中职升高职数学试题和答案及解析(1__5套)

合集下载

中职升学数学试卷及答案

中职升学数学试卷及答案

中职升学数学试卷一、单项选择题(本大题共12小题,每小题4分,共48分.在下列每小题中,选出一个正确答案,请在答题卡上将所选的字母标号涂黑)1.若集合{1,2}M =,{2,3}N =,则M N 等于()A .{2}B .{1}C .{1,3}D .{1,2,3}2.若函数()cos()f x x ϕ=+(πϕ≤≤0)是R 上的奇函数,则ϕ等于()A .0B .4πC .2πD .π3.函数2()f x x mx n =++的图象关于直线1x =对称的充要条件是()A.2m =-B.2m =C.2n =-D.2n =4.已知向量(1,)a x = ,(1,)b x =- .若a b ⊥,则||a 等于()A .1B C .2D .45.若复数z 满足(1)1i z i +=-,则z 等于()A .1i+B .1i-C .iD .i-6.若直线l 过点(1,2)-且与直线2310x y -+=平行,则l 的方程是()A.3280x y ++=B.2380x y -+=C.2380x y --=D.3280x y +-=7.若实数x 满足2680x x -+≤,则2log x 的取值范围是()A.[1,2]B.(1,2)C.(,1]-∞D.[2,)+∞8.设甲将一颗骰子抛掷一次,所得向上的点数为a ,则方程012=++ax x 有两个不相等实根的概率为()A .32B .31C .21D .1259.设双曲线22221x y a b-=(0,0)a b >>的虚轴长为2,焦距为,则此双曲线的渐近线方程为()A.y =B.2y x=±C.22y x =±D.12y x =±10.若偶函数()y f x =在(,1]-∞-上是增函数,则下列关系式中成立的是()A .3()2f -<(1)f -<(2)f B .(1)f -<3()2f -<(2)f C .(2)f <(1)f -<3()2f -D .(2)f <3()2f -<(1)f -11.若圆锥的表面积为S ,且它的侧面展开图是一个半圆,则这个圆锥的底面直径为()B.D.12.若过点(3,0)A 的直线l 与圆C :22(1)1x y -+=有公共点,则直线l 斜率的取值范围为()A.(B.[C.33()33-D.33[,]33-二、填空题(本大题共6小题,每小题4分,共24分)13.sin150︒=.14.已知函数()f x 11x =+,则[(1)]f f =.15.用数字0,3,5,7,9可以组成个没有重复数字的五位数(用数字作答).16.在ABC ∆中,====B A b a 2cos ,23sin ,20,30则.17.设斜率为2的直线l 过抛物线22y px =(0)p >的焦点F ,且与y 轴交于点A .若OAF ∆(O 为坐标原点)的面积为4,则此抛物线的方程为.18.若实数x 、y 满足220x y +-=,则39x y+的最小值为.三、解答题(本大题7小题,共78分)19.(6分)设关于x 的不等式||x a -<1的解集为(,3)b ,求a b +的值.20.(10分)已知函数x x x f cos )tan 31()(+=.(1)求函数()f x 的最小正周期;(2)若21)(=αf ,)3,6(ππα-∈,求αsin 的值.21.(10分)已知数列{n a }的前n 项和为n S 2n n =-,n N +∈.(1)求数列{n a }的通项公式;(2)设2na nb =1+,求数列{n b }的前n 项和n T .22.(10分)对于函数()f x ,若实数0x 满足00()f x x =,则称0x 是()f x 的一个不动点.已知2()(1)(1)f x ax b x b =+++-.(1)当1a =,2b =-时,求函数()f x 的不动点;(2)假设12a =,求证:对任意实数b ,函数()f x 恒有两个相异的不动点.23.(14分)甲、乙两位选手互不影响地投篮,命中率分别为31与p .假设乙投篮两次,均未命中的概率为254.(1)若甲投篮4次,求他恰命中3次的概率;(2)求乙投篮的命中率p ;(3)若甲、乙两位选手各投篮1次,求两人命中总次数ξ的概率分布与数学期望.24.(14分)如图,在长方体1111ABCD A B C D -中,11AD AA ==,2AB =.(1)证明:当点E 在棱AB 上移动时,11D E A D ⊥;(2)当E 为AB 的中点时,求①二面角1D EC D --的大小(用反三角函数表示);②点B 到平面1ECB 的距离.25.(14分)已知椭圆C :22221x y a b+=(0)a b >>的离心率为23,且该椭圆上的点到右焦点的最大距离为5.(1)求椭圆C 的方程;(2)设椭圆C 的左、右顶点分别为A 、B ,且过点(9,)D m 的直线DA 、DB 与此椭圆的另一个交点分别为M 、N ,其中0m ≠.求证:直线MN 必过x 轴上一定点(其坐标与m 无关).数学试题答案及评分参考一、单项选择题(本大题共12小题,每小题4分,共48分)题号123456789101112答案DCAB CBAACDB D二、填空题(本大题共6小题,每小题4分,共24分)13.1214.2315.9616.1317.28y x=18.6三、解答题(本大题共7小题,共78分)19.(本小题6分)解:由题意得11x a -<-<,………………………………………………………………1分11a x a -+<<+,…………………………………………………………1分113a b a -+=⎧⎨+=⎩,………………………………………………………………2分解得21a b =⎧⎨=⎩,………………………………………………………………1分所以3a b +=.…………………………………………………………1分20.(本小题10分)解:(1)由题意得()cos f x x x=+…………………………………………………1分2sin(6x π=+,……………………………………………………2分所以函数()f x 的最小正周期2T π=.……………………………1分(2)由1()2f α=得1sin(64πα+=,…………………………………………………………1分因为(,)63ππα∈-,所以(0,)62ππα+∈,…………………………1分15cos(64πα+=,…………………………1分从而sin sin[()]66ππαα=+-sin(cos cos()sin6666ππππαα=+-+131514242=⨯-3158-=.…………………………3分21.(本小题10分)解:(1)当1n =时,211110a S ==-=,………………………………1分当2n ≥时,1n n n a S S -=-22()[(1)(1)]n n n n =-----22n =-,……………………………………………2分综合得22n a n =-,n ∈N +………………………………………2分(2)222121n an n b -=+=+141n -=+,…………………………………1分21(1444)n n T n -=+++++ 1(14)14n n ⨯-=+-4133n n =+-.…………………………………4分22.(本小题10分)(1)解:由题意得2(21)(21)x x x +-++--=,……………………………1分即2230x x --=,解得11x =-,23x =,……………………………………2分所以函数()f x 的不动点是1-和3.……………………………1分(2)证明:由题意得21(1)(1)2x b x b x +++-=,①……………………………1分即21(1)02x bx b ++-=,……………………………1分因为判别式22(1)b b ∆=--222b b =-+……………………………2分2(1)1b =-+0>,……………………………1分所以方程①有两个相异的实根,即对任意实数b ,函数()f x 恒有两个相异的不动点.……1分23.(本小题14分)解:(1)记甲投篮4次,恰命中3次的概率为1P ,由题意得1P =334128C (3381⨯⨯=.……………………………4分(2)由题意得24(1)25p -=,……………………………3分解得35p =.……………………………………………1分(3)由题意ξ可取0,1,2,…………………………………1分154)531()311()0(=-⨯-==ξP ,15853311(531(31)1(=⨯-+-⨯==ξP ,1535331)2(=⨯==ξP .所以ξ的概率分布列为……………………………………………3分1514153215811540)(=⨯+⨯+⨯=ξE .……………………………………2分24.(本小题14分)(1)证明:连接1AD .在长方体1111ABCD A B C D -中,因为1AD AA =,所以11AA D D 为正方形,从而11AD A D ⊥.因为点E 在棱AB 上,所以1AD 就是1ED 在平面11AA D D 上的射影,从而11D E A D ⊥.……………………………………………4分ξ12P154158153(2)解:①连接DE .由题意知11AD AA ==,1AE EB ==.在Rt DAE ∆中,DE ==,在Rt EBC ∆中,EC ==,从而2224DE EC DC +==,所以EC DE ⊥,又由1D D ⊥面ABCD 知1D D EC ⊥,即1EC D D ⊥,从而EC ⊥面1D DE ,所以1EC D E ⊥,因此1D ED ∠是二面角1D EC D --的平面角.…………………2分在1Rt D DE ∆中,11tan2D D D ED DE ∠==,得1D ED ∠2arctan2=,即二面角1D EC D --的大小为arctan 2.…………………3分②设点B 到平面1ECB 的距离为h ,由11EB BC BB ===知11EC B C B E ===123342ECB S ∆==.……………………………1分因为11B ECB B ECBV V --=,所以111133ECB ECB S h S BB ∆∆⋅=⋅,即131113232h ⋅⋅=⋅⋅,所以33h =,故点B 到平面1ECB 的距离为33.……………………………4分25.(本小题14分)解:(1)设右焦点为)0,(c ,则由题意得⎪⎩⎪⎨⎧=+=532c a a c ,……………………………………………2分解得⎩⎨⎧==23c a ,所以549222=-=-=c a b ,椭圆C 的方程为15922=+y x .………………………………………2分(2)由(1)知)0,3(),0,3(B A -,直线DA 的方程为)3(12+=x my ………………………………………1分直线DB 的方程为)3(6-=x my ………………………………………1分设点M 的坐标为),(11y x ,点N 的坐标为),(22y x ,由⎪⎪⎩⎪⎪⎨⎧=++=159)3(1222y x x m y ,………………………………………1分得0451291254)1295(22222222=-+++m x m x m ,由于),0,3(-A M ),(11y x 是直线DA 与此椭圆的两个交点,所以2222211295451293m m x +-=⋅-,解得221803240mm x +-=,从而2118040)3(12m m x m y +=+=.…………2分由⎪⎪⎩⎪⎪⎨⎧=+-=159)3(622y x x m y ,………………………………………1分得04569654)695(22222222=-+-+m x m x m ,由于),0,3(B N ),(22y x 是直线DB 与此椭圆的两个交点,所以22222269545693m m x +-=⋅,解得22220603m m x +-=,从而2222020)3(6m m x m y +-=-=.…………2分若21x x =,则由222220603803240mm m m +-=+-,得402=m 此时121==x x ,从而直线MN 的方程为1=x ,它过点E )0,1(;若21x x ≠,则402≠m ,直线ME 的斜率2222401018032408040mm m m m mk ME-=-+-+=,直线NE 的斜率222240101206032020m m mm m mk NE-=-+-+-=,得NE ME k k =,所以直线MN 过点)0,1(E ,因此直线MN 必过x 轴上的点)0,1(E .………………………………2分。

中职生考试题及答案数学

中职生考试题及答案数学

中职生考试题及答案数学一、选择题(每题3分,共30分)1. 下列哪个选项是正确的?A. \(2x + 3 = 5x - 1\)B. \(3x - 2 = 2x + 3\)C. \(4x + 5 = 4x - 5\)D. \(5x + 6 = 5x + 6\)答案:D2. 计算 \((2x - 3) + (4x + 5)\) 的结果是?A. \(6x + 2\)B. \(6x - 2\)C. \(2x + 2\)D. \(2x - 2\)答案:A3. 已知 \(x = 2\),求 \(3x^2 - 4x + 1\) 的值?A. 1B. 3C. 5D. 7答案:C4. 以下哪个是二次方程?A. \(x + 2 = 0\)B. \(x^2 + 2x + 1 = 0\)C. \(x^3 - 4x + 2 = 0\)D. \(x^4 + 3x^2 + 1 = 0\)答案:B5. 计算 \(\frac{1}{x} \times \frac{x}{2}\) 的结果是?A. \(\frac{1}{2}\)B. \(\frac{2}{x}\)C. \(\frac{x}{2}\)D. \(x\)答案:A6. 已知 \(a = 3\),\(b = 2\),求 \(a^2 - b^2\) 的值?A. 5B. 7C. 9D. 13答案:A7. 计算 \(\sqrt{49}\) 的结果是?A. 7B. -7C. 49D. \(\frac{1}{7}\)答案:A8. 以下哪个是不等式?A. \(x + 3 = 5\)B. \(x - 2 < 3\)C. \(x^2 = 4\)D. \(x^3 + 2x = 0\)答案:B9. 计算 \(\frac{3}{x} \div \frac{2}{x}\) 的结果是?A. \(\frac{3}{2}\)B. \(\frac{2}{3}\)C. \(\frac{x}{3}\)D. \(\frac{x}{2}\)答案:A10. 已知 \(x = -1\),求 \(x^3 + 3x^2 + 3x + 1\) 的值?A. 0B. 1C. -1D. 2答案:A二、填空题(每题2分,共20分)1. 计算 \(2x^2 - 3x + 1\) 在 \(x = 1\) 时的值为 ________。

中职升高职数学试题及答案:套

中职升高职数学试题及答案:套

中职升高职招生考试数学试卷(一)一、单项选择题(在每小题的四个备选答案中选出一个正确的答案。

本大题共8小题,每小题3分,共24分) 1、设集合{0,5}A =,{0,3,5}B =,{4,5,6}C =,则()B C A =U I ( )A.{0,3,5}B. {0,5}C.{3}D.∅2、命题甲:a b =,命题乙:a b =, 甲是乙成立的( )A. 充分不必要条件B. 必要不充分条件C. 充分必要条件 D 既不充分又不必要条件3、下列各函数中偶函数为( ) A. ()2f x x = B.2()f x x =- C.()2x f x = D. 2()log f x x =4、若1cos 2α=,(0,)2πα∈,则sin α的值为( )C.25、已知等数比列{}n a ,首项12a =,公比3q =,则前4项和4s 等于( )A. 80B.81C. 26D. -266、下列向量中与向量(1,2)a =r垂直的是( )A. (1,2)b =rB.(1,2)b =-rC. (2,1)b =rD. (2,1)b =-r7、直线10x y -+=的倾斜角的度数是( )A. 60︒B. 30︒C.45︒D.135︒8、如果直线a 和直线b 没有公共点,那么a 与b ( )A. 共面B.平行C. 是异面直线 D 可能平行,也可能是异面直线二、填空题(本大题共4小题,每小题4分,共16分)9、在ABC ∆中,已知AC=8,AB=3,60A ︒∠=则BC 的长为_________________ 10、函数22()log (56)f x x x =--的定义域为_______________________11、设椭圆的长轴是短轴长的2倍,则椭圆的离心率为______________12、91()x x+的展开式中含3x 的系数为__________________参考答案中职升高职招生考试数学试卷(一)一、单项选择题(在每小题的四个备选答案中选出一个正确的答案。

中职单招数学试题及答案

中职单招数学试题及答案

中职单招数学试题及答案一、选择题(每题3分,共15分)1. 下列哪个选项不是正整数?A. 1B. 2C. 3D. 4答案:D2. 如果一个数的平方等于16,那么这个数是:A. 4B. -4C. 4或-4D. 0答案:C3. 函数f(x) = 2x + 3在x=1时的值是:A. 5B. 6C. 7D. 8答案:A4. 圆的半径为5,其面积是:A. 25πB. 50πC. 100πD. 200π答案:B5. 以下哪个是二次方程的根?A. x = 2B. x = -2C. x = 3D. x = 1/2答案:B二、填空题(每题2分,共10分)6. 一个直角三角形的两条直角边分别为3和4,其斜边的长度是________。

答案:57. 一个数的立方根是2,那么这个数是________。

答案:88. 一个圆的直径是10,其周长是________。

答案:π0(或31.4)9. 函数y = x^2 - 4x + 4的顶点坐标是________。

答案:(2, 0)10. 一个数的相反数是-5,那么这个数是________。

答案:5三、计算题(每题5分,共20分)11. 计算下列表达式的值:(3x - 2)^2,其中x = 1。

答案:(3*1 - 2)^2 = 1^2 = 112. 解方程:2x + 5 = 11。

答案:2x = 11 - 5 => 2x = 6 => x = 313. 化简并求值:(2a + 3b)(2a - 3b),其中a = 2,b = 1。

答案:(2*2 + 3*1)(2*2 - 3*1) = (4 + 3)(4 - 3) = 7*1 = 714. 计算下列三角函数值:sin(30°)。

答案:sin(30°) = 1/2四、解答题(每题10分,共20分)15. 一个长方体的长、宽、高分别是5cm、4cm和3cm,求其体积。

答案:长方体的体积 = 长 * 宽 * 高 = 5cm * 4cm * 3cm =60cm³16. 一个等腰三角形的底边长为6cm,两腰相等,求其周长。

职高数学试题及答案

职高数学试题及答案

职高数学试题及答案一、选择题(每题5分,共20分)1. 下列哪个选项是方程x^2 - 5x + 6 = 0的解?A. x = 1B. x = 2C. x = 3D. x = 4答案:C2. 函数y = 2x + 3的斜率是多少?A. 2B. 3C. 4D. 5答案:A3. 圆的面积公式是πr^2,其中r是圆的半径。

已知圆的面积是25π,那么半径r是多少?A. 5B. 3C. 4D. 2答案:B4. 一个等差数列的前三项是2,5,8,那么第四项是多少?A. 11B. 10C. 12D. 9答案:A二、填空题(每题5分,共20分)5. 已知函数f(x) = 3x - 1,求f(2)的值。

答案:56. 一个直角三角形的两条直角边分别是3和4,那么斜边的长度是______。

答案:57. 已知一个等比数列的前三项是2,4,8,那么第四项是______。

答案:168. 一个圆的周长是2πr,已知周长是16π,那么半径r是______。

答案:8三、解答题(每题10分,共30分)9. 解方程:2x - 3 = 7。

答案:x = 510. 已知一个等差数列的前四项是a, a+d, a+2d, a+3d,求第五项。

答案:a+4d11. 求函数y = x^2 - 6x + 8在x = 3处的值。

答案:1四、证明题(每题15分,共15分)12. 证明:如果a, b, c是实数,且a^2 + b^2 = c^2,那么a, b, c 构成一个直角三角形。

答案:略(注:此处应包含完整的证明过程,由于篇幅限制,此处用“略”表示。

)五、应用题(15分)13. 一个工厂生产了100个产品,其中10个是次品。

如果随机抽取一个产品,求抽到次品的概率。

答案:0.1注意:本试题及答案仅供参考,请根据实际情况进行调整和修改。

广西中职对口升学《数学》模拟试卷及答案

广西中职对口升学《数学》模拟试卷及答案

中职升学文化素质模拟测试科目:数学1、设{}a M =,则下列写法正确的是( )A .M a = B.M a ∈ C.M a ⊆ D.a ⊂≠M 2、若a>b,则下列正确的是( )A .a-3>b+3 B.ac<bc C. b a 11< D.4a>4b3、x=2是x 2-x-2=0的( )条件.A .充分不必要 B. 必要不充分 C.充要 D.既不充分也不必要 4、函数)(x f =1-3x 是( )A. 奇函数B. 偶函数C .既是奇函数又是偶函数 D.既不是奇函数也不是偶函数 5、函数()1log 2-=x y 的定义域为( )A .()∞+,0 B .R C .()∞+,1 D .[)∞+,1 6、已知21sin -=α,⎪⎭⎫⎝⎛∈23ππα,,则=αcos ( ). A. 21 B.23- C.23 D. 21-7、已知向量),3(),2-,1(a b a ==,若a ∥b ,则a =( )A. 6B.-6 C .23 D. 23-8、一个盒子中装有黑球8个,红球12个,绿球20个,从中任取一球取到红球的 概率为( )A. 101B. 51 C .103D. 549、若2sin 3-=αy ,则函数的最大值为 ;10、过点(1,-2)且与直线0432=--y x 平行的直线方程是 ;11、圆042-422=-++y x y x 的圆心坐标是 ;12、如图,在正方体ABCD-A 1B 1C 1D 1中,直线A 1D 113、(8分)已知集合{}2>=x x A ,B={}71<<-x x ,求B A ,B A ;学校: 班级: 姓名:一、选择题(每小题5分,只有1个正确答案,共8题合计40分)(注意:请同学们把答案写到下面的表格里)二、填空题(每小题5分,4题,共20分) 三、解答题(共40分)14、(12分)有一个神秘的地方,那里有很多雕塑,每个雕塑都是由蝴蝶组成的,第一个雕塑有3只蝴蝶,第二个雕塑有5只蝴蝶,第三个雕塑有7只蝴蝶,第四个雕塑有9只蝴蝶,后面的雕塑按照这样的规律一直延伸到很远的地方,思思和乐乐看不到这排雕塑的尽头在哪里,请问第98个雕塑是由多少只蝴蝶组成?由999只蝴蝶组成的雕塑是第几个雕塑?15、(20分)某商店以每件60元的价格购进一批商品,若以单价80元销售,每月可售出300件,调查表明,单价每上涨1元,该商品每月的销量就减少10件,(1)请写出每月销售该商品的利润y (元)与单价x (元)的函数关系(销售单价不低于80元); (2)该商品单价定为多少元时,每月的利润最大?最大利润是多少?学校: 班级: 姓名:中职升学《数学》统一测试 参考答案二、填空题(4小题,每小题5分,共20分)9、1 10、0832=--y x 11、(-2,1) 12、45o 三、解答题(40分): 13、(8分){}{}71,2<<-=>=x x B x x A 解:{}{}{}72712<<=<<->=∴x x x x x x B A (4分) {}{}{}1712->=<<->=∴x x x x x x B A (4分) 说明:不写过程直接写答案扣2分。

中职对口升学数学资料-全册1-10单元测试题+答案

中职对口升学数学资料-全册1-10单元测试题+答案

中职数学基础模块上下册1-10章试题第一单元测试题一 选择题:本大题共12小题,每小题4分,共48分。

在每小题给出的四个选项中只有一项是符合题目要求,把正确选项写在表格中。

1.给出 四个结论:①{1,2,3,1}是由4个元素组成集合 ② 集合{1}表示仅由一个“1”组成集合 ③{2,4,6}与{6,4,2}是两个不同集合 ④ 集合{大于3的无理数}是一个有限集 其中正确的是 ( );A.只有③④B.只有②③④C.只有①②D.只有② 2.下列对象能组成集合的是( );A.最大的正数B.最小的整数C. 平方等于1的数D.最接近1的数3.I ={0,1,2,3,4},M ={0,1,2,3} ,N ={0,3,4},)(N C M I =( ); A.{2,4} B.{1,2} C.{0,1} D.{0,1,2,3}4.I ={a,b,c,d,e } ,M={a,b,d },N={b },则N M C I )(=( );A.{b }B.{a,d }C.{a,b,d }D.{b,c,e } 5.A ={0,3} ,B={0,3,4},C={1,2,3}则=A C B )(( ); A.{0,1,2,3,4} B.φ C.{0,3} D.{0} 6.设集合M ={-2,0,2},N ={0},则( );A.φ=NB.M N ∈C.M N ⊂D.N M ⊂7.设集合{}0),(>=xy y x A ,{},00),(>>=y x y x B 且则正确的是( ); A.B B A = B.φ=B A C.B A ⊃ D.B A ⊂ 8.设集合{}{},52,41<≤=≤<=x x N x x M 则=B A ( );A.{}51<<x xB.{}42≤≤x xC.{}42<<x x D.{}4,3,2 9.设集合{}{},6,4<=-≥=x x N x x M 则=N M ( );A.RB.{}64<≤-x xC.φD.{}64<<-x x 10.设集合{}{}==--=≥=B A x x x B x x A 则,02,22( ); A.φ B.A C.{}1- A D.B11.下列命题中的真命题共有( ); ① x =2是022=--x x 的充分条件 ② x≠2是022≠--x x 的必要条件 ③y x =是x=y 的必要条件④ x =1且y =2是0)2(12=-+-y x 的充要条件A.1个B.2个C.3个D.4个12.设{}{}共有则满足条件的集合M M ,4,3,2,12,1⊆⊂( ). A.1个 B.2个 C.3个 D.4个二 填空题:本大题共6小题,每小题4分,共24分. 把答案填在题中横线上. 1.用列举法表示集合{}=<<-∈42x Z x ; 2.用描述法表示集合{}=10,8,6,4,2 ; 3.{m,n }的真子集共3个,它们是 ;4.如果一个集合恰由5个元素组成,它的真子集中有两个分别是B ={a,b,c },C ={a,d,e },那么集合A = ;5.{}{},13),(,3),(=+==-=y x y x B y x y x A 那么=B A ; 6.042=-x 是x +2=0的 条件.三 解答题:本大题共4小题,每小题7分,共28分. 解答应写出推理、演算步骤. 1.已知集合A={}{}B A B A x x B x x ,,71,40求<<=<<.2.已知全集I=R ,集合{}A C x x A I 求,31<≤-=.3.设全集I={}{}{},2,3,1,3,4,322+-=-=-a a M C M a I 求a 值.4.设集合{}{},,02,0232A B A ax x B x x x A ==-==+-= 且求实数a 组成的集合M.第二单元测试题一 选择题:本大题共8小题,每小题6分,共48分. 在每小题给出的四个选项中只有一项是符合题目要求,把正确选项写在表格中.1.若m >4,则下列不等式中成立的是( ); A .m +4>4 B.m -4<0 C.m -2>4 D.m -7<-32.若m >0,n <0,则下列不等式中成立的是( ); A.0>m n B.m-n >0 C. mn >0 D.mn 11> 3.下列不等式中正确的是 ( );A.5a >3aB.5+a >3+aC.3+a >3-aD.aa 35> 4.不等式6≥x 的解集是( );A.[)+∞,6B.[]6,6-C.(]6,-∞-D. (][)+∞-∞-,66, 5.不等式(x -2)(x +3) >0的解集是( ); A.(-2,3) B.(-3,2) C.),2()3,(+∞--∞ D.),3()2,(+∞--∞ 6.与不等式121>-x 同解的是( );A .1-2x >1± B.-1<1-2x <1 C.2x -1>1或2x -1<-1 D.1-2x >1 7.不等式0232>++x x 的解集是( ); A.(1,2) B.),2()1,(+∞-∞ C.(-2,-1) D. +∞---∞,1()2,( ) 8.不等式155->--x 的解集是( ). A.{}20<x x B.{}2010<<-x x C.{}10->x x D. {}2010>-<x x x 或二 填空题:本大题共6小题,每小题6分,共36分。

职高试题及答案数学

职高试题及答案数学

职高试题及答案数学一、选择题(每题3分,共30分)1. 下列哪个选项是无理数?A. 0B. 1C. πD. 2答案:C2. 一个数的平方根是它本身,这个数是:A. 0B. 1C. -1D. 2答案:A3. 函数y=2x+3的斜率是:A. 2B. 3C. -2D. -3答案:A4. 一个等差数列的首项是2,公差是3,那么它的第5项是:A. 17B. 14C. 11D. 8答案:A5. 计算(3-2i)(2+i)的结果是:A. 7-4iB. 7+4iC. 5-4iD. 5+4i答案:A6. 下列哪个图形是中心对称图形?A. 圆B. 等边三角形C. 矩形D. 正五边形答案:A7. 一个圆的半径是5,那么它的周长是:A. 10πB. 15πC. 20πD. 25π答案:C8. 函数y=x^2-6x+9的顶点坐标是:A. (3, 0)B. (-3, 0)C. (3, 9)D. (-3, 9)答案:A9. 一个数列的前三项是1, 2, 4,那么它的第四项是:A. 8B. 7C. 6D. 5答案:A10. 一个三角形的三个内角分别是45°,45°,90°,那么这个三角形是:A. 锐角三角形B. 直角三角形C. 钝角三角形D. 等腰三角形答案:B二、填空题(每题4分,共20分)1. 一个等比数列的前三项是2, 6, 18,那么它的第四项是______。

答案:542. 一个二次函数的顶点是(-1, 4),且它开口向上,那么它的解析式可以是y=a(x+1)^2+4,其中a的值是______。

答案:-13. 计算(√2+1)(√2-1)的结果是______。

答案:14. 一个数的绝对值是5,那么这个数可以是______。

答案:±55. 一个圆的直径是10,那么它的面积是______。

答案:25π三、解答题(每题10分,共50分)1. 已知数列{an}是等差数列,且a1=3,d=2,求数列的第10项。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

中职升高职招生考试数学试卷(一)一、单项选择题(在每小题的四个备选答案中选出一个正确的答案。

本大题共8小题,每小题3分,共24分)1、设集合{0,5}A =,{0,3,5}B =,{4,5,6}C =,则()B C A =( )A.{0,3,5}B. {0,5}C.{3}D.∅2、命题甲:a b =,命题乙:a b =, 甲是乙成立的( )A. 充分不必要条件B. 必要不充分条件C. 充分必要条件 D 既不充分又不必要条件3、下列各函数中偶函数为( )A. ()2f x x =B.2()f x x =- C. ()2xf x = D. 2()log f x x =4、若1cos 2α=,(0,)2πα∈,则sin α的值为( )A. 25、已知等数比列{}n a ,首项12a =,公比3q =,则前4项和4s 等于( ) A. 80 C. 26 D. -266、下列向量中与向量(1,2)a =垂直的是( )A. (1,2)b =B.(1,2)b =-C. (2,1)b =D. (2,1)b =- 7、直线10x y -+=的倾斜角的度数是( ) A. 60︒B. 30︒C.45︒D.135︒8、如果直线a 和直线b 没有公共点,那么a 与b ( )A. 共面B.平行C. 是异面直线 D 可能平行,也可能是异面直线二、填空题(本大题共4小题,每小题4分,共16分)9、在ABC ∆中,已知AC=8,AB=3,60A ︒∠=则BC 的长为_________________ 10、函数22()log (56)f x x x =--的定义域为_______________________ 11、设椭圆的长轴是短轴长的2倍,则椭圆的离心率为______________12、91()x x+的展开式中含3x 的系数为__________________参考答案中职升高职招生考试数学试卷(一)一、单项选择题(在每小题的四个备选答案中选出一个正确的答案。

本大题共8小题,每小题3分,共24分)二、填空题(本大题共4小题,每小题4分,共16分) 9. 7 10. (,1)(6,)-∞-+∞,也可以写成{1x x <-或6}x >11. 212. 84中职升高职招生考试数学试卷(二)一、单项选择题(在每小题的四个备选答案中选出一个正确的答案。

本大题共8小题,每小题3分,共24分)1、设全集{1,2,3,4,5}U =,{2,3}A =,{3,4,5}B =,则()u C A B 等于( )A. {1}B. {3}C.{4,5}D.{1,3,4,5}2、设命题甲:2x >,命题乙:1x >,甲是乙成立的 ( ) A. 充分不必要条件 B. 必要不充分条件 C. 充分必要条件 D 既不充分又不必要条件3、设0a b >>,下列不等式正确的是 ( )A. 0.30.3a b> B.22a b > C. 0.30.3log log a b > D. 22log log a b < 4、若1sin 2α=,α是第二象限角,则cos α的值为 ( )A. 2-C. -125、下列直线中与260x y -+=平行的是( )A.2410x y --=B. 230x y -+=C. 230x y +-=D. 2410x y ++= 6、一条直线和两条异面直线中的一条平行,则它与另一条直线的位置关系是 ( )A. 平行B.相交C. 异面D.相交或异面 7、下列函数中,定义域为R 的函数是( )A. y =13y x =- C. 221y x x =-- D. 21y x= 8、抛物线28y x =的准线方程为( )A.2x =B. 2y =C. 2x =-D. 2y =-二、填空题(本大题共4小题,每小题4分,共16分)9、若向量(2,)a x =-,(3,2)b =且a b ⊥,则x 等于___________________10、一名教师与4名学生随机站成一排,教师恰好站在中间位置的概率为____________ 11、已知数列{}n a 为等比数列,426a a =,12a =,则3a =________________ 12、直二面角l αβ--内一点S ,S 到两个半平面的距离分别是3和4,则S 到l 的距离为_________________参考答案中职升高职招生考试数学试卷(二)一、单项选择题(在每小题的四个备选答案中选出一个正确的答案。

本大题共8小题,每小题3分,共24分)二、填空题(本大题共4小题,每小题4分,共16分)9. 310. 1 511. 1212. 5中职升高职招生考试数学试卷(三)一、单项选择题(在每小题的四个备选答案中选出一个正确的答案。

本大题共8小题,每小题3分,共24分)1、设集合{1,2}M=,集合{2,0,1,2,4}N=-,则M N=()A. {2,0,4}- B. {2,0,1,2,4}- C.{1,2} D.∅2、设命题p:2x=,命题q:(2)(3)0x x-+=,则p是q成立的()A. 充分不必要条件B. 必要不充分条件C. 充分必要条件 D既不充分又不必要条件3、点(2,1)-关于x轴的对称点的坐标为()A. (2,1)B.(2,1)-- C. (2,1)- D. (1,2)-4、向量(2,3)a=-,(5,4)b=-,则a b⋅=()A. 22B. 7C. -2D. -155、双曲线2233x y-=的渐近线方程为()A.3y x=± B.13y x=± C. y= D.3y x=±6、已知4sin5α=,且α是第二象限角,则tanα的值为()A.35- B.35C.34- D.43-7、用一个平面去截正方体,所得截面的形状不可能是()A. 六边形B. 梯形C. 圆形 D三角形8、前n个正整数的和等于()A.2n B. (1)n n + C.1(1)2n n + D. 22n 二、填空题(本大题共4小题,每小题4分,共16分)9、若()f x 为奇函数,(2)3f =-则(2)f -的值为__________________10、圆222440x y x y +-+-=的圆心坐标为_________________11、若2sin x a =成立,则a 的取值范围是_________________________ 12、 在8(21)x -展开式中各项系数和为____________________参考答案中职升高职招生考试数学试卷(三)一、单项选择题(在每小题的四个备选答案中选出一个正确的答案。

本大题共8小题,每小题3分,共24分)二、填空题(本大题共4小题,每小题4分,共16分) 9. 3 10. (1,2)-11. [2,2]-,注:也可以写成{22}x x -≤≤,22x -≤≤.12. 1中职升高职招生考试数学试卷(四)一、单项选择题(在每小题的四个备选答案中选出一个正确的答案。

本大题共8小题,每小题3分,共24分)1、设集合{4}M x x =≥-,集合{6}N x x =<,则MN 等于( )A. RB. {46}x x -≤<C. ∅D. {46}x x -<< 2、下列结论正确的是( )A. 若0,0b a <>,则11a b<B.对任意实数x x =成立。

C. 已知,x y 是实数,若220x y +=,则0x y == D.若 0,a b c <>,则ab ac >3、已知直线1:1l y kx =+,2:31l y x =-,且12l l ⊥,则斜率k 的值为 ( ) A. -3 B.13 C. 3 D. -134、不等式11x -≤的解集为 ( )A. []0,2B. (,0][2,)-∞+∞C. (,2]-∞D. [2,)+∞B DC A5、首项为5,末项为160,公比为2的等比数列共有 ( ) A. 4项 B. 6项 C. 5项 D. 7项6、已知2log 5a =,2log 3b =,则2a b +的值为 ( ) A. 5 B. 8 C. 10 D. 157、已知直线过点(1,5)和点(2,3),则该直线的斜率为( ) A. 2 B.12 C. -2 D. 12- 8、和两条异面直线都垂直的直线( )A. 有无数条B. 有两条C. 只有一条D. 不存在 二、填空题(本大题共4小题,每小题4分,共16分)9、椭圆2212516x y +=的离心率为_________________ 10、函数1()sin(3)26f x x π=+的最小值为________________________ 11、 向量(1,1)a =-,(3,4)a b +=,则b =_____________________12、已知7270127(12)x a a x a x a x -=++++,则0a =________________参考答案中职升高职招生考试数学试卷(四)一、单项选择题(在每小题的四个备选答案中选出一个正确的答案。

本大题共8小题,每小题3分,共24分)二、填空题(本大题共4小题,每小题4分,共16分)9. 35 10. 1211. (4,3) 12. 1中职升高职招生考试数学试卷(五)8小题,每小题31AB =( )A. {1,2,3}B. {3}C.{1,2,3,4}D.{1,2,4} 2、22a b >是0a b >>成立的( )A. 充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分又不必要条件B CD3、下列各函数中是偶函数且在(0,)+∞ 内是增函数的是( ) A. 2y x = B.5log y x = C. 2xy -= D. 2y x -= 4、计算sin15cos15︒︒⋅的结果正确的是( )A. 12B.14C. 22 5、要使直线l ⊥平面α,只需l 垂直于平面α内( )A.两条不同直线B.无数条直线C.不平行的两条直线D. 不垂直的两条直线6、同时抛掷两颗均匀的骰子,出现点数之和为7的概率是( ) A. 736 B.536C. 19D. 167、椭圆221259x y +=的焦距长为( ) A. 18 B. 16 C. 12 D. 88、等差数列{}n a 的首项11a =,公差3d =-,则第3项3a 的值为( ) A. 5 B. 4 C. -4 D. -5二、填空题(本大题共4小题,每小题4分,共16分)9、计算1038(1)lg1π--+的值为_________________10、函数1()2sin()24f x x π=-的最小正周期为____________11、若向量(2,5)a =与(4,)b y =共线,则y =________________ 12、如图,在正方体1111ABCD A B C D -中,直1AD 与1A B 所成的角的度数是___________________参考答案 中职升高职招生考试数学试卷(五)一、单项选择题(在每小题的四个备选答案中选出一个正确的答案。

相关文档
最新文档