(完整word)初二等腰三角形专题

合集下载

初二数学上册第二单元等腰三角形专项练习题

初二数学上册第二单元等腰三角形专项练习题

初二数学上册第二单元等腰三角形专项练习题篇一:初二数学上册第二单元等腰三角形专项练习题初二数学上册第二单元等腰三角形专项练习题一、选择题1已知一个等腰三角形的底边长为5,这个等腰三形的腰长为_,则_的取值范围是() A .0_lt;__lt;52B ._≥52C _>52D 0_lt;__lt;10 2.等腰三角形的底角为15°,腰长为a,则此三角形的面积为()A a2B1a22C 1 a2 D2 a2图543将一张长方形的纸片ABCD如图(4)那样折起,使顶点C落在F处.其中AB=4,若∠FED=30°,则折痕ED的长为( )A. 4 B 4C 8D 53 10.如图(5),在△ABC中,BC=8㎝,AB的垂直平分线交AB于点D,交AC于点E, △ABC的周长为18㎝,则AC的长等于( )A 6㎝B 8㎝C 10㎝D 12㎝4下列图形中,不是轴对称图形的是() A有两个内角相等的三角形 B 有一个内角是45°直角三角形 C. 有一个内角是30°的直角三角形 D. 有两个角分别是30°和120°的三角形 5、下列图形中,轴对称图形有()个A.1B.2C. 3D.4 6、等腰三角形周长是29,其中一边是7,则等腰三角形的底边长是() A 15B15或7 C 7 D 11 7、在△ABC中,AB=AC,BD平分∠ABC,若∠BDC=75°,则∠A的度数为()A、30°B、40°C、45 °D、60°8、下列图形中,不是轴对称图形的是() A 角 B 等边三角形 C 线段 D不等边三角形9、正△ABC的两条角平分线BD和CE交于点I,则∠BICAADFDBB为() A.60 B.90 C.120 D.150° 10、下列三角形:①有两个角等于60°;②有一个角等于60°的等腰三角形;?③三个外角(每个顶点处各取一个外角)都相等的三角形;?④一腰上的中线也是这条腰上的高的等腰三角形.其中是等边三角形的有()A①②③ B①②④ C①③ D①②③④ 11、如图1,D、E、F分别是等边△ABC各边上的点,且AD=BE=CF,则△DEF?的形状是()A形C.直角 D.不等边三角形 12Rt△ABC中,CD是斜边AB上的高,∠图5B=30°, AD=2cm,则AB的长度是()A.2cm B.4cm C.8cm D.16cm 13如图2,E是等边△ABC中AC边上的点,∠1= 2,BE=CD,则对△ADE的形状判断准确的是() A.等腰三角形B.等边三角形 C.不等边三角形 D.不能确定形状图(1) 图(2)二、填空题1、△ABC中,AB=AC,∠A=∠C,则∠B=_______.2、已知AD是等边△ABC的高,BE是AC边的中线,AD与BE交于点F,则∠AFE=______.3、△ABC中,∠B=∠C=15°,AB=2cm,CD⊥AB交BA的延长线于点D,?则CD?的长度是_______.4、如图(3),在ΔABC中AB=AC,∠A=36°,BD平分∠ABC,则∠1=________, 图中有_______个等腰三角形。

初二数学《等腰三角形证明》专题练习

初二数学《等腰三角形证明》专题练习

初二数学《等腰三角形》练习题1、如图,AB=AC,BD=CD,AD=AE,∠BAD=26°,则∠AED=_______________2、如图,在直角三角形ABC中,∠ACB=90°,AC=AE,BC=BF,则∠ECF=___________3、如图,点D是△ABC的边BC上一点,且AB=AC,AD=AE,∠BAD=30°,则∠EDC=__________4、如图,在△ABC中,AB=AC,AD=DC=BC,求∠A的度数。

5、已知:如图,在△ABC中,AB=AC,D为CA延长线上一点,DE⊥BC,交线段AB于点F.请找出一组相等的线段(AB=AC除外)并加以证明。

6、如图,在△ABC中,AB=AC,点D、E、F分别在AB、BC、AC边上,且BE=CF,BD=CE.(1)求证:△DEF是等腰三角形;(2)当∠A=50°时,求∠DEF的度数.7、如图,已知在△ABC中,AB=AC,BD是∠ABC的角平分线,且BD=BE,∠A=100°,试求∠DEC的度数。

8、已知,如图△ABC中,BD=DC,∠1=∠2,求证:AD平分∠BAC。

9、如图,D是△ABC中∠ABC和∠ACB的平分线交点,过D作与BC平行的直线,分别交AB、AC于E、F,求证:EB+FC=EF。

10、如图,△ABC是等腰三角形,D,E分别是腰AB及AC延长线上的一点,且BD=CE,连接DE交底BC于G.求证GD=GE。

《等边三角形》练习题1、已知,等边三角形ABC,D是AB上一点,DE⊥BC,垂足为E,EF⊥AC,垂足为F,FD⊥AB.求证:△DEF 为等边三角形的理由。

2、已知,如图,△ABC是正三角形,D,E,F分别是各边上的一点,且AD=BE=CF.请你说明△DEF是正三角形。

3、如图,A、B、C三点在同一直线上,△ABM和△BCN是正三角形,P是AN中点,Q是CM中点.求证:△BPQ是正三角形。

初二数学等腰三角形试题答案及解析

初二数学等腰三角形试题答案及解析

初二数学等腰三角形试题答案及解析1.如图,已知在△ABC中,AB=AC=10cm,BC=12cm,点E、F都在中线AD上,连接EB、EC、FB、FC,则图中阴影部分的面积为.【答案】24cm2【解析】根据等腰三角形的性质求得△ABC底边上的高线AD的长度,然后求图中阴影部分,即三个等高三角形的面积和.解:∵在△ABC中,AB=AC=10cm,BC=12cm,AD是中线,∴AD⊥BC,BD=CD=BC=6cm,∴AD=8cm(勾股定理),∴S阴影=S△ABE+S△EFC+S△BDE=BD•(AE+EF+FD)=BD•AD=×6cm×8cm=24cm2.故答案是:24cm2.点评:本题考查了等腰三角形的性质、三角形的面积.解答此题时,可以发现图中阴影部分的面积实际上是由三个等高不等底的三角形的和,而这三个三角形的底边的和恰好是等腰△ABC的高线AD的长度.2.如图,在△ABC中,B是AC上一点,AD=BD=BC,若∠C=25°,则∠ADB= .【答案】80°【解析】首先利用等腰三角形的性质得到∠C=∠BDC,利用三角形的外角的性质得到∠A和∠ABD的度数,从而确定∠ADB的度数.解:∵BD=BC,∠C=25°,∴∠C=∠BDC=50°,∴∠ABD=∠C+∠BDC=50°,∵AD=BD,∴∠A=∠DBA=50°,∴∠ADB=180°﹣∠A﹣∠DBA=80°,答案为:80°.点评:本题考查了等腰三角形的性质,解答过程中两次运用“等边对等角”,难度不大.3.已知实数x,y满足|x﹣4|+(y﹣8)2=0,则以x,y的值为两边长的等腰三角形的周长是.【答案】20【解析】先根据非负数的性质列式求出x、y的值,再分4是腰长与底边两种情况讨论求解.解:根据题意得,x﹣4=0,y﹣8=0,解得x=4,y=8,①4是腰长时,三角形的三边分别为4、4、8,∵4+4=8,∴不能组成三角形,②4是底边时,三角形的三边分别为4、8、8,能组成三角形,周长=4+8+8=20,所以,三角形的周长为20.故答案为:20;点评:本题考查了等腰三角形的性质,绝对值非负数,算术平方根非负数的性质,根据几个非负数的和等于0,则每一个算式都等于0求出x、y的值是解题的关键,难点在于要分情况讨论并且利用三角形的三边关系进行判断.4.如图,在△ABC中,AB=AC,BD⊥AC,CE⊥AB,D、E为垂足,BD与CE交于点O,则图中全等三角形共有对.【答案】3【解析】根据等腰三角形性质推出∠ABC=∠ACB,根据垂线定义证∠ADB=∠AEC,∠BEO=∠CDO,根据AAS证△BEC≌△BDC,根据AAS证△ADB≌△AEC,根据AAS证△BEO≌△CDO即可解:有3对:理由是∵AB=AC,∴∠ABC=∠ACB,∵BD⊥AC,CE⊥AB,∴∠BDC=∠BEC=90°,∵BC=BC,∴△BEC≌△BDC,∵∠ADB=∠AEC,∠A=∠A,AB=AC,∴△ADB≌△AEC,∴AD=AE,∴BE=DC,∵∠EOB=∠DOC,∠BEC=∠BDC,∴△BEO≌△CDO,故答案为:3.点评:本题主要考查对全等三角形的性质和判定,等腰三角形性质,垂线定义等知识点的理解和掌握,能推出证三角形全等的三个条件是解此题的关键.5.等腰三角形的两边长分别是3和5,则这个等腰三角形的周长为.【答案】11或13【解析】分3是腰长与底边两种情况讨论求解.解:①3是腰长时,三角形的三边分别为3、3、5,能组成三角形,周长=3+3+5=11,②3是底边长时,三角形的三边分别为3、5、5,能组成三角形,周长=3+5+5=13,综上所述,这个等腰三角形的周长是11或13.故答案为:11或13.点评:本题考查了等腰三角形的性质,难点在于分情况讨论并利用三角形的三边关系判断是否能组成三角形.6.已知等腰三角形的两条边长分别为3和7,那么它的周长等于.【答案】17【解析】分两种情况讨论:当3是腰时或当7是腰时.根据三角形的三边关系,知3,3,7不能组成三角形,应舍去.解:当3是腰时,则3+3<7,不能组成三角形,应舍去;当7是腰时,则三角形的周长是3+7×2=17.故答案为:17.点评:本题考查了等腰三角形的性质和三角形的三边关系;已知没有明确腰和底边的题目一定要想到两种情况,分类进行讨论,还应验证各种情况是否能构成三角形进行解答,这点非常重要,也是解题的关键.此类题不要漏掉一种情况,同时注意看是否符合三角形的三边关系.7.已知等腰三角形一腰上的中线将它周长分成18cm和12cm两部分,则这个等腰三角形的底边长是.【答案】6cm或8cm【解析】设等腰三角形的腰长、底边长分别为xcm,ycm,根据题意列二元一次方程组,注意没有指明具休是哪部分的长为18,故应该列两个方程组求解.解:∵等腰三角形的周长是18cm+12cm=30cm,设等腰三角形的腰长、底边长分别为xcm,ycm,由题意得或,解得或∴等腰三角形的底边长为6cm或8cm.(1分)故答案为:6cm或8cm.点评:此题主要考查等腰三角形的性质,解二元一次方程组和三角形三边关系的综合运用,此题的关键是分两种情况分析,求得解之后注意用三角形三边关系进行检验.8.等腰三角形的一边是2cm,另一边是9cm,则这个三角形的周长是 cm.【答案】20【解析】本题可先根据三角形三边关系,确定等腰三角形的腰和底的长,然后再计算三角形的周长.解:当腰长为4时,则三角形的三边长为:2、2、9;∵2+2<9,∴不能构成三角形;因此这个等腰三角形的腰长为9,则其周长=9+9+2=20.故答案为:20.点评:本题考查了等腰三角形的性质和三角形的三边关系;对于已知没有明确腰和底边的题目一定要想到两种情况,分类进行讨论,还应验证各种情况是否能构成三角形进行解答,这点非常重要,也是解题的关键.9.如图,直角三角形ABC中,∠BAC=90°AD⊥BC,AE是BC边上的中线,①若∠C=40°,则∠DAE= °;②若∠DAE=20°,则∠C= °.【答案】10°,35°【解析】利用∠C=40°,可先求∠BAC,再利用AE是∠BAC的角平分线,可求∠EAC,在Rt△ADC中,可求∠DAC,从而可求∠DAE.解:①∵直角三角形ABC中,∠BAC=90°AD⊥BC,AE是BC边上的中线∠C=40°,∴BE=AE=CE,∴∠EAC=∠C=40°,∠DAC=50°,∴∠DAE=∠DAC﹣∠EAC=50°﹣40°=10°,②∵∠DAE=20°,∴∠AEC=70°∴∠C=∠EAC=35°,故答案为10°,35°.点评:本题利用了三角形内角和定理、角平分线定理.三角形的内角和等于180°.10.如图,在△ABC中,AB=AC,∠BAD=15°,且AE=AD,则∠CDE= °.【答案】7.5°【解析】根据等腰三角形性质推出∠1=∠2,∠B=∠C,根据三角形的外角性质得到∠1+∠3=∠B+15°,∠2=∠C+∠3,推出2∠3=15°即可.解:∵AD=AE,AC=AB,∴∠1=∠2,∠B=∠C,∵∠1+∠3=∠B+∠BAD=∠B+15°,∠2=∠1=∠C+∠3,∴∠C+∠3+∠3=∠B+15°,2∠3=15°,∴∠3=7.5°,即∠CDE=7.5°,故答案为:7.5°.点评:本题主要考查对等腰三角形的性质,三角形的外角性质等知识点的理解和掌握,熟练地运用性质进行推理是解此题的关键.11.如图,在△ABC中,已知BA=BC,∠B=120°,AB的垂直平分线DE交AC于点D.(1)求∠A的度数;(2)若AC=6cm,求AD的长度.【答案】(1)30°(2)2cm【解析】(1)根据等腰三角形的两个底角相等、三角形内角和定理来求∠A的度数;(2)连接BD.根据线段垂直平分线的性质知△ABD是等腰三角形;然后利用(1)中的∠A=∠C=30°和已知条件∠B=120°可以推知△CDB是直角三角形,利用30度角所对的直角边是斜边的一半即可求得BD与CD间的数量关系;最后利用等腰三角形ABD的两腰相等(AD=BD)通过等量代换即可求得AC=3AD,从而求得线段AD的长度.解:(1)∵在△ABC中,已知BA=BC,∴∠A=∠C(等边对等角);又∵∠B=120°,∴∠A=(180°﹣120°)=30°(三角形内角和定理);(2)连接BD.∵AB的垂直平分线DE交AC于点D,∴AD=BD,∠A=∠ABD=30°,∴∠CBD=90°;由(1)知∠A=∠C=30°,∴BD=CD(30°所对的直角边是斜边的一半),∴CD=2AD=2BD,∴AC=AD+CD=AD+2AD=3AD;又∵AC=6cm,∴AD=2cm.点评:本题综合考查了等腰三角形的性质、含30度角的直角三角形以及三角形内角和定理.解答(2)题时,要充分利用等腰三角形的“三线合一”的性质.12.如图,AB=AC,∠C=67°,AB的垂直平分线EF交AC于点D,求∠DBC的度数.【答案】21°【解析】求出∠ABC,根据三角形内角和定理求出∠A,根据线段垂直平分线得出AD=BD,求出∠ABD,即可求出答案.解:∵AB=AC,∠C=67°,∴∠ABC=∠C=67°,∴∠A=180°﹣67°﹣67°=46°,∵EF是AB的垂直平分线,∴AD=BD,∴∠A=∠ABD=46°,∴∠DBC=67°﹣46°=21°.点评:本题考查了线段垂直平分线,三角形的能或定理,等腰三角形的性质和判定等知识点,关键是求出∠ABC和∠ABD的度数,题目比较好.13.如图,△ABC中,AB=AC,BD平分∠ABC交AC于点D,若∠A=52°,则∠BDC等于()A.84°B.64°C.52°D.32°【答案】A【解析】根据角平分线的性质,依据∠A=52°,AB=AC,可求得△ABC中三个内角的度数,然后根据三角形的外角性质可求出∠BDC=∠A+∠ABD.解:∵△ABC中,AB=AC,∠A=52°,∴∠ABC=∠C=(180﹣∠A)÷2=64°;又∵BD平分∠ABC交AC于点D,∴∠ABD=32°,∴∠BDC=∠A+∠ABD=32°+52°=84°.故选A.点评:主要考查了等腰三角形的性质.解题时,需要熟知三角形的内角和外角之间的关系.(1)三角形的外角等于与它不相邻的两个内角和.(2)三角形的内角和是180度.求角的度数常常要用到“三角形的内角和是180°这一隐含的条件.14.下列性质中,等腰三角形具有而直角三角形不一定具有的是()A.任意两边之和大于第三边B.内角和等于180°C.有两个锐角的和等于90°D.有一个角的平分线垂直于这个角的对边【答案】D【解析】根据等腰三角形与直角三角形的性质作答.解:A、对于任意一个三角形都有两边之和大于第三边,不符合题意;B、对于任意一个三角形都有内角和等于180°,不符合题意;C、只有直角三角形才有两个锐角的和等于90°,不符合题意;D、等腰三角形顶角的平分线垂直于顶角的对边,而直角三角形(等腰直角三角形除外)没有任何一个角的平分线垂直于这个角的对边,符合题意.故选D.点评:本题主要考查了三角形的性质,等腰三角形与直角三角形的性质的区别.15.如图,在四边形ABCD中,△ABC与△ADC关于对角线AC对称,则以下结论正确的是()①AC平分∠BAD②CA平分∠BCD③BD⊥AC④BE=DE.A.①②③④B.①②③C.①②D.④【答案】A【解析】根据轴对称的性质推出△ABC≌△ADC,推出∠BAC=∠DAC,∠BCA=∠DCA,AD=AB,根据等腰三角形性质求出BE=DE,AE⊥BD,根据以上结论判断即可.解:∵△ABC与△ADC关于对角线AC对称,∴△ABC≌△ADC,∴∠BAC=∠DAC,∠BCA=∠DCA,∴①正确;②正确;AB=AD,∴BE=DE,AE⊥BD,∴④正确;即BD⊥AC,∴③正确.故选A.点评:本题主要考查对轴对称的性质,全等三角形的性质和判定,等腰三角形的性质等知识点的理解和掌握,能推出△ABC≌△ADC是解此题的关键.16.如图,在△ABC中,AB=AC,AD是∠BAC的角平分线,AD=8cm,BC=6cm,点E、F是AD上的两点,则图中阴影部分的面积是()A.48B.24C.12D.6【答案】C【解析】根据等腰三角形性质求出BD=DC ,AD ⊥BC ,推出△CEF 和△BEF 关于直线AD 对称,得出S △BEF =S △CEF ,根据图中阴影部分的面积是S △ABC 求出即可.解:∵AB=AC ,AD 是∠BAC 的平分线,∴BD=DC=8,AD ⊥BC , ∴△ABC 关于直线AD 对称, ∴B 、C 关于直线AD 对称, ∴△CEF 和△BEF 关于直线AD 对称, ∴S △BEF =S △CEF ,∵△ABC 的面积是×BC×AD=×8×6=24,∴图中阴影部分的面积是 S △ABC =12.故选C .点评:本题主要考查对等腰三角形性质,三角形的面积,轴对称性质等知识点的理解和掌握,能求出图中阴影部分的面积是S △ABC 是解此题的关键.17. 已知等腰三角形的一个外角等于140°,则这个三角形的三个内角的度数分别是( )A .20°、20°、140°B .40°、40°、100°C .70°、70°、40°D .40°、40°、100°或70°、70°、40°【答案】D【解析】由于140°的外角不明确等腰三角形顶角和底角的外角,故应分两种情况讨论.解:(1)当40°角是顶角时,另两个底角度数为70°,70°;(2)当40°角是底角时,另两个底角度数为40°,100°.故选D .点评:本题考查了等腰三角形的性质及三角形内角和定理;等腰三角形的角度计算,要注意区别顶角,底角的不同情况,不要漏解.18. 如图,△ABC 中,D 为AB 上一点,E 为BC 上一点,且AC=CD=BD=BE ,∠A=50°,则∠CDE 的度数为( )A .50°B .51°C .51.5°D .52.5°【答案】D【解析】根据等腰三角形的性质推出∠A=∠CDA=50°,∠B=∠DCB ,∠BDE=∠BED ,根据三角形的外角性质求出∠B=25°,由三角形的内角和定理求出∠BDE ,根据平角的定义即可求出选项. 解:∵AC=CD=BD=BE ,∠A=50°,∴∠A=∠CDA=50°,∠B=∠DCB ,∠BDE=∠BED ,∵∠B+∠DCB=∠CDA=50°, ∴∠B=25°, ∵∠B+∠EDB+∠DEB=180°,∴∠BDE=∠BED=(180°﹣25°)=77.5°,∴∠CDE=180°﹣∠CDA ﹣∠EDB=180°﹣50°﹣77.5°=52.5°,故选D .点评:本题主要考查对等腰三角形的性质,三角形的内角和定理,三角形的外角性质,邻补角的定义等知识点的理解和掌握,熟练地运用这些性质进行计算是解此题的关键.19.如图,在△ABC中,AB=AC,AB的垂直平分线交BC于D,M是BC的中点,若∠BAD=30°,则图中等于30°的角的个数是()A.1个B.2个C.3个D.4个【答案】D【解析】本题先运用线段垂直平分线的性质得出∠BAD=∠ABD=∠C,又因为△ABC为等腰三角形可得AM⊥BC,然后证得△ADM∽△ACM,然后可求解.解:已知AB的垂直平分线交BC于D可得∠BAD=∠B=30°又因为△ABC为等腰三角形,所以∠BAD=∠ABD=∠CM为等腰三角形△ABC的中线,故AM⊥BC∴△ADM∽△ACM,∴∠DAM=∠C=30°.故选D.点评:本题先看清图中三角形的关系,再根据线段垂直平分线的性质以及等腰三角形中线的性质求解,难度一般.20.如图,AD=BC=BA,那么∠1与∠2之间的关系是()A.∠1=2∠2B.2∠1+∠2=180°C.∠1+3∠2=180°D.3∠1﹣∠2=180°【答案】B【解析】由已知条件可得到∠2=∠B,∠1=∠BCA,在△ABC中,由∠1+∠ACB+∠B=180°,可推出结论.解:∵AB=BC,∴∠1=∠BCA,∵AB=AD,∴∠B=∠2,∵∠1+∠B+∠ACB=180°,∴2∠1+∠2=180°.故选B.点评:本题考查了对等边对等角和三角形内角和定理的应用.。

初二数学等腰三角形的性质试题答案及解析

初二数学等腰三角形的性质试题答案及解析

初二数学等腰三角形的性质试题答案及解析1.如图,△ABC中,∠B,∠C的平分线相交于O点,作MN∥BC,EF∥AB,GH∥AC,BC=a,AC=b,AB=c,则△GMO的周长+△ENO的周长-△FHO的周长= .【答案】b+c-a【解析】由角平分线及平行线可得等腰三角形,进而得边长相等,再通过转化,即可得出结论.∵OB、OC分别平分∠ABC、∠ACB,MN∥BC,EF∥AB,GH∥AC,∴OM=BM,ON=NC,OG=AE,OE=AG,∴△GMO周长+△ENO的周长-△FHO的周长=OG+OM+GM+OE+ON+EN-OH-OF-FH=AE+EN+NC+BM+GM+AG-HC-FH-BF=b+c-a,故应填b+c-a.【考点】本题主要考查角平分线的性质,平行线的性质点评:解答本题的关键是掌握由角平分线及平行线可得等腰三角形,再通过转化求解。

2.△ABC中,AB=AC,∠A=∠C,则∠B=_______.【答案】60°【解析】由AB=AC根据等边对等角可得∠B=∠C,即可得到∠A=∠B=∠C,再根据三角形的内角和180°即可求得结果。

∵AB=AC,∴∠B=∠C,∵∠A=∠C,∴∠A=∠B=∠C,∵∠A+∠B+∠C=180°,∴∠A=∠B=∠C=60°,故答案为60°.【考点】本题考查的是等腰三角形的性质,三角形的内角和定理点评:解答本题的关键是根据等边对等角得到∠A=∠B=∠C.3.如图,Rt△ACB中,∠ACB=90°,点D、E在AB上,AC=AD,BE=BC,则∠DCE等于()A、45°B、60°C、50°D、65°【答案】A【解析】根据等腰三角形的性质可得到几组相等的角,再根据三角形内角和定理可分别表示出∠ACD,∠BCE,再根据角之间的关系,不难求得∠DCE的度数.∵AC=AD,BC=BE∴∠ACD=∠ADC,∠BCE=∠BEC∴∠ACD=(180°-∠A),∠BCE=(180°-∠B)∴∠DCE=∠ACD+∠BCE-∠ACB=90°-(∠A+∠B)∵∠A+∠B=90°∴∠DCE=45°故选A.【考点】此题主要考查等腰三角形的性质及三角形内角和定理的综合运用点评:解答本题的关键是熟练掌握等腰三角形的性质及三角形内角和定理的综合运用。

初二等腰直角三角形类型题

初二等腰直角三角形类型题

初二等腰直角三角形类型题
在初二数学中,等腰直角三角形是一个重要的几何图形。

它包含了等腰三角形和直角三角形的特点,因此也被称为“两者兼备”的三角形。

在解题时,我们可以根据等腰直角三角形的特性,运用勾股定理、正弦定理、余弦定理等知识来求解各种问题,如求斜边长、角度大小、面积等。

下面就让我们来看几道典型的初二等腰直角三角形类型题吧!
1. 已知等腰直角三角形的直角边长为3cm,求斜边长。

解:由勾股定理可知,斜边长为√(3+3)=√18=3√2 (cm)。

2. 已知等腰直角三角形斜边长为4√2 cm,求底边长。

解:同样由勾股定理可知,底边长为4√2/√2=4 (cm)。

3. 已知等腰直角三角形的底边长为6 cm,求面积。

解:由勾股定理可知,斜边长为6√2 cm。

面积为1/2×6×6=18 (cm)。

4. 已知等腰直角三角形的斜边长为10 cm,底边长为x cm,求x的值。

解:由勾股定理可知,x+ x=10,化简为2x=100,故x=√50 (cm)。

以上就是几道典型的初二等腰直角三角形类型题,希望能对大家的数学学习有所帮助。

- 1 -。

初二数学等腰三角形的判定试题答案及解析

初二数学等腰三角形的判定试题答案及解析

初二数学等腰三角形的判定试题答案及解析1.有一轮船由东向西航行,在A处测得西偏北15°有一灯塔P.继续航行20海里后到B处,又测得灯塔P在西偏北30°.如果轮船航向不变,则灯塔与船之间的最近距离是海里.【答案】10【解析】过P作PD⊥AB于D,则PD的长就是灯塔与船之间的最近距离,求出∠APB=∠PAB,推出PA=PB=20,根据含30度角的直角三角形性质求出PD=PB,代入求出即可.解:如图:过P作PD⊥AB于D,则PD的长就是灯塔与船之间的最近距离,∴∠PDB=90°,∵∠PBD=30°,∠PAB=15°,∴∠APB=∠PBD﹣∠PAB=15°=∠PAB,∴PB=AB=20,在Rt△PBD中,PB=20,∠PBD=30°,∴PD=PB=10,故答案为:10.点评:本题考查了含30度角的直角三角形,等腰三角形的性质和判定,三角形的外角性质等知识点的应用,关键是求出PB的长和得出PD=PB,题目比较典型,是一道比较好的题目,主要考查学生的理解能力和计算能力.2.如图,Rt△ABC中,CD是斜边AB上的高,角平分线AE交CD于H,EF⊥AB于F,有下列结论:①∠ACD=∠B;②CH=CE=EF;③AC=AF;④CH=HD;⑤BE=CH.其中你认为正确的有.(填序号就可以)【答案】①②③【解析】①由CD是斜边AB上的高,∠ACB=90°,得到∠ACD+∠BCD=90°,∠BCD+∠B=90°,即可得到答案;②由角平分线的性质得到CE=EF,根据三角形的外角性质能求出∠CHE=∠CEA,推出CH=CE即可得到答案;③根据直角三角形全等的判定定理HL即可;④⑤根据边得关系即可判断.解:①∵CD是斜边AB上的高,∠ACB=90°,∴∠CDB=90°,∴∠ACD+∠BCD=90°,∠BCD+∠B=90°,∴∠ACD=∠B,∴①正确;②∵AE平分∠CAB,∴∠CAE=∠BAE,∵∠C=90°,EF⊥AB,∴CE=FE,∵∠CHE=∠CAE+ACD,∠CEA=∠BAE+∠B,∠ACD=∠B,∴∠CHE=∠CEA,∴CH=CE,即:CH=CE=EF,∴②正确;③∵在Rt△ACE和Rt△AFE中AE=AE,CE=EF,∴Rt△ACE≌Rt△AFE,∴AC=AF,∴③正确;④∵CH=EF,∴CH≠HD,∴④错误;⑤∵在Rt△BFE中,BE>EF,而EF=CH,∴⑤错误;故答案为:①②③.点评:本题主要考查了角平分线的性质,等腰三角形的性质和判定,全等三角形的性质和判定,三角形的外角性质等知识点,解此题的关键是综合运用性质进行证明.此题题型较好,综合性强.3.下列说法:①如图1,△ABC中,AB=AC,∠A=45°,则△ABC能被一条直线分成两个小等腰三角形.②如图2,△ABC中,AB=AC,∠A=36°,BD,CE分别为∠ABC,∠ACB的角平分线,且相交于点F,则图中等腰三角形有6个.③如图3,△ABC是等边三角形,CD⊥AD,且AD∥BC,则AD=AB.④如图4,△ABC中,点E是AC上一点,且AE=AB,连接BE并延长至点D,使AD=AC,∠DAC=∠CAB,则∠DBC=∠DAB其中,正确的有(请写序号,错选少选均不得分)【答案】③④.【解析】不管过A(或过B或过C)作直线,都不能把三角形ABC分成两个等腰三角形,即可判断①;求出∠A=∠ABD=∠DBC=∠ACE=∠BCE=36°,根据三角形的内角和定理求出三角形其余角的度数,根据等腰三角形的判定定理推出边相等,即可判断②;求出∠ACD=30°,根据含30度角的直角三角形性质求出AD=AC,即可判断③;过C作CF∥BD交AB的延长线于F,连接DC,EF,求出EF=BC,证三角形全等推出DE=EF,DC=CF,推出CD=BC,推出∠CDB=∠CBD,根据三角形的内角和定理求出∠CDB=∠CAB即可.解:若△ABC中,AB=AC,∠A=45°,不论过A作直线(或过B作直线或过C作直线)都不能把三角形ABC化成两个等腰三角形,∴①错误;图②中,有等腰三角形7个:△ABD,△CBD,△ACE,△CDE,△BEF,△CDF,△FBC,∴②错误;∵等边△ABC,∴AB=AC,∠ACB=60°,∵AD∥BC,CD⊥AD,∴∠DCB=∠D=90°,∴∠ACD=30°,∴AD=AC=AB,∴③正确;过C作CF∥BD交AB的延长线于F,连接DC,EF,∴=,∵AE=AB,AD=AC,∴AF=AC=AD,∴CE=BF,即BE∥CF,CE=BF,∴四边形BECF是等腰梯形,∴EF=BC,在△DAC和△FAC中,∴△DAC≌△FAC,∴CD=CF,同理DE=EF,∵AD=AC,AE=AB,∴∠ADC=∠ACD,∠AEB=∠ABE,∵∠DAC=∠BAC,∠DAC+∠ACD+∠ADC=180°,∠CAB+∠AEB+∠ABE=180°,∴∠ACD=∠AEB,∵∠AEB=∠DEC,∴∠ACD=∠DEC,∴DE=CD,∴DC=CF=EF=ED,∵EF=CB,∴DC=BC,∴∠CBD=∠CDE,∵∠DCA=∠DEC=∠AEB=∠ABE,由三角形的内角和定理得:∠CDE=∠CAB=∠DAB,∴∠DBC=∠DAB,∴④正确.故答案为:③④.点评:本题考查了等边三角形性质,含30度角的直角三角形性质,等腰三角形的性质和判断,角平分线定义,全等三角形的性质和判定,三角形的内角和定理等知识点的综合运用,第④小题证明过程偏难,对学生提出较高的要求,熟练地运用性质进行推理是解此题的关键.4.如图,线段OP的一个端点O在直线a上,以OP为一边画等腰三角形,并且使另一个顶点在直线a上,这样的等腰三角形能有个.【答案】4个【解析】当O为等腰三角形的两条腰的交点时,以O为圆心,OP为半径画弧,交直线a于两点;当P为等腰三角形的两条腰的交点时,以P为圆心,OP为半径画弧,交直线a于一点;当所求的第三点为等腰三角形的两条腰的交点时,可作OP的垂直平分线,与直线a交于一点,那么可作出等腰三角形共4个.解:△AOP,△BOP,△COP,△DOP就是所求的三角形.点评:本题考查了等腰三角形的性质;等腰三角形有2条边相等,注意可选不同的顶点为等腰三角形的两条腰的交点.5.如图所示,在△ABC中,已知AB=AC,∠A=36°,BC=2,BD是△ABC的角平分线,则AD= .【答案】2【解析】根据等腰三角形的性质,先证∠B=∠C=72°,再由角平分线的定义可证∠ABD=∠CBD=36°,即可求∠BDC=72°,即证BD=BC=AD=2.解:∵AB=AC,∠A=36°,∴∠B=∠C=72°,∵BD是△ABC的角平分线,∴∠ABD=∠CBD=36°,∴∠BDC=180°﹣36°﹣72°=72°=∠C,∴BD=BC=AD=2.故填2.点评:本题考查了等腰三角形的判定与性质;由已知条件结合性质得到BD=BC=AD是正确解答本题的关键.6.如图,在△ABC中,∠ABC=2∠ACB,BD平分∠ABC,AD∥BC,则图中的等腰三角形有个,分别为.【答案】4;△BOC,△AOD,△ABD,△ACD【解析】根据已知条件可以推知∠OBC=∠OCB,∠OAD=∠DOA,∠ABD=∠ADB,∠DAC=∠DCA,然后由等角对等边可以找出图中的等腰三角形.解:∵在△ABC中,∠ABC=2∠ACB,BD平分∠ABC,∴∠ABD=∠CBD=∠ACB,即∠CBD=∠ACB,∴OB=OC(等角对等边),∴△BOC是等腰三角形;又∵AD∥BC,∴∠DAC=∠ACB,∠ADB=∠CBD(两直线平行,内错角相等),∴∠OAD=∠DOA,∠ABD=∠ADB,∠DAC=∠DCA,∴OA=OD,AB=AD,AD=DC,∴△AOD,△ABD,△ACD是等腰三角形;故答案是:4;△BOC,△AOD,△ABD,△ACD.点评:本题考查了等腰三角形的判定.角的等量代换的运用是正确解答本题的关键.7.已知:如图,在△ABC中,∠C=90°,AC=BC=4,点M是边AC上一动点(与点A、C不重合),点N在边CB的延长线上,且AM=BN,连接MN交边AB于点P.(1)求证:MP=NP;(2)若设AM=x,BP=y,求y与x之间的函数关系式,并写出它的定义域;(3)当△BPN是等腰三角形时,求AM的长.【答案】(1)见解析(2)y与x之间的函数关系式为,它的定义域是0<x<4(3)【解析】(1)过点M作MD∥BC交AB于点D,求出DM=BN,证△MDP≌△NBP即可;(2)求出AB,根据△MDP≌△NBP推出DP=BP,推出方程即可;(3)求出BP=BN,所得方程的解即可.(1)证明:过点M作MD∥BC交AB于点D,∵MD∥BC,∴∠MDP=∠NBP,∵AC=BC,∠C=90°,∴∠A=∠ABC=45°,∵MD∥BC,∴∠ADM=∠ABC=45°,∴∠ADM=∠A,∴AM=DM.∵AM=BN,∴BN=DM,在△MDP和△NBP中,∴△MDP≌△NBP,∴MP=NP.(2)解:在Rt△ABC中,∵∠C=90°,AC=BC=4,∴.∵MD∥BC,∴∠AMD=∠C=90°.在Rt△ADM中,AM=DM=x,∴.∵△MDP≌△NBP,∴DP=BP=y,∵AD+DP+PB=AB,∴,∴所求的函数解析式为,定义域为0<x<4.答:y与x之间的函数关系式为,它的定义域是0<x<4.(3)解:∵△MDP≌△NBP,∴BN=MD=x.∵∠ABC+∠PBN=180°,∠ABC=45°,∴∠PBN=135°.∴当△BPN是等腰三角形时,只有BP=BN,即x=y.∴,解得,∴当△BPN是等腰三角形时,AM的长为.答:AM的长为.点评:本题主要考查对等腰三角形的性质和判定,全等三角形的性质和判定,平行线的性质等知识点的理解和掌握,综合运用性质进行推理是解此题的关键.8.如图,在△ABC中,AB=AC,∠A=20゜,在AB、AC上分别取点E、D,使∠CBD=60°,∠BCE=50°,求∠AED的度数.【答案】50°【解析】作DF∥BC,与AB相交于F,连接CF,设CF与BD相交于G,连接EG,证DF=DG,BC=BG,求出∠BEC,推出BE=BG,求出△EFG是等腰三角形,推出EF=EG,证△DFE≌△DGE,求出△EDB,根据三角形外角性质求出即可.解:∵AB=AC,∠A=20°,∴∠ABC=∠ACB=80°,∴∠ABD=20°,作DF∥BC,与AB相交于F,连接CF,设CF与BD相交于G,连接EG.∴四边形DFBC为等腰梯形.∵∠DBC=∠FCB=60°,∴△BGC,△DGF都是正三角形,即BG=CG,∵∠BCE=50°,∠EBC=80°,∴∠BEC=50°,即BE=BC,知△BGE是等腰三角形.得:∠BGE=80°,∠FGE=40°.又因∠EFG=∠BDC=40°,∴△EFG是等腰三角形,EF=GE.∵DF=DG,∴△DFE≌△DGE.∴DE平分∠FDG,∴∠EDB=30°,∴∠AED=∠EDB+∠EBD=50°.答:∠AED的度数是50°.点评:本题主要考查对等腰三角形的性质和判定,等腰梯形的性质,全等三角形的性质和判定,三角形的外角性质,三角形的内角和定理等知识点的连接和掌握,能综合运用这些性质进行推理是解此题的关键.9.已知:如图,在△ABC中,CD⊥AB垂足为D,BE⊥AC垂足为E,连接DE,点G、F分别是BC、DE的中点.求证:GF⊥DE.【答案】见解析【解析】作辅助线(连接DG、EG)构建Rt△BCD和Rt△BCE斜边上的中线,然后根据斜边上的中线等于斜边的一半求得DG=EG=BC,从而判定△DEG是等腰三角形;最后根据等腰三角形的“三线合一”的性质推知GF⊥DE.证明:连接DG、EG.∵CD⊥AB,点G是BC的中点,∴在Rt△BCD中,DG=BC(直角三角形的斜边上的中线是斜边的一半).(2分)同理,EG=BC.(2分)∴DG=EG(等量代换).(1分)∵F是DE的中点,∴GF⊥DE.(2分)点评:本题考查了直角三角形斜边上的中线、等腰三角形的判定与性质.熟练运用等腰直角三角形“三线合一”的性质、直角三角形斜边上的中线等于斜边的一半,是解题的关键.10.在△ABC中,已知∠A=∠B,且该三角形的一个内角等于100°.现有下面四个结论:①∠A=100°;②∠C=100°;③AC=BC;④AB=BC.其中正确结论的个数为()A.1个B.2个C.3个D.4个【答案】B【解析】假如∠A=100°,求出∠B=100°,不符合三角形的内角和定理,即可判断①;假如∠C=100°,能够求出∠A、∠B的度数;关键等腰三角形的判定推出AC=BC,即可判断③④.解:∠A=∠B=100°时,∠A+∠B+∠C>180°,不符合三角形的内角和定理,∴①错误;∠C=100°时,∠A=∠b=(180°﹣∠c)=40°,∴②正确;∵∠A=∠B,∴AC=BC,③正确;④错误;正确的有②③,2个,故选B.点评:本题考查了等腰三角形的判定和三角形的内角和定理等知识点的应用,能根据定理进行说理是解此题的关键,分类讨论思想的运用.11.如图所示.△ABC中,∠B=∠C,D在BC上,∠BAD=50°,AE=AD,则∠EDC的度数为()A.15°B.25°C.30°D.50°【答案】B【解析】根据三角形的一个外角等于和它不相邻的两个内角的和,∠AED=∠EDC+∠C,∠ADC=∠B+∠BAD,再根据等边对等角的性质∠B=∠C,∠ADE=∠AED,代入数据计算即可求出∠BAD的度数.解:如图,∠AED=∠EDC+∠C,∠ADC=∠B+∠BAD,∵AD=AE,∴∠AED=∠ADE,∵∠B=∠C,∴∠B+∠BAD=∠EDC+∠C+∠EDC,即∠BAD=2∠EDC,∵∠BAD=50°,∴∠EDC=25°.故选B.点评:本题主要考查利用三角形的一个外角等于和它不相邻的两个内角的和的性质,熟练掌握性质是解题的关键.12.如图,已知直线PQ⊥MN于点O,点A,B分别在MN,PQ上,OA=1,OB=2,在直线MN或直线PQ上找一点C,使△ABC是等腰三角形,则这样的C点有()A.3个B.4个C.7个D.8个【答案】D【解析】根据等腰三角形的判定分类别分别找寻,分AB可能为底,可能是腰进行分析.解:使△ABC是等腰三角形,当AB当底时,则作AB的垂直平分线,交PQ,MN的有两点,即有两个三角形.当让AB当腰时,则以点A为圆心,AB为半径画圆交PQ,MN有三点,所以有三个.当以点B为圆心,AB为半径画圆,交PQ,MN有三点,所以有三个.所以共8个.故选D.点评:本题考查了等腰三角形的判定;解题的关键是要分情况而定,所以学生一定要思维严密,不可遗漏.13.下列三角形中,是正三角形的为()①有一个角是60°的等腰三角形;②有两个角是60°的三角形;③底边与腰相等的等腰三角形;④三边相等的三角形.A.①④B.②③C.③④D.①②③④【答案】D【解析】等边三角形的判定定理有①三个都相等的三角形是等边三角形,②有一个角是60°的等腰三角形是等边三角形,③三边都相等的三角形是等边三角形,根据以上定理判断即可.解:∵AB=AC,∠A=60°,∴△ACB是等边三角形,∴①正确;∵∠A=∠B=60°,∴AC=BC,∴△ACB是等边三角形,∴②正确;∵AB=AC,AB=BC,∴AB=AC=BC∴△ACB是等边三角形,∴③正确;∵AB=AC=BC,∴△ACB是等边三角形,∴④正确.故选D.点评:本题考查了等腰三角形的判定和等边三角形的判定等的应用,主要检查学生是否掌握等边三角形的判定定理,题型较好,但是一道容易出错的题目.14.在等边△ABC所在平面内找出一个点,使它与三角形中的任意两个顶点所组成的三角形都是等腰三角形.这样的点一共有()A.1个B.4个C.7个D.10个【答案】D【解析】本题利用了等边三角形是轴对称图形,三条高所在的直线也是对称轴,也是边的中垂线.解:在等边△ABC中,三条边上的高交于点O,由于等边三角形是轴对称图形,三条高所在的直线也是对称轴,也是边的中垂线,点O到三个顶点的距离相等,△ADB,△BOC,△AOC是等腰三角形,则点O是满足题中要求的点,高与顶角的两条边成的锐角为30°,以点A为圆心,AB为半径,做圆,延长AO交圆于点E,由于点E在对称轴AE上,有EC=EB,AE=AC=AB,△ECB,△AEC,△ABE都是等腰三角形,点E也是满足题中要求的点,作AD⊥AE交圆于点D,则有AC=AD,AD=AB,即△DAB,△ADC是等腰三角形,点D也是满足题中要求的点,同理,作AF⊥AE交圆于点F,则点F也是满足题中要求的点;同理,以点B为圆心,AB为半径,做圆,以点C为圆心,AB为半径,做圆,都可以分别得到同样性质的三个点满足题中要求,于是共有10个点能使点与三角形中的任意两个顶点所组成的三角形都是等腰三角形.故选D.点评:本题容易找出三条边上的高交于点O,是满足题中要求的点,其它点容易漏掉,这样的点不一定是等腰三角形的顶角所在的点,也可以是底角所在的点,明白这点后,就要做圆来找到所要求的点.15.如图,已知△ABC中,AC+BC=24,AO,BO分别是角平分线,且MN∥BA,分别交AC于N,BC于M,则△CMN的周长为()A.12B.24C.36D.不确定【答案】B【解析】由AO,BO分别是角平分线求得∠1=∠2,∠3=∠4,利用平行线性质求得,∠1=∠6,∠3=∠5,利用等量代换求得∠2=∠6,∠4=∠5,即可解题.解:由AO,BO分别是角平分线得∠1=∠2,∠3=∠4,又∵MN∥BA,∴∠1=∠6,∠3=∠5,∴∠2=∠6,∠4=∠5,∴AN=NO,BM=OM.∵AC+BC=24,∴AC+BC=AN+NC+BM+MC=24,即MN+MC+NC=24,也就是△CMN的周长是24.故选B.点评:此题考查学生对等腰三角形的判定与性质和平行线行至的理解和掌握,此题主要求得△ANO△BMO是等腰三角形,这是解答此题的关键.16.如图,一根12米高的电线杆两侧各用15米的铁丝固定,两个固定点AB之间的距离是()A.13B.9C.18D.10【答案】C【解析】运用勾股定理可将三角形的直角边求出,将两个直角边进行相加即为两个固定点之间的距离.解:∵电线杆高为12m,铁丝长15m,∴固定点与电线杆的距离==9m,∵两个直角三角形全等,∴两个固定点之间的距离=9×2=18m.故选C.点评:本题考查正确运用勾股定理,关键是从实际问题中找到直角三角形,并利用勾股定理进行有关的运算.17.如图,在△ABC中,BD=DE=EC,△ADE为等边三角形,则图中等腰三角形的个数是()A.2B.3C.4D.5【答案】C【解析】根据已知的BD=DE=EC和△ADE为等边三角形,利用等腰三角形的判定进行判断即可.解:∵△ADE为等边三角形,∴AD=DE=AE,∵BD=DE=EC,∴AD=DE=AE=BD=EC,∴等腰三角形有△ABD、△ACE、△ADE、△ABC共四个.故选C.点评:本题考查了等腰三角形的判定及等边三角形的性质,属于基础题,应该重点掌握.18.已知,如图,在△ABC中,OB和OC分别平分∠ABC和∠ACB,过O作DE∥BC,分别交AB、AC于点D、E,若BD+CE=5,则线段DE的长为()A.5B.6C.7D.8【答案】A【解析】根据OB和OC分别平分∠ABC和∠ACB,和DE∥BC,利用两直线平行,内错角相等和等量代换,求证出DB=DO,OE=EC.然后即可得出答案.解:∵在△ABC中,OB和OC分别平分∠ABC和∠ACB,∴∠DBO=∠OBC,∠ECO=∠OCB,∵DE∥BC,∴∠DOB=∠OBC=∠DBO,∠EOC=∠OCB=∠ECO,∴DB=DO,OE=EC,∵DE=DO+OE,∴DE=BD+CE=5.故选A.点评:此题主要考查学生对等腰三角形的判定与性质平行线段性质的理解和掌握,此题关键是求证DB=DO,OE=EC,难度不大,是一道基础题.19.推理:如图,∵∠A=∠ACD,∠B=∠BCD,(已知)∴AD=CD,CD=DB(等腰三角形的性质)∴AD=DB,依据是()A.旋转不改变图形的大小B.连接两点的所有线中线段最短C.等量代换D.整体大于部分【答案】C【解析】由∠A=∠ACD,得AD=CD,再由∠B=∠BCD得CD=DB,利用等量代换即可解题.解:∵∠A=∠ACD,∴AD=CD,∵∠B=∠BCD∴CD=DB,因AD和DB都等于同一个量CD,所以AD=DB,依据是等量代换.故选C.点评:此题考查学生对等腰三角形的判定与性质的理解和掌握,此题主要利用了等量代换求得两边相等.20.如图,在下列三角形中,若AB=AC,则不能被一条直线分成两个小等腰三角形的是()A.B.C.D.【答案】B【解析】A、D是黄金三角形,C、过A点作BC的垂线即可;只有B选项不能被一条直线分成两个小等腰三角形.解:A、中作∠B的角平分线即可;C、过A点作BC的垂线即可;D、中以A为顶点AB为一边在三角形内部作一个72度的角即可;只有B选项不能被一条直线分成两个小等腰三角形.故选B.点评:此题主要考查学生对等腰三角形的判定与性质的理解和掌握,此题的4个选项中只有D选项有点难度,所以此题属于中档题.。

完整版)等腰三角形专项练习题

完整版)等腰三角形专项练习题

完整版)等腰三角形专项练习题BatchDoc-Word文档批量处理工具BatchDoc是一款方便快捷的Word文档批量处理工具,可以实现多种功能,如批量转换、批量重命名、批量加密、批量解密、批量压缩、批量解压等,提高了工作效率。

1.在等腰三角形ABC中,AB=AC,BD平分∠ABC,已知∠A=36°,求∠1的度数。

解:由BD平分∠XXX可知∠ABD=∠CBD,又因为AB=AC,所以∠BAC=2∠ABD=2∠CBD,即∠1=180°-∠BAC=108°。

2.已知等腰三角形的两边长分别为5和6,求该等腰三角形的周长。

解:设等腰三角形的底边为x,则根据勾股定理可得x²=6²-(5/2)²=31.25,即x=√31.25,所以周长为2x+5+6=2√31.25+11≈17.5.3.在一张长为18厘米,宽为16厘米的矩形纸板上,剪下一个腰长为10厘米的等腰三角形,且要求等腰三角形的一个顶点与矩形的一个顶点重合,其它两个顶点在矩形的边上,求剪下的等腰三角形的面积。

解:如图,设剪下的等腰三角形为△ABC,其中AB=AC=10,BC=x,则根据勾股定理可得x²=16²-10²=196,即x=14.所以△ABC的面积为(1/2)×10×14=70平方厘米。

4.如图,在等腰三角形ABC中,∠B、∠C的平分线相交于F,过点F作DE∥BC,交AB于D,交AC于E,判断下列结论的正确性:①△BDF、△CEF都是等腰三角形;②DE=BD+CE;③△ADE的周长为AB+AC;④BD=CE。

解:①正确,因为∠XXX∠XXX∠XXX∠XXX∠BAC/2,所以△BDF、△CEF都是等腰三角形;②正确,因为根据相似三角形可得BD/BC=AD/AC,CE/BC=AE/AC,又因为AD=AE,所以BD=CE,即DE=2BD;③错误,因为AB+AC=2AB≠AD+DE+EA=AD+2BD;④正确,因为根据相似三角形可得BD/BC=AD/AC,CE/BC=AE/AC,又因为AD=AE,所以BD=CE。

(完整版)等腰三角形知识点(可编辑修改word版)

(完整版)等腰三角形知识点(可编辑修改word版)

⎩⎩ ⎩ 等腰三角形知识学习要点:掌握证明的基本步骤和书写格式,掌握等腰三角形的性质和判定定理,并探索等边三角形的性质和判定定理。

结合实例体会反证法的含义。

中考热点:全等三角形和等腰三角形是中考必考的内容之一,在考试中或单独考查基本知识或综合考查逻辑推理,常把全等三角形、特殊三角形的判定和性质及特殊四边形的判定和性质综合起来进行命题,题型多为证明题或解答题。

知识点:1、全等三角形的判定及性质一般三角形直角三角形判定边角边(SAS)、角边角(ASA)角角边(AAS)、边边边(SSS)具备一般三角形的判定方法斜边和一条直角边对应相等(HL)性质对应边相等,对应角相等对应中线相等,对应高相等,对应角平分线相等注:① 判定两个三角形全等必须有一组边对应相等;② 全等三角形面积相等.证题思路:⎧⎧找夹角(SAS)⎪⎪⎪已知两边⎨找直角(HL)⎪⎪找第三边(SSS)⎪⎪⎧若边为角的对边,则找任意角(AAS)⎪⎪⎪⎪⎧找已知角的另一边(SAS)⎨已知一边一角⎨⎪⎪⎪边为角的邻边⎨找已知边的对角(AAS)⎪⎪⎪找夹已知边的另一角(ASA)⎪⎪⎪⎪⎧找两角的夹边(ASA)⎪已知两角⎨⎩⎩找任意一边(AAS)2 例1、如图,△ABC≌△AEF,AB=AE,∠B=∠E,则对于结论①AC=AF.②∠FAB=∠EAB,③EF =BC,④∠EAB=∠FAC,其中正确结论的个数是()A.1 个B.2 个C.3 个D.4 个2、如图,FD⊥AO 于D,FE⊥BO 于E,下列条件:①OF 是∠AOB 的平分线;②DF=EF;③DO=EO;④∠OFD=∠OFE。

其中能够证明△DOF≌△EOF 的条件的个数有()A.1 个B.2 个C.3 个D.4 个3、如图,已知 AC=DB,要使△ABC≌△DCB,需添加的一个条件是.4、(2016 泰安)如图,在△PAB 中,P A=P B,M,N,K分别是PA,PB,AB 上的点,且AM=BK,BN=AK,若∠MKN=44°,则∠P 的度数为()A.44°B.66°C.88°D.92°((2016 莱芜)已知△ABC 中,AB=6,AC=8,BC=11,任作一条直线将△ABC 分成两个三角形,若其中有一个三角形是等腰三角形,则这样的直线最多有()A.3 条B.5 条C.7 条D.8 条【分析】分别以A、B、C 为等腰三角形的顶点,可画出直线,再分别以AB、AC、BC 为底的等腰三角形,可画出直线,综合两种情况可求得7 条.5、在△ABC 中,AB=AC,∠BAC= 1200,AD⊥BC,且AD=AB.(1)如图1,DE⊥AB,DF⊥AC,垂足分别为点E,F,求证:AE+AF=AD(2)如图2,如果∠EDF= 600,且∠EDF 两边分别交边AB,AC 于点E,F,那么线段AE,AF,AD 之间有怎样的数量关系?并给出证明。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

等腰三角形专题复习
一、等腰三角形中的分类讨论
1、等腰三角形的周长为50,一条边长是12,则另两边分别是__________
2、若等腰三角形的一个内角为,则底角的度数为__________________
3、已知等腰三角形一腰上的高与另一腰的夹角为,则此三角形的三个内角度数分别为________________.
4、如图,在RT△ABC中,∠ACB=,AB=2BC,在直线BC或AC上取一点P,
使得△PAB为等腰三角形,则符合条件的点P共有个。

5、已知0为等边△ABD边BD的中点,AB=4,E、F分别为射线AB、DA上一动点,且∠EOF=,
若AF=1,求BE的长_____________。

二、构造等腰三角形解题——截长补短法
6、如图,在△ABC中,AD为角平分线,且AC=AB+BD,求证.
7、如图,已知,AC平分∠MAN,,求证:
8、如图,△ABC为等腰三角形,EC=ED, P为BD的中点,求证:AE=2PE.
三、构造等腰三角形解题——引平行线
9、如图,已知△ABC是等边三角形,延长BC到D,延长BA到E,使AE=BD,求证:EC=ED.
10、已知△ABC中,AD是BC边上的中线,E是AD上一点,且BE=AC,延长BE交AC于F,求证:AF=EF.
11、△ABC为等边三角形,D为BC上任意一点,∠ADE=600,边ED与∠ACB外角的平分线交于点E.
(1)求证:AD=DE.
(2)若点D在CB的延长线上,(1)的结论是否依然成立?请画出图形,若成立,请给出证明,若不成立,请说明理由。

12、如图,BD平分∠ABC交AC于点D,E为CD上一点,且AD=DE,EF∥BC交BD于F,求证:AB=EF.
四、等腰三角形中的“三线合一”
(一)利用等腰三角形的“三线合一”证题
13、如图,AD是△ABC的角平分线,且AE=AC,EF∥BC交AC于点F,求证:EC平分∠DEF.
14、如图所示,∠BAC=∠ABD,AC=BD,点O是AD、BC的交点,点E是AB的中点,试判断OE 和AB的位置关系并给出证明。

(二)、利用“三线合一”添加辅助线
15、如图,在△ABC中,AC=2AB,AD平分∠BAC,E是AD上一点,且EA=EC。

求证:EB⊥AB.
16、如图,点D、E分别在BA、AC的延长线上,且AB=AC,AD=AE,求证:DE⊥BC.
17、已知△ABC中,∠A=900,AB=AC,D为BC的中点,如图,E,F分别是AB,AC上的点,且BE=AF,试判断△DEF的形状,并说明理由。

五、利用角构造直角三角形
18、如图,△ABC中,AB=AC,∠BAC=1200,D为BC的中点,DE⊥AC于E,AE=2,求CE的长。

19、如图,四边形ABCD中,AD=4,BC=1,∠A=30O, ∠B=90O, ∠ADC=1200,求CD的长。

20、如图,在△ABC中,∠A=900,D为△ABC内一点,且AB=AC=BD,∠ABD=300,求证:AD=CD.
六、共顶点的等腰三角形
方法技巧:共顶点的等腰(边)三角形中隐含全等三角形(即旋转变换得到的全等三角形)21.如图,点C为线段AB上一点,△ACM和△CBN都是等边三角形,直线AN、MC交于点E,直线BM、CN交于点F.
(1)求证:AN=BM;
(2)求证:△CEF为等边三角形;
(3)将△ACM绕点C按逆时针方向旋转90°,其他条件不变,在图中补出符合要求的图形,并判断第(1)、(2)两小题的结论是否仍然成立(不要求证明).。

相关文档
最新文档