四)二次根式的运算0)=≥,≥0a b=≥,>00)a b≥,≥0a b0)=≥,>00)a b二次根式的加减实质上就是合并同类二次根式.4、二次根式加减的步骤:(1)先将二次根式化成。
(完整版)《二次根式及一元二次方程》专题练习含解析

《二次根式及一元二次方程》一、选择题1.估算的值()A.在1和2之间B.在2和3之间C.在3和4之间D.在4和5之间2.要使+有意义,则x应满足()A.≤x≤3 B.x≤3且x≠C.<x<3 D.<x≤33.已知方程x2+bx+a=0有一个根是﹣a(a≠0),则下列代数式的值恒为常数的是()A.ab B.C.a+b D.a﹣b4.已知a,b,c分别是三角形的三边,则方程(a+b)x2+2cx+(a+b)=0的根的情况是()A.没有实数根B.可能有且只有一个实数根C.有两个相等的实数根D.有两个不相等的实数根5.武汉市2016年国内生产总值(GDP)比2015年增长了12%,由于受到国际金融危机的影响,预计今年比2016年增长7%,若这两年GDP年平均增长率为x%,则x%满足的关系是()A.12%+7%=x% B.(1+12%)(1+7%)=2(1+x%)C.12%+7%=2•x%D.(1+12%)(1+7%)=(1+x%)26.下列各式计算正确的是()A.B.(a<1)C.D.7.关于x的方程(a﹣5)x2﹣4x﹣1=0有实数根,则a满足()A.a≥1 B.a>1且a≠5 C.a≥1且a≠5 D.a≠58.设a,b是方程x2+x﹣2016=0的两个实数根,则a2+2a+b的值为()A.2014 B.2017 C.2015 D.20169.方程(x﹣3)(x+1)=x﹣3的解是()A.x=0 B.x=3 C.x=3或x=﹣1 D.x=3或x=010.方程x2﹣9x+18=0的两个根是等腰三角形的底和腰,则这个三角形的周长为()A.12 B.12或15 C.15 D.不能确定11.定义:如果一元二次方程ax2+bx+c=0(a≠0)满足a+b+c=0,那么我们称这个方程为“凤凰”方程.已知ax2+bx+c=0(a≠0)是“凤凰”方程,且有两个相等的实数根,则下列结论正确的是()A.a=c B.a=b C.b=c D.a=b=c12.如图,已知双曲线y=(k<0)经过直角三角形OAB斜边OA的中点D,且与直角边AB相交于点C.若点A的坐标为(﹣6,4),则△AOC的面积为()A.12 B.9 C.6 D.4二、填空题13.化简=.14.计算的结果是.15.计算: +=.16.如果方程ax2+2x+1=0有两个不等实根,则实数a的取值范围是.17.设x1,x2是一元二次方程x2﹣3x﹣2=0的两个实数根,则x12+3x1x2+x22的值为.18.已知x=1是一元二次方程x2+mx+n=0的一个根,则m2+2mn+n2的值为.19.请你写出一个有一根为1的一元二次方程:.(答案不唯一)20.关于x的一元二次方程x2﹣mx+2m﹣1=0的两个实数根分别是x1、x2,且x12+x22=7,则(x1﹣x2)2的值是.21.若把代数式x2﹣2x﹣3化为(x﹣m)2+k的形式,其中m,k为常数,则m+k=.22.将根号外面的因式移进根号后等于.23.若正方形OABC的顶点B和正方形ADEF的顶点E都在函数的图象上.若正方形OABC的面积为1,则k的值为;点E的坐标为.三、解答题24.计算:.25.用配方法解方程:2x2+1=3x.26.已知关于x的一元二次方程x2﹣(2k+1)x+4k﹣3=0.(1)求证:无论k取什么实数值,该方程总有两个不相等的实数根;(2)当Rt△ABC的斜边长a=,且两条直角边b和c恰好是这个方程的两个根时,求△ABC的周长.27.已知一元二次方程x2﹣2x+m=0.(1)若方程有两个实数根,求m的范围;(2)若方程的两个实数根为x1,x2,且x1+3x2=3,求m的值.28.已知关于x的一元二次方程x2=2(1﹣m)x﹣m2的两实数根为x1,x2(1)求m的取值范围;(2)设y=x1+x2,当y取得最小值时,求相应m的值,并求出最小值.《二次根式及一元二次方程》参考答案与试题解析一、选择题1.估算的值()A.在1和2之间B.在2和3之间C.在3和4之间D.在4和5之间【考点】估算无理数的大小.【专题】应用题.【分析】首先利用平方根的定义估算31前后的两个完全平方数25和36,从而判断的范围,再估算的范围即可.【解答】解:∵5<<6∴3<<4故选C.【点评】此题主要考查了利用平方根的定义来估算无理数的大小,解题关键是估算的整数部分和小数部分.2.要使+有意义,则x应满足()A.≤x≤3 B.x≤3且x≠C.<x<3 D.<x≤3【考点】二次根式有意义的条件;分式有意义的条件.【分析】根据被开方数大于等于0,分母不等于0列式计算即可得解.【解答】解:由题意得,,解不等式①得,x≤3,解不等式②的,x>,所以,<x≤3.故选:D.【点评】本题考查的知识点为:分式有意义,分母不为0;二次根式的被开方数是非负数.3.已知方程x2+bx+a=0有一个根是﹣a(a≠0),则下列代数式的值恒为常数的是()A.ab B.C.a+b D.a﹣b【考点】一元二次方程的解.【分析】本题根据一元二次方程的根的定义,把x=﹣a代入方程,即可求解.【解答】解:∵方程x2+bx+a=0有一个根是﹣a(a≠0),∴(﹣a)2+b(﹣a)+a=0,又∵a≠0,∴等式的两边同除以a,得a﹣b+1=0,故a﹣b=﹣1.故本题选D.【点评】本题考查的重点是方程根的定义,分析问题的方向比较明确,就是由已知入手推导、发现新的结论.4.已知a,b,c分别是三角形的三边,则方程(a+b)x2+2cx+(a+b)=0的根的情况是()A.没有实数根B.可能有且只有一个实数根C.有两个相等的实数根D.有两个不相等的实数根【考点】根的判别式;三角形三边关系.【分析】由于这个方程是一个一元二次方程,所以利用根的判别式可以判断其根的情况.能够根据三角形的三边关系,得到关于a,b,c的式子的符号.【解答】解:∵△=(2c)2﹣4(a+b)2=4[c2﹣(a+b)2]=4(a+b+c)(c﹣a﹣b),根据三角形三边关系,得c﹣a﹣b<0,a+b+c>0.∴△<0.∴该方程没有实数根.故选A.【点评】本题是方程与几何的综合题.主要考查了三角形三边关系、一元二次方程的根的判别式等知识点.重点是对(2c)2﹣4(a+b)(a+b)进行因式分解.5.武汉市2016年国内生产总值(GDP)比2015年增长了12%,由于受到国际金融危机的影响,预计今年比2016年增长7%,若这两年GDP年平均增长率为x%,则x%满足的关系是()A.12%+7%=x% B.(1+12%)(1+7%)=2(1+x%)C.12%+7%=2•x%D.(1+12%)(1+7%)=(1+x%)2【考点】由实际问题抽象出一元二次方程.【专题】增长率问题.【分析】增长率问题,一般用增长后的量=增长前的量×(1+增长率),然后用平均增长率和实际增长率分别求出今年的国内生产总值,由此可得到一个方程,即x%满足的关系式.【解答】解:若设2015年的国内生产总值为y,则根据实际增长率和平均增长率分别得到2010年和今年的国内生产总值分别为:2016年国内生产总值:y(1+x%)或y(1+12%),所以1+x%=1+12%,今年的国内生产总值:y(1+x%)2或y(1+12%)(1+7%),所以(1+x%)2=(1+12%)(1+7%).故选D.【点评】本题主要考查增长率问题,然后根据增长率和已知条件抽象出一元二次方程.6.下列各式计算正确的是()A.B.(a<1)C.D.【考点】二次根式的混合运算;立方根.【分析】A、根据二次根式的乘法运算法则的逆运算直接计算就可以;B、由条件可以判断出原式为负数再将根号外面的数移到根号里面化简求解就可以了;C、先将被开方数进行乘方运算再合并最后化简就可以了;D、先进行分母有理化,再进行合并同类二次根式就可以了.【解答】解:A、≠,本答案错误;B、(a<1),本答案正确;C、,本答案错误;D、==4≠2,本答案错误.故选B.【点评】本题考查了二次根式的乘、除、加、减混合运算的运用及立方根的运用,在结算时注意运算的顺序和运算的符号是解答的关键.7.关于x的方程(a﹣5)x2﹣4x﹣1=0有实数根,则a满足()A.a≥1 B.a>1且a≠5 C.a≥1且a≠5 D.a≠5【考点】根的判别式.【专题】判别式法.【分析】由于x的方程(a﹣5)x2﹣4x﹣1=0有实数根,那么分两种情况:(1)当a﹣5=0时,方程一定有实数根;(2)当a﹣5≠0时,方程成为一元二次方程,利用判别式即可求出a的取值范围.【解答】解:分类讨论:①当a﹣5=0即a=5时,方程变为﹣4x﹣1=0,此时方程一定有实数根;②当a﹣5≠0即a≠5时,∵关于x的方程(a﹣5)x2﹣4x﹣1=0有实数根∴16+4(a﹣5)≥0,∴a≥1.∴a的取值范围为a≥1.故选:A.【点评】本题考查了一元二次方程ax2+bx+c=0(a≠0)的根的判别式△=b2﹣4ac:当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根;切记不要忽略一元二次方程二次项系数不为零这一隐含条件.8.设a,b是方程x2+x﹣2016=0的两个实数根,则a2+2a+b的值为()A.2014 B.2017 C.2015 D.2016【考点】根与系数的关系;一元二次方程的解.【专题】压轴题.【分析】由于a2+2a+b=(a2+a)+(a+b),故根据方程的解的意义,求得(a2+a)的值,由根与系数的关系得到(a+b)的值,即可求解.【解答】解:∵a是方程x2+x﹣2016=0的根,∴a2+a=2016;由根与系数的关系得:a+b=﹣1,∴a2+2a+b=(a2+a)+(a+b)=2016﹣1=2015.故选:C.【点评】本题综合考查了一元二次方程的解的定义及根与系数的关系,要正确解答本题还要能对代数式进行恒等变形.9.方程(x﹣3)(x+1)=x﹣3的解是()A.x=0 B.x=3 C.x=3或x=﹣1 D.x=3或x=0【考点】解一元二次方程﹣因式分解法.【专题】计算题;压轴题.【分析】此题可以采用因式分解法,此题的公因式为(x﹣3),提公因式,降次即可求得.【解答】解:∵(x﹣3)(x+1)=x﹣3∴(x﹣3)(x+1)﹣(x﹣3)=0∴(x﹣3)(x+1﹣1)=0∴x1=0,x2=3.故选D.【点评】此题考查了学生的计算能力,注意把x﹣3当作一个整体,直接提公因式较简单,选择简单正确的解题方法可以达到事半功倍的效果.10.方程x2﹣9x+18=0的两个根是等腰三角形的底和腰,则这个三角形的周长为()A.12 B.12或15 C.15 D.不能确定【考点】等腰三角形的性质;解一元二次方程﹣因式分解法;三角形三边关系.【专题】分类讨论.【分析】先解一元二次方程,由于未说明两根哪个是腰哪个是底,故需分情况讨论,从而得到其周长.【解答】解:解方程x2﹣9x+18=0,得x1=6,x2=3∵当底为6,腰为3时,由于3+3=6,不符合三角形三边关系∴等腰三角形的腰为6,底为3∴周长为6+6+3=15故选C.【点评】此题是一元二次方程的解结合几何图形的性质的应用,注意分类讨论.11.定义:如果一元二次方程ax2+bx+c=0(a≠0)满足a+b+c=0,那么我们称这个方程为“凤凰”方程.已知ax2+bx+c=0(a≠0)是“凤凰”方程,且有两个相等的实数根,则下列结论正确的是()A.a=c B.a=b C.b=c D.a=b=c【考点】根的判别式.【专题】压轴题;新定义.【分析】因为方程有两个相等的实数根,所以根的判别式△=b2﹣4ac=0,又a+b+c=0,即b=﹣a﹣c,代入b2﹣4ac=0得(﹣a﹣c)2﹣4ac=0,化简即可得到a与c的关系.【解答】解:∵一元二次方程ax2+bx+c=0(a≠0)有两个相等的实数根,∴△=b2﹣4ac=0,又a+b+c=0,即b=﹣a﹣c,代入b2﹣4ac=0得(﹣a﹣c)2﹣4ac=0,即(a+c)2﹣4ac=a2+2ac+c2﹣4ac=a2﹣2ac+c2=(a﹣c)2=0,∴a=c.故选A【点评】一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.12.如图,已知双曲线y=(k<0)经过直角三角形OAB斜边OA的中点D,且与直角边AB相交于点C.若点A的坐标为(﹣6,4),则△AOC的面积为()A.12 B.9 C.6 D.4【考点】反比例函数系数k的几何意义.【专题】压轴题.【分析】△AOC的面积=△AOB的面积﹣△BOC的面积,由点A的坐标为(﹣6,4),根据三角形的面积公式,可知△AOB的面积=12,由反比例函数的比例系数k的几何意义,可知△BOC的面积=|k|.只需根据OA的中点D的坐标,求出k值即可.【解答】解:∵OA的中点是D,点A的坐标为(﹣6,4),∴D(﹣3,2),∵双曲线y=经过点D,∴k=﹣3×2=﹣6,∴△BOC的面积=|k|=3.又∵△AOB的面积=×6×4=12,∴△AOC的面积=△AOB的面积﹣△BOC的面积=12﹣3=9.故选B.【点评】本题考查了一条线段中点坐标的求法及反比例函数的比例系数k与其图象上的点与原点所连的线段、坐标轴、向坐标轴作垂线所围成的直角三角形面积S的关系,即S=|k|.二、填空题13.化简=0.【考点】二次根式有意义的条件.【分析】由1﹣x≥0,x﹣1≥0,得出x﹣1=0,从而得出结果.【解答】解:∵1﹣x≥0,x﹣1≥0,∴x﹣1=0,∴=0.【点评】二次根式的意义和性质.概念:式子(a≥0)叫二次根式.性质:二次根式中的被开方数必须是非负数,否则二次根式无意义.14.计算的结果是4.【考点】算术平方根.【专题】常规题型.【分析】根据算术平方根的定义解答即可.【解答】解:==4.故答案为:4.【点评】此题主要考查了算术平方根的定义,本题易错点在于符号的处理.15.计算: +=3.【考点】二次根式的加减法.【分析】本题考查了二次根式的加减运算,应先化为最简二次根式,再合并同类二次根式.【解答】解:原式=2+=3.【点评】同类二次根式是指几个二次根式化简成最简二次根式后,被开方数相同的二次根式.二次根式的加减运算,先化为最简二次根式,再将被开方数相同的二次根式进行合并.合并同类二次根式的实质是合并同类二次根式的系数,根指数与被开方数不变.16.如果方程ax2+2x+1=0有两个不等实根,则实数a的取值范围是a<1且a≠0.【考点】根的判别式.【分析】在与一元二次方程有关的求值问题中,必须满足下列条件:(1)二次项系数不为零;(2)在有不相等的实数根下必须满足△=b2﹣4ac>0.【解答】解:根据题意列出不等式组,解之得a<1且a≠0.故答案为:a<1且a≠0.【点评】本题考查了一元二次方程根的判别式的应用.切记不要忽略一元二次方程二次项系数不为零这一隐含条件.17.设x1,x2是一元二次方程x2﹣3x﹣2=0的两个实数根,则x12+3x1x2+x22的值为7.【考点】根与系数的关系.【分析】根据根与系数的关系,可求出x1+x2以及x1x2的值,然后根据x12+3x1x2+x22=(x1+x2)2+x1x2进一步代值求解.【解答】解:由题意,得:x1+x2=3,x1x2=﹣2;原式=(x1+x2)2+x1x2=9﹣2=7.故答案为:7.【点评】熟记一元二次方程根与系数的关系是解答此类题的关键.18.已知x=1是一元二次方程x2+mx+n=0的一个根,则m2+2mn+n2的值为1.【考点】一元二次方程的解;完全平方公式.【分析】首先把x=1代入一元二次方程x2+mx+n=0中得到m+n+1=0,然后把m2+2mn+n2利用完全平方公式分解因式即可求出结果.【解答】解:∵x=1是一元二次方程x2+mx+n=0的一个根,∴m+n+1=0,∴m+n=﹣1,∴m2+2mn+n2=(m+n)2=(﹣1)2=1.故答案为:1.【点评】此题主要考查了方程的解的定义,利用方程的解和完全平方公式即可解决问题.19.请你写出一个有一根为1的一元二次方程:x2=1.(答案不唯一)【考点】一元二次方程的解.【专题】开放型.【分析】可以用因式分解法写出原始方程,然后化为一般形式即可.【解答】解:根据题意x=1得方程式x2=1.故本题答案不唯一,如x2=1等.【点评】本题属于开放性试题,主要考查一元二次方程的概念的理解与掌握.可以用因式分解法写出原始方程,然后化为一般形式即可,如(y﹣1)(y+2)=0,后化为一般形式为y2+y﹣2=0.20.关于x的一元二次方程x2﹣mx+2m﹣1=0的两个实数根分别是x1、x2,且x12+x22=7,则(x1﹣x2)2的值是13.【考点】根与系数的关系;根的判别式.【分析】首先根据根与系数的关系,得出x1+x2和x1x2的值,然后根据x12+x22的值求出m(需注意m的值应符合此方程的根的判别式);然后再代值求解.【解答】解:由题意,得:x1+x2=m,x1x2=2m﹣1;则:(x1+x2)2=x12+x22+2x1x2,即m2=7+2(2m﹣1),解得m=﹣1,m=5;当m=5时,△=m2﹣4(2m﹣1)=25﹣4×9<0,不合题意;故m=﹣1,x1+x2=﹣1,x1x2=﹣3;∴(x1﹣x2)2=(x1+x2)2﹣4x1x2=1+12=13.【点评】此题用到的知识点有:根与系数的关系、根的判别式、完全平方公式等知识.本题需注意的是在求出m值后,一定要用根的判别式来判断所求的m是否符合题意,以免造成多解、错解.21.若把代数式x2﹣2x﹣3化为(x﹣m)2+k的形式,其中m,k为常数,则m+k=﹣3.【考点】完全平方公式.【专题】配方法.【分析】根据完全平方公式的结构,按照要求x2﹣2x﹣3=x2﹣2x+1﹣4=(x﹣1)2﹣4,可知m=1.k=﹣4,则m+k=﹣3.【解答】解:∵x2﹣2x﹣3=x2﹣2x+1﹣4=(x﹣1)2﹣4,∴m=1,k=﹣4,∴m+k=﹣3.故答案为:﹣3.【点评】本题主要考查完全平方公式的变形,熟记公式结构是解题的关键.完全平方公式:(a±b)2=a2±2ab+b2.22.将根号外面的因式移进根号后等于.【考点】二次根式的性质与化简.【专题】计算题.【分析】先根据二次根式定义得到a<0,然后根据二次根式的性质把﹣a转化为,再利用乘法公式运算即可.【解答】解:∵﹣≥0,∴a<0,∴原式=﹣(﹣a)•=﹣=﹣.故答案为﹣.【点评】本题考查了二次根式的性质与化简:(a≥0)为二次根式;=|a|;=•(a≥0,b≥0)等.23.若正方形OABC的顶点B和正方形ADEF的顶点E都在函数的图象上.若正方形OABC的面积为1,则k的值为1;点E的坐标为(+,﹣).【考点】反比例函数系数k的几何意义.【分析】(1)根据正方形OABC和正方形AEDF各有一个顶点在一反比例函数图象上,且正方形OABC的边长为1,得出B点坐标,即可得出反比例函数的解析式;(2)由于D点在反比例函数图象上,用a和正方形OABC的边长表示出来E点坐标,代入y=(x>0)求得a的值,即可得出D点坐标.【解答】解:∵正方形OABC和正方形AEDF各有一个顶点在一反比例函数图象上,且正方形OABC的边长为1.∴B点坐标为:(1,1),设反比例函数的解析式为y=;∴xy=k=1,设正方形ADEF的边长为a,则E(1+a,a),代入反比例函数y=(x>0)得:1=(1+a)a,又a>0,解得:a=﹣.∴点E的坐标为:( +,﹣).【点评】本题考查了反比例函数与正方形性质结合的综合应用,考查了数形结合的思想,利用xy=k得出是解题关键.三、解答题24.计算:.【考点】二次根式的混合运算;负整数指数幂.【分析】本题涉及分数指数幂、负整数指数幂、乘方、二次根式化简四个考点.在计算时,需要针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.【解答】原式=3+4﹣2﹣2+=5﹣2+2﹣2=3.【点评】本题考查实数的综合运算能力,是各地中考题中常见的计算题型.解决此类题目的关键是理解分数指数幂的意义,熟练掌握负整数指数幂、零指数幂、二次根式、绝对值等考点的运算.25.用配方法解方程:2x2+1=3x.【考点】解一元二次方程﹣配方法.【专题】计算题.【分析】首先把方程的二次项系数变成1,然后等式的两边同时加上一次项系数的一半,则方程的左边就是完全平方式,右边是常数的形式,再利用直接开平方的方法即可求解.【解答】解:移项,得2x2﹣3x=﹣1,二次项系数化为1,得,配方,,由此可得,∴x1=1,.【点评】配方法是一种重要的数学方法,是中考的一个重要考点,我们应该熟练掌握.本题考查用配方法解一元二次方程,应先移项,整理成一元二次方程的一般形式,即ax2+bx+c=0(a≠0)的形式,然后再配方求解.26.已知关于x的一元二次方程x2﹣(2k+1)x+4k﹣3=0.(1)求证:无论k取什么实数值,该方程总有两个不相等的实数根;(2)当Rt△ABC的斜边长a=,且两条直角边b和c恰好是这个方程的两个根时,求△ABC的周长.【考点】根与系数的关系;根的判别式;勾股定理.【专题】计算题.【分析】(1)根据△>0即可证明无论k取什么实数值,该方程总有两个不相等的实数根;(2)根据勾股定理及根与系数的关系列出关于b,c的方程,解出b,c即可得出答案.【解答】解:(1)关于x的一元二次方程x2﹣(2k+1)x+4k﹣3=0,△=(2k+1)2﹣4(4k﹣3)=4k2﹣12k+13=4+4>0恒成立,故无论k取什么实数值,该方程总有两个不相等的实数根;(2)根据勾股定理得:b2+c2=a2=31①因为两条直角边b和c恰好是这个方程的两个根,则b+c=2k+1②,bc=4k﹣3③,因为(b+c)2﹣2bc=b2+c2=31,即(2k+1)2﹣2(4k﹣3)=31,整理得:4k2+4k+1﹣8k+6﹣31=0,即k2﹣k﹣6=0,解得:k1=3,k2=﹣2,∵b+c=2k+1>0即k>﹣.bc=4k﹣3>0即k>,∴k2=﹣2(舍去),则b+c=2k+1=7,又因为a=,则△ABC的周长=a+b+c=+7.【点评】本题考查了根与系数的关系和根的判别式及勾股定理,难度较大,关键是巧妙运用△>0恒成立证明(1),再根据勾股定理和根与系数的关系列出方程组进行解答.27.已知一元二次方程x2﹣2x+m=0.(1)若方程有两个实数根,求m的范围;(2)若方程的两个实数根为x1,x2,且x1+3x2=3,求m的值.【考点】根与系数的关系;根的判别式.【专题】压轴题.【分析】(1)一元二次方程x2﹣2x+m=0有两个实数根,△≥0,把系数代入可求m的范围;(2)利用两根关系,已知x1+x2=2结合x1+3x2=3,先求x1、x2,再求m.【解答】解:(1)∵方程x2﹣2x+m=0有两个实数根,∴△=(﹣2)2﹣4m≥0,解得m≤1;(2)由两根关系可知,x1+x2=2,x1•x2=m,解方程组,解得,∴m=x1•x2=.【点评】本题考查了一元二次方程根的判别式,两根关系的运用,要求熟练掌握.28.已知关于x的一元二次方程x2=2(1﹣m)x﹣m2的两实数根为x1,x2(1)求m的取值范围;(2)设y=x1+x2,当y取得最小值时,求相应m的值,并求出最小值.【考点】根与系数的关系;根的判别式;一次函数的性质.【专题】综合题.【分析】(1)若一元二次方程有两不等根,则根的判别式△=b2﹣4ac≥0,建立关于m 的不等式,可求出m的取值范围;(2)根据根与系数的关系可得出x1+x2的表达式,进而可得出y、m的函数关系式,根据函数的性质及(1)题得出的自变量的取值范围,即可求出y的最小值及对应的m值.【解答】解:(1)将原方程整理为x2+2(m﹣1)x+m2=0;∵原方程有两个实数根,∴△=[2(m﹣1)]2﹣4m2=﹣8m+4≥0,得m≤;(2)∵x1,x2为一元二次方程x2=2(1﹣m)x﹣m2,即x2+2(m﹣1)x+m2=0的两根,∴y=x1+x2=﹣2m+2,且m≤;因而y随m的增大而减小,故当m=时,取得最小值1.【点评】此题是根的判别式、根与系数的关系与一次函数的结合题.牢记一次函数的性质是解答(2)题的关键.。
中考数学一轮复习数学二次根式的专项培优练习题(及解析

一、选择题1.5﹣x ,则x 的取值范围是( ) A .为任意实数 B .0≤x≤5 C .x≥5 D .x≤5 2.下列式子中,是二次根式的是( )A B CD .x3.下列各式计算正确的是( )A .6232126()b a b a b a---⋅=B .(3xy )2÷(xy )=3xyC =D .2x •3x 5=6x 64.有意义,则x 的取值范围是( ) A .x≠2B .x >-2C .x <-2D .x≠-25.已知226a b ab +=,且a>b>0,则a ba b+-的值为( )A B C .2D .±26. )A .30 B .C .30D .7.化简二次根式 )A B C D 8.若化简1682+-x x -1x -的结果为5-2x ,则x 的取值范围是( ) A .为任意实数 B .1≤x≤4C .x≥1D .x≤49.下列各式计算正确的是( )A B .C .D10.230x -=成立的x 的值为( )A .-2B .3C .-2或3D .以上都不对二、填空题11.使函数212y x x=+有意义的自变量x 的取值范围为_____________12.已知112a b +=,求535a ab b a ab b++=-+_____.13.化简并计算:...+=________.(结果中分母不含根式)14.2==________.15.甲容器中装有浓度为a ,乙容器中装有浓度为b ,两个容器都倒出m kg ,把甲容器倒出的果汁混入乙容器,把乙容器倒出的果汁混入甲容器,混合后,两容器内的果汁浓度相同,则m 的值为_________.16.已知函数1x f xx,那么1f _____.17.10=,则222516x y +=______.18.若实数x ,y ,m 满足等式()223x y m +-=m+4的算术平方根为________. 19.若实数a =,则代数式244a a -+的值为___.20. (a ≥0)的结果是_________.三、解答题21.先阅读材料,再回答问题:因为)111=1=;因为1=,所以=1== (1= ,= ; (2⋅⋅⋅+的值.【答案】(12)9 【分析】(1)仿照例子,由1+=的值;由1+=的值;(2)根据(1)中的规律可将每个二次根式分母有理化,可转化为实数的加减法运算,再寻求规律可得答案.【详解】 解:(1)因为1-=;因为1=1(2⋅⋅⋅+1=+⋅⋅⋅1=1019=-=.【点睛】本题考查了分母有理化,分子分母都乘以分母这两个数的差进行分母有理化是解题关键.22.阅读材料,回答问题:两个含有二次根式的代数式相乘,如果它们的积不含有二次根式,我们就说这两个代数式a =,)111=11互为有理化因式.(1)1的有理化因式是 ;(2)这样,化简一个分母含有二次根式的式子时,采用分子、分母同乘以分母的有理化因式的方法就可以了,例如:==25384532++====-进行分母有理化. (3)利用所需知识判断:若a =,2b =a b,的关系是 . (4)直接写结果:)1=.【答案】(1)1;(2)7-;(3)互为相反数;(4)2019 【分析】(1)根据互为有理化因式的定义利用平方差公式即可得出;(2)原式分子分母同时乘以分母的有理化因式(2,化简即可;(3)将a=(4)化简第一个括号内的式子,里面的每一项进行分母有理化,然后利用平方差公式计算即可.【详解】解:(1)∵()()1111=,∴1的有理化因式是1;(22243743--==--(3)∵2a===,2b=-,∴a和b互为相反数;(4))1 ++⨯=)11⨯=)11=20201-=2019,故原式的值为2019.【点睛】本题考查了互为有理化因式的定义及分母有理化的方法,并考查了利用分母有理化进行计算及探究相关式子的规律,本题属于中档题.23.已知m,n满足m4n=3+.【答案】12015【解析】【分析】由43m n+=2﹣2)﹣3=0,将,代入计算即可.【详解】解:∵4m n+=3,)22﹣2)﹣3=0,)2﹣23=0,+13)=0,=﹣13,∴原式=3-23+2012=12015.【点睛】本题主要考查二次根式的混合运算,解题的关键是熟练掌握完全平方公式的运用及二次根式性质.24.小明在解决问题:已知2a2﹣8a+1的值,他是这样分析与解的:∵=2∴a﹣2=∴(a﹣2)2=3,a2﹣4a+4=3∴a2﹣4a=﹣1∴2a2﹣8a+1=2(a2﹣4a)+1=2×(﹣1)+1=﹣1请你根据小明的分析过程,解决如下问题:(1(2)若,求4a2﹣8a+1的值.【答案】(1)9;(2)5.【解析】试题分析:(1)此式必须在把分母有理化后才能实现化简,即各分式分子分母同乘以一个因式,使得1===.(2)先对a1,若就接着代入求解,计算量偏大.模仿小明做法,可先计算2(1)a-的值,就能较为简单地算出结果;也可对这个二次三项式进行配方,再代入求值.后两种方法都比直接代入计算量小很多.解:(1)原式=1)+++⋯(2)∵1a===,解法一:∵22(1)11)2a -=-= , ∴2212a a -+= ,即221a a -=∴原式=24(2)14115a a -+=⨯+= 解法二∴ 原式=24(211)1a a -+-+24(1)3a =--211)3=--4235=⨯-=点睛:(1得22=-=-a b ,去掉根号,实现分母有理化.(2)当已知量为根式时,求这类二次三项式的值,直接代入求值,计算量偏大,若能巧妙利用完全平方公式或者配方法,计算要简便得多.25.先化简,再求值:a ,其中【答案】2a-1,【分析】先根据二次根式的性质进行化简,再代入求值即可. 【详解】解:1a =-∴原式=1a a --=21a -当1a =-∴原式=(211-=1-【点睛】此题主要考查化简求值,正确理解二次根式的性质是解题关键.26.先化简,再求值:2443(1)11m m m m m -+÷----,其中2m =.【答案】22mm-+ 1. 【解析】分析:先根据分式的混合运算顺序和运算法则化简原式,再将m 的值代入计算可得.详解:原式=221m m --()÷(31m -﹣211m m --)=221m m --()÷241m m --=221m m --()•122m m m --+-()() =﹣22m m -+=22m m-+当m ﹣2时,原式===﹣1+=1.点睛:本题主要考查分式的化简求值,解题的关键是掌握分式的混合运算顺序和运算法则.27.先化简,再求值:221()a ba b a b b a-÷-+-,其中a =2b =- 【答案】1a b -+,12-. 【分析】先把分式进行化简,得到最简分式,然后把a 、b 的值代入计算,即可得到答案. 【详解】 解:原式1()()a b a b aa b a b b a b b--=⨯-⨯+-+()()a b a b a b b a b -=--++()b bb a =-+1a b=-+,当a =2b =原式12==-.【点睛】本题考查了二次根式的混合运算,分式的化简求值,分式的混合运算,解题的关键是熟练掌握运算法则进行解题.28.计算:(1)-(2)【答案】(1)21【分析】(1)先把二次根式化为最简二次根式,然后合并即可;(2)先利用二次根式的乘除法则运算,再合并即可.【详解】解:(1)原式==(2)原式3+21==.【点睛】本题考查二次根式的混合运算:在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质.【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【分析】根据二次根式的性质得出5-x≥0,求出即可.【详解】==-=-,|5|5x x∴5-x≥0,解得:x≤5,故选D.【点睛】本题考查了二次根式的性质的应用,注意:当a≥0,当a≤0.2.A解析:A【分析】a≥0)的式子叫做二次根式,据此可得结论.【详解】解:A 是二次根式,符合题意; B是三次根式,不合题意;C 、当x <0D 、x 属于整式,不合题意; 故选:A . 【点睛】此题考查二次根式的定义,关键是根据二次根式的定义理解被开方数是非负数.3.D解析:D 【分析】依据单项式乘以单项式、单项式除以单项式以及二次根式的加法法则对各项分别计算出结果,再进行判断即可得到结果. 【详解】A. 2321526()b a b a b a---⋅=,故选项A 错误;B. (3xy )2÷(xy )=9xy ,故选项B 错误;C 错误; D. 2x •3x 5=6x 6,正确. 故选:D . 【点睛】此题考查了整式的混合运算,熟练掌握运算法则是解本题的关键.4.B解析:B 【分析】根据二次根式的被开方数是非负数,且分母不能为零,可得答案. 【详解】有意义,得: 20x +>,解得:2x >-. 故选:B . 【点睛】本题考查了二次根式有意义的条件,利用被开方数是非负数,分母不能为零得出不等式是解题关键.5.A解析:A【解析】【分析】已知a 2+b 2=6ab ,变形可得(a+b )2=8ab ,(a-b )2=4ab ,可以得出(a+b )和(a-b )的值,即可得出答案. 【详解】∵a 2+b 2=6ab , ∴(a+b )2=8ab ,(a-b )2=4ab , ∵a >b >0,∴∴a b a b +-= 故选A.【点睛】本题考查了分式的化简求值问题,观察式子可以得出应该运用完全平方式来求解,要注意a 、b 的大小关系以及本身的正负关系.6.C解析:C 【解析】故选C .点睛:此题主要考查了二次根式的化简,解题关键是利用分数的通分求和,然后把其分母有理化即可求解,比较简单,但是易出错,是常考题.7.B解析:B 【分析】首先根据二次根式有意义的条件求得a 、b 的取值范围,然后再利用二次根式的性质进行化简即可 【详解】2202a a aa a +-∴+<∴<-a a ∴==•=-故选B【点睛】本题考查了二次根式的性质及化简,解题的关键是根据二次根式有意义的条件判断字母的取值范围.本题需要重点注意字母和式子的符号.8.B解析:B【解析】【分析】先把多项式化简为|x-4|-|1-x|,然后根据x的取值范围分别讨论,求出符合题意的x的值即可.【详解】-=|x-4|-|1-x|,解:原式1x当x≤1时,此时1-x≥0,x-4<0,∴(4-x)-(1-x)=3,不符合题意,当1≤x≤4时,此时1-x≤0,x-4≤0,∴(4-x)-(x-1)=5-2x,符合题意,当x≥4时,此时x-4≥0,1-x<0,∴(x-4)-(x-1)=-3,不符合题意,∴x的取值范围为:1≤x≤4故选B.【点睛】本题主要考查绝对值及二次根式的化简,要注意正负号的变化,分类讨论.9.D解析:D【解析】不是同类二次根式,因此不能计算,故不正确.根据同类二次根式,可知,故不正确;根据二次根式的性质,可知,故不正确;==,故正确.3故选D.10.B解析:B【分析】根据二次根式有意义的条件以及二次根式的乘法进行分析即可得答案.【详解】-=,x30=,=0∴x=-2或x=3,又∵2030x x +≥⎧⎨-≥⎩, ∴x=3,故选B.【点睛】本题考查了二次根式的乘法以及二次根式有意义的条件,熟练掌握相关知识是解题的关键.二、填空题11.【分析】利用二次根式有意义的条件和分式中分母不为零,即可完成.【详解】根据题意,解得:①当时,解得:即:①当时,解得:即:故自变量x 的取值范围为【点睛】 解析:11,022x x -≤≤≠ 【分析】利用二次根式有意义的条件和分式中分母不为零,即可完成.【详解】根据题意,220x x +≠解得:0,2x x ≠≠-12||0x -≥①当0x >时,120x -≥ 解得:12x ≤ 即:102x <≤①当0x <时,120x +≥解得:21x ≥-即:102x -≤< 故自变量x 的取值范围为11,022x x -≤≤≠ 【点睛】 本题考查二次根式以及分式有意义的条件,熟练掌握分类讨论和解不等式组是解题关键. 12.13【解析】【分析】由得a+b=2ab ,然后再变形,最后代入求解即可.【详解】解:∵∴a+b=2ab∴故答案为13.【点睛】本题考查了已知等式求代数式的值,解答的关键是通过变形找解析:13【解析】【分析】 由112a b +=得a+b=2ab ,然后再变形535a ab b a ab b++-+,最后代入求解即可. 【详解】 解:∵112a b+= ∴a+b=2ab ∴()5353510ab 3===132ab a b ab a ab b ab a ab b a b ab ab+++++-++-- 故答案为13.【点睛】 本题考查了已知等式求代数式的值,解答的关键是通过变形找到等式和代数式的联系. 13.【分析】根据=,将原式进行拆分,然后合并可得出答案.【详解】解:原式==.故答案为.【点睛】此题考查了二次根式的混合运算,解答本题的关键是将原式进行拆分,有一定的技巧性,注意仔细观【分析】-,将原式进行拆分,然后合并可得出答案.【详解】解:原式===【点睛】此题考查了二次根式的混合运算,解答本题的关键是将原式进行拆分,有一定的技巧性,注意仔细观察.14.【解析】【分析】用换元法代替两个带根号的式子,得出m、n的关系式,解方程组求m、n的值即可.【详解】设m=,n=,那么m−n=2①,m2+n2=()2+()2=34②.由①得,m=2解析:13【解析】【分析】用换元法代替两个带根号的式子,得出m、n的关系式,解方程组求m、n的值即可.【详解】设m n那么m−n =2①,m 2+n 2=2+2=34②.由①得,m =2+n ③,将③代入②得:n 2+2n−15=0,解得:n =−5(舍去)或n =3,因此可得出,m =5,n =3(m≥0,n≥0).n +2m =13.【点睛】此题考查二次根式的减法,本题通过观察,根号里面未知数的系数为相反数,可通过换元法求解.15.【分析】分别求出甲,乙容器中原溶液中纯果汁的含量,再求出mkg 溶液中纯果汁的含量,最后利用混合后果汁的浓度相等列出关系式,求出m 即可.【详解】解:根据题意,甲容器中纯果汁含量为akg ,乙容器【分析】分别求出甲,乙容器中原溶液中纯果汁的含量,再求出mkg 溶液中纯果汁的含量,最后利=,求出m 即可.【详解】, 甲容器倒出mkg 果汁中含有纯果汁makg ,乙容器倒出mkg 果汁中含有纯果汁mbkg ,,=,整理得,-6b =5ma -5mb ,∴(a -b )=5m (a -b ),∴m =5.故答案为:5【点睛】本题考查二次根式的应用,能够正确理解题意,化简二次根式是解题的关键.16.【分析】根据题意可知,代入原函数即可解答.【详解】因为函数,所以当时,.【点睛】本题主要考查了代数式求值问题,熟练掌握相关知识点以及二次根式的运算是解题关键.解析:2+【分析】根据题意可知1x=,代入原函数即可解答.【详解】因为函数1xf xx,所以当1x=时,211()2221f x.【点睛】本题主要考查了代数式求值问题,熟练掌握相关知识点以及二次根式的运算是解题关键. 17.【解析】【分析】把带根号的一项移项后平方,整理后再平方,然后整理即可得解.【详解】移项得,两边平方得,整理得,两边平方得,所以,两边除以400得,1.故答案为1.【点睛】解析:【解析】把带根号的一项移项后平方,整理后再平方,然后整理即可得解.【详解】10=-两边平方得,()()22223=1003x y x y ++--+整理得,253x =- 两边平方得,22225150225256251509x x y x x -++=-+ 所以,221625400x y +=两边除以400得,222516x y +=1. 故答案为1.【点睛】本题考查了非负数的性质,此类题目难点在于把两个算术平方根通过移项分到等式左右两边.18.3【解析】【分析】先根据二次根式有意义的条件得出x+y 的值,再根据非负数的性质列出关于x ,y ,m 的方程组,求出m 的值,进而可得出结论.【详解】依题意得:,解得:x=1,y=1,m =5,∴3解析:3【解析】【分析】先根据二次根式有意义的条件得出x +y 的值,再根据非负数的性质列出关于x ,y ,m 的方程组,求出m 的值,进而可得出结论.【详解】依题意得:35302302x y m x y m x y +--=⎧⎪+-=⎨⎪+=⎩,解得:x =1,y =1,m =5,∴==3.故答案为3.【点睛】 本题考查了二次根式有意义得条件及非负数的性质,熟知二次根式具有非负性是解答此题的关键.19.3∵ =,∴=(a-2)2==3,故答案为3.解析:3【解析】∵a =∴244a a -+=(a-2)2=()222+=3, 故答案为3.20.4a【解析】【分析】根据二次根式乘法法则进行计算即可得.【详解】===4a ,故答案为4a.【点睛】本题考查了二次根式的乘法,熟练掌握二次根式乘法法则是解题的关键.解析:4a【解析】【分析】根据二次根式乘法法则进行计算即可得.)0a ≥===4a ,故答案为4a.【点睛】本题考查了二次根式的乘法,熟练掌握二次根式乘法法则是解题的关键.三、解答题21.无22.无23.无24.无25.无26.无27.无28.无。
2022年中考数学一轮复习:二次根式 专项练习题中考试题汇编(Word版,含答案)

2022年中考数学一轮复习:二次根式 专项练习题中考试题汇编一、选择题1. (2021•甘肃省定西市)下列运算正确的是( ) A .+=3B .4﹣=4C .×=D .÷=42. (2021•湖南省常德市)计算:5151122⎛⎫++-⋅=⎪⎝⎭( ) A. 0B. 1C. D.512- 3. (2021•湖南省衡阳市)下列计算正确的是( ) A .=±4B .(﹣2)0=1C .+=D .=34. (2021•株洲市) 计算:142-⨯=( ) A. 22-B. -2C. 2-D. 225. (2021•江苏省苏州市)计算()2的结果是( )A .B .3C .2D .96. (2021•河北省)与结果相同的是( )A .3﹣2+1B .3+2﹣1C .3+2+1D .3﹣2﹣17. (2021•广东省)若22391240a a ab b -+-+=,则ab =() A .3B .92C .43D .98. (2021•广东省)设610-的整数部分为a ,小数部分为b ,则()210a b +的值是()A .6B .210C .12D .9109(2021•湖北省恩施州)从,﹣,﹣这三个实数中任选两数相乘,所有积中小于2的有( )个. A .0B .1C .2D .310. (2021•青海省)已知a ,b 是等腰三角形的两边长,且a ,b 满足+(2a +3b﹣13)2=0,则此等腰三角形的周长为( )A .8B .6或8C .7D .7或811. (2021•浙江省杭州)下列计算正确的是( ) A .=2B .=﹣2C .=±2D .=±212. (2021•浙江省湖州市)化简8的正确结果是.A .4B .±4C .22D .22±13. (2021•浙江省嘉兴市)能说明命题“若x 为无理数,则x 2也是无理数”是假命题的反例是( ) A .x =﹣1B .x =+1C .x =3D .x =﹣14. (2021•湖北省荆门市)下列运算正确的是( ) A .(﹣x 3)2=x 5 B .=xC .(﹣x )2+x =x 3D .(﹣1+x )2=x 2﹣2x +115. (2021•重庆市B )下列计算中,正确的是( ) A .5﹣2=21 B .2+=2C .×=3D .÷=316. (2021•重庆市A )1472 ) A. 7B. 62C. 72D. 2717. (2021•襄阳市)3x +x 的取值范围是( ) A. 3x ≥-B. 3x ≥C. 3x ≤-D. 3x >-18. (2021•绥化市)01x +x 的取值范围是( )A. –1x >B. 1x ≥-且0x ≠C. 1x >-且0x ≠D. 0x ≠19. (2021•湖南省娄底市)2,5,m 22(3)(7)m m --( ) A. 210m - B. 102m -C. 10D. 4二.填空题1.(2021·安徽省)埃及胡夫金字塔是古代世界建筑奇迹之一,其底面是正方形,侧面是全等51,它介于整数n 和1n +之间,则n 的值是______. 2. (2021•湖北省黄冈市)式子在实数范围内有意义,则a 的取值范围是 a ≥﹣2 .3. (2021•江苏省连云港) 计算()25-=__________.4. (2021•江苏省南京市) 计算982-的结果是________. 5. (2021•宿迁市)若代数式22x +有意义,则x 的取值范围是____________. 6. (2021•山东省聊城市)计算:121882⎛⎫-⎪⎝⎭=_______. 7. (2021•上海市)已知43x +=,则x =___________.8. (2021•湖北省随州市)2021年5月7日,《科学》杂志发布了我国成功研制出可编程超导量子计算机“祖冲之”号的相关研究成果.祖冲之是我国南北朝时期杰出的数学家,他是第一个将圆周率π精确到小数点后第七位的人,他给出π的两个分数形式:227(约率)和355113(密率).同时期数学家何承天发明的“调日法”是程序化寻求精确分数来表示数值的算法,其理论依据是:设实数x 的不足近似值和过剩近似值分别为b a 和d c (即有b dx a c<<,其中a ,b ,c ,d 为正整数),则b d a c ++是x 的更为精确的近似值.例如:已知15722507π<<,则利用一次“调日法”后可得到π的一个更为精确的近似分数为:1572217950757+=+;由于179 3.140457π≈<,再由17922577π<<,可以再次使用“调日法”得到π的更为精确的近似分数……现已知73252<<,则使用两次“调日法”可得到2的近似分数为______.9. (2021•四川省达州市)已知a ,b 满足等式a 2+6a +9+=0,则a 2021b 2020= .10. (2021•四川省眉山市)观察下列等式:x 1===1+;x 2===1+;x 3===1+;…根据以上规律,计算x 1+x 2+x 3+…+x 2020﹣2021= . 11. (2021•遂宁市)若20a a b -++=,则b a =_____. 12. (2021•天津市)计算(101)(101)+-的结果等于_____. 13. (2021•青海省)观察下列各等式: ①; ②; ③;…根据以上规律,请写出第5个等式: . 14. (2021•山东省威海市)计算624455-⨯的结果是____________________. 15. (2021•贵州省铜仁市)计算()()271832+-=______________;三、解答题1. (2021•湖北省江汉油田)计算:03(32)4(236)812-⨯--+-+2. (2021•海南省)计算:23+|﹣3|÷3﹣×5﹣1;3. (2021•内蒙古通辽市)计算:()﹣1+(π﹣3)0﹣2cos30°+|3﹣|.答案一、选择题1.(2021•甘肃省定西市)下列运算正确的是()A.+=3B.4﹣=4C.×=D.÷=4【分析】根据二次根式的加减法对A、B进行判断;根据二次根式的乘法法则对C进行判断;根据二次根式的除法法则对D进行判断.【解答】解:A、原式=2,所以A选项的计算错误;B、原式=3,所以B选项的计算错误;C、原式==,所以C选项的计算正确;D、原式===2,所以D选项的计算错误.故选:C.2.(2021•湖南省常德市)计算:5151122⎛⎫++-⋅=⎪⎝⎭()A. 0B. 1C.D. 51 2 -【答案】C【解析】【分析】先将括号内的式子进行通分计算,最后再进行乘法运算即可得到答案.【详解】解:5151122⎛⎫++-⋅⎪⎪⎝⎭=5151 22 -+⋅=51 2 -=2.故选:C.3.(2021•湖南省衡阳市)下列计算正确的是()A.=±4B.(﹣2)0=1C.+=D.=3【分析】根据相关概念和公式求解,选出正确答案即可.【解答】解:16的算术平方根为4,即,故A不符合题意;根据公式a0=1(a≠0)可得(﹣2)0=1,故B符合题意;、无法运用加法运算化简,故,故C 不符合题意;,故D 不符合题意;故选:B .4. (2021•株洲市) 计算:142-⨯=( ) A. 22- B. -2C. 2-D. 22【答案】A5. (2021•江苏省苏州市)计算()2的结果是( )A .B .3C .2D .9【分析】按照二次根式的乘法法则求解. 【解答】解:()2=4.故选:B . 6. (2021•河北省)与结果相同的是( )A .3﹣2+1B .3+2﹣1C .3+2+1D .3﹣2﹣1【分析】化简===2,再逐个选项判断即可. 【解答】解:===2,∵3﹣2+1=2,故A 符合题意; ∵3+2﹣1=4,故B 不符合题意; ∵3+2+1=6,故C 不符合题意; ∵3﹣2﹣1=0,故D 不符合题意. 故选:A .7. (2021•广东省)若22391240a a ab b -+,则ab =() A 3B .92C .43D .9【答案】B【解析】因为22391240a a ab b -+,且30a 2291240a ab b -+ 所以3=0a ()222912432320a ab b a b a b -+--=所以3a 3332a b ==33932ab ==,考查绝对值、二次根式的非负性。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《二次根式》
一、选择题(每小题3分,共30分)
1.下列二次根式是最简二次根式的为( )
A.23a B.8x2 C.y3 D.b 4
2.下列二次根式中,可与12进行合并的二次根式为( )
A. 6
B.32
C.18
D.75 3.(宁夏中考)下列计算正确的是( )
A.a+b=ab B.(-a2)2=-a4
C.(a-2)2=a2-4 D.a÷b=a
b
(a≥0,b>0)
4.化简3-3(1-3)的结果是( )
A.3 B.-3 C. 3 D.- 3
5.设m=32,n=23,则m,n的大小关系为( )
A.m>n B.m=n
C.m<n D.不能确定
6.已知x+y=3+22,x-y=3-22,则x2-y2的值为( )
A.4 2 B.6 C.1 D.3-2 2
7.如果最简二次根式3a-8与17-2a可以合并,那么使4a-2x有意义的x的取值范围是( )
A.x≤10 B.x≥10 C.x<10 D.x>10
8.甲、乙两人计算a+1-2a+a2的值,当a=5时得到不同的答案,甲的解答是a+1-2a+a2=a+(1-a)2=a+1-a=1;乙的解答是a+1-2a+a2=a+(a-1)2=a+a-1=2a-1=9.下列判断正确的是( )
A.甲、乙都对 B.甲、乙都错
C.甲对,乙错 D.甲错,乙对
9.若a3+3a2=-a a+3,则a的取值范围是( )
A.-3≤a≤0 B.a≤0
C.a<0 D.a≥-3
10.已知一个等腰三角形的两条边长a,b满足|a-23|+b-52=0,则这个三角形的周长为( )
A.43+5 2 B.23+5 2
C.23+10 2 D.43+52或23+10 2
二、填空题(每小题3分,共18分)
11.(常德中考)使代数式2x-6有意义的x的取值范围是____________.
12.(金华中考)能够说明“x2=x不成立”的x的值是____________(写出一个即可).
13.(南京中考)比较大小:5-3____________5-2
2
.(填“>”“<”或“=”)
14.若m,n都是无理数,且m+n=2,则m,n的值可以是m=____________,n=____________.(填一组即可)
15.在实数范围内分解因式:4m2-7=____________.
16.当x≤0时,化简|1-x|-x2的结果是__________.
三、解答题(共52分)
17.(8分)计算: (1)75×63÷12;
(2)a(a +2)-a 2b ÷ b.
18.(10分)先化简,再求值:2(a +3)(a -3)-a(a -6)+6,其中a =2-1.
19.(10分)(雅安中考)先化简,再求值:x 2+y 2-2xy x -y ÷(x y -y x
),其中x =2+1,y =2-1.
20.(12分)若实数a ,b ,c 满足|a -2|+b -2=c -3+3-c.
(1)求a ,b ,c ;
(2)若满足上式的a ,b 为等腰三角形的两边,求这个等腰三角形的周长.
21.(12分)在如图8×10方格内取A ,B ,C ,D 四个格点,使AB =BC =2CD =4.P 是线段BC 上的动点,连接AP ,DP.
(1)设BP =a ,CP =b ,用含字母a ,b 的代数式分别表示线段AP ,DP 的长;
(2)设k =AP +DP ,k 是否存在最小值?若存在,请求出最小值;若不存在,请说明理由.
答案:1.A 2.D 3.D 4.A 5.A 6.C 7.A 8.D 9.A 10.C
11.x≥3 12.答案不唯一,如:-1 13.< 14.1+ 2 1- 2 15.(2m +7)(2m -7) 16.1
17.(1)原式=53×63
×2=10. (2)原式=a +2a -a =2 a.
18.原式=a 2+6a.当a =2-1时,原式=42-3.
19.原式=(x -y )2x -y ÷x 2-y 2xy =(x -y )2x -y ·xy (x +y )(x -y )=xy x +y
.当x =2+1,y =2-1时,原式=(2+1)(2-1)(2+1)+(2-1)=122=24
. 20.(1)由题意,得c -3≥0,3-c≥0,即c =3.∴|a-2|+b -2=0.∴a-2=0,b -2=0,即a =2,b =2.
(2)当a 是腰长,b 是底边时,等腰三角形的周长为2+2+2=22+2;当b 是腰长,a 是底边时,等腰三角形的周长为2+2+2=2+4.综上,这个等腰三角形的周长为22+2或2+4.
21.(1)AP =a 2+16,DP =b 2+4.
(2)k 有最小值.作点A 关于BC 的对称点A′,连接A′D,AP ,交BC 于点P ,过A′作A′E⊥DC 于点E.∴AP=A′P.∴k=AP +DP =A′P+DP =A′E 2+DE 2
=16+36=52=213.。